+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Обозначение резисторов на схемах — Основы электроники

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°)

.

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Как обозначается мощность на схеме

Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.

Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.

Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.

Максимальная рассеиваемая резистором мощность

В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).

Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.

Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.

SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах.

Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.

Проволочные и непроволочные резисторы, точность резисторов

Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.

Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.

Высокое удельное сопротивление данных сплавов позволяет получить требуемый номинал резистора, однако несмотря на бифилярную намотку, паразитная индуктивность компонента все равно остается высокой, именно по этой причине проволочные резисторы не подходят для высокочастотных схем.

Непроволочные резисторы изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).

Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.

Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.

Номиналы резисторов и их маркировка

Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.

Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.

SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.

Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.

Обозначение резисторов на схемах

На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.

Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2. 756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Цветовое обозначение резистора. Обозначение мощности резисторов на схеме

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет электрическое сопротивление, его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и полупроводниковые приборы. Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.
Для печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в печатную плату или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора — это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение мощности резисторов на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа – это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение мощности резисторов на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.

Ниже на фотографии изображены постоянные резисторы разной мощности.


Условное графическое обозначение переменных резисторов

УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.

На фотографии ниже изображены переменные и подстроечные резисторы.

Стандартное обозначение сопротивления резисторов

Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.

Полное обозначениеСокращённое обозначение
Единица измеренияОбозн. ед. изм.Предел номин. сопротивленияна схемена корпусеПредел номин. сопротивления
ОмОм999,90,51E51 или R5199,9
5,15E1; 5R1
5151E
510510E; K51
КилоомкОм999,95,1k5K199,9
51k51K
510k510K; M51
МегаомМОм999,95,1M5M199,9
51M51M
510M510M

Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.

Цветовая маркировка резисторов

Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.

При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я — температурному коэффициету.

Для расшифровки цветовых кодов резисторов существуют справочные таблицы.

Резисторы для поверхностного монтажа

Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.

При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.

  1. Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
  2. Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.

Стандартное обозначение smd-резисторов

В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше – 0603. Самый ходовой типоразмер smd-резистора – 0805, и побольше — 1008, следующий типоразмер 1206 и самый большой — 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.

Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья — множительный коэффициент. Например, код 473 читается так R=47∙103 Ом=47 кОм.

Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙101=1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.

Простейшая принципиальная схема

Правильное обозначение на схемах резисторов и других элементов – основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов — рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.

Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.

Принципиальные схемы — Ознакомление с радиодеталями

Ознакомление с радиодеталями — Резисторы

К оглавлению
Резисторы

Эта деталь встречается практически в каждой конструкции.
Она представляет собой фарфоровую трубочку (или
стержень), на которую изнутри нанесена тончайшая пленка
металла или сажи (углерода). Резистор имеет сопротивление и
используется для того, чтобы установить нужный ток в
электрической цепи. Вспомните пример с резервуаром: изменяя
диаметр трубы (сопротивление нагрузки), можно получить
ту или другую скорость потока воды (электрический ток
разной силы). Чем тоньше пленка на фарфоровой трубочке или
стержне, тем больше сопротивление тока.
Самые популярные из резисторов — постоянные, подстроеч-
ные и переменные. Из постоянных чаще всего используются
резисторы типа МЛТ (металлизированный лакированный
теплостойкий). Подстроечные резисторы предназначены для
настройки аппаратуры, а резистор со сменным сопротивлением
(переменный, или потенциометр) применяют для регулировки,
например громкости в магнитофоне.
Резисторы различают по сопротивлению и мощности.
Сопротивление, как вы уже знаете, измеряют в омах, килоомах и
мегоомах, а мощность — в ваттах. Резисторы разной мощности
отличаются размерами. Чем больше мощность резистора, тем
больше его размеры. Внешний вид резисторов показан на
рис. 1.3, их обозначение на принципиальных схемах на рис. 1.4.
Сопротивление резистора обозначают на схемах рядом с
его условным обозначением. Если сопротивление меньше
1 кОм, цифрами указывают число омов без единицы
измерения. При сопротивлении от 1 кОм до 1 МОм указывают число
килоомов и ставят рядом букву «К». Сопротивление 1 МОм и
больше выражают числом мегаомов с написанием буквы «М».
Например, если на схеме рядом с обозначением резистора

указано число 510, значит, сопротивление резистора 510 Ом.
Обозначениям 3,6 к и 820 к отвечает сопротивление 3,6 кОм
и 820 кОм. Надпись на схеме 1 М или 4,7 М означает, что
используются резисторы сопротивлением 1 МОм и 4,7 МОм.
Надо отметить, что чем больше размеры резистора, тем
больше его мощность. Раньше на принципиальных схемах
мощность резисторов обозначалась косыми линиями (рис. 1.5),

