+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Выпрямители. Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U
2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Выпрямители с умножением напряжения

СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ
ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫ
НАКАПЛИВАЮЩИЕ ЁМКОСТИ
УНИВЕРСАЛЬНЫЙ БЕСТРАНСФОРМАТОРНЫЙ ВЫПРЯМИТЕЛЬ

ВВЕДЕНИЕ

Среди различных схем выпрямляющих устройств особую труппу составляют схемы, в которых посредством соответствующего включения выпрямительных элементов .и конденсаторов осуществляется не только выпрямление, но одновременно и умножение выпрямленного напряжения.

Преимущество таких схем заключается в возможности построения высоковольтных бестрансформаторных выпрямителей и выпрямителей с трансформаторами, только для питания цепей накала кенотронов. Отсутствие в силовом трансформаторе повышающей обмотки значительно облегчает его изготовление и повышает эксплуатационные качества выпрямителя. К недостаткам этих схем относятся сравнительно сильная зависимость выпрямленного напряжения от тока в нагрузке и относительная трудность получения больших мощностей.

Схемы выпрямителей с умножением напряжения получили наиболее широкое распространение в рентгенотехнических установках. В радиотехнической практике они используются в основном для питания маломощной аппаратуры, потребляющей ток не более 50-70 мА при напряжении около 200 в. Однако и здесь область их применения можно значительно расширить, построив, например, по схеме с утроением или учетверением напряжения достаточно мощные бестрансформаторные выпрямители. Подобные выпрямители при напряжении сети переменного тока 110, 127 или 220 в позволяют получить постоянное напряжение 300- 400 в при токе до 100-150 мА, что обеспечивает питание анодных цепей приёмников, усилителей низкой частоты средней мощности.

Особенностью работы выпрямителей с умножением напряжения является использование свойств конденсаторов накапливать и в течение некоторого времени сохранять электрическую энергию. При работе выпрямителя от обычной сети 50-периодного переменного тока время, в течение которого конденсатор должен сохранять заряд, не превышает 0,02 сек. Чем больше ёмкость (входящих в схему конденсаторов, тем большее количество электрической энергии они сохраняют и тем выше при одной и той же .нагрузке получается выпрямленное напряжение. Поэтому в таких выпрямителях удобнее всего применять электролитические конденсаторы, которые, имея небольшие размеры, обладаю! значительной ёмкостью.

Ниже описывается ряд практических схем выпрямителей с умножением напряжения, причём для большинства из них приводятся нагрузочные характеристики, снятые при различных ёмкостях накопительных конденсаторов. Такие характеристики позволяют достаточно полно судить о возможных областях применения той или иной схемы, а также по заданным выпрямленному току, выпрямленному напряжению и напряжению питающей сети выбрать схему выпрямителя и определить основные данные его деталей.

СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ

Схемы с удвоением напряжения.

Схемы выпрямителей с удвоением напряжения, получившие наиболее широкое распространение в радиолюбительской практике, приведены на фиг. 1.

Фиг. 1. Принципиальные схемы выпрямителей с удвоением напряжения.
а — схема двухполупериодного выпрямителя; б — схема однополупериодного выпрямителя.

Для того чтобы можно было достаточно полно сравнить и оценить достоинства и недостатки обеих схем, на фиг. 2 приведены их нагрузочные характеристики. Характеристики были сняты при различных ёмкостях конденсаторов С1 и С2. В выпрямителях использовались селеновые столбики В1 и В2, собранные каждый из 13 шайб диаметром 45 мм. Напряжение питающей сети поддерживалось равным 120 в. Для ограничения пускового тока, который из-за ёмкостного характера нагрузки может достигать значительных величин, последовательно в цепь питания включалось сопротивление R, равное 20 Ом. Благодаря этому создавались более благоприятные условия для работы выпрямителей.

Фиг. 2. Нагрузочные характеристики выпрямителей с удвоением напряжения (сняты при напряжении питающей электросети, равном 120 в).
а — характеристики двухполупериодного выпрямителя; б — характеристики однополупериодного выпрямителя.

Сравнивая нагрузочные характеристики обоих выпрямителей, снятые при одних и тех (же значениях ёмкости конденсаторов С1 и С2, можно заметить, что для схемы двухполупериодного выпрямления они лежат заметно выше, чем для схемы однополупериодного. Следовательно, выпрямленное напряжение на нагрузке при одинаковом токе получается большим для первой схемы (фиг. 1, а), чем для второй (фиг. 1, б).

Приведённые характеристики позволяют также судить о реальных рабочих напряжениях, при которых работают конденсаторы схемы.

Благодаря тому, что частота пульсации при двухполупериодном выпрямлении получается в два раза большей, чем при однополупериодном, для первой схемы (фиг. 1, а) значительно облегчается дальнейшая фильтрация выпрямленного напряжения, и кроме того, коэффициент пульсации показывающий, какую часть выпрямленного напряжения на выходе выпрямителя составляет амплитуда переменной составляющей этого напряжения) для одинаковой нагрузки и одинаковых значений ёмкости конденсаторов С1 и С2 получается несколько меньшим.

Так, например, при сопротивлении нагрузки 2000 Ом и ёмкости конденсаторов С1 и С2 по 48 мкФ коэффициент пульсаций для первой схемы составлял 6,5 %, а для второй — 7,6% (несмотря на то, что в первой схеме суммарная ёмкость на выходе выпрямителя в два раза меньше, чем во второй).

Следует также отметить, что рабочие напряжения на конденсаторах в первой схеме одинаковы и равны половине выпрямленного напряжения, т. е. не превышают 150 в (если только выпрямитель не работает без нагрузки), тогда как во второй схеме под таким напряжением работает только конденсатор С1 а конденсатор С2 находится под полным выпрямленным напряжением и, следовательно, должен быть рассчитан на рабочее напряжение не менее чем 300 в.

При работе выпрямителей с удвоением напряжения без нагрузки, т. е. вхолостую, выпрямленное напряжение примерно равно удвоенному амплитудному значению напряжения питающей сети, и следовательно, может превысить 350 в (если эффективное напряжение сети равно 127 в). Такое повышение напряжения может привести к пробою конденсаторов, селеновых шайб или изоляции между нитью накала и катодом в кенотронах.

Поэтому, если по техническим условиям выпрямитель должен работать без нагрузки или на очень высокоомную нагрузку, то детали, применяемые в нём, должны быть рассчитаны на соответствующее рабочее напряжение. Последнее условие относится также и к схемам, приводимым в последующих разделах брошюры.

Некоторым преимуществом однополупериодной схемы является возможность весьма простого переключения её на питание от сети с напряжением 220 в. Чтобы произвести такое переключение, нужно соединить последовательно выпрямительные элементы В1 и В2 и закоротить конденсатор С1. В этом случае выпрямитель будет работать по схеме однополупериодного выпрямления без удвоения напряжения. Нагрузочные характеристики выпрямителя при этом почти не изменятся.

Область применения описанных выше схем выпрямителей — питание 4…5 ламповых приёмников (имеющих выходную мощность не более 2-3 Вт), маломощных усилителей низкой частоты и малоламповой измерительной аппаратуры.

Во всех этих случаях в качестве выпрямительного элемента удобнее всего использовать кенотрон 30Ц6С, нить накала которого соединяется последовательно с нитями накала других ламп аппарата. Выпрямитель с этим кенотроном и конденсаторами С1 и С2 ёмкостью по 20-40 мкф даёт напряжение 200-220 в при токе около 70 мА. Применяя вместо кенотрона 30Ц6С селеновые столбики, собранные из шайб диаметром 35 или 45 мм, и конденсаторы большей ёмкости, можно несколько увеличить выпрямленное напряжение и получить ток вдвое (для шайб диаметром 35 мм) и втрое (для шайб диаметром 45 мм) больший. Выпрямители в этом случае могут питать более мощные приёмники (до 4 вт выходной мощности), усилители низкой частоты, малоламповые телевизоры и т. п.

Фиг. 3. Принципиальная схема выпрямителя с утроением напряжения.

Фиг. 4. Нагрузочные характеристики выпрямителя с утроением напряжения (сняты при напряжении питающей электросети, равном 120 в).

Схема с утроением напряжения.

Схема выпрямителя с утроением напряжения приведена на фиг. 3. Она представляет собой комбинацию двух схем однополупериодных выпрямителей: схемы с удвоением напряжения и схемы без умножения. К питающей сети обе схемы подключаются параллельно, а их выходы (выпрямленные напряжения) соединяются между собой последовательно. Таким образом, напряжение на выходе выпрямителя, равное сумме выпрямленных напряжений (удвоенному напряжению сети на конденсаторе С2 и одинарному — на конденсаторе С3), оказывается равным, примерно, утроенному напряжению сети.

Нагрузочные характеристики, выпрямителя, приведённые на фиг. 4, показывают, что при токе около 200 мА такой выпрямитель может отдавать напряжение свыше 300 в. Характеристики снимались при сопротивлении R = 10 Ом с выпрямителя, в котором (в качестве выпрямительных элементов В1, В2 и В3 использовались одинаковые селеновые столбики, собранные каждый в 13 шайб диаметром 45 мм.

Напряжение питающей сети поддерживалось равным 120 в, а ёмкости конденсаторов С1, С2 и С3 менялись в пределах от 32 до 100 мкф.

Характер пульсации выпрямленного напряжения этой схемы при равных значениях ёмкости всех трёх конденсаторов такой же, как и в схеме двухполупериодного выпрямления, а коэффициент пульсации при нагрузке выпрямителя сопротивлением 2000 ом и ёмкости конденсаторов по 50 мкф — порядка 7%. Рабочие напряжения на конденсаторах С1 и С3 не превышают 150 в, а на конденсаторе С2 — 300 в.

Следует иметь в виду, что в схеме с утроением напряжения при отсутствии нагрузки и напряжении питающей сети 120-127 в выпрямленное напряжение превышает 500 в.

Приведённые выше данные показывают, что выпрямитель с утроением напряжения может получить ещё более широкое применение, чем с удвоением. Вопрос о выборе выпрямительных элементов для такого выпрямителя будет рассмотрен ниже.

Схемы с учетверением напряжения. Схема выпрямителя с учетверением напряжения может быть двух видов: симметричной и несимметричной.

Симметричная схема, изображённая на фиг. 5, представляет собой комбинацию двух схем однополупериодных выпрямителей с удвоением, работающих в разные полупериоды напряжения питающей сети. Работа этой схемы происходит следующим образом- Во время полупериода одного знака заряжаются конденсаторы С1 и С4, причём напряжение на конденсаторе С1 достигает, примерно, одинарного, а на конденсаторе С4 — удвоенного эффективного значения напряжения питающей сети (конденсатор С4 заряжается, используя уже имеющийся заряд на конденсаторе С2). Во время полупериода противоположного знака таким же образом заряжаются конденсаторы С2 и С3. Выпрямленное напряжение снимается с соответствующих полюсов конденсаторов С3 и С4, соединённых между собою последовательно. Таким образом, оно удваивается вторично.

Фиг. 5. Симметричная схема выпрямителя с учетверением напряжения.

Напряжение, до которого заряжаются конденсаторы С1 и С2, оказывается тем большим, чем больше нагрузочное сопротивление или, иначе говоря, меньше отдаваемая выпрямителем мощность. Максимального значения зарядное напряжение достигает в случае отключения от выпрямителя нагрузки, становясь равным амплитудному значению напряжения сети (в 1,41 раза больше эффективного значения) на конденсаторах С1 и С2 и удвоенному амплитудному значению (в 2,82 раза больше эффективного значения) — на конденсаторах С3 и С4.

Фиг. 6. Нагрузочные характеристики выпрямителя с учетверением напряжения (сняты при напряжении питающей сети, равном 120 в).

Для того чтобы можно было быстро определить требуемые ёмкости конденсаторов C1, С2, С3 и С4, на фиг. 6 приведены нагрузочные характеристики, снятые с выпрямителя при различных значениях этих ёмкостей (во всех случаях С1 = С2 и С3 = С4). Приведённые характеристики показывают, что уже при конденсаторах С1 и С2 ёмкостью по 60 мкф и С3 и С4 — по 16 мкф напряжение на выходе выпрямителя при токе 150 мА достигает 400 в.

Конденсаторы С1 и С2 должны быть рассчитаны на рабочее напряжение не меньшее чем 150 в, а С3 и С4 — не меньшее чем 250 в.

Коэффициент пульсации выпрямленного напряжения в случае нагрузки выпрямителя сопротивлением 3000 Ом оказывается равным, примерно, 6%, а форма напряжения на нагрузке та же, что и при двухполупериодном выпрямлении.

