3. Конденсаторы — Условные графические обозначения на электрических схемах — Компоненты — Инструкции
Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.
Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 3.1 и их определяет соответствующий ГОСТ [2].
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2).
Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.другое изображение обкладок конденсатора (см. рис.3.2, С2 и СЗ).
С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение
Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы. У них тоже три вывода: два — от одной обкладки («вход» и «выход» ), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3, С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы. Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3.3, С4).
Конденсаторы переменной ёмкости (КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 3.4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 3.4, С2).
Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, трех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 3.5). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 3.5, С2.1, С2.2, С2.3).
Разновидность КПЕ — подстроенные конденсаторы. Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки). В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 3.6). Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 3.6, СЗ, С4).
Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able) — переменный и cond(enser) — еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения, см. табл. 1.1), УГО в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).
Аналогично построено УГО термоконденсаторов. Буквенный код этой разновидности конденсаторов — СК (рис. 3,7, конденсатор СК2). Температура среды, естественно, обозначается символом tº
Обозначение конденсаторов на схеме: как это происходит
Если требуется устройство для накопления заряда в схеме, используются конденсаторы. При рассмотрении элементов учитывается их удельная емкость, а также плотность энергии. Предусмотрено множество типов устройств, отличающихся по сборке и предназначению.
Описание
Конденсатор является двухполюсным элементом, которой служит уплотнителем. Основная задача — удержание переменной емкости в цепи. В момент подачи напряжения происходит перезарядка элемента. Далее осуществляется процесс накопления заряда и энергии электрического поля.
Конденсатор на схемеОбозначение на схемах
Конденсатор на схеме может по-разному обозначаться в зависимости от цепи. Для понимания маркировки стоит рассмотреть распространённые типы элементов:
- с постоянной емкостью;
- поляризованные;
- танталовые;
- переменные;
- триммеры;
- ионисторы.
Обозначение конденсаторов на схеме связано с ГОСТом 2.728-74. Речь идет о межгосударственном стандарте, в котором прописана маркировка.
Поляризованные
Обозначение электролитических конденсаторов на схемах можно описать, как две горизонтальные полоски со знаком плюс. При рассмотрении товаров есть разделение на полярные и неполярные типы. Те и другие включаются в схему и отличаются по параметрам. Весь секрет заключается в процессе изготовления.
Поляризованный типИнтересно! На примере алюминиевых моделей видно, что они производятся с обкладкой в фольге. Она выступает в качестве катода и является отличным проводником.
На схеме конденсатор может подсоединяться параллельно либо последовательно. Если взглянуть на цепь, на ней отображается постоянная, а также переменная емкость. Надписи пишутся сокращённо, однако по маркировке можно узнать точное значение. Представленные варианты отличаются высокой степенью стабильности, поэтому применяются в бытовой технике.
Отечественные аналоги продаются в замкнутых корпусах и являются компактными. Поляризованные конденсаторы могут быть пленочными либо керамическими. Учитывается электрика, а также показатель напряжения. Накопитель может находиться в твердом, жидком или газообразном состоянии.
Полупроводниковые конденсаторы считаются наиболее распространёнными, и в цепи обозначаются с показателем предельной ёмкости. В промышленности востребованными остаются твердотельные компоненты, которые применяются в платах управления.
Танталовые
Элементы данного типа обозначаются двумя горизонтальными полосками. они производятся с покрытием диоксида марганца. Компоненты являются востребованными, поскольку обладают высокой мощностью, и по всем параметрам обходят алюминиевые элементы. Весь секрет кроется в использовании сухого электролита.
Танталовые моделиК основным особенностям стоит прописать такое:
- термостабильность,
- отсутствие утечек,
- высокое напряжение,
- значительный срок годности.
Вместе с тем в цепи конденсаторы страдают при повышенной температуре. У них низкий ток заряда, есть проблема с частотой. Электронная промышленность движется вперёд, поэтому танталовые типы всё чаще используются в платах управления.
Важно! Элементы востребованы по причинам компактных размеров и высокого напряжения.
Если рассматривать твердотельные модификации, они состоят из диэлектрика, защитного покрытия, а также катода с анодом. В цепи компоненты не бояться пониженных частот, поскольку учитывается высокое значение импеданса. Графический показатель рассчитывается, как отношение индуктивности к определенной емкости.
Дополнительно при рассмотрении схем конденсатора берется в расчет показатель фильтрации сигналов. Как правило, он не превышает 100 км. Чтобы элемент работал должным образом, определяется безопасный уровень тока и частоты.
Рассчитывается максимальная мощность компонента и уровень сопротивления, относительно рабочей частоты. В документации графической формы указывается параметр ESR, он демонстрирует мощность рассеивания. В цепи существует ряд факторов, влияющих на показатели:
- сигнал;
- максимальная температура;
- корректирующий множитель.
Чтобы просчитать среднюю частоту по схеме, рассчитывается среднеквадратичный ток. Для этого берется в расчет минимальное значение емкости и номинальная мощность. Если рассматривать печатные платы, конденсаторы могут обозначать значениями FR4, FR5, G10. Рядом с элементами подписывается параметр емкости.
Важно! При осмотре схемы учитываются размеры контактных зон.
Правила установки танталовых изделий:
- требуется паяльная паста;
- выбор места;
- доступные способы пайки.
Чтобы танталовый конденсатор эффективно работал на плате, подбирается паяльная паста и наносится толщиной в 0.02 мм. Некоторые используют материалы с флюсом, такое также допускается. Основная проблема — это подбор оптимального режима пайки. При установке танталового конденсатора обращается внимание на маркировку, стоит обращать внимание на обозначение ёмкости.
Также показана полярность, номинальное напряжение. Проще всего восстанавливать конденсаторы стандартных типоразмеров. Процесс производится вручную либо на фабрике. Там с этой целью используются конвекционные либо инфракрасные печи. Помимо ручной пайки известным считается волновой метод.
Ручная пайкаОсновное требование — поддержание оптимальной температуры для подогрева контакта. После пайки следует заняться чисткой. С этой целью подойдут растворы Prelete, Chlorethane, Terpene. Важное требование — это отсутствие такого элемента, как дихлорметан.
Переменные
Конденсаторы переменного типа изображены с перечеркнутыми двумя горизонтальными полосками. Особенность данного типа заключается в изменении емкости посредством воздействия механической силы. Напряжение на обкладке может изменяться, учитываются показатели в колебательных контурах.
Устройства применимы в схеме приемника либо передатчика. Элементы используются на пару со стабилизаторами, тримерами. Переменные конденсаторы, наравне с подстрочными элементами применяются в колебательных контурах. Их основная задача — измерение резонансной частоты. Как вариант, компоненты встречаются в цепях радиоприемника, используются на пару с усилителями.
Если говорить об антенных устройствах, конденсаторы незаменимые для генераторов частоты. В качестве основы применяются твердые резисторы и органическая плёнка. На рынке представлены керамические варианты компактных размеров. Есть товары с одной или двумя секциями, у которых отличаются показатели емкости.
Если рассматривать многосекционные модели, они обозначаются, как 6 горизонтальных полосок в цепи. Также существует построечный тип для радиоаппаратуры. За основу элемента взят воздушный диэлектрик, который используется в цепи переменного тока. Конденсаторы применимы в блоках питания и фильтрах.
Важно! Радиолюбители знают о проблеме с низкой частотой и необходимостью подгонки ёмкости.