теперь ее указывают только в случае использования мощных
резисторов. Если рядом с резистором не указана его мощность,
можно смело ставить самый маленький размер.
В отличие от постоянных резисторов, которые имеют два
вывода, у сменных резисторов таких выводов три. На схеме
указывают сопротивление между крайними выводами
сменного резистора. Сопротивление же между средним выводом
и крайними изменяется при вращении оси резистора,
которая выступает наружу. Причем, если ось вращают в одну
сторону, сопротивление между средним выводом и одним из
крайних возрастает, соответственно уменьшаясь между
средним выводом и другим крайним. Если же ось возвращают
назад, происходит обратное. Это свойство сменного
резистора используют, например, для регулирования громкости
звука, тембра в усилителях, приемниках, магнитофонах.
Резисторы издают шумы. Различают собственные шумы и
шумы скольжения. Собственные шумы резисторов
складываются из тепловых и токовых шумов. Их возникновение
связано с тепловым движением свободных электронов и
прохождением электрического тока. Собственные шумы тем
выше, чем больше температура и напряжение. Высокий
уровень шумов резисторов ограничивает чувствительность
электронных схем и создает помехи при воспроизведении
полезного сигнала. Шумы скольжения (вращения) присущи
переменным резисторам. Они возникают в динамическом
режиме при движении подвижного контакта по резистивному
элементу в виде напряжения помех. В приемных
устройствах эти помехи приводят к различным шорохам и трескам.
Поэтому в электронике стали использовать цифровую
регулировку. В настоящее время в аппаратуре не часто встретишь
регулятор громкости, построенный на потенциометре.
Кроме постоянных и переменных резисторов,
существуют полупроводниковые нелинейные — изделия электронной
техники, основное свойство которых заключается в
способности изменять свое электрическое сопротивление под
действием управляющих факторов: температуры, напряжения,
магнитного поля и др. В зависимости от воздействующего
фактора они получили название терморезисторы, варисторы,
магниторезисторы. В последнее время их стали относить к
управляемым полупроводниковым резисторам. Иными
словами, это элементы, чувствительные к воздействию
определенного управляющего фактора.
Терморезисторы, или термисторы, изменяют свое
сопротивление в зависимости от температуры. Существуют
терморезисторы как с отрицательным, так и с положительным
температурным коэффициентом сопротивления — позисторы.
Терморезисторы используются в системах дистанционного
и централизованного измерения и регулирования
температур, противопожарной сигнализации, теплового «контроля и
защиты машин, измерения мощности, измерения вакуума,
скоростей движения жидкостей и газов, в схемах
размагничивания масок цветных кинескопов и др. Номинальное
сопротивление RH — электрическое сопротивление, значение
которого обозначено на терморезисторе или указано в
нормативной документации, измеренное при определенной
температуре окружающей среды (для большинства типов этих
резисторов при 20 °С, а для терморезисторов с высокими
рабочими температурами до 300 °С).
Варисторы — полупроводниковые резисторы,
отличительной особенностью которых является резко выраженная
зависимость электрического сопротивления от приложенного к ним
напряжения. Их используют для стабилизации и защиты от
перенапряжений, преобразования частоты и напряжения, а также
для регулирования усиления в системах автоматики, различных
измерительных устройствах, в телевизионных приемниках.
Магниторезисторы — полупроводниковые резисторы с
резко выраженной зависимостью электрического
сопротивления от магнитного поля. Действие таких резисторов
основано на использовании магниторезистивного эффекта,
который заключается в изменении сопротивления
резистора при внесении его в магнитное поле. Регулируя
напряженность управляющего магнитного поля или перемещая
резистор в поле постоянного магнита, можно управлять
сопротивлением. Их используют в регуляторах громкости
высококачественной радиоаппаратуры, в качестве датчиков
угла поворота в специальных устройствах автоматики и т.п.

Обозначение резисторов обозначение резисторов на схеме

Резистор представляет собой пассивный элемент, без которого практически неработоспособна любая электрическая схема. Основная задача данной детали – это осуществление линейных преобразований параметров электрического тока. Достаточно наглядно это можно уяснить из формулы закона Ома, которая для участка цепи имеет следующий вид — I=U/R. Изменяя значение R (характеризующее величину сопротивления) можно регулировать другие параметры электрического тока. Также литера «R» используется для обозначения резисторов на схеме.

Необходимо отметить, что схематическое изображение сопротивления (резистора) в разных странах имеют разный вид. Так для зарубежной документации нередко используется фигура, изображенная на рис.1. Для отечественных электриков привычным является условное обозначение резисторов пример, которого приведен на рис.2. 

Рассмотрим более подробно варианты и особенности обозначения резисторов (сопротивлений), а также отображение их характеристик, свойственных для электрических схем, которые используются в отечественной электротехнике.

Графические обозначения резисторов имеют строго определенный вид, который определен ГОСТом 2.728-74. Рассмотрим основные варианты изображений сопротивлений в зависимости от их типа. Итак, резисторы бывают:

— постоянными, т.е. их сопротивление в Омах не меняется. На схемах они соответствуют примеру, изображенному на рис.2. В случае если требуется указать величину номинального рассеяния мощности, то в УГО (условное графическое изображение) вносятся некоторые изменения (рис.3).

Рис.3

— переменные резисторы. Эти элементы имеют плавную или ступенчатую регулировку величины сопротивления. Обозначение на схемах соответствуют рис.4.

Также в данном ГОСТе оговорены варианты обозначений для резисторов:

  • с симметричными и несимметричными отводами;
  • с нелинейным регулированием;
  • связанных и несвязанных механически;
  • с замыкающим контактом и т.д.

Обозначение на схемах характеристик сопротивления резисторов

Основной характеристикой резистора является величина его сопротивления. На схемах этот параметр, как правило, располагается с буквенным обозначение «R» в виде цифр. Есть небольшая особенность – если после числового номинала следует буквенная маркировка «К» или «М», то сопротивление данного резистора соответствует произведению данного числа на тысячу или миллион. Аналогично обозначается сопротивление и на корпусе самой детали, если площадь это позволяет. Иногда можно встретить маркировку другого вида, например, 2К4. Здесь все просто. Сопротивление данного резистора будет равно 2400 Ом. Более полную информацию по буквенно-цифровой маркировке можно посмотреть в табл.2 ГОСТа 28883-90 (МЭК 62-74).

Сложнее обстоит дело, когда деталь имеет настолько