Следует иметь в ввиду, что в симметричных схемах выпрямителей с умножением напряжения шасси находится под сравнительно высоким потенциалом относительно земли и питающего источника.

Фиг. 7. Несимметричная схема выпрямителя с учетверением напряжения.

Несимметричная схема выпрямителя с учетверением напряжения показана на фиг. 7. Работает она по несколько иному принципу, чем предыдущая. Здесь в полупериод соответствующего знака через выпрямительный элемент В1 и сопротивление R, примерно до напряжения сети, заряжается конденсатор С1. В следующий полупериод через выпрямительный элемент В2 и сопротивление R, используя заряд на конденсаторе С1, примерно до двойного напряжения сети, заряжается конденсатор С3. До такого же напряжения заряжается в последующий полупериод конденсатор С2 через выпрямительный элемент В3. В это же время вновь заряжается конденсатор С1. Затем заряд конденсатора С2 через выпрямительный элемент В4 заряжает конденсатор С4. Выпрямленное напряжение снимается с последовательно соединённых конденсаторов С3 и С4. Вся схема работает по принципу однополупериодного выпрямления.

Фиг. 8. Нагрузочные характеристики несимметричного учетверяющего выпрямителя (сняты при напряжении питающей сети, равном 120 в).

Снятые с выпрямителя нагрузочные характеристики (фиг. 8) имеют значительный наклон. Это показывает на невозможность использования таких схем для радиотехнических аппаратов повышенной мощности. Рабочее напряжение распределяется на конденсаторах весьма своеобразно, причём характер распределения зависит от величины нагрузки. В табл. 1 приведены рабочие напряжения на конденсаторах при двух различных нагрузках и без нагрузки.

Таблица 1

Конденсаторы на схеме фиг. 7Ёмкость, мкфРабочее напряжение при нагрузке 2000 Ом, вРабочее напряжение при нагрузке 7500 Ом, вНапряжение без нагрузки, в
C160100125170
С248125220340
С348175240340
С448100105340

Примечание. Напряжение питающей сети 120 в.

Такое неравномерное распределение напряжения сопровождается весьма неравномерной формой пульсации, и поэтому коэффициент пульсации на выходе выпрямителя составляет при сопротивлении нагрузки 5000 Ом около 10%, а при сопротивлении нагрузки 1700 Ом повышается до 23%. Вследствие этого несимметричную схему выпрямителя с учетверением напряжения можно использовать только при больших сопротивлениях нагрузки или, иначе говоря, при малых потребляемых токах.

Выпрямители, собранные по симметричной схеме с учетверением, в которых применяются селеновые выпрямительные элементы, могут широко использоваться для питания различных радиотехнических устройств, требующих достаточно высоких напряжений при токах 150-200 мА.

Схемы с многократным умножением напряжения. Принцип выпрямления с учетверением напряжения, изложенный выше, действителен для любой чётной кратности умножения. Для каждого последующего увеличения выпрямленного напряжения на удвоенное напряжение сети схему выпрямителя нужно дополнить лишь двумя выпрямительными элементами и двумя конденсаторами, как показано на фиг. 9.

Схема, приведённая на фиг. 9, хорошо работает только при весьма малом потребляемом токе, но зато может давать очень высокое выпрямленное напряжение. Её удобно применять в телевизорах для питания анода кинескопа и т. д. В качестве выпрямительных элементов здесь могут быть использованы селеновые шайбы самого малого диаметра, собранные в столбики с таким расчётом, чтобы допустимое обратное напряжение было равным двойной амплитуде напряжения, даваемого источником переменного напряжения. На такое же рабочее напряжение должны быть рассчитаны и все конденсаторы схемы, кроме (конденсатора С1 находящегося под одинарным амплитудным напряжением источника. Так как схема рассчитывается на малые рабочие токи,

Фиг. 9. Несимметричная схема выпрямителя с многократным умножением напряжения.

ёмкости конденсаторов могут быть небольшими, в пределах от 0,25 до 0,5 мкФ. Из-за большого сопротивления нагрузки коэффициент пульсации на выходе выпрямителя получается незначительным даже при таких малых значениях ёмкости конденсаторов. Полное напряжение, даваемое выпрямителем, подсчитывается для ненагруженного выпрямителя путём умножения амплитуды переменного напряжения на число пар элементов схемы. За одну пару элементов принимаются конденсатор и выпрямительный элемент.

На фиг. 10 показана симметричная схема многократного умножения напряжения, имеющая по сравнению со схемой

Фиг. 10. Симметричная схема выпрямителя с многократным умножением напряжения.

фиг. 9 те же преимущества, что и симметричная схема с учетверением напряжения по сравнению с несимметричной. Эту схему можно рекомендовать для выпрямителей, питающих выходные ступени любительских коротковолновых передатчиков и устройств, требующих высоких напряжений и сравнительно больших токов. При этом, конечно, должны быть соответственно подобраны выпрямительные элементы и конденсаторы выпрямителя.

Для приведённых выше схем выпрямителей характер нагрузочных характеристик определяется ёмкостями применяемых конденсаторов. Чем больше эти ёмкости, тем меньший наклон имеет характеристика, и следовательно, большим получается напряжение на данной нагрузке.

Для случая работы выпрямителя без нагрузки существуют определённые минимальные значения ёмкостей конденсаторов, при занижении которых схемы с умножением напряжения перестают работать. В тех случаях, когда от выпрямителя необходимо получить ток в несколько десятков или сотен, миллиампер, конденсаторы следует брать возможно большей ёмкости. Это способствует также и улучшению фильтрации выпрямленного напряжения. Кроме того, подбором ёмкостей конденсаторов можно эффективно устанавливать нужное по режиму питания анодное напряжение.

В промышленных и любительских телевизорах для питания анодов кинескопов нашла применение схема с умножением напряжения, изображённая на фиг. 11. Эта схема отличается от приведённых ранее наличием дополнительных сопротивлений и ёмкостей. Работает она следующим образом. Во время положительного полупериода питающего напряжения через выпрямительный элемент В1 заряжается до амплитудного значения напряжения конденсатор C1, а во время отрицательного — через сопротивление R1 конденсатор С2.

Фиг. 11. Схема умножения напряжения с сопротивлениями.

В последующий положительный полупериод напряжение на конденсаторе С2 складывается с питающим напряжением, и этот конденсатор разряжается через выпрямительный элемент В2 на последовательно соединённые конденсаторы С1 и С3, с концов которых полученное удвоенное выпрямленное напряжение и подводится к нагрузке. Наращивая в схеме звенья так, как показано пунктиром на фиг. 11, можно получить умножение напряжения любой кратности.

Преимущества такой схемы заключаются в облегчении условий работы выпрямительных элементов и ёмкостей, так как обратное напряжение на каждом выпрямительном элементе не превышает двойного, а на каждом конденсаторе — одинарного амплитудного напряжения, подводим ото к выпрямителю. Сопротивления R1, R2 и т. д. позволяют в случае использования селеновых столбиков иметь значительный разброс их обратных сопротивлений.

Рассмотренная схема пригодна только для работы выпрямителя при большом сопротивлении нагрузки. Конденсаторы могут иметь ёмкость порядка 500…1000 нФ, а сопротивления около 2…4 мОм. В качестве выпрямительных элементов могут применяться соответствующие селеновые столбики или кенотроны, однако для питания нитей накала последних на силовом трансформаторе необходимо иметь отдельные хорошо изолированные обмотки.

Продолжение. ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫ
BACK MAIN PAGE

Схемы трёхфазных (многофазных) выпрямителей | Volt-info

Описание

 Трёхфазную (многофазную) систему напряжений можно представить как три однофазных источника переменного напряжения, электрически соединённые между собой одним из выводов. Точка соединения является общим, нулевым выводом. На диаграммах будем изображать напряжения выводов разных фаз относительно общего. Диаграмма изменения напряжения одной фазы во времени представлена на рисунке 1 а). В симметричных многофазных системах однотипные изменения напряжений чередующихся фаз сдвинуты во времени на одинаковый интервал. Этот интервал определяет угол сдвига фаз. В трёхфазной системе он равен 120 градусам. Диаграмма трёхфазной системы напряжений представлена на рисунке 1 б).

Рисунок 1. Диаграммы напряжений одной фазы (а) и трёхфазной системы (б).

 

 По аналогии с однофазными, схемы многофазных выпрямителей делятся на два типа: однополупериодные (рис. 2 и 3) и двухполупериодные (рис. 5 и 6). В однополупериодных схемах при выпрямлении полезное действие на нагрузку оказывает только один полупериод напряжения каждой фазы, и, поскольку фазы распределены по времени и перекрывают друг друга, КПД такого выпрямителя будет незначительно ниже двухполупериодного, но будут заметны пульсации, обусловленные формой кривой напряжения. При использовании двухполупериодной схемы, пульсации выпрямленного напряжения будут заметно меньше.

 

Однополупериодный многофазный выпрямитель

 Принцип работы многофазного однополупериодного выпрямителя (см. схему на рис. 2 и 3) абсолютно идентичен однофазному (см. статью Элементарный выпрямитель на одном диоде). Особенность заключается в том, что рабочие (выпрямленные) полупериоды напряжений накладываются друг на друга с фазным сдвигом по времени (перекрываются) (см. диаграммы на рис. 4 и 7). При этом полученное постоянное напряжение имеет тем меньшие пульсации, чем больше фаз участвует в процессе работы. Наиболее часто применяются трёхфазные источники многофазной системы напряжения, поэтому обычно число фаз не превышает трёх. В схеме однополупериодного трёхфазного выпрямителя, рисунок 2, за время периода полезную работу производят только три рабочих полупериода напряжения. При этом пульсации выпрямленного напряжения будут иметь вид, показанный на рисунке 4 толстой чёрной кривой.

Рисунок 2. Схема трёхфазного однополупериодного выпрямителя.

 

 При увеличении числа фаз, схема усложняется незначительно – просто добавляется диод для каждой дополнительной фазы (рисунок 3). Увеличение числа фаз не имеет значимого практического смысла и в нашем случае может позволить лишь несколько снизить пульсации напряжения на выходе выпрямителя. Например, если увеличить число фаз в два раза (до 6), то пульсации напряжения на выходе будут несколько снижены, а диаграмма напряжений будет напоминать рисунок 7. Но это не имеет практического значения, поскольку того же эффекта можно добиться просто применив схему двухполупериодного выпрямителя, показанного на рисунке 5.

 Рисунок 3. Схема многофазного однополупериодного выпрямителя.

 Рисунок 4. Пульсации выпрямленного напряжения однополупериодным трёхфазным выпрямителем.

 

Трёхфазный двухполупериодный выпрямитель

фактически является модификацией своего однофазного предшественника. При увеличении количества фаз, с каждой последующей фазой в схему будет добавляться два полуплеча диодного моста в виде двух диодов (рисунок 6).

 Рисунок 5. Схема трёхфазного двухполупериодного выпрямителя.

 Рисунок 6. Схема многофазного двухполупериодного выпрямителя.

 

 При работе двухполупериодного трёхфазного выпрямителя в работе участвуют 6 рабочих полупериодов напряжения. На выходе такого выпрямителя напряжение имеет несколько меньшие пульсации (рис. 7), чем однополупериодного.

 Рисунок 7. Пульсации выпрямленного напряжения двухполупериодным трёхфазным выпрямителем.

Выпрямитель на логическом элементе


Выпрямитель на логическом элементе

  Известно, что входные цепи цифровых микросхем структуры КМОП снабжены защитными диодами. Это обстоятельство в ряде случаев позволяет «экономить» детали (в частности, выпрямительные диоды) и место на плате, используя свободные логические элементы или триггеры. О том, как это сделать, пойдет речь в предлагаемой статье.

  Каждый сигнальный вход логического элемента или другого функционального узла современной микросхемы КМОП, как известно, зашунтирован защитными диодами (например, VD1—VD6 на схеме рис. 1 в книге С. Бирюкова «Цифровые устройства на МОП-интегральных микросхемах». — М.: Радио и связь, 1990). Видно, что защитные диоды двух входов элемента образуют мостовой выпрямитель. Если на два эти входа подать переменное напряжение со вторичной обмотки сетевого трансформатора, как это показано на рис. 1, то оно будет выпрямлено диодным мостом и подано на выводы 14 и 7 микросхемы. Выпрямленное напряжение сглаживает конденсатор С1. Остальные логические элементы микросхемы можно использовать по прямому назначению, т. е. для выполнения логических операций над импульсными сигналами, сборки RS-триггеров, построения генераторов и т. д. Если устройство состоит из двух-трех корпусов, достаточно соединить их плюсовые выводы питания и отдельно минусовые. Потребляемый от описанного выпрямителя ток не должен превышать 20 мА.