Конденсаторы-триммеры
Данный тип конденсаторов на схеме обозначен в виде двух горизонтальных полосок со стрелкой. Речь идёт о компактных элементах, использующихся в печатных платах. У них крайне низкие показатели емкости, учитывается незначительная частота. По структуре модель отличается от переменных конденсаторов.
ТриммерыИонистор
Ионистор на схеме показан, как стандартный электролитический конденсатор — две горизонтальные полоски со знаком плюс. Элемент производится без диэлектрика и не обладает потенциальным зарядом. Знак «+» показывает полярность конденсатора на схеме.
По структуре ионистор содержит сепаратор, уплотнительный изолятор, а также электроды. Если смотреть параметры, учитывается такое:
- внутреннее сопротивление,
- предельный ток,
- номинальное напряжение,
- уровень саморазряда,
- предельная емкость,
- срок годности.
В принципиальной сети элемент используется в блоках питания. Также он подходит для таймера, других цифровых устройств. Даже если заглянуть в смартфон либо планшет, на плате найдётся данный элемент.
ИонисторТемпературный коэффициент
Когда изменяется температура окружающей среды, емкость конденсатора также меняется. Чтобы отслеживать данный коэффициент, берется в расчет показатель ТКЕ. По формуле он представляет собой соотношение начальной емкости и изменения температуры. Первоначально отслеживаются нормальные условия работы компонента.
При значительном повышении температуры используются линейные уравнения, в которых задаются показатели рабочих условий функционирования конденсатора. Также указывается стартовая ёмкость в качестве ориентира. Показатель ТКЕ необходим для подготовки описания к элементам.
Показатель ТКЕЕсли взглянуть на спецификацию, прописываются все параметры. При подборе компонентов пользователи желают знать, как устройство реагирует на изменение температуры. Чаще всего речь идет о постоянном показателе, поэтому стоит рассматривать график с диапазоном рабочих температур.
Маркировка
Если взглянуть на схему, отечественные компоненты отмечаются с набором характеристик:
- ёмкость,
- номинальное напряжение,
- дата выпуска,
- расположение маркировки на корпусе,
- цветовая маркировка отечественных радиоэлементов.
Важно разбираться в показателях, уметь расшифровывать аббревиатуры. Таким образом, получится точно определить тип конденсатора.
Маркировка отечественных радиоэлементовЁмкость
Емкость конденсатора измеряется в фарадах (Ф), микрофарадах (мкФ) или пикофарадах (пФ) и прописываться рядом со значком элемента. На схемах учитывается постоянный, переменный, саморегулирующийся параметр. Номинальная емкость дублируется на корпусе конденсатора. Так, на элементе могут указываться обозначения:
- 5П1 — 5,1 пФ.
- h2 — 100 пФ.
- 1Н — 1000 пФ.
Номинальное напряжение
Показатель номинального напряжения измеряется в вольтах, регулируется ГОСТом 9665 — 77. Если взглянуть на схему, встречается надпись С1 100В. В данном случае говорится о номинальном напряжении в 100 вольт. Таким образом, определяется электролитическая прочность компонента. Специалист способен рассчитать толщину диэлектрика, учитывая прочие факторы.
Номинальное напряжениеЗная показатель напряжения сети, открывается представление о сфере использования элемента. Если не учитывать данный параметр, конденсатор может не справится с возложенной на него нагрузкой. Весь секрет заключается в типе используемой обкладки. Также в расчет берутся рабочие температуры.
Дата выпуска
Если присмотреться к элементам, в конце маркировки оказывается 4 цифры. Они показывают год, а также месяц изготовления элемента. К примеру, на конденсаторе может быть указано «9608». Из этого следует, что элемент изготовлен в 1996 году, в августе месяце. Правила нанесения маркировки прописаны в ГОСТе 30668-2000.
Маркировки по ГОСТу 30668-2000Расположение маркировки на корпусе
Чтобы быстро отыскать необходимую информацию на корпусе конденсатора, маркировка находится на передней стороне. Если рассмотреть плёночный компонент, либо другой тип, регламент четко прописан в ГОСТе и дублируется в технических инструкциях. Производитель обязательно использует цветовые индикаторы полосками. и цифровые обозначения.
Цветовая маркировка отечественных радиоэлементов
По цветовой маркировке можно узнать информацию о множителе, номинальной емкости и даже рабочей температуре.
- Золотистый цвет (указывает на низкий параметр множителя — 0.01 допуск составляет не более 5%).
- Серебристый (множитель 0.1, показатель допуска не больше 10%).
- Чёрный (множитель 1, допуск 20%).
- Коричневый (указывает на емкость 1 мкФ, множитель равняется 10, а допуск не более 1%).
- Красный (говорит о номинальной емкости 2 пф, множитель составлять 10 в квадрате, допуск около 2%).
- Оранжевый (это элемент с ёмкостью 3 пф, множитель 10 в третьей степени).
- Жёлтый цвет (элементы с емкостью 4 пф, множитель у них 10 в четвёртой степени).
- Зелёный цвет (элементы с множителем 10 в пятой степени, показатель 4 пф)
- Голубой цвет (на 6 пф, множитель 10 в 6 степени, отклонения 0.25 процентов).
- Фиолетовый (допуск от 0.1 процентов, параметр множителя 10 в седьмой степени, а емкость 7 пФ).
- Серый (допуск 0.05 процентов, ёмкость 8 пф, множитель — 10 в восьмой степени).
- Белый (элемент на 9 пф, множитель 10 в девятой степени).
Маркировка конденсаторов импортного производства
Рассматривая маркировку импортных конденсаторов, необходимо понимать, что первые цифры показывают емкости. Далее следует количество нолей и потом показателя ЕТК. Ниже указывается допустимое рабочее напряжение, к примеру, взять электролитический конденсатор с ёмкостью 100 пф, на нём будет обозначение «100n». Также прописывается допустимое напряжение, например, 120 вольт.
Выше подробно расписаны типы конденсаторов. Каждый из элементов имеет определённое обозначение на схеме. Чтобы разбираться в них, стоит изучить таблицу со значениями и цветами.
Как обозначаются (маркируются) конденсаторы на схемах: маркировка конденсаторов
Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях.
Различные типы конденсаторных элементов
О конденсаторе
Базовая структура конденсатора имеет простое объяснение. Между двумя конденсаторными пластинами имеется диэлектрик, изолирующий две проводящие поверхности. Таким образом, конденсатор представляет собой пассивное устройство, способное хранить электрозаряд.
Конденсаторные пленки, диэлектрик и конструкция в значительной мере определяют свойства конденсатора, а именно возможность сохранять заряд, который пропорционален напряжению, приложенному к его пластинам. Эта пропорциональность, получившая название емкости, считается существенной особенностью конденсатора.
Технологически конденсаторы можно подразделить на три типа:
- электростатические;
- электролитические;
- другие электрохимические устройства (двойнослойные).
Применение конденсатора зависит от вида и предназначения схемы. Буферный конденсаторный элемент используется для перехвата пиковых нагрузок. Применяются эти элементы в фильтрах для подавления помех и построения резонансных схем.
Условные обозначения конденсаторов
Разработаны системы УГО (условных графических обозначений) для конденсаторов в РФ (ГОСТ 2.728-74) и общемировые стандарты (IEEE 315-1975).
Обозначение различных конденсаторов на схеме показывает их тип и главные характеристики.
Конденсатор с постоянной емкостью
Делятся на два основных типа:
- поляризованные;
- неполярные.
Малогабаритные неполяризованные конденсаторные элементы могут быть подсоединены в любом направлении. Существуют различные типы, но керамические являются наиболее широко распространенными и подходящими для большинства целей.