  Если в блоке питания использовать два логических элемента (рис. 2), то выпрямитель выдерживает ток нагрузки до 40 мА, так как диоды в нем окажутся включенными попарно параллельно. При использовании в выпрямителе четырех элементов потребляемый нагрузкой ток удваивать уже не следует из-за возможной неидентичности характеристик диодов — нужно ограничиться током 50…60 мА. Напряжение вторичной обмотки трансформатора Т1 не должно превышать 10…11 В (эффективное значение).

  Выпрямителем могут служить не только логические элементы, но и другие функциональные узлы, например, триггер. В тех случаях, когда необходимо стабилизировать выходное напряжение выпрямителя, параллельно конденсатору С1 включают маломощный стабилитрон, а балластный резистор вводят в цепь одного из выводов вторичной обмотки (рис. 1). Разумеется, работать выпрямителем могут только те микросхемы, у которых входы элементов (функциональных узлов) защищены диодами. Убедиться в наличии этих диодов очень легко — с помощью любого авометра, включенного омметром.

  Оставив в выпрямителе по схеме рис. 2 один вход любого элемента свободным и подав на него импульсы частотой f от внешнего генератора, вы получите возможность одновременно с выпрямлением (ток нагрузки — 20 мА) формировать на выходе этого элемента пачки импульсов. Если частота f больше частоты сети, это будут пачки частоты f, повторяющиеся с частотой сети, а если меньше — пачки сетевой частоты, следующие с частотой f.

  Если вы включите триггер К561ТМ2 так, как показано на рис. 3, то получите выпрямитель на ток нагрузки до 40 мА (результат не изменится, если с входом R будет соединен вход D, а с S — С), а с выходов триггера можно будет снять две противофазные последовательности прямоугольных импульсов частотой 50 Гц. Такие же две последовательности, кстати, присутствуют на выходах логических элементов выпрямителя по схеме на рис. 2.

А. САМОЙЛЕНКО
г. Клин
Радио №4, 2002

Источник: shems.h2.ru

1.28. Схемы выпрямителей для источников питания

ОСНОВЫ ЭЛЕКТРОНИКИ

Диоды и диодные схемы



Двухполупериодная мостовая схема. На рис. 1.74 показана схема источника питания постоянного тока с мостовым выпрямителем, который мы только что рассмотрели. Промышленность изготавливает мостовые схемы в виде функциональных модулей. Маленькие мостовые модули рассчитаны на предельный ток 1 А и напряжение пробоя от 100 до 600 В. а иногда до 1000 В. Для больших мостовых выпрямителей предельный ток равен 25 А и выше.

Рис. 1.74. Схема мостового выпрямителя. Значок полярности и электрод в виде дуги служат для обозначения поляризованного конденсатора, заряжать его с другой полярностью недопустимо.

Двухлолупериодный однофазный выпрямитель. Схема двухполупериодного однофазного выпрямителя приведена на рис. 1.75. Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. В связи с этим ток в обмотке за этот интервал времени в 2 раза больше, чем в простой двухполупериодной схеме. Согласно закону Ома, температура нагрева обмотки пропорциональна произведению I²R, значит, за время в 2 раза меньшее нагрев будет в 4 раза больше или в среднем больше по сравнению с эквивалентной двухполупериодной схемой. Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,4 (в √2) раз больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.

Рис. 1.75. Двухполупериодный выпрямитель на основе трансформатора со средней точкой.

Рис. 1.76.

Упражнение 1.28. Это упражнение поможет вам разобраться в механизме нагрева обмотки, пропорционального I²R, и понять, в чем проявляется недостаток однофазного выпрямителя. На какое предельное минимальное значение тока должен быть расчитан плавкий предохранитель, чтобы в цепи мог протекать ток, изменяющийся согласно графику, показанному на рис. 1.76, и имеющий среднюю амплитуду 1 А? Подсказка: предохранитель «перегорает», когда в цепи начинает протекать ток, превышающий предельное значение тока предохранителя. При этом в предохранителе расплавляется металлический проводник (температура его нагрева пропорциональна I²R). Допустим, что и в нашем случае температурная постоянная времени для плавкого предохранителя значительно больше, чем период прямоугольных колебаний, т. е. предохранитель реагирует на значение I², осредненное за несколько периодов входного сигнала.

Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рис. 1.77. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

Рис. 1.77. Формирование двухполярного (расщепленного) напряжения питания.

Рис. 1.78. Удвоитель напряжения.

Выпрямители с умножением напряжения. Схема, показанная на рис. 1.78, называется удвоителем напряжения. Для того чтобы понять, как работает эта схема, представьте, что она состоит из двух последовательно соединенных выпрямителей. Фактически эта схема является двухполупериодным выпрямителем, так как она работает в каждом полупериоде входного сигнала — частота пульсаций в 2 раза превышает частоту колебаний питающей сети (для сети с частотой 60 Гц, как в США, частота пульсаций составляет 120 Гц). Разновидности этой схемы позволяют увеличивать напряжение в 3, 4 и более раз. На рис. 1.79 показаны схемы выпрямителей, обеспечивающие увеличение напряжения в 2, 3 и 4 раза, в которых один конец обмотки трансформатора заземлен.

РРис. 1.79. Схемы умножения напряжения; наличие источника с плавающим напряжением в представленных схемах не обязательно.


Другие пассивные компоненты


Выпрямитель — Физическая энциклопедия

ВЫПРЯМИТЕЛЬ — устройство для преобразования перем. тока (напряжения) в постоянный. Осн. элементом В. является нелинейный элемент (вентиль). В качестве нелинейного элемента используют управляемые вентили (тиристоры)или неуправляемые (диоды). В зависимости от характера нагрузки определяют выходные параметры В.: значение выпрямленного напряжения или тока ; амплитуду и частоту 1-й гармоники выходного тока ; коэф. пульсаций ; выходное сопротивление; нагрузочную характеристику . В. классифицируют по след. признакам: числу фаз первичной и вторичной обмоток трансформатора; схеме соединения вентилей и форме выпрямленного напряжения (тока).

Рис. 1. Простейший выпрямитель: а — схема; б — временная диаграмма выходного тока.

Рис. 2. Двухполупериодный выпрямитель а — схема; б — временнйя диаграмма выходного тока.

Простейшей схемой В. является однополупериодная схема с резистивной нагрузкой R (рис. 1, а). Вентиль D обладает конечным, но очень малым сопротивлением в одном направлении и очень большим — в другом . При воздействии синусоидальной эдс ток в выходной цепи имеет вид синусоидальных импульсов с амплитудой (рис. 1, б), содержащих пост. составляющую , 1-ю гармонику, соответствующую частоте выпрямляемого напряжения, , кратные ей гармоники с частотами . Характер нагрузки выбирается из расчёта макс. подавления всех переменных составляющих. В простейшем случае это может быть сделано с помощью ёмкости С, включённой параллельно R. Если постоянная времени велика по сравнению с периодом T=, то амплитуда пульсаций выходного напряжения мала и можно считать . Недостатками однополупериодных В. являются низкий уровень выпрямленного напряжения, значит. коэф. пульсаций при реальных значениях параметров, большое обратное напряжение на вентиле , поэтому они используются только в маломощных устройствах . Для улучшения показателей В. применяют схему со ср. точкой (рис. 2, а). Диаграмма тока в выходной цепи изображена на рис. 2, б. Постоянная составляющая выходного тока , частота основной гармоники равна . Схема со ср. точкой используется в двухполупериодных В., у к-рых коэф. пульсаций и выходное сопротивление снижаются примерно в 2 раза. Ещё лучшими показателями обладают схемы выпрямления многофазного тока, т. к. при этом уменьшается величина пульсаций и возрастает их частота, а следовательно, облегчается задача выбора ёмкости. При числе фаз та значения постоянной составляющей выпрямленного тока, обратного напряжения на вентиле и коэфф. пульсаций равны:


где m=2,3 … . Широко распространены также мостовые схемы, удобные для двухполупериодных В. (рис. 3). Для увеличения выходного напряжения используют схемы с умножением выпрямленного напряжения при помощи конденсаторов, к-рые способны накапливать и в течение нек-рого времени сохранять электрич. заряд. Для уменьшения величины пульсаций применяют сглаживающие фильтры (см. Фильтры электрические).

Рис. 3. Мостовая схема выпрямителя.

Как правило, они состоят только из реактивных элементов, чтобы не уменьшать значения постоянной составляющей выпрямленного тока. Отношение коэф. пульсаций на выходе фильтра к коэф. пульсаций на его входе наз. коэффициентом сглаживания:


Лит : Полупроводниковые выпрямители, 2 изд., M., 1978; Руденко В. С., Сенько В. И., Чиженко Ц. M., Основы преобразовательной техники, 2 изд., M., 1980.

P. С. Абрамова.

      Предметный указатель      >>   

Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.


Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

 
Трёхфазные выпрямители

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Диодные выпрямительные схемы

»Электроника

Цепи диодного выпрямителя

бывают разных форм, от простых диодов до полуволновых, двухполупериодных выпрямителей, схем с использованием мостовых выпрямителей, удвоителей напряжения и многих других.


Цепи диодного выпрямителя Включают: Цепи диодного выпрямителя
Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Диодные выпрямительные схемы — одна из ключевых схем, используемых в электронном оборудовании.Их можно использовать в импульсных источниках питания и линейных источниках питания, в демодуляции радиочастотных сигналов, измерении мощности радиочастот и во многом другом.

Существует несколько различных типов схем диодного выпрямителя, каждая из которых имеет свои преимущества и недостатки. Решение о том, какой тип диодной схемы использовать, зависит от конкретной ситуации.

Основы схемы диодного выпрямителя

Ключевым компонентом в любой схеме выпрямителя, естественно, является используемый диод или диоды. Эти устройства уникальны тем, что пропускают ток только в одном направлении.Интересно, что Амброуз Флеминг, который изобрел первую форму диода, назвал свою версию клапаном из-за его одностороннего действия. Полупроводниковые диоды теперь выполняют ту же функцию, но занимают небольшую часть пространства и обычно составляют лишь небольшую часть стоимости.

Полупроводниковый диод имеет характеристики, похожие на показанные ниже. В прямом направлении требуется небольшое напряжение на диоде, прежде чем он станет проводящим — это называется напряжением включения. Фактическое напряжение зависит от типа диодного выпрямителя и используемого материала.Для стандартного выпрямителя с кремниевым диодом это напряжение включения составляет около 0,6 В. Германиевые диоды имеют напряжение включения около 0,2 — 0,3 В, а кремниевые диоды Шоттки имеют аналогичное напряжение включения в диапазоне 0,2 — 0,3 В

PN диод VI характеристика

В обратном направлении диодный выпрямитель окончательно выйдет из строя. Напряжение пробоя обычно значительно превышает напряжение включения — шкалы на диаграмме были изменены (сжаты) в обратном направлении, чтобы показать, что происходит обратный пробой.

Примечание о типах диодов:

Хотя основная функция диода остается прежней, существует много различных типов с немного разными характеристиками. Некоторые из них оптимизированы для выпрямления мощности, другие — для выпрямления сигналов, третьи используют диодный переход для излучения света или имеют переменную емкость и т. Д.

Подробнее о типах полупроводниковых диодов .

Для выпрямления мощности обычно используются силовые диоды или диоды Шоттки.Для выпрямления сигналов можно использовать мелкоконтактные диоды, сигнальные диоды или диоды Шоттки. Преимущество диода Шоттки в том, что для прямой проводимости требуется только прямое напряжение около 0,2 — 0,3 вольт. Это особенно полезно при обнаружении слабых радиосигналов, а при использовании в качестве выпрямителя мощности потери мощности снижаются. Однако характеристики обратной утечки не так хороши, как у обычных кремниевых диодов.

Символ диода и упаковка

Условное обозначение диодной цепи широко известно.Диоды также поставляются в различных упаковках, хотя некоторые из наиболее распространенных форматов показаны на диаграмме ниже.

Обозначение диодной цепи

Действие диодного выпрямителя

Диод позволяет току течь только в одном направлении. Поэтому на диод подается переменная форма волны, тогда это позволит проводить только половину формы волны. Оставшаяся половина заблокирована.

Выпрямляющее действие диода

Схема диодного выпрямителя

Существует несколько различных конфигураций схемы диодного выпрямителя.Каждая из этих различных конфигураций имеет свои преимущества и недостатки и поэтому применима к различным приложениям.

  • Схема однополупериодного выпрямителя: Это самая простая форма выпрямителя. Часто использование только одного диода блокирует половину цикла и пропускает другой. Таким образом, используется только половина формы волны.

    Хотя преимуществом этой схемы является ее простота, недостатком является то, что между последовательными пиками выпрямленного сигнала больше времени.Это делает сглаживание менее эффективным и затрудняет подавление пульсаций высокого уровня.

    Эта схема не используется для каких-либо источников питания — она ​​чаще используется для обнаружения сигналов и уровней.


  • Двухполупериодная схема выпрямителя: Эта форма выпрямительной схемы использует обе половины формы волны. Это делает эту форму выпрямителя более эффективной, а поскольку в обеих половинах цикла присутствует проводимость, сглаживание становится намного проще и эффективнее.Есть два типа выпрямителей с полным выпрямителем.

    • Двухдиодный двухдиодный двухполупериодный выпрямитель с ленточным трансформатором: Для двухдиодной версии двухполупериодной схемы выпрямителя требуется центральный отвод в трансформаторе. Когда использовались вакуумные трубки / термоэмиссионные клапаны, этот вариант широко использовался ввиду стоимости клапанов. Однако в случае с полупроводниками четырехдиодная мостовая схема позволяет сэкономить на стоимости трансформатора с центральным ответвлением и является столь же эффективной.


    • Мостовая схема полного выпрямителя: Это особая форма двухполупериодного выпрямителя, в котором используются четыре диода в мостовой топологии. Мостовые выпрямители широко используются, особенно для выпрямления мощности, и их можно получить в виде единого компонента, содержащего четыре диода, соединенных в виде моста.

      В этом формате используются четыре диода, по два проводящих в каждой половине цикла. Это означает, что есть два падения напряжения на диодах, которые могут рассеивать некоторую мощность, но это экономит потребность в трансформаторе с центральным ответвлением, что дает значительную экономию затрат.Кроме того, диоды не обязательно должны иметь такое высокое номинальное обратное напряжение, как те, которые используются в конфигурации с двумя диодами.

      Ввиду того, что есть два падения напряжения на диодах, эта схема редко используется для обнаружения сигналов. Однако он очень подходит для использования в линейных источниках питания, а также во многих случаях в импульсных источниках питания.


  • Схема синхронного выпрямителя: Синхронные или активные выпрямители используют активные элементы вместо диодов для обеспечения переключения.Это позволяет избежать потерь в диодах и значительно повысить эффективность.

    Ввиду более высокого уровня эффективности, которую могут обеспечить синхронные выпрямители, они очень широко используются в высокоэффективных импульсных источниках питания. Их сложность более чем перевешивается гораздо более высоким достижимым уровнем эффективности.


Принимая во внимание разнообразие различных типов выпрямительных схем, существует хороший выбор того, какой тип использовать.Во многих случаях это продиктовано требуемым уровнем производительности, и в большинстве случаев требуется двухполупериодный выпрямитель. Благодаря доступности и низкой стоимости мостовых выпрямителей, это, как правило, самый дешевый вариант, а не экономия на диодах и необходимость в центральном ленточном трансформаторе.

Из-за современных источников питания, требующих все более высокого уровня эффективности, многие разработчики обращаются к использованию синхронных выпрямителей. Хотя они более сложные и, следовательно, стоят дороже, эти затраты часто окупаются отдачей, которую они дают при повышении уровня эффективности.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Мостовой выпрямитель — определение, изготовление и работа

Раньше собираясь мостовой выпрямитель, нам нужно знать, что на самом деле выпрямитель есть и зачем нужен выпрямитель.Так Сначала давайте посмотрим на эволюцию выпрямителей.

Эволюция выпрямители

Выпрямители находятся в основном подразделяется на три типа: полуволна выпрямитель, Центр двухполупериодный выпрямитель с отводом и мостовой выпрямитель. Все у этих трех выпрямителей есть общая цель — преобразовать Чередование Ток (переменный ток) в постоянный Ток (постоянный ток).

Нет все эти три выпрямителя эффективно преобразуют Переменный ток (AC) в постоянный ток (DC), только двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).

В однополупериодный выпрямитель, допускается только 1 полупериод и оставшийся полупериод заблокирован.В результате почти половина приложенная мощность тратится на полуволновой выпрямитель. В в дополнение к этому выходной ток или напряжение производимый однополупериодным выпрямителем — это не чистый постоянный ток, а пульсирующий постоянный ток, который не очень полезен.

В чтобы преодолеть эту проблему, ученые разработали новый тип выпрямителя, известный как двухполупериодный с отводом по центру выпрямитель.

Основным преимуществом двухполупериодного выпрямителя с центральным ответвлением является то, что пропускает электрический ток как во время положительного, так и отрицательного полупериоды входного сигнала переменного тока. В результате DC выходная мощность двухполупериодного выпрямителя с отводом в два раза больше то из полуволнового выпрямителя. В дополнение к этому DC выход двухполупериодного выпрямителя с центральным ответвлением содержит очень меньше ряби.В результате выход постоянного тока центра двухполупериодный выпрямитель с ответвлениями более плавный, чем полуволновой выпрямитель.

Однако двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток: трансформатор с центральным отводом, используемый в нем, очень дорого и занимает большую площадь.

Кому сократить эти дополнительные расходы, ученые разработали новый тип выпрямитель, известный как мостовой выпрямитель.В мостовом выпрямителе, центральный кран не требуется. Если уйти или подняться напряжения не требуется, тогда даже трансформатор можно устранен в мостовом выпрямителе.

выпрямительный КПД мостового выпрямителя практически равен к центру двухполупериодного выпрямителя. Единственное преимущество мостового выпрямителя над двухполупериодным выпрямителем с отводом по центру это снижение стоимости.

В мостовой выпрямитель, вместо использования центрального отвода трансформатор, используются четыре диода.

Сейчас мы получаем представление о трех типах выпрямителей. Половина волновой выпрямитель и двухполупериодный выпрямитель с отводом по центру (двухполупериодный выпрямитель) уже обсуждались в предыдущем учебные пособия. В этом уроке основное внимание уделяется мосту. выпрямитель.

Let’s взгляните на мостовой выпрямитель…!

Мост выпрямитель определение

А мостовой выпрямитель — это тип двухполупериодного выпрямителя, в котором используется четыре или более диодов в конфигурации мостовой схемы для эффективного преобразовать переменный ток (AC) в постоянный ток (ОКРУГ КОЛУМБИЯ).

Мост выпрямитель строительный

строительство Схема мостового выпрямителя показана на рисунке ниже. Мостовой выпрямитель состоит из четырех диодов. а именно D 1 , D 2 , D 3 , D 4 и нагрузочный резистор R L . Четыре диода подключены по замкнутому контуру (мост) к эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).Главное достоинство этой мостовой схемы конфигурация такова, что нам не нужен дорогой центр трансформатор с ответвлениями, что снижает его стоимость и габариты.

входной сигнал переменного тока подается на две клеммы A и B и выходной сигнал постоянного тока получается через нагрузочный резистор R L , который подключается между клеммами C и Д.

четыре диода D 1 , D 2 , D 3 , D 4 расположены последовательно только с двумя диодами, что позволяет электрическому ток в течение каждого полупериода. Например, диоды D 1 и D 3 рассматриваются как одна пара, которая позволяет электрический ток в течение положительного полупериода, тогда как диоды D 2 и D 4 считаются другая пара, которая пропускает электрический ток во время отрицательный полупериод входного сигнала переменного тока.

Как мост выпрямитель работает?

Когда входной сигнал переменного тока подается на мостовой выпрямитель, во время положительного полупериода диоды D 1 и D 3 имеют прямое смещение и пропускают электрический ток, в то время как диоды D 2 и D 4 имеют обратное смещение и блокирует электрический ток.С другой стороны, во время отрицательные полупериодные диоды D 2 и D 4 имеют прямое смещение и пропускают электрический ток, а диоды D 1 и D 3 имеют обратное смещение и блокирует электрический ток.

Во время положительный полупериод, клемма A становится положительной в то время как клемма B становится отрицательной.Это вызывает диоды D 1 и D 3 с прямым смещением и при при этом вызывает диоды D 2 и D 4 обратный смещенный.

направление тока в течение положительного полупериода равно показано на рисунке A (то есть от A до D, от C до B).

Во время отрицательный полупериод, клемма B становится положительной в то время как клемма A становится отрицательной.Это вызывает диоды D 2 и D 4 с прямым смещением и при при этом вызывает диоды D 1 и D 3 обратный смещенный.

отображается текущее направление потока во время отрицательного полупериода на рисунке B (то есть от B до D, от C до A).

От два вышеупомянутых рисунка (A и B), мы можем заметить, что направление тока через резистор нагрузки R L то же самое в течение положительного полупериода и отрицательного полупериода цикл.Следовательно, полярность выходного сигнала постоянного тока то же самое для положительных и отрицательных полупериодов. Выход Полярность сигнала постоянного тока может быть либо полностью положительной, либо отрицательный. В нашем случае это полностью положительно. Если направление диодов перевернут, то мы получаем полный отрицательный постоянный ток Напряжение.

Таким образом, мостовой выпрямитель пропускает электрический ток во время обоих положительные и отрицательные полупериоды входного сигнала переменного тока.

формы выходных сигналов мостового выпрямителя показаны на рисунок ниже.

Характеристики из мостовой выпрямитель

Пик обратный Напряжение (PIV)

максимальное напряжение, которое диод может выдержать при обратном смещении состояние называется пиковым обратным напряжением (PIV)

или

максимальное напряжение, которое может выдержать непроводящий диод называется пиковым обратным напряжением (PIV).

Во время положительный полупериод, диоды D 1 и D 3 находятся в проводящем состоянии, а диоды D 2 и D 4 находятся в непроводящем состоянии. На с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 находятся в проводящем состоянии, в то время как диоды D 1 и D 3 находятся в непроводящее состояние.

Пиковое обратное напряжение (PIV) для мостового выпрямителя дано по

PIV = V Smax

Коэффициент пульсации

гладкость выходного сигнала постоянного тока измеряется с использованием известного коэффициента как фактор пульсации. Выходной сигнал постоянного тока с очень меньшим рябь рассматривается как плавный сигнал постоянного тока, в то время как выходной сигнал постоянного тока с высокой пульсацией считается высоким пульсирующий сигнал постоянного тока.

Пульсация фактор математически определяется как отношение пульсации напряжения к чистое постоянное напряжение.

коэффициент пульсаций для мостового выпрямителя равен

.

коэффициент пульсаций мостового выпрямителя составляет 0,48, что равно в качестве двухполупериодного выпрямителя с отводом от центра.

Выпрямитель эффективность

выпрямитель КПД определяет, насколько эффективно выпрямитель преобразует Переменный ток (AC) в постоянный ток (DC).

высокий выпрямитель КПД указывает на самый надежный выпрямитель, в то время как низкий КПД выпрямителя указывает на плохой выпрямитель.

Выпрямитель эффективность определяется как отношение выходной мощности постоянного тока к мощности переменного тока. входная мощность.

Максимальный выпрямительный КПД мостового выпрямителя — 81.2% который аналогичен двухполупериодному выпрямителю с отводом по центру.

Преимущества мостового выпрямителя

Низкий пульсации в выходном сигнале постоянного тока

Выходной сигнал постоянного тока мостового выпрямителя более плавный, чем однополупериодный выпрямитель. Другими словами, мост выпрямитель имеет меньше пульсаций по сравнению с полуволновым выпрямитель.Однако коэффициент пульсации моста Выпрямитель такой же, как двухполупериодный выпрямитель с отводом по центру.

высокий выпрямитель эффективность

выпрямитель КПД мостового выпрямителя очень высок по сравнению с к однополупериодному выпрямителю. Однако выпрямитель КПД мостового выпрямителя и двухполупериодного отвода с центральным ответвлением выпрямитель такой же.

Низкий потеря мощности

В полупериодный выпрямитель только один полупериод входного переменного тока сигнал разрешен, а оставшийся полупериод ввода Сигнал переменного тока заблокирован. В результате почти половина приложенная входная мощность тратится впустую.

Однако в мостовом выпрямителе допускается наличие электрического тока в течение как положительных, так и отрицательных полупериодов ввода Сигнал переменного тока.Таким образом, выходная мощность постоянного тока почти равна входная мощность переменного тока.

Недостатки из мостовой выпрямитель

Мост выпрямитель схема выглядит очень сложной

В полуволновой выпрямитель, используется только один диод, тогда как в двухполупериодном выпрямителе с отводом по центру используются два диода. Но в мостовом выпрямителе мы используем четыре диода для схема работы.Так выглядит схема мостового выпрямителя сложнее, чем однополупериодный выпрямитель и с отводом по центру двухполупериодный выпрямитель.