На электросхемах обозначаются парой коротких параллельных линий, перпендикулярных соединительным схемным линиям. Рядом часто размещается величина емкости элемента.
Обозначение конденсатора с постоянной емкостью
Важно! Иногда в иностранных схемах встречается обозначение MFD. Это не мегафарады, а μF.
Возможные единицы емкости:
- микро (μ) означает 10 в -6 степени фарад;
- нано (n) – 10 в -9 степени фарад;
- пико (р) – 10 в -12 степени фарад.
На поверхность самого конденсатора тоже наносится значение емкости. Часто оно указано без обозначений единиц, особенно на маленьких элементах. Например, 0,1 – это 1 мкФ = 100 нФ.
Иногда написание единиц используется вместо десятичной точки. Если встречается обозначение 4n7, это значит 4,7 нФ.
Код номера конденсатора
Цифровой код часто применяется на маленьких элементах, где печать затруднена:
- первые два числа – начальные цифры значения ёмкости;
- третья показывает число нулей, а сама величина измеряется в пФ;
- буквы могут означать допуски и номинальное напряжение.
Например:
- 102 означает 1000 пФ, а не 102 пФ;
- 472J – это 4700 пФ (J свидетельствует о 5-процентном допуске).
Важно! Неполярные конденсаторы обычно имеют ёмкость менее 1 мкФ.
Поляризованные конденсаторы
Конденсаторные элементы такого типа должны быть подключены с учетом полюсов. На схеме это показано символом «+». На самом приборе указывается нанесением маркировки, которая идентифицирует «плюс». Для деталей цилиндрической формы обычно более длинный вывод является «плюсом». Поляризованные конденсаторы не повреждаются при паяльных работах.
Поляризованные конденсаторы
Электролитические конденсаторы – наиболее широко используемый тип поляризованного конденсаторного элемента. Они доступны в двух исполнениях:
- цилиндрические, с обоими выводами на одном конце;
- осевые, с выводами на каждом конце.
Цилиндрические, как правило, немного меньше и дешевле.
Реальные размеры таких элементов достаточно большие, чтобы четко наносить на них значение емкости, номинального напряжения и указывать «плюсовой» вывод. Поэтому их легко идентифицировать.
Важно! При включении в обратном направлении элементы могут повредиться и даже взорваться, поэтому необходимо четко придерживаться полярности.
Номинальное напряжение электролитических конденсаторов довольно низкое. При отсутствии четких требований лучше выбирать деталь с номиналом, несколько большим напряжения схемы.
Электролитический конденсаторный элемент на схемах может указываться в трех вариантах, представленных на рисунке.
Обозначение поляризованных конденсаторов
Танталовые конденсаторы
Конденсаторы из тантала поляризованы и имеют низкое пробивное напряжение. Они обладают очень малыми габаритами, используются в особых ситуациях, где важен размер.
На последних моделях танталовых конденсаторных элементов указывается значение емкости, напряжения и «плюсовой» вывод. Более старые модели имеют систему цветового кода, которая условно обозначает емкость.
Код состоит из двух полос сверху элемента (для двух цифр) и цветового пятна, обозначающего количество нулей. Соответствие цветовых значений для конкретных емкостей определяется по таблицам. Пятно серого цвета означает, что емкостное значение в мкФ надо умножить на 0,01, белого – на 0,1. Нижняя полоса около конденсаторных выводов дает значение напряжения:
- желтая – 6,3 В;
- черная – 10 В;
- зеленая – 16 В;
- синяя – 20 В;
- серая – 25 В;
- белая – 30 В;
- розовая – 35 В.
Важно! «Плюсовой» контакт находится всегда с правой стороны элемента, если разместить его цветовым пятном к себе.
Танталовые конденсаторы
Переменные конденсаторы
Этот тип конденсаторных элементов главным образом применяется в радиосхемах. Элемент состоит из двух систем дисков. Одна – закреплена стационарно, другая – может поворачиваться, входя в промежутки между стационарными дисками. Переменные детали обладают маленькими емкостями, 100-500 пФ, и не используются в электросхемах синхронизации из-за малой емкостной величины и ограниченных пределов доступных значений. Вместо них применяются обычные конденсаторы с фиксированными значениями емкости и переменные резисторы.
Обозначение переменных конденсаторов
На схеме переменные конденсаторы представлены конденсаторным символом, перечеркнутым наклоненной стрелкой, а вместо точной емкостной величины написаны пределы ее изменения.
Конденсаторы-триммеры
Разновидность переменных конденсаторных элементов – триммеры, это миниатюрные детали с переменной емкостью. Они монтируются непосредственно на печатной плате, а емкостная величина изменяется только в период настройки схемы. Поэтому их еще именуют подстроечными. Регулирование производится с помощью отвертки.
Обозначение подстроечного конденсатора
Емкостное значение триммера обычно меньше 100 пФ. На электросхеме триммер указан, как переменный конденсатор со стрелкой, только стрелка вместо острия имеет перпендикулярную черту. Рядом пишется диапазон изменения емкости.
Ионистор
Ионистор называют суперконденсатором. Он представляет собой двухслойный элемент с относительно высокой емкостью (0,22-10 Ф). Структура суперконденсатора отличается от структуры обычной электролитической детали. В двойном слое на границе раздела между поверхностью электрода и электролитом образуется зона неподвижных носителей заряда, где энергия хранится, как электростатическое поле, в отличие от химической энергии электролитического конденсаторного элемента. Так как пограничный слой чрезвычайно тонкий, а поверхность электрода велика, достигается большая емкость, что делает суперконденсатор пригодным для использования в качестве ИП.
Ионистор и его обозначение
Температурный коэффициент конденсатора
Температурный коэффициент (ТКЕ) отражает, как изменяется емкость, измеренная при 20°С, при температурных изменениях. Есть элементы с линейными и нелинейными зависимостями.
Важной для практики является рабочая температура элемента. Она оказывает значительное влияние на срок его службы. Определяется конструктивным исполнением конденсатора. Например, электролитические конденсаторы больше подвержены температурному влиянию, чем керамические.
Видео
Оцените статью:Что такое конденсатор, типы конденсаторов и их обозначение на схемах
Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.
Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.
Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.
Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.
Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
Конденсаторы постоянной емкости
Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).
Рис. 1. Конденсаторы постоянной емкости и их обозначение.
Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.
Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.
Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).
Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.
Обозначение емкости на конденсаторах
Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.
В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.
Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).
В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).
При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).
Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах, а от 0,1 мкФ и выше — в микрофарадах.
В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).
Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.
Особенности и требования к конденсаторам
В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования. Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.
Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.
Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.
В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.
Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.
Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внут
ГОСТ 2.728-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Резисторы, конденсаторы
ГОСТ 2.728-74
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ
ОБОЗНАЧЕНИЯ
УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ
РЕЗИСТОРЫ, КОНДЕНСАТОРЫ
|
Москва |
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система конструкторской документации ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ Резисторы, конденсаторы Unified system for design documentation.Graphical symbols in diagrams.
|
ГОСТ Взамен |
Издание (апрель 2010 г.) с Изменениями № 1, 2, утвержденными в августе 1980 г., июле 1991 г. (ИУС № 11-80, 10-91).
Постановлением Государственного комитета стандартов Совета Министров СССР от 26 марта 1974 г. № 692
дата введения установлена
01.07.75
1. Настоящий стандарт устанавливает условные графические обозначения (обозначения) резисторов и конденсаторов на схемах, выполняемых вручную или автоматизированным способом во всех отраслях промышленности.