Подробнее потеря мощности по сравнению с полной волной с центральным ответвлением выпрямитель

В электронный цепей, чем больше диодов мы используем, тем больше будет падение напряжения происходить. Потери мощности в мостовом выпрямителе почти равны двухполупериодный выпрямитель с отводом по центру.Однако в мосту выпрямитель, падение напряжения немного выше по сравнению с двухполупериодный выпрямитель с отводом по центру. Это связано с двумя дополнительные диоды (всего четыре диода).

В двухполупериодный выпрямитель с отводом по центру, проводит только один диод в течение каждого полупериода. Значит падение напряжения в цепи составляет 0,7 вольт. Но в мостовом выпрямителе два диода, которые соединены последовательно в течение каждого полупериода.Так падение напряжения происходит из-за двух диодов, что равно 1,4 вольта (0,7 + 0,7 = 1,4 вольта). Однако потеря мощности из-за этого падение напряжения очень мало.

«Это статья посвящена только мостовому выпрямителю. Если вы хотите читайте про мостовой выпрямитель с посещением фильтра: мостовой выпрямитель с фильтром «

различных типов выпрямителей — Блог


Выпрямители используются в различных устройствах и могут применяться для модификации сетевых систем.Они классифицируются по-разному в зависимости от таких факторов, как тип источника питания, конфигурация моста и используемые компоненты. В целом выпрямители можно разделить на два типа — однофазные и трехфазные. Переходя на следующий уровень, их можно разделить на полуволновые, двухполупериодные и мостовые выпрямители.

Что такое выпрямитель?

Прежде чем мы перейдем к различным типам выпрямителей, стоит рассмотреть, что такое выпрямители. Выпрямитель — это диод, преобразующий переменный ток (известный как AC) в постоянный ток (DC).Постоянный ток течет только в одном направлении, тогда как переменный ток постоянно меняет направление. Выпрямители позволяют току течь в одном направлении.

Выпрямители

принимают переменное напряжение и преобразуют его в высококачественное постоянное напряжение, необходимое для вашего телекоммуникационного оборудования. Традиционное телекоммуникационное оборудование обычно требует входного питания постоянного тока, но сетевое питание работает от переменного тока. Такие системы питания состоят из нескольких выпрямителей, которые преобразуют мощность переменного тока в мощность постоянного тока, чтобы они могли работать.

Без правильного выпрямителя мало шансов сконфигурировать вашу идеальную систему.Они являются сердцем энергосистемы, поскольку предлагают оптимизированные решения для каждого приложения. Использование выпрямителей означает, что вы можете адаптировать свою систему питания без необходимости перестраивать каждый элемент.

Различные типы выпрямителей

Итак, ясно, что выпрямители являются ключевым компонентом любой сетевой системы, но нам нужно углубиться, чтобы понять кариозные типы. В зависимости от ситуации используются разные выпрямители в зависимости от системы, в которой они используются.Два верхних уровня — однофазные и трехфазные, которые показывают, сколько диодов используется в цепи. Затем мы переходим к полуволновым, двухполупериодным и мостовым выпрямителям, которые влияют на то, какие полупериоды производятся. Давайте рассмотрим каждый тип, чтобы лучше понять, какой выпрямитель следует использовать.

Однофазные и трехфазные выпрямители

Однофазные выпрямители имеют вход однофазного переменного тока. Конструкции очень простые, требуются один, два или четыре диода (в зависимости от типа системы).Это означает, что однофазный выпрямитель выдает небольшую мощность и имеет меньший коэффициент использования трансформатора (TUF). Однофазный выпрямитель использует только одну фазу вторичной обмотки трансформатора для преобразования, а диоды подключены ко вторичной обмотке однофазного трансформатора. Это вызывает высокий коэффициент пульсации.

Трехфазные выпрямители имеют вход трехфазного AV-питания. Для структур требуется три или шесть диодов, и они подключаются к каждой фазе вторичной обмотки трансформатора.Трехфазные выпрямители используются вместо однофазных выпрямителей для уменьшения коэффициента пульсаций.

По сравнению с двумя типами выпрямителей, при использовании больших систем предпочтение отдается трехфазному. Это связано с тем, что они могут обеспечивать большую мощность и не требуют дополнительных фильтров для уменьшения коэффициента пульсаций. Из-за этого трехфазные выпрямители более эффективны и имеют больший коэффициент использования трансформатора.

Полуволновые и полноволновые выпрямители

Полупериодные выпрямители преобразуют один полупериод на входе переменного тока в пульсирующий выход постоянного тока.Это позволяет половину цикла входного переменного тока, блокируя другую половину цикла. Половина цикла может быть как положительной, так и отрицательной. Это самый простой выпрямитель, поскольку используется только один диод. На рисунке 1 (ниже) показан выпрямитель положительной полуволны, тогда как выпрямитель отрицательной полуволны показывает, что диод смещен в обратном направлении (обращен в противоположную сторону). Из-за пульсирующего характера постоянного тока коэффициент пульсаций высок. Это означает, что полуволновые выпрямители не считаются эффективными, и им часто требуются фильтры для уменьшения коэффициента пульсаций.

Рисунок 1: однополупериодный выпрямитель

Двухполупериодные выпрямители преобразуют оба полупериода (положительный и отрицательный) на входе переменного тока в пульсирующий выход постоянного тока. Как показано на рисунке 2 (ниже), в этих схемах используется трансформатор с центральным ответвлением, который подключается к середине вторичной обмотки трансформатора. Эти типы трансформаторов делят входной переменный ток на две части — положительную и отрицательную. Из-за этого двухполупериодные выпрямители считаются гораздо более эффективными, поскольку коэффициент пульсаций намного ниже по сравнению с ними.Кроме того, поскольку оба цикла разрешены одновременно, это означает, что сигнал не теряется.

Рисунок 2: двухполупериодный выпрямитель

Мостовые выпрямители Мостовые выпрямители

широко используются в источниках питания для подачи постоянного напряжения на компоненты. В них используются четыре или более диодов и нагрузочный резистор (см. Рисунок 3 ниже).

Рисунок 3: мостовой выпрямитель

Четыре диода расположены последовательно, и только два диода пропускают электрический ток в течение каждого полупериода.Считается, что диоды работают парами: одна пара пропускает электрический ток через положительный полупериод, а другая половина пропускает ток в течение отрицательного полупериода. Входной переменный ток подается на две клеммы, а выходной постоянный ток получается через резистор индуктивности, который подключен между двумя другими клеммами.

Мостовые выпрямители

пропускают электрический ток во время как положительных, так и отрицательных полупериодов входного сигнала переменного тока. Эти схемы не требуют трансформаторов с центральным ответвлением, которые могут быть очень дорогими.

Неуправляемые и контролируемые выпрямители

Неуправляемые выпрямители — это когда в цепи используются только диоды. Все выпрямители, которые мы рассмотрели до сих пор, являются неуправляемыми выпрямителями. В схемах управляемого выпрямителя используются тиристоры для управления выходом постоянного тока. Они используются, когда необходимо более точно контролировать ток, поскольку диоды могут быть только включены или выключены. Управляемые выпрямители обеспечивают непрерывное управление и гарантируют отсутствие потерь мощности.

Как выпрямители используются в телекоммуникациях?

Когда дело доходит до телекоммуникационной отрасли, выпрямители необходимы для построения сетевых систем.Их использование означает, что вам не придется начинать с нуля, когда что-то нужно изменить. Различные типы выпрямителей позволяют телекоммуникационным компаниям относительно легко менять компоновку систем. Они также позволяют операторам связи адаптировать свои системы в соответствии со своими потребностями по мере необходимости в модификации.

Применения выпрямителей включают сети фиксированного доступа, сеть беспроводного доступа, сеть передачи и сеть связи предприятия. Выпрямители могут обеспечивать стабильное и надежное питание для основных поставщиков и эффективно снижать энергопотребление.По этой причине каждая телекоммуникационная компания должна принимать во внимание различные типы выпрямителей, прежде чем настраивать или вносить изменения в свою систему.

Компания Carritech предлагает широкий выбор выпрямителей для удовлетворения потребностей вашей сети. Здесь вы найдете информацию о последних приобретенных нами продуктах. Не можете найти то, что ищете? Свяжитесь с отделом продаж, чтобы узнать об этом сегодня.

Источники: Физика и радиоэлектроника , Электротехнический класс

Получайте все наши последние новости на свой почтовый ящик каждый месяц.

Введение в выпрямитель — инженерные знания

Здравствуйте, друзья, я надеюсь, что все вы наслаждаетесь своей жизнью. В сегодняшнем руководстве мы рассмотрим Введение в Rectifier . Выпрямители — это такие схемы, которые используются для преобразования переменного тока в постоянный. Существует множество электронных устройств, которые работают с постоянным током, но в нашей электрической системе генерируется переменное напряжение. Чтобы сделать эти напряжения пригодными для использования в устройствах, которые работают в цепях выпрямителя постоянного тока, используются.Существует 2 типа выпрямителей: первый — это однополупериодный выпрямитель, а второй — двухполупериодный.

До изобретения выпрямителя, созданного на основе силиконовых полупроводниковых вакуумных трубок, использовались термоэмиссионные диоды или селеновые выпрямители. Но с изобретением полупроводниковых диодов ламповые диоды стали редкостью. в сегодняшнем посте мы подробно рассмотрим его работу, схемы, типы и некоторые другие связанные параметры. Итак, давайте начнем с Introduction to Rectifier.

Введение в выпрямитель
  • Выпрямитель представляет собой электрическую схему, которая преобразует переменный ток в постоянный. Процесс преобразования переменного тока в постоянный известен как выпрямление.
  • Существует множество категорий диодов, некоторые из которых использовались в прошлом году, такие как вакуумные трубчатые диоды, ртутные дуговые клапаны и т. Д.
  • В настоящее время полупроводниковые диоды используются в качестве выпрямительных цепей.
  • Существует множество применений выпрямителей, но чаще всего они используются в системах электропитания и передачи постоянного тока, которые передают постоянный ток высокого напряжения.
  • Существует 2 основных типа выпрямителей, первый — это однополупериодный выпрямитель, а второй — двухполупериодный выпрямитель.
  • Полупериодный выпрямитель преобразует положительный цикл переменного тока в постоянный, а его цепь состоит из одного диода.
  • Двухполупериодный выпрямитель преобразует полный цикл переменного тока в постоянный, а его схема использует 2 или 4 диода для выпрямления.
  • Выходной сигнал, полученный этой схемой фильтра, не является чистым постоянным током и имеет некоторую рябь, чтобы сделать его чистым постоянным током, и используются различные сглаженные схемы фильтра.

Типы выпрямителей
  • Существует множество типов выпрямителей, все эти типы определяются в зависимости от схемотехники и применения. Давайте обсудим их подробнее.

Однофазные выпрямители

Полуволновое выпрямление

  • В этом типе выпрямителя полуволна на входе преобразуется в постоянный ток. В схеме полуволнового диода используется только один диод.

  • Этот диод работает только в режиме прямого смещения и преобразует положительную половину сигнала переменного тока в постоянный.
  • На входе питание однофазное, тогда требуется только один диод, а если питание трехфазное, то для процесса выпрямления используются 3 диода.
  • Полуволна на выходе не является чистым постоянным током и имеет некоторые колебания, называемые рябью. Для устранения этих пульсаций используются схемы фильтров.
  • Выпрямленное выходное напряжение однополупериодного выпрямителя в случае отсутствия нагрузки показано ниже.

В среднеквадратичное значение = V пик /2

В dc = V пик / Π

  • В этих уравнениях.
  • В постоянного тока — выходное напряжение постоянного тока
  • В пик — пиковое значение входного напряжения
  • В действующее значение — среднеквадратичное значение выходного напряжения.
Полнополупериодный выпрямитель
  • В процессе двухполупериодного выпрямления полный входной сигнал преобразуется в постоянный ток.
  • Эта схема выпрямителя работает как для положительной, так и для отрицательной части синусоиды.
  • Обычно для двухполупериодного выпрямления используются две конфигурации: первая — это мостовой выпрямитель с четырьмя диодами, а вторая — с двумя диодами и центральная ленточная конфигурация.

  • Если на входе используется однофазный переменный ток, а используемый трансформатор — с центральным отводом, то для полного подключения можно использовать 2 диода с схемами подключения: катод, соединенный с катодом, и анод, соединенный с анодом, или взаимно-обратные соединения. волновой выпрямитель.
  • Чтобы напряжение на выходе с промежуточным отводом равнялось мостовому выпрямителю, удвойте количество витков на вторичных обмотках трансформатора с центральным отводом.

  • Выход двухполупериодного выпрямителя выдается, когда нагрузка не подключена.

V dc = V av = 2.V пик / Π

V rms = V пик / √2

Управляющий выпрямитель
  • Вышеупомянутый выпрямитель не -управляемый выпрямитель, так как их выходное напряжение не контролируется. Такие выпрямители, выходное напряжение которых может изменяться, называют управляемым выпрямителем.
  • Для изготовления неуправляемого выпрямителя, управляемого выпрямителем, используются SCR, MOSFET и IGBT.
  • Эти тиристоры работают как переключатель, который регулирует выходное напряжение выпрямителей.
  • В этих схемах используется один или несколько тиристоров в соответствии с требованиями схемы.
  • SCR (кремниевый выпрямитель), также называемый тиристором, имеет 3 вывода. Это анод-катод и затвор.
  • Работа кремниевого выпрямителя аналогична работе обычного диода, поскольку он также работает в режиме прямого смещения, а не в режиме обратного смещения.
  • Поскольку он имеет три оконечных анода, катод и затвор, его затвор работает как переключатель и управляет работой SCR. SCR работает только тогда, когда сигнал также подается на затвор.

Типы управляемых выпрямителей
  • Есть 2 основных типа управляемых выпрямителей.
  • Полуволновой управляемый выпрямитель
  • Полноволновой управляемый выпрямитель
  • Давайте обсудим их подробнее.

Полупериодный управляемый выпрямитель

  • Как и неуправляемый полуволновой выпрямитель, этот выпрямитель также использует только один тиристор для процесса выпрямления.
  • Схема схем полуволнового управляемого выпрямителя аналогична неуправляемому выпрямителю, но отличается тем, что он имеет тиристор, чем диод.
  • SCR работает только в режиме прямого смещения и преобразует полупериод входного сигнала в постоянный ток.
  • Он работает только тогда, когда сигнал подается на затвор.
  • Его выходное напряжение также имеет импульсы, как неуправляемый выпрямитель для удаления этих импульсов. Конденсаторы используются в качестве схемы фильтра.

Полноволновой управляемый выпрямитель
  • Подобно схеме неуправляемого выпрямителя, эта схема также преобразует полный входной сигнал в постоянный ток, но разница в том, что эта схема также регулирует амплитуду выпрямленного выхода.

Типы управляемых выпрямителей

  • Есть 2 основных типа управляемых выпрямителей.

Управляемый мостовой выпрямитель

  • В этой схеме вместо диода кремниевый управляющий выпрямитель используется для создания мостовой схемы.

Положительный полупериод управляемого выпрямителя:

  • Когда на цепь подается положительный цикл входного питания, то тиристоры T1 и T2 будут работать, поскольку они находятся в состоянии прямого смещения.
  • Хотя тиристоры T3 и T4 не будут работать, поскольку они находятся в режиме обратного смещения, на сопротивлении нагрузки будет отображаться положительный цикл постоянного тока.

Отрицательный полупериод управляемого выпрямителя:

  • Когда отрицательная половина входного сигнала попадает в цепь, тиристоры T3 и T4 будут работать, поскольку они находятся в состоянии прямого смещения.
  • Т1 и Т2 будут иметь обратное смещение и будут блокировать ток.

Управляемый Выпрямитель с центральным отводом

  • Схема схемы управляемого выпрямителя с центральным отводом показана на рисунке ниже.
  • Схема этого выпрямителя похожа на неуправляемый выпрямитель, но разница в том, что он использует два тиристора для процесса выпрямления.
  • Он преобразует полный входной сигнал переменного тока в постоянный ток, как обычный выпрямитель с центральным отводом.

Сравнение выпрямителей
  • На приведенном ниже рисунке показано сравнение различных типов выпрямителей.

Применения выпрямителя
  • Вот некоторые общие применения выпрямителей.
  • Используется в различных батареях для преобразования переменного тока в постоянный.
  • Используется в электрической обмотке для поляризованного напряжения.
  • Применяется в тяговых двигателях для движения поездов.
  • Паяльник имеет схемы однополупериодного выпрямителя.
  • Эти схемы также используются в схемах модуляции, демодуляции и различных схем усиления.

Итак, друзья, которые представляют собой полное руководство по выпрямителям, я упомянул каждый параметр, связанный с выпрямителями.Надеюсь, вам понравился этот урок. Хорошего дня. увидимся в следующем посте. Спасибо за прочтение.

Автор: Генри
http://www.theengineeringknowledge.com

Я профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях. Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром. Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.

Схема полуволнового и полноволнового прецизионного выпрямителя с использованием операционного усилителя

Выпрямитель — это схема, которая преобразует переменный ток (AC) в постоянный ток (DC). Переменный ток всегда меняет свое направление с течением времени, но постоянный ток постоянно течет в одном направлении. В типичной схеме выпрямителя мы используем диоды для преобразования переменного тока в постоянный. Но этот метод выпрямления можно использовать только в том случае, если входное напряжение в цепи больше, чем прямое напряжение диода, которое обычно равно 0.7В. Ранее мы объясняли схему однополупериодного выпрямителя и двухполупериодного выпрямителя на основе диодов.

Чтобы решить эту проблему, была представлена ​​прецизионная выпрямительная схема . Прецизионный выпрямитель — это еще один выпрямитель, который преобразует переменный ток в постоянный, но в прецизионном выпрямителе мы используем операционный усилитель для компенсации падения напряжения на диоде, поэтому мы не теряем падение напряжения 0,6 В или 0,7 В на диоде. диод, также схема может быть построена так, чтобы иметь некоторый коэффициент усиления на выходе усилителя.

Итак, в этом руководстве я собираюсь показать вам, как вы можете построить, протестировать, применить и отладить схему прецизионного выпрямителя с помощью операционного усилителя . Наряду с этим, я также расскажу о некоторых плюсах и минусах этой схемы. Итак, без лишних слов, приступим.

Что такое схема прецизионного выпрямителя?

Прежде чем мы узнаем о схеме прецизионного выпрямителя, давайте проясним основы схемы выпрямителя.

На приведенном выше рисунке показаны характеристики схемы идеального выпрямителя с ее передаточными характеристиками.Это означает, что когда входной сигнал отрицательный, выходное напряжение будет нулевым, а когда входной сигнал положительный, выход будет следовать за входным сигналом.

На рисунке выше показана практическая схема выпрямителя с ее передаточными характеристиками. В практической схеме выпрямителя форма выходного сигнала будет на 0,7 В меньше приложенного входного напряжения, а передаточная характеристика будет выглядеть, как показано на рисунке. В этот момент диод будет проводить, только если приложенный входной сигнал немного больше прямого напряжения диода.

Теперь по сути, давайте вернемся к схеме прецизионного выпрямителя.

Работа прецизионного выпрямителя

На приведенной выше схеме показана базовая схема прецизионного полуволнового выпрямителя с операционным усилителем LM358 и диодом 1n4148. Чтобы узнать, как работает операционный усилитель, вы можете проследить эту схему операционного усилителя.

Вышеупомянутая схема также показывает форму сигнала на входе и выходе прецизионного выпрямителя, которая в точности равна входной.Это потому, что мы получаем обратную связь от выхода диода, а операционный усилитель компенсирует любое падение напряжения на диоде. Итак, диод ведет себя как идеальный диод.

Теперь на изображении выше вы можете ясно увидеть, что происходит, когда на входной терминал операционного усилителя подается положительный и отрицательный полупериод входного сигнала. Схема также показывает передаточные характеристики схемы.

Но в практической схеме вы не получите выход, показанный на рисунке выше, позвольте мне сказать вам, почему?

В моем осциллографе желтый сигнал на входе, а зеленый сигнал на выходе.Вместо полуволнового выпрямления мы получаем своего рода двухполупериодное выпрямление.

На изображении выше показан , когда диод выключен, отрицательный полупериод — это сигнал, протекающий через резистор на выход , и именно поэтому мы получаем двухполупериодное выпрямление, как и на выходе, но это не реальный случай.

Посмотрим, что будет, когда мы подключим нагрузку 1К.

Схема выглядит как на изображении выше.

Результат выглядит как на изображении выше.

Выход выглядит так, потому что мы практически сформировали схему делителя напряжения с двумя резисторами 9,1 кОм и 1 кОм, поэтому входная положительная половина сигнала просто ослаблена.

Опять же, это изображение выше показывает, что происходит, когда я изменяю значение резистора нагрузки с 1 кОм на 220R.

Это не меньшая проблема этой схемы.

На приведенном выше изображении показано состояние недостаточного напряжения , при котором выходное напряжение схемы опускается ниже нуля вольт и возрастает после определенного всплеска.

На приведенном выше изображении показано состояние недобора для обеих вышеупомянутых цепей, с нагрузкой и без нагрузки. Это потому, что всякий раз, когда входной сигнал опускается ниже нуля, операционный усилитель переходит в область отрицательной насыщенности , и в результате получается показанное изображение.

Еще одна причина, по которой мы можем сказать, что всякий раз, когда входное напряжение меняется с положительного на отрицательное, потребуется некоторое время, прежде чем обратная связь операционного усилителя вступит в игру и стабилизирует выход, и именно поэтому мы получаем скачки напряжения ниже нуля вольт. выход.

Это происходит потому, что я использую операционный усилитель Jelly Bean LM358 с низкой скоростью нарастания напряжения . Вы можете решить эту проблему, просто установив операционный усилитель с более высокой скоростью нарастания . Но имейте в виду, что это также произойдет в более высоком частотном диапазоне схемы.

Схема модифицированного прецизионного выпрямителя

На приведенном выше рисунке показана модифицированная схема прецизионного выпрямителя , с помощью которой мы можем уменьшить все вышеупомянутые недостатки и недостатки.Давайте изучим схему и разберемся, как она работает.

Теперь в приведенной выше схеме вы можете видеть, что диод D2 будет проводить, если положительная половина синусоидального сигнала применяется в качестве входа. Теперь показанный выше путь (с желтой линией) завершен, и операционный усилитель действует как инвертирующий усилитель, если мы посмотрим на точку P1, напряжение равно 0 В, поскольку в этой точке образуется виртуальная земля, поэтому ток не может протекает через резистор R19, а в выходной точке P2 напряжение отрицательное 0.7 В, поскольку операционный усилитель компенсирует падение напряжения на диоде, поэтому ток не может попасть в точку P3. Таким образом, мы достигли выхода 0 В всякий раз, когда на вход операционного усилителя подается положительный полупериод сигнала.

Теперь предположим, что мы подали отрицательную половину синусоидального сигнала переменного тока на вход операционного усилителя. Это означает, что приложенный входной сигнал меньше 0 В.

В этот момент диод D2 находится в состоянии обратного смещения, что означает, что это разомкнутая цепь.Изображение выше точно говорит вам об этом.

Поскольку диод D2 находится в состоянии обратного смещения, ток будет проходить через резистор R22, образуя виртуальную землю в точке P1. Теперь, когда применяется отрицательная половина входного сигнала, мы получим положительный сигнал на выходе в качестве инвертирующего усилителя. И диод будет проводить, и мы получим скомпенсированный выход в точке P3.

Теперь выходное напряжение будет -Vin / R2 = Vout / R1

Таким образом, выходное напряжение становится Vout = -R2 / R1 * Vin

Теперь посмотрим на выход схемы в осциллографе.

Практический выход схемы без подключенной нагрузки показан на изображении выше.

Теперь, когда дело доходит до анализа схемы, схема полуволнового выпрямителя достаточно хороша, но когда дело доходит до практической схемы, полуволновой выпрямитель просто не имеет практического смысла.

По этой причине была введена схема двухполупериодного выпрямителя, чтобы получить двухполупериодный прецизионный выпрямитель , мне просто нужно сделать суммирующий усилитель, и это в основном все.

Прецизионный полноволновой выпрямитель с операционным усилителем

Чтобы сделать схему двухполупериодного прецизионного выпрямителя , я только что добавил суммирующий усилитель к выходу ранее упомянутой схемы полуволнового выпрямителя. От точки P1 до точки P2 — это основная схема прецизионного выпрямителя, а диод настроен таким образом, что мы получаем отрицательное напряжение на выходе.

От точки P2 до точки P3 является суммирующим усилителем, выходной сигнал прецизионного выпрямителя подается на суммирующий усилитель через резистор R3.Значение резистора R3 составляет половину от R5, или можно сказать, что это R5 / 2, именно так мы устанавливаем двукратное усиление операционного усилителя.

Вход из точки P1 также подается на суммирующий усилитель с помощью резистора R4, резисторы R4 и R5 отвечают за установку коэффициента усиления операционного усилителя на 1X.