Стандарт полностью соответствует СТ СЭВ 863-78 и СТ СЭВ 864-78.
2. Обозначения резисторов общего применения приведены в табл. 1.
Таблица 1
Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы. Разные конденсаторы рисунок Устройство простейшего конденсатора Формулы соединение конденсаторов Полярный конденсатор изображение на схеме Фото электролитический конденсатор Фото конденсатора с насечками Неполярный конденсатор изображение на схеме Пленочный Керамический Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение: Расшифровка цифровой маркировки конденсаторов На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:Таблица номиналов конденсаторов Фото SMD конденсатора Фото электролитических SMD конденсаторов Переменные конденсаторы Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:Рисунок как устроен переменный конденсатор Фото переменный конденсатор Переменный конденсатор изображение на схеме Подстроечный конденсатор изображение на схеме Фото подстроечный конденсатор Рисунок строение подстроечного конденсатора Форум по различным радиоэлементам Обсудить статью КОНДЕНСАТОР |
Условные графические обозначения конденсаторов. — КиберПедия
Условные графические обозначения конденсаторов устанавливает Государственный стандарт ГОСТ 2.728-74.
По конструктивному исполнению и назначению конденсаторы разделяются на следующие группы:
1. Конденсатор постоянной емкости.
2. Конденсатор электролитический.
3. Конденсатор постоянной емкости с тремя выводами (двухсекционный).
4. Конденсатор проходной.
5. Конденсатор переменной емкости.
6. Конденсатор переменной емкости многосекционный.
7. Конденсатор подстроечный.
8. Конденсатор дифференциальный.
9. Вариконд.
При выполнении схем следует придерживаться размеров условных графических обозначений конденсаторов представленных на рис.2.8.
Конденсатор постоянной Конденсатор переменной Конденсатор проходной
емкости емкости
Рис.2.8.
Примеры обозначений конденсаторов различного типа приведены во второй части учебного пособия «Электрические схемы систем автоматики».
Условные графические обозначения
Полупроводниковых приборов.
Условные графические обозначения полупроводниковых приборов устанавливает Государственный стандарт ГОСТ 2.730-73.
Стандартом выделены следующие группы полупроводниковых приборов:
1. полупроводниковые диоды,
2. тиристоры,
3. транзисторы с P—N-переходами,
4. полевые транзисторы,
5. фоточувствительные и излучающие полупроводниковые приборы,
6. оптоэлектронные приборы.
При выполнении схем допускается:
— выполнять обозначения транзисторов в зеркальном изображении, например,
— изображать корпус транзистора.
На графических обозначениях полупроводниковых приборов используются знаки, характеризующие их физические свойства. Эти знаки представлены в таблице 2.21.
Таблица 2.21
Знаки полупроводниковых приборов,
характеризующие их физические свойства.
При изображении схем устройств, использующих полупроводниковые приборы, рекомендуется придерживаться некоторых общих правил. Однофазная мостовая выпрямительная схема в развернутом изображении представлена на рис.2.9.
Рис.2.9.
Упрощенное изображение (условное графическое обозначение) однофазного выпрямителя представлено на рис.2.10 а, а на рис.2.10б показан пример применения условного графического обозначения на схеме.
а ). Б).
Рис.2.10.
Следует учитывать, что к выводам 1 – 2 подключается напряжение переменного тока, а к выводам 3 – 4 выпрямленное напряжение. Вывод 3 имеет положительную полярность.
Рекомендуемое изображение трехфазной мостовой схемы выпрямления, выполненной на полупроводниковых элементах, показано на рис.2.11.
Рис.2.11.
Примеры обозначений элементов полупроводниковых приборов указанных выше групп приведеныво второй части учебного пособия «Электрические схемы систем автоматики».
Электролитический конденсатор — Алюминиевый электролитический »Примечания по электронике
Электролитический конденсатор используется там, где требуются высокие уровни емкости, но для обеспечения долгой надежной службы он должен использоваться правильно и в пределах своих технических характеристик.
Capacitor Tutorial:
Использование конденсатора
Типы конденсаторов
Электролитический конденсатор
Керамический конденсатор
Танталовый конденсатор
Пленочные конденсаторы
Серебряный слюдяной конденсатор
Супер конденсатор
Конденсатор SMD
Технические характеристики и параметры
Как купить конденсаторы — подсказки и подсказки
Коды и маркировка конденсаторов
Таблица преобразования
Электролитический конденсатор — один из основных компонентов конденсаторной промышленности, который в больших количествах используется как в качестве выводного устройства, так и в качестве SMD.
Электролитический конденсатор является наиболее популярным типом выводов для значений более 1 мкФ, имея один из самых высоких уровней емкости для данного объема.
Алюминиевые электролитические конденсаторы используются уже много лет, поэтому они стали постоянным компонентом многих конструкций.
Выбор алюминиевых электролитических конденсаторов с выводамиЭлектролитические конденсаторы широко используются в качестве компонентов с выводами, часто находясь в приложениях от источников питания до аудио, где могут использоваться устройства с выводами.Первоначально алюминиевые электролитические конденсаторы не были популярны в формате технологии поверхностного монтажа из-за высокого уровня тепла, возникающего во время пайки, и они могли быть повреждены. В настоящее время широко используются электролитические конденсаторы для поверхностного монтажа, которые обеспечивают высокий уровень надежности.
Электролитический конденсатор ранней разработки
Электролитический конденсатор используется много лет. Его раннее развитие и историю можно проследить до самых первых дней радио, примерно в то время, когда делались первые развлекательные передачи.В то время клапанные беспроводные устройства были очень дорогими, и им приходилось работать от батареек. Однако с развитием клапана с косвенным нагревом или вакуумной трубки стало возможным использовать питание от сети переменного тока.
Хотя для нагревателей нормально работать от источника переменного тока, анодное питание нужно было выпрямить и сгладить, чтобы предотвратить появление сетевого гула в звуке. Чтобы иметь возможность использовать конденсатор не слишком большого размера, Джулиус Лилиенфилд, который активно участвовал в разработке беспроводных устройств для домашнего использования, смог разработать электролитический конденсатор, позволяющий использовать компонент с достаточно высокой емкостью, но разумного размера в беспроводные наборы дня.
Обозначения электролитических конденсаторов
Электролитический конденсатор представляет собой форму поляризованного конденсатора. Символ электролитической цепи указывает полярность, поскольку это важно для обеспечения того, чтобы конденсатор правильно вставлен в цепь и не имел обратного смещения.
Варианты обозначений схем, используемых для электролитических конденсаторовДля электролитических конденсаторов используются различные условные обозначения. Первая «1» — это версия, которая, как правило, используется в европейских принципиальных схемах, тогда как «2» используется во многих схемах США, а «3» можно увидеть на некоторых старых схемах.На некоторых схемах не печатается знак «+» рядом с символом, когда уже очевидно, какая пластина какая.
Технология электролитических конденсаторов
Как видно из названия, в электролитическом конденсаторе в качестве одной из пластин используется электролит (ионно-проводящая жидкость), чтобы достичь большей емкости на единицу объема, чем в других типах.
Конденсаторы могут увеличивать емкость несколькими способами: увеличивая диэлектрическую проницаемость; увеличение площади поверхности электрода; и уменьшив расстояние между электродами.В электролитических конденсаторах используется высокая диэлектрическая проницаемость слоя оксида алюминия на пластине конденсатора, которая в среднем составляет от 7 до 8. Это больше, чем у других диэлектриков, таких как майлар с диэлектрической проницаемостью 3 и слюдой около 6-8.
В дополнение к этому, эффективная площадь поверхности конденсаторов увеличивается до 120 раз за счет придания шероховатости поверхности алюминиевой фольги высокой чистоты. Это один из ключей к созданию очень высоких уровней емкости.
Конструкция электролитического конденсатора
Конденсатор этого типа состоит из двух тонких пленок алюминиевой фольги, один из которых покрыт оксидным слоем в качестве изолятора. Использование алюминиевой фольги приводит к тому, что конденсатор часто называют алюминиевым электролитическим конденсатором.
Лист бумаги, пропитанный электролитом, помещается между ними, затем две пластины наматываются друг на друга и затем помещаются в емкость.
Внутренняя структура электролитического конденсатораПри производстве алюминиевого электролитического конденсатора одним из первых этапов является травление фольги, чтобы сделать ее более шероховатой, чтобы увеличить площадь поверхности и, следовательно, уровень емкости, который может быть получен в данной области.
Следующий процесс — формирование анода. Это влечет за собой химическое наращивание тонкого слоя оксида алюминия Al 2 O 3 на анодной фольге, что делает ее отличной от катода.
Сам конденсаторный элемент намотан на намоточной машине. Четыре отдельных слоя: сформированная анодная фольга; бумажный разделитель, катодная фольга; и бумажный разделитель все вносятся и наматываются вместе. Разделители бумаги предотвращают соприкосновение и замыкание двух электродов.
Конструкция электролитического конденсатораКогда сборка намотана, ее заклеивают лентой для предотвращения разматывания.
После намотки конденсатора он пропитывается электролитом. Это можно сделать погружением в воду и под давлением.
Электролит, используемый в алюминиевых электролитических конденсаторах, представляет собой состав, разработанный для обеспечения требуемых свойств для конденсатора: номинальное напряжение, диапазон рабочих температур и т.п. В основном он состоит из растворителя и соли (необходимой для обеспечения электропроводности). Обычные растворители включают этиленгликоль, а обычная соль включает борат аммония и другие соли аммония.
По завершении этого конденсатор помещается в емкость, которая герметично закрывается для предотвращения испарения электролита.
Свойства электролитического конденсатора
Алюминиевые электролитические конденсаторы обеспечивают гораздо более высокий уровень емкости для данного объема, чем большинство керамических конденсаторов. Это означает, что дорогие электролитические конденсаторы могут быть относительно небольшими. Во многих случаях это значительное преимущество.
Конденсаторы электролитические поляризованные, т.е.е. они могут быть размещены в цепи только в одном направлении. При неправильном подключении они могут быть повреждены, а в некоторых крайних случаях могут взорваться. Также следует соблюдать осторожность, чтобы не превышать номинальное рабочее напряжение. Обычно они должны работать значительно ниже этого значения.
Электролитический конденсатор имеет большой допуск. Обычно значение компонента может быть указано с допуском -50% + 100%. Несмотря на это, они широко используются в аудиоприложениях в качестве конденсаторов связи и в приложениях сглаживания для источников питания.Они плохо работают на высоких частотах и обычно не используются для частот выше 50–100 кГц.
Электролитический конденсатор электрические параметры
При использовании электролитических конденсаторов существует ряд важных параметров, помимо базовой емкости и емкостного реактивного сопротивления. При проектировании схем с использованием электролитических конденсаторов необходимо учитывать эти дополнительные параметры для некоторых конструкций и учитывать их при использовании электролитических конденсаторов.
- Допуск: Электролитические конденсаторы имеют очень широкий допуск. Часто конденсаторы могут быть указаны как -20% и + 80%. Обычно это не проблема в таких приложениях, как развязка или сглаживание источника питания и т. Д. Однако их не следует использовать в схемах, где важно точное значение.
- ESR Эквивалентное последовательное сопротивление: Электролитические конденсаторы часто используются в цепях с относительно высокими уровнями тока.Также при некоторых обстоятельствах и ток, исходящий от них, должен иметь низкий импеданс источника, например, когда конденсатор используется в цепи источника питания в качестве накопительного конденсатора. В этих условиях необходимо проконсультироваться с техническими данными производителя, чтобы выяснить, будет ли выбранный электролитический конденсатор соответствовать требованиям схемы. Если ESR высокое, то он не сможет обеспечить необходимое количество тока в цепи без падения напряжения в результате ESR, которое будет рассматриваться как сопротивление источника.
- Частотная характеристика: Одна из проблем электролитических конденсаторов заключается в том, что они имеют ограниченную частотную характеристику. Было обнаружено, что их СОЭ растет с увеличением частоты, и это обычно ограничивает их использование частотами ниже примерно 100 кГц. Это особенно верно для больших конденсаторов, и даже на меньшие электролитические конденсаторы не следует полагаться на высоких частотах. Чтобы получить точные сведения, необходимо ознакомиться с данными производителя для данной детали.
- Leakage: Хотя электролитические конденсаторы имеют гораздо более высокие уровни емкости для данного объема, чем большинство других конденсаторных технологий, они также могут иметь более высокий уровень утечки. Это не проблема для большинства приложений, например, когда они используются в источниках питания. Однако при некоторых обстоятельствах они не подходят. Например, их нельзя использовать во входной цепи операционного усилителя. Здесь даже небольшая утечка может вызвать проблемы из-за высокого входного импеданса операционного усилителя.Также стоит отметить, что в обратном направлении уровень утечки значительно выше.
- Ток пульсации: При использовании электролитических конденсаторов в сильноточных устройствах, таких как накопительный конденсатор источника питания, необходимо учитывать ток пульсаций, который может возникнуть. Конденсаторы имеют максимальный ток пульсации, который они могут обеспечить. Выше этого они могут стать слишком горячими, что сократит их жизнь. В крайних случаях это может привести к выходу конденсатора из строя.Соответственно, необходимо рассчитать ожидаемый ток пульсаций и убедиться, что он находится в пределах максимальных значений, установленных производителем.
Маркировка электролитического конденсатора
Для версий электролитических конденсаторов с выводами обычно есть место для размещения различных параметров на емкости. Маркировка обычно предоставляет информацию об их емкости, рабочем напряжении, диапазоне температур и, возможно, других параметрах.
Маркировка на алюминиевом электролитическом конденсатореНекоторые большие конденсаторы, предназначенные для сглаживания в источниках питания, также могут нести дополнительную информацию.Одним из особенно важных параметров является ток пульсации. Если ожидается слишком большой ток от конденсатора, он может чрезмерно нагреться и выйти из строя.
Свинцовый электролитический конденсатор с маркировкойДля конденсаторов SMD место ограничено, поэтому детали ограничены и могут содержать только основную информацию.
Конденсаторы электролитические SMD
Электролитические конденсаторы в настоящее время все чаще используются в конструкциях, которые производятся с использованием технологии поверхностного монтажа, SMT.Их очень высокая емкость в сочетании с низкой стоимостью делает их особенно полезными во многих областях. Первоначально они не использовались в особо больших количествах, поскольку не выдерживали некоторых процессов пайки. Теперь улучшенная конструкция конденсатора вместе с использованием методов оплавления вместо пайки волной припоя позволяет более широко использовать электролитические конденсаторы в формате для поверхностного монтажа.