Поскольку выходной сигнал точки P2 подается непосредственно на суммирующий усилитель с коэффициентом усиления 2X, это означает, что выходное напряжение будет в 2 раза больше входного напряжения. Предположим, что входное напряжение составляет пиковое значение 2 В, поэтому на выходе мы получим пиковое напряжение 4 В.В то же время мы напрямую подаем вход на суммирующий усилитель с коэффициентом усиления 1X.

Теперь, когда происходит операция суммирования, мы получаем суммарное напряжение на выходе, которое составляет (-4 В) + (+ 2 В) = -2 В, а на выходе операционного усилителя. Поскольку операционный усилитель сконфигурирован как инвертирующий усилитель, мы получим +2 В на выходе, который является точкой P3.

То же самое происходит при подаче отрицательного пика входного сигнала.

На приведенном выше изображении показан окончательный выходной сигнал схемы, форма волны синего цвета — это вход , а форма волны , отмеченная желтым цветом, — это выход схемы полуволнового выпрямителя , а форма волны , выделенная зеленым цветом, является выходом двухполупериодная схема выпрямителя.

Необходимые компоненты
  • ИС операционного усилителя LM358 — 2
  • 6,8 кОм, резистор 1% — 8
  • Резистор 1 кОм — 2
  • 1N4148 Диод — 4
  • Хлебная доска — 1
  • Провода перемычки — 10
  • Блок питания (± 10 В) — 1

Принципиальная схема

Принципиальная схема для полуволнового и двухполупериодного прецизионного выпрямителя с ОУ приведена ниже:

Для этой демонстрации схема построена на макетной плате без пайки с помощью схемы; Чтобы уменьшить паразитную индуктивность и емкость, я соединил компоненты как можно ближе друг к другу.

Дальнейшее улучшение

Схема может быть дополнительно модифицирована для улучшения ее характеристик, например, мы можем добавить дополнительный фильтр для подавления высокочастотных шумов.

Эта схема сделана только для демонстрационных целей. Если вы думаете об использовании этой схемы в практическом применении, вам придется использовать операционный усилитель типа прерывателя и высокоточный резистор 0,1 Ом для достижения абсолютной стабильности.

Надеюсь, вам понравилась эта статья и вы узнали из нее что-то новое.Если у вас есть какие-либо сомнения, вы можете задать вопрос в комментариях ниже или воспользоваться нашим форумом для подробного обсуждения.

Как работает выпрямительный диод? — Определение строительства и исправления

Выпрямительный диод — полупроводниковый диод предназначен для выпрямления переменного тока (в основном с низкой частотой питания — 50 Гц при большой мощности, излучаемой при нагрузке). Чтобы «исправить» значение этого компонента, его основная задача — преобразование переменного тока (AC) в постоянный (DC) посредством применения выпрямительных мостов.Вариант выпрямительного диода с барьером Шоттки особенно ценится в цифровой электронике. Выпрямительный диод способен проводить ток от нескольких миллиампер до нескольких килоампер и напряжение до нескольких киловольт.

Рис. 1. Обозначение выпрямительного диода

Выпрямительный диод — Технические параметры

Наиболее распространенные выпрямительные диоды изготавливаются из кремния (полупроводникового кристалла). Они способны проводить высокие значения электрического тока, и это можно классифицировать как их основную особенность.Есть также менее популярные, но все еще используемые полупроводниковые диоды из германия или арсенида галлия. Германиевые диоды имеют гораздо меньшее допустимое обратное напряжение и меньшую допустимую температуру перехода (T j = 75 ° C для германиевых диодов и T j = 150 ° C для кремниевого диода). Единственным преимуществом германиевого диода перед кремниевым диодом является более низкое значение порогового напряжения при работе в прямом смещении (V F (I0) = 0,3 ÷ 0,5 В для германия и 0.7 ÷ 1,4В для кремниевых диодов).

Мы выделяем две группы технических параметров выпрямительного диода (они относятся и к другим полупроводниковым диодам):

  • допустимые предельные параметры,
  • характеристических параметров.

Выпрямительный диод характеризуется следующими предельными параметрами:

  • В F — прямое напряжение с определенным прямым током I F (обычно с максимальным средним выпрямленным током, также известным как номинальный ток I FN ),
  • I R — обратный ток при В RWM пиковое обратное напряжение при работе.
  • I FN — номинальный ток в прямом смещении (также известный как максимальный средний ток диода),
  • I FRM — пиковый, повторяемый ток диодной проводимости (например, для импульсов длительностью менее 3,5 мс и частотой 50 Гц),
  • I FSM — пиковый, неповторяемый ток проводимости (например, для одиночного импульса длительностью менее 10 мс),
  • В RWM — пиковое, обратное напряжение (или среднее, обратное напряжение при работе диода в волновом выпрямителе с нагрузкой),
  • В RRM — пиковое, повторяющееся обратное напряжение,
  • В RSM — пиковое, неповторяющееся обратное напряжение,
  • P TOT — общее значение мощности, рассеиваемой на этом электронном компоненте,
  • T j — максимальная температура перехода диода
  • R th — термическое сопротивление в рабочих условиях,
  • Максимальный мгновенный ток диода (определяет сопротивление при перегрузках)

Выпрямительный диод — Задания для студентов

Если вы студент или просто хотите научиться решать задачи с выпрямительным диодом, посетите этот раздел нашего веб-сайта, где вы можете найти широкий спектр электронных задач.


Сильноточный выпрямительный диод

Примером высокоэффективного диода является двойной сильноточный выпрямительный диод с током 2x 30A.

STM предлагает двойной выпрямительный диод высокого напряжения под названием STPS60SM200C. Диод лучше всего подходит для базовых станций, сварочных аппаратов, источников питания переменного / постоянного тока и промышленных приложений.

Рис. 2. Сильноточный выпрямительный диод STPS60SM200CW

Значение напряжения пробоя V RRM составляет 200 В, напряжение проводимости 640 мВ, а его текущая память составляет 2×30 А.Дополнительная защита — от электростатического разряда до 2 кВ, называемого ESD.

Диапазон рабочих температур от -40 ° C до 175 ° C. Такие значения температуры позволяют использовать диоды в любых условиях на базовых станциях.

Выпрямительный диод — ВАХ

Вольт-амперные характеристики выпрямительного диода показаны ниже (рис. 3.).

Рис. 3. Вольт-амперные характеристики выпрямительного диода

.

Как проверить выпрямительный диод?

Простейшие мультиметры можно использовать для определения полярности выпрямительного диода (где — анод, а где — катод).Есть как минимум три способа сделать это, но я покажу два самых простых:

a) С помощью омметра (диапазон 2 кОм):

Рис. 4. Прямое смещение: Омметр покажет приблизительное значение прямого напряжения диода (около 0,7 В)

Рис. 5. Обратное смещение: омметр показывает «1», что означает очень высокое сопротивление (электрический клапан выключен).

Функция «проверка диодов» даст тот же результат, что и при использовании вышеупомянутого метода.

b) Использование функции измерения VDC:

Фиг.6. Прямое смещение: мультиметр должен показывать падение напряжения около 0,7 В для кремниевых диодов

.

Рис. 7. Обратное смещение: мультиметр покажет приблизительное значение полного напряжения источника питания (Примечание: здесь диод вставлен противоположным образом по сравнению с приведенным выше примером. На самом деле, я бы изменил полярность источника питания, потому что вы не можете размонтировать «руками» один раз припаянный компонент, если вы не демонтируете его. Конечно, мы не хотим делать это с исправным рабочим компонентом. Я просто хотел показать вам пример, что вы также должны заплатить внимание к правильному размещению компонентов на вашей печатной или макетной плате)

Мостовые выпрямители

Мостовые выпрямители делятся на разные типы по:

  • Структура и количество фаз питающего напряжения: однофазный мостовой выпрямитель, многофазный мостовой выпрямитель (трехфазный мостовой выпрямитель, двухфазный мостовой выпрямитель).
  • Ряд полуволнового выпрямления напряжения: одинарный мост (полуволновой выпрямитель), двойной мост (двухполупериодный диодный выпрямитель). Мы можем создать комбинированную схему, например, однофазный двухполупериодный мостовой выпрямитель или трехфазный двухполупериодный выпрямитель. Вы можете комбинировать количество фаз с полнополупериодными или однополупериодными выпрямителями.
  • Тип нагрузки: резистивная, емкостная, индуктивная.

Свойства мостовых выпрямителей:

  • В — напряжение питания,
  • В OS , I OS — компонент постоянного выходного напряжения,
  • I OSmax — максимальный выходной ток,
  • N ip — энергоэффективность,
  • Коэффициент пульсации цепи,
  • В Rmax — Максимальное обратное напряжение.

Полуволновой мостовой выпрямитель

Полуволновой мостовой выпрямитель

— это простейшая схема, которая может преобразовывать переменный ток (оба знака, + и -) в ток одного знака (+). После дальнейшей фильтрации полученный выходной ток может быть изменен на постоянный ток.

На выходе этой схемы мы получим синусоидальную волну только с положительной половиной ее периода, поэтому ее на самом деле называют полуволновым выпрямителем. Не будет «отрицательной части» синусоидальной волны, потому что выпрямительный диод проводит только тогда, когда он смещен в прямом направлении (положительное напряжение).Ток протекает через резистивную нагрузку только в одном направлении и пульсирует.

Пример простой схемы однополупериодного мостового выпрямительного диода показан ниже:

Рис. 8. Схема однополупериодного выпрямителя на диодах

Характеристики полуволнового мостового выпрямителя:

Рис. 9. Временные характеристики полуволнового мостового выпрямителя

Полноволновой мостовой выпрямитель

Схема полноволнового мостового выпрямителя показана ниже. Его часто называют мостом Гретца.

Рис. 10. Схема двухполупериодного мостового выпрямителя (мост Гретца)

Принцип работы двухполупериодного мостового выпрямителя следующий. На рисунке ниже (красный) показан путь тока, два красных диода смещены в прямом направлении (проводят ток), а два других — в обратном направлении (не проводят ток). Ток идет от источника питания через первый красный диод. Потом с первого красного диода через нагрузку. После прохождения нагрузки он потечет через второй красный диод, а затем вернется к источнику питания.

Рис. 11. Схема полнополупериодного мостового выпрямителя (переменный ток, прямое смещение)

При изменении полярности напряжения питания ситуация, описанная выше, будет противоположной (синяя цепь ниже). Два синих диода смещены в прямом направлении (проводят ток), а два других — в обратном направлении (не проводят ток). Ток идет от источника питания через первый синий диод. Потом с первого синего диода через нагрузку. После прохождения нагрузки он потечет через второй синий диод, а затем вернется к источнику питания.

Рис. 12. Схема полнополупериодного мостового выпрямителя (переменный ток, обратное смещение)

Характеристики полноволнового мостового выпрямителя показаны ниже:

Рис. 13. Временные характеристики полуволнового мостового выпрямителя

Трехфазный мостовой выпрямитель

Использование трехфазного диодного мостового выпрямителя (двухполупериодного мостового выпрямителя) возможно в любой из трехфазных цепей напряжения. В этом случае пульсации выходного напряжения минимальны.Источники питания максимально используют мощность схемы. Трехфазные мостовые выпрямители часто имеют возможность управлять выходным током.

Ниже вы можете увидеть схему трехфазного выпрямителя, которая показывает, как его можно построить.

Рис. 14. Схема и характеристика трехфазного мостового выпрямителя

Расчет трехфазного мостового выпрямителя

Ниже приведен пример расчета трехфазного мостового выпрямителя с уравнениями и значениями для данной схемы.Результаты представлены в таблице ниже.

P d — Выходная мощность

В d — Среднее значение выпрямленного напряжения

I d = P d / V d — Среднее значение выпрямленного тока

R = V d / I d — Сопротивление системы

Рис. 15. Трехфазный линейный мостовой выпрямитель

Формулы

Результаты трехфазного мостового выпрямителя Примечания
V d / V f 2,34 V f — фазное напряжение трансформатора
V d / V 12 1,35 В 12 — межфазное напряжение трансформатора
I / I d 0,82 I — действующее значение на вторичной стороне трансформатора
V RRM / V d 1,05 В RRM — Пиковое обратное напряжение, повторяющееся
I F (AV) / I d 0,333 I F (AV) — средний ток проводимости
I FRMS / I d 0,58 I FRMS — действующее значение тока проводимости
P u = P d R * I d 2 Выходная мощность
S 2 / P d Мощность обработки вторичной обмотки трансформатора
S 1 / P d Вычислительная мощность первичной обмотки трансформатора
S t / P d 1,05 Типовой трансформатор мощности

Полноволновой мостовой выпрямитель в виде интегральной схемы

Двухполупериодный мостовой выпрямитель обычно представляет собой однокристальную интегральную схему.Он построен из четырех выпрямительных диодов в мостовой системе Гретца. Его можно использовать для монтажа THT и SMD. Использование этого решения является наиболее популярным, экономичным и позволяет сэкономить место на печатной плате.