Часто устройства для поверхностного монтажа, SMD версии электролитических конденсаторов маркируются значением и рабочим напряжением.Используются два основных метода. Один — указать их значение в микрофарадах (мкФ), а другой — использовать код. При использовании первого метода маркировка 33 6V будет обозначать конденсатор 33 мкФ с рабочим напряжением 6 вольт. В альтернативной кодовой системе используется буква, за которой следуют три цифры. Буква обозначает рабочее напряжение, указанное в таблице ниже, а три цифры обозначают емкость в пикофарадах. Как и во многих других системах маркировки, первые две цифры обозначают значащие цифры, а третья — множитель.6 пикофарад. Это составляет 10 мкФ.
Коды напряжения электролитического конденсатора SMD | |
---|---|
Письмо | Напряжение |
e | 2,5 |
G | 4 |
Дж | 6,3 |
А | 10 |
С | 16 |
D | 20 |
E | 25 |
В | 35 |
H | 50 |
Срок службы алюминиевого электролитического конденсатора
Алюминиевые электролитические конденсаторы со временем разрушаются.Многие электролиты имеют вентиляционное отверстие для выхода избыточных газов. Эта утечка может привести к высыханию электролита и падению производительности конденсатора.
Также, если алюминиевые электролитические конденсаторы оставить на несколько лет, оксидный слой на аноде может рассеяться. Когда это происходит, конденсатор необходимо переполяризовать. Это можно сделать, подав на конденсатор ограниченное по току напряжение. Первоначально ток утечки через конденсатор будет относительно высоким, а затем он будет падать по мере образования оксидного слоя.
Также разумно принять меры, чтобы продлить срок службы конденсатора. Есть четыре золотых наконечника, которые увеличивают срок службы алюминиевого электролитического конденсатора:
- Работа в пределах допустимого напряжения: Всегда разумно запускать любой компонент с хорошим запасом ниже максимальных значений. Многие компании заявляют в своих правилах проектирования, что для электролитических конденсаторов они должны работать не более чем на 50% от своих максимальных номиналов, чтобы обеспечить оптимальную надежность.Если максимальные пределы превышены, то уровни тока утечки возрастут, и существует вероятность локального выхода из строя, ведущего к взрывному отказу компонента.
- Не выходите за пределы его номинального тока: Во многих случаях требуется электролитический конденсатор для обеспечения высокого уровня пульсаций тока. Этого следовало ожидать в таких приложениях, как использование в качестве сглаживающего конденсатора в источнике питания. Ii является обязательным условием, чтобы конденсатор мог выдерживать требуемый от него ток.Убедитесь, что конденсатор работает в пределах своего тока и не нагревается во время работы.
- Никогда не смещайте конденсатор в обратном направлении: При работе в режиме обратного смещения уровни утечки будут намного выше, чем в прямом направлении. Опять же, это может привести к катастрофической поломке и отказу.
- Поддерживайте низкие температуры: Тепло сокращает срок службы любого алюминиевого электролитического конденсатора. Хорошее практическое правило заключается в том, что каждые 10 ° C свыше 85 ° C сокращают ожидаемый срок службы компонента вдвое.
Несмотря на то, что у алюминиевых электролитических конденсаторов есть ожидаемый срок службы, он может быть увеличен до максимума, если следовать этим правилам и эксплуатироваться в пределах своих номиналов.
Риформинг алюминиевых электролитических конденсаторов
Может возникнуть необходимость переформировать электролитические конденсаторы, которые не использовались в течение шести или более месяцев. Электролитическое действие приводит к удалению оксидного слоя с анода, который необходимо повторно формировать. В этих обстоятельствах неразумно прикладывать полное напряжение, поскольку ток утечки будет высоким и может привести к рассеиванию большого количества тепла в конденсаторе, что в некоторых случаях может вызвать его разрушение.
Для реформирования конденсатора нормальный метод заключается в подаче рабочего напряжения на конденсатор через резистор около 1,5 кОм или, возможно, меньше для конденсаторов с более низким напряжением. (Обратите внимание: убедитесь, что он имеет достаточную мощность для работы с рассматриваемым конденсатором). Его следует применять в течение часа или более, пока ток утечки не упадет до приемлемого значения, а напряжение непосредственно на конденсаторе не достигнет приложенного значения, то есть фактически через резистор не будет протекать ток.Затем это напряжение следует продолжать применять еще в течение часа. Затем конденсатор можно медленно разрядить через подходящий резистор, чтобы оставшийся заряд не вызвал повреждений. После преобразования будьте осторожны при использовании конденсатора, чтобы убедиться, что он полностью преобразован и может правильно функционировать.
Обзор электролитических конденсаторов
Краткое описание алюминиевых электролитических конденсаторов | |
---|---|
Параметр | Детали |
Типичные диапазоны емкости | от 1 мкФ до 47 000 мкФ |
Наличие номинального напряжения | Примерно с 2.5В и выше — некоторые специализированные могут иметь напряжение от 350В и выше. |
Преимущества | Высокая емкость на единицу объема по сравнению с большинством других типов, относительно дешевый по сравнению с другими типами аналогичного значения. |
Недостатки | Высокие токи утечки, большие допуски по значениям, плохое эквивалентное последовательное сопротивление; ограниченный срок службы. |
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
транзистор
Фототранзистор
FET
Типы памяти
тиристор
Соединители
Разъемы RF
Клапаны / трубки
батареи
Выключатели
Реле
Вернуться в меню «Компоненты»., ,
Электролитические конденсаторы — условные обозначения конденсаторов
При проектировании посадочных мест для электролитических конденсаторов важно размещать четкие указательные метки, чтобы показать ориентацию компонентов. Поскольку этот тип конденсаторов поляризован (они должны быть размещены в определенной ориентации), они должны иметь на печатной плате метки, помогающие определить, как их следует разместить. Четкость маркировки компонентов является ключом к тому, чтобы изготовление вашей конструкции шло гладко и синий дым не выходил из ваших конденсаторов.Тем более, что электролитические конденсаторы сделаны из тантала, поскольку они имеют тенденцию иметь катастрофические последствия, когда они включаются в обратном направлении.
Электролитический конденсатор
Электролитические конденсаторы — один из самых популярных типов конденсаторов, используемых в конструкции платы. Они дешевы и обеспечивают хороший баланс физического размера и емкости. Есть четыре физических вида электролитических конденсаторов; Банка SMT, корпус SMT, PTH радиальный и PTH осевой. Каждый стиль отмечен немного по-своему.Обычно они отмечены полосой на катодной стороне конденсатора, указывающей отрицательный вывод, но есть некоторые исключения. Это отличается от типичного схематического обозначения, которое является положительным или маркированным анодом!
Условное обозначение
Типичный поляризованный конденсатор будет выглядеть, как показано на рисунке ниже. Положительная или анодная сторона конденсатора отмечена знаком «+». Поскольку электролитические конденсаторы поляризованы, на схемах я использую символ (показанный ниже).
Схематический символ поляризованных конденсаторов, как показано на Eagle.
Электролитический конденсатор SMT Can Style
Эти конденсаторы отмечены на верхней части банки черной меткой. Однако цвет марки иногда зависит от производителя. Пластиковая основа конденсатора также имеет фаску с положительной или анодной стороны.
SMT Can электролитический конденсатор: Маркировка указывает отрицательную или катодную сторону.
Площадь основания типичного электролитического конденсатора SMT.
Корпус электролитического конденсатора SMT
Конденсаторы этого типа обычно имеют внутри тантал или ниобий, но есть несколько электролитических полимеров. Стиль корпуса означает, что он по форме похож на резистор 0805 или керамический конденсатор. В отличие от других корпусов для конденсаторов, они обычно имеют положительную или анодную маркировку.
Электролитические компоненты типа SMT обычно имеют анодную / положительную маркировку. Осторожно!
Площадь основания для электролитических конденсаторов типа SMT.
PTH Радиальный электролитический конденсатор
Радиальные крышки имеют как анод, так и катод, выходящие с одной стороны конденсатора. В 99% случаев они отмечены контрастной полосой на катоде или отрицательной стороне конденсатора.
Маркировка радиально поляризованных электролитических конденсаторов PTH.
Площадь основания для электролитических конденсаторов радиального типа PTH.
Осевой электролитический конденсатор PTH
Конденсаторы осевого типа используются не очень часто, но интересны тем, как они маркированы.Отрицательная или катодная полоса проходит по их стороне аналогично радиальному стилю, но в маркировке есть стрелка, указывающая, какая сторона является отрицательной или катодной.
Электролитический осевой тип PTH. Катодная полоса направлена на катод.
Площадь основания для электролитического конденсатора осевого типа PTH.
В следующий раз на файлах посадочных мест…
Самая важная вещь, о которой нужно помнить, — это проверить лист технических данных на детали и посмотреть, как полярность отмечена на детали. Копирование внешнего вида детали на ваших платах шелкография гарантирует гораздо больший успех при сборке платы. Я надеюсь, что это улучшит ваши следы на доске и упростит создание ваших продуктов и прототипов. В следующий раз в файлах посадочных мест мы поговорим о танталовых конденсаторах.
Прочтите предыдущий пост в этой серии: Файлы следа — диоды
Был ли этот пост полезен? Хотите, чтобы мы обсудили еще какие-то темы? Если да, сообщите нам об этом в Twitter.
Начните сегодня.
создать аккаунт
.Алюминиевые электролитические конденсаторы — jb
jb Capacitors производит и продает алюминиевые электролитические конденсаторы, в том числе алюминиевые электролитические конденсаторы с защелкивающимся креплением, алюминиевые электролитические конденсаторы с винтовым креплением, алюминиевые электролитические конденсаторы с наконечниками и радиальные алюминиевые электролитические конденсаторы. Мы продаем в Китае высокое качество по доступным ценам. Пожалуйста, обратитесь к приведенному ниже списку алюминиевых электролитических конденсаторов. Если вы не можете найти нужную серию, пришлите нам подробные требования.Спасибо. Если вы хотите ознакомиться с полным списком продуктов, перейдите по ссылке Products .
Список алюминиевых электролитических конденсаторов
- JRA — 2000H при 85 ° C, радиальные алюминиевые электролитические конденсаторы, миниатюрная серия (горячая)
- JRB — 2000H при 105 ° C, радиальный алюминиевый эл. Конденсаторы миниатюрные и большой емкости (горячие)
- JRC — 2000H при 105 ° C, радиальный алюминиевый эл.Конденсаторы, высокочастотные и низкоомные
- JRD — 5000H при 105 ° C, радиальные алюминиевые электрические конденсаторы, низкое сопротивление, длительный срок службы
- JRG — увеличенный срок службы при 105 ° C, радиальный алюминиевый эл. Конденсаторы с очень низким импедансом
- JRJ — 1000H при 85 ° C, радиальные алюминиевые электролитические конденсаторы, высота 7 мм
- JRK — 2000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы, высота 7 мм
- JRW — 2000H при 105 ° C, радиальный алюминиевый эл.Конденсаторы, сверхнизкое сопротивление
- JRQ — 1000H при 105 ° C, биполяризованные радиальные алюминиевые электролитические конденсаторы
- JAA — 2000H при 85 ° C, осевые алюминиевые электролитические конденсаторы (низкая утечка)
- JAB — 2000H при 85 ° C, осевые алюминиевые электролитические конденсаторы, стандартное низкое напряжение
- JAH — 1000H при 105 ° C, осевые алюминиевые электролитические конденсаторы, стандартное низкое напряжение
- JAC — 1000H 105 ° C, DF при макс. 4% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAD — 1000H 105 ° C, DF при макс. 5% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAE — 1000H 105 ° C, DF при макс. 10% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAF — 1000H 105 ° C, DF при макс. 10% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JNC — 2000H при 85 ° C, алюминиевый электролитический конденсатор с защелкой, для акустической сети
- JNE — 2000H при 105 ° C, миниатюрный, алюминиевый электролитический конденсатор с защелкой
- JNG — 5000H при 85 ° C, алюминиевый электролитический конденсатор с защелкой, миниатюрный размер, длительный срок службы
- JNJ — 3000H при 105 ° C, миниатюрная, с увеличенным сроком службы в алюминиевом электролитическом конденсаторе
- JNK — 5000H при 105 ° C Алюминиевый электролитический конденсатор с защелкой
- JMJ — 2000H при 85 ° C, миниатюрный, винтовой алюминиевый электролитический конденсатор
- JML — 2000H при 105 ° C Винтовой алюминиевый электролитический конденсатор
- JMN — 5000H при 85 ° C Винтовой алюминиевый электролитический конденсатор
- JMQ — 5000H при 105 ° C Винтовой алюминиевый электролитический конденсатор
- JSS — 85 ° C, миниатюрный размер, алюминиевый электролитический конденсатор с наконечником
- JSU — Фотовспышка, алюминиевый электролитический конденсатор с наконечником
- JSW — Пусковой конденсатор двигателя
Алюминиевые электролитические конденсаторы Фотографии
О алюминиевых электролитических конденсаторах
jb Capacitors — профессиональный производитель алюминиевых электролитических конденсаторов.У нас есть около 40 лет опыта производства электролитических конденсаторов. Вообще говоря, jb Capacitors специализируется на алюминиевых электролитических конденсаторах большой емкости и алюминиевых электролитических конденсаторах SMD.
Алюминиевые электролитические конденсаторы большой емкости включают в себя электролитический конденсатор с защелкой, винтовые электролитические конденсаторы и алюминиевые электролитические конденсаторы с наконечником.
Радиальные алюминиевые электролитические конденсаторывключают следующие серии; другие спецификации доступны по запросу.
- JRA — 2000H при 85 ° C, радиальные алюминиевые электролитические конденсаторы
- JRB — 2000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы
- JRC — 2000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы
- JRD — 5000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы
- JRG — Долгий срок службы при 105 ° C, радиальные алюминиевые электролитические конденсаторы
- JRK — 20000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы
- JRW — 20000H при 105 ° C, радиальные алюминиевые электролитические конденсаторы
Осевые алюминиевые электролитические конденсаторы включают следующие серии; другие спецификации доступны по запросу.
- JAA — 2000H при 85 ° C, 2 типа резины, низкий ток утечки, осевые алюминиевые электролитические конденсаторы
- JAB — 2000H при 85 ° C, 2 типа резиновых, низковольтных, аксиальных алюминиевых электролитических конденсатора
- JAH — 1000H при 105 ° C, 2 резиновых типа, низковольтные, осевые алюминиевые электролитические конденсаторы
- JAC — 1000H при 105 ° C, DF при макс. 4% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAD — 1000H при 105 ° C, DF при макс. 5% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAE — 1000H при 105 ° C, DF при макс. 10% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
- JAF — 1000H при 105 ° C, DF при макс. 10% BP Осевые алюминиевые электролитические конденсаторы для аудиосистемы
Алюминиевые электролитические конденсаторы Snap в следующих сериях; другие спецификации доступны по запросу.
- JNC — 2000H при 85 ° C, алюминиевый электролитический конденсатор с защелкой, для сети динамиков
- JNE — 2000H при 105 ° C, миниатюрный, алюминиевый электролитический конденсатор с защелкой
- JNG — 5000H при 85 ° C, алюминиевый электролитический конденсатор с защелкой, миниатюрный размер, длительный срок службы
- JNJ — 3000H при 105 ° C, миниатюрная, долговечная защелка в алюминиевом электролитическом конденсаторе
- JNK — 5000H при 105 ° C Алюминиевый электролитический конденсатор с защелкой
Алюминиевые электролитические конденсаторы винтового типа включают следующие серии; другие спецификации доступны по запросу.
- JMJ — 2000H при 85 ° C, миниатюрный винтовой алюминиевый электролитический конденсатор
- JML — 2000H при 105 ° C Винтовой алюминиевый электролитический конденсатор
- JMN — 5000H при 85 ° C Винтовой алюминиевый электролитический конденсатор, длительный срок службы
- JMQ — 5000H при 105 ° C Винтовой алюминиевый электролитический конденсатор, для инвертора
Lug включают следующие серии; другие спецификации доступны по запросу.
- JSS — 85 ° C, миниатюрный размер, алюминиевый электролитический конденсатор с выступом
- JSU — Фотовспышка, алюминиевый электролитический конденсатор с наконечником
- JSW — Пусковой конденсатор двигателя
Алюминиевые электролитические конденсаторы SMD, jb Capacitors предоставляет наиболее распространенные серии: 2000 ч при 85 ° C алюминиевые электролитические конденсаторы SMD и 1000 ч при 105 ° C алюминиевые электролитические конденсаторы SMD. Конденсаторы jb продаются по очень конкурентоспособным ценам, и наш ежемесячный объем производства алюминиевых электролитических конденсаторов SMD может достигать 30 миллионов единиц.
,PSU 101: Tier List производителя конденсаторов
Уровневый список производителей конденсаторов
В случае полимерных колпачков все типы считаются подходящими для использования с блоками питания из-за их способности выдерживать более высокие рабочие температуры, чем их электролитические аналоги. Когда дело доходит до электролитических крышек, поскольку на них сильно влияют повышенные температуры, вызванные накоплением тепла во внутренних частях блока питания (но в основном из-за пульсаций тока), крышки, сделанные японскими производителями, являются самым безопасным и высококачественным выбором.По этой же причине всегда предпочтительнее японские конденсаторы.
Однако с использованием крышек японского производства есть две проблемы: их стоимость выше и иногда возникают проблемы с доступностью. Большинство заводов по производству блоков питания расположены в Китае, поэтому им приходится импортировать конденсаторы из Японии, что требует дополнительного времени и затрат на доставку. Однако мы считаем, что достаточное количество японских компаний имеют производственные мощности в Китае (наряду со многими тайваньскими производителями), поэтому в некоторых случаях проблема может быть не такой значительной.Конечно, китайским производителям блоков питания по-прежнему намного проще приобретать крышки, произведенные на китайском заводе. Китайские компании-производители конденсаторов могут предлагать большие количества, и если мы примем во внимание, что в большинстве высокопроизводительных блоков питания используются только японские ограничения, то с японскими ограничениями более вероятно возникновение проблем с доступностью.
Ситуация становится еще хуже, если учесть, что нельзя заказывать огромное количество японских крышек, хранить их в течение длительного периода, а затем использовать, так как это сильно повлияет на их производительность.Электролитические колпачки должны храниться в определенных условиях, чтобы сохранить их электролиты, и особенно для использования в блоках SMPS, срок их хранения не может превышать определенный порог. Если рекомендованный срок хранения превышен, конденсаторы необходимо проверять по очереди (включая измерения ESR и емкости). Во многих случаях их необходимо реформировать перед использованием, чтобы избежать проблем в работе. А поскольку процесс риформинга требует времени и оборудования, это дополнительно сказывается на производственных расходах.
После серьезного чтения и сбора информации от различных производителей и инженеров блоков питания мы хотели бы отметить, что, помимо происхождения колпачка, очень важно правильно выбрать колпачок для конкретной задачи, которую вы имеете в виду. Например, если вы установите в каскад APFC крышку только с номиналом 380 В, то она выйдет из строя намного раньше, даже если она очень высокого качества, поскольку ее максимальное напряжение слишком близко к напряжению шины постоянного тока этого преобразователя. Кроме того, как и в случае с большинством продуктов, все производители крышек имеют портфолио, которое включает продукты с разными характеристиками и ожидаемым сроком службы.Таким образом, помимо хорошего производителя, вы также должны выбрать крышки из подходящего семейства продуктов с желаемыми техническими характеристиками для соответствующего применения. Это, конечно, относится не только к крышкам, но и ко всем компонентам, используемым в каждом электронном устройстве. Однако внутри блока питания неправильный выбор компонентов может привести к нежелательным результатам намного быстрее.
Ограничения первого уровня
Даже японские производители включают в свой портфель некоторые основные линии, которые не так хороши, как их топовые продукты.Таким образом, помимо торговой марки, мы всегда внимательно изучаем семейство продуктов и их характеристики, чтобы лучше судить о качестве конденсаторов и приблизительно оценить их срок службы.
Все японские бейсболки считаются высококачественными, и нам нравится видеть бейсболки следующих брендов:
- Rubycon
- United Chemi-Con (или Nippon Chemi-Con)
- Nichicon
- Sanyo / Suncon
- Panasonic
- Hitachi
- FPCAP или функциональный полимерный конденсатор (бывший сегмент конденсаторов Fujitsu, который был куплен Nichicon)
- ELNA
Помимо японских производителей, есть также несколько поставщиков из США и Европы, которые производят высококачественные конденсаторы.Вероятно, мы не встретим ни один из перечисленных ниже производителей внутри блока питания потребительского уровня, по крайней мере, их электролитические предложения, но мы решили, что все же стоит упомянуть о них.
- Cornell Dubilier (США)
- Illinois Capacitor (в настоящее время принадлежит моему Cornell Dubilier)
- Kemet Corporation (США)
- Vishay (США)
- EPCOS (компания TDK, Германия)
- Würth Elektronik (Германия)
Колпачки второго уровня
В этом списке вы найдете конденсаторы некоторых тайваньских производителей, которые часто используют заводы в Китае.Эти колпачки работают хорошо, поэтому обычно используются в блоках питания среднего уровня, а иногда даже в высокопроизводительных блоках, и обеспечивают баланс между хорошей производительностью и доступной ценой.
- Taicon (принадлежит Nichicon)
- Teapo
- SamXon (кроме серии GF, которая относится к более низкому уровню)
- OST
- Toshin Kogyo
- Elite
Caps третьего уровня
Эти конденсаторы третьего уровня , согласно информации от различных производителей блоков питания и людей, знакомых со статистикой RMA, а также нашему собственному опыту использования крышек, возможно, не лучший выбор, но все же они на уровень выше крышек, относящихся к последней категории.
Колпачки четвертого уровня
В эту группу входят конденсаторы остальных марок. Когда вы увидите один из этих брендов в современном блоке питания, вы поймете, что производитель поставил более низкую стоимость производства в качестве приоритета, а не надежности с течением времени. Мы перечисляем только популярные бренды крышек, которые обычно встречаются в недорогих блоках питания, но мы хорошо знаем, что существует множество других недорогих брендов крышек, и есть большая вероятность, что вы найдете их в небрендовых блоках питания, и даже в некоторых брендовых агрегатах.
- G-Luxon
- Su’scon
- Lelon
- Ltec
- Jun Fu
- Fuhjyyu
- Evercon