Рис. 16. Мостовой выпрямитель как элемент интегральной схемы

На рисунке выше показаны разъемы, которые есть в каждой интегральной схеме схемы мостового выпрямителя. Знак (+) соответствует выходу + VDC, знак (-) соответствует выходу — VDC, символы (~) соответствуют подключению VAC.Для правильного подключения напряжения необходимо подключить вход VAC к выходу + VDC по горизонтали, а выход VAC к выходу — VDC по горизонтали.

Полуволновой выпрямитель и приложения

Выпрямитель может быть простым диодом или группой диодов, которые преобразуют переменный ток (переменный ток) в постоянный ток (постоянный ток). Поскольку диод пропускает электрический ток только в одном направлении и блокирует в другом направлении, этот принцип используется для создания различных типов выпрямителей.В целом выпрямители классифицируются как полуволновые и полноволновые выпрямители.

Полуволновой выпрямитель

Схема HWR (полуволнового выпрямителя) — это схема, которая позволяет только один цикл ввода сигнала переменного тока и блокирует другой. В общем, мы можем сказать, что он преобразует положительный полупериод синусоидальной волны на входе в пульсирующий выходной сигнал постоянного тока, хотя преобразование положительного или отрицательного цикла зависит от способа подключения диода.

Конструкция полуволнового выпрямителя

В HWR мы используем только один диод, которого более чем достаточно для выполнения желаемой работы. Поскольку нам нужен постоянный ток на выходе для синусоидального сигнала переменного тока, подаваемого на вход, поэтому один диод, включенный последовательно, выполняет всю работу за нас.

Это еще не все, но когда мы говорим обо всей конструкции схемы полуволнового выпрямителя, она состоит в основном из трех компонентов (без фильтра):

    1. Трансформатор (понижающий)
    2. A Активная нагрузка
    3. А Диод

Теория полуволнового выпрямителя

Теперь посмотрим, как схема HWR преобразует напряжение переменного тока в напряжение постоянного тока.Сначала высокое напряжение переменного тока подается на первичную обмотку понижающего трансформатора и, соответственно, низкое напряжение получается на вторичной обмотке, которое подается на диод.
Диод будет в режиме прямого смещения в течение положительного полупериода переменного напряжения, поэтому ток течет через него. Во время следующего полупериода, то есть отрицательного цикла, диод становится смещенным в обратном направлении и блокирует ток через него. Таким образом, если посмотреть на окончательный вывод, мы можем увидеть, что ввод отслеживался как вывод только для положительного полупериода, как показано на рисунке ниже.


Попробуем понять эту концепцию более удобным способом, взяв синусоидальное напряжение вместо понижающего трансформатора.


Для положительного полупериода схема выглядит так:

Это связано с тем, что во время положительного полупериода диод находится в прямом смещении и позволяет току проходить через него (диод действует как короткое замыкание), и мы получаем то же напряжение, что и на входе.

Для отрицательного полупериода цепь становится разомкнутой, поскольку диод становится смещенным в обратном направлении и блокирует ток, таким образом, выходное напряжение равно нулю, как показано ниже:


Форма волны ввода-вывода в вышеупомянутой ситуации показана на диаграмме ниже.Это происходит очень быстро в зависимости от частоты входящего напряжения (50 герц, время 20 мс).

На приведенном выше графике показан выпрямитель с положительной полуволновой фазой, который допускает только положительный цикл и блокирует отрицательный.
Аналогичным образом, если полярность диода меняется на обратную, то тот же выпрямитель становится выпрямителем с отрицательной полуволной, который допускает только отрицательный цикл и блокирует положительный.

Полуволновой выпрямитель с конденсаторным фильтром

Форма выходного сигнала, полученная из схемы однополупериодного выпрямителя без фильтра, описанная выше, представляет собой пульсирующую форму волны постоянного тока.

Теперь, когда мы знаем, что все схемы, которые мы используем, практически нуждаются в постоянном постоянном токе, а не в пульсирующем, поэтому мы используем фильтры, чтобы получить желаемую форму сигнала постоянного тока. Фильтры делают это, подавляя пульсации постоянного тока в форме волны.

Следовательно, чтобы получить более гладкую форму выходного сигнала постоянного тока, мы можем использовать либо конденсатор, либо катушку индуктивности, но чаще всего используется HWR (полуволновой выпрямитель) вместе с емкостным фильтром. На приведенной ниже диаграмме показано, как конденсаторный фильтр сглаживает форму волны. Конденсатор подключен параллельно резистивной нагрузке.

HWR с конденсаторным фильтром

Давайте теперь посмотрим несколько формул полуволнового выпрямителя на основе приведенных выше объяснений и форм сигналов.

Коэффициент пульсации полуволнового выпрямителя

При преобразовании формы волны переменного напряжения в постоянный остающийся нежелательный компонент переменного тока называется пульсацией. Даже после всей фильтрации у нас все еще остается некоторая составляющая переменного тока, которая пульсирует форму волны постоянного тока.Этот нежелательный компонент переменного тока называется пульсацией.

Коэффициент пульсации

(обозначенный знаком «ɣ») используется для количественной оценки качества преобразования переменного напряжения в постоянное. Коэффициент пульсаций определяется отношением среднеквадратичного значения переменного напряжения (на входе) к напряжению постоянного тока на выходе выпрямителя.

Формула для коэффициента пульсации выглядит так:

ɣ = √ [(В действующее значение / В DC ) 2 — 1]

В качестве альтернативы ɣ = (I 2 RMS — I 2 DC ) / I DC = 1.21 (для синусоидальной формы сигнала)

На самом деле, для хорошего выпрямителя коэффициент пульсаций должен быть как можно меньше, поэтому для подавления пульсаций в цепи используются конденсаторные или индукционные фильтры.

КПД полуволнового выпрямителя

КПД выпрямителя (ɳ) — это отношение выходной мощности постоянного тока к входной мощности переменного тока, формула имеет вид:

ɳ = (P постоянного тока / P ac )

КПД HWR составляет 40,6% (ɳ ​​ max = 40.6%)

Среднеквадратичное значение полуволнового выпрямителя

Чтобы найти действующее значение однополупериодного выпрямителя, нам нужно рассчитать ток через нагрузку. Если мгновенный ток нагрузки i L = I m sinwt, то среднее значение тока нагрузки (I dc ) равно:

I dc = (1/2 π) ∫ 0 π I m sinwt = (I m / π)

Здесь I m представляет пиковый мгновенный ток через нагрузку (I max ).Это постоянный ток, полученный на нагрузке (выходе), равен

.

I DC = I max / π; где I max = максимальная амплитуда постоянного тока

Для полуволнового выпрямителя среднеквадратичный ток нагрузки I действующее значение равен среднему току I dc , умноженному на π / 2. Таким образом, I rms = I m /4

Где I max = I m , что равно пиковому мгновенному току через нагрузку.

Пиковое обратное напряжение полуволнового выпрямителя

Это максимальное напряжение, которое диод может выдержать в условиях обратного смещения. Если приложить напряжение больше PIV, диод выйдет из строя.

Форм-фактор полуволнового выпрямителя

Форм-фактор — это отношение действующего значения к среднему значению.

F.F = среднеквадратичное значение / среднее значение

Форм-фактор HWR составляет 1,57, т.е. FF = 1,57

Выходное напряжение постоянного тока

Выходное напряжение (В DC ) на нагрузочном резисторе обозначено

.

V DC = Vs max / π, где Vs max — максимальная амплитуда вторичного напряжения

Преимущества полуволнового выпрямителя
  • Простая схема с меньшим количеством компонентов
  • Экономичен в исходном состоянии.Хотя со временем возникает более высокая стоимость из-за больших потерь мощности

Недостатки полуволнового выпрямителя
  • Преобразует только один цикл заданного ему синусоидального входа, а другой цикл теряется. Таким образом, давая больше потерь мощности.
  • HWR производит более низкое выходное напряжение.
  • Полученный таким образом выходной ток не является чисто постоянным и все еще содержит много пульсаций (т.е. имеет высокий коэффициент пульсаций).

Применение полуволнового выпрямителя

В повседневной жизни полуволновой выпрямитель в основном используется в приложениях с низким энергопотреблением из-за его основного недостатка, заключающегося в том, что выходная амплитуда меньше входной.Таким образом, мощность расходуется впустую, а на выходе пульсирует постоянный ток, что приводит к чрезмерной пульсации.

Некоторые из применений выпрямителей находятся в:

  • Приборы
  • Используется с трансформаторами
  • Пайка
  • AM радио
  • Цепи импульсные генерируемые
  • Одинарная демодуляция
  • Умножитель напряжения
Использование выпрямителя для питания приборов

Как мы знаем, все электроприборы используют источник питания постоянного тока для работы, поэтому использование выпрямителя в источнике питания помогает преобразовать источник питания переменного тока в постоянный.Мостовые выпрямители широко используются в крупных бытовых приборах, где они способны преобразовывать высокое переменное напряжение в более низкое постоянное напряжение.

Используется с трансформатором

С помощью однополупериодного выпрямителя можно достичь желаемого напряжения постоянного тока с помощью повышающих или понижающих трансформаторов. Даже полноволновые выпрямители используются для питания двигателей и светодиодов, работающих от постоянного напряжения.

Использование выпрямителя при пайке Полуволновые выпрямители

используются в схемах паяльников, а также в репеллентах от комаров для отвода паров свинца.При электросварке выпрямители с мостовой схемой используются для подачи постоянного и поляризованного постоянного напряжения.

Используется в AM-радио

Полуволновые диодные выпрямители используются в AM-радио в качестве детектора, поскольку на выходе содержится звуковой сигнал. Из-за меньшей силы тока от него мало пользы для более сложного выпрямителя.

Использование выпрямителя в схемах

В цепях генерации импульсов и пусковых цепях используются однополупериодные выпрямители.

Используется для модуляции

В модулирующем сигнале для демодуляции амплитуды используется полуволновой выпрямитель. Для определения амплитуды модуляции сигнала в радиосигнале используется двухполупериодный мостовой выпрямитель.

Используется в умножителе напряжения

В схеме умножителя напряжения используется схема однополупериодного выпрямителя.

Трехфазный полуволновой выпрямитель

Хотя принцип и теория трехфазного HWR такие же, как и у однофазного HWR, но характеристики другие.Форма волны, коэффициент пульсации, КПД и выходные среднеквадратичные значения не совпадают.

Трехфазный однополупериодный (диодный) выпрямитель используется для преобразования трехфазного переменного тока в постоянный. Поскольку диоды здесь используются в качестве переключателей, следовательно, они являются неконтролируемыми переключателями, это означает, что нет никакого способа контролировать время включения и выключения этих переключателей.

Как правило, трехфазный полуволновой диодный выпрямитель имеет трехфазное питание, подключенное к трехфазному трансформатору, где вторичная обмотка трансформатора всегда соединена звездой.Это делается по той причине, что нейтральная точка требуется для подключения нагрузки обратно к вторичным обмоткам трансформатора, обеспечивая обратный путь для потока энергии.

Типичный трехфазный трансформатор, питающий чисто резистивную нагрузку, показан ниже. Здесь каждая фаза трансформатора используется как отдельный источник переменного тока. Измерение и моделирование напряжений показано на рисунке ниже. Кроме того, мы подключили отдельные вольтметры как к каждому источнику, так и к нагрузке.

Итак, из приведенной выше формы волны, что диод D1 проводит, когда фаза R имеет значение напряжения, которое выше, чем значение напряжения двух других фаз, и указанное условие начинается, когда фаза R находится на 30 0 повторяется после каждого полного цикла. Итак, D1 проводит следующий по адресу 390 0 . Точно так же диод D2 начинает проводить при 150 0 , когда напряжение в фазе B становится максимальным (по сравнению с двумя другими фазами) в этот момент.Следовательно, каждый диод проводит 150 0 -30 0 = 120 0 .

Среднее значение выходного напряжения на резистивной нагрузке равно

.

V o = (3 / 2π) V м по прямой

Где V м линия = √6 V фаз e

Действующее значение выходного напряжения может быть выражено как

.

В или среднеквадратичное значение = 0,84068 В м фаза

А коэффициент пульсации напряжения равен

V r / V o = 0.151 / 0,827 = 0,186 = 18,26%

Таким образом, пульсации напряжения значительны и, следовательно, нежелательны, поскольку приводят к потере мощности.

Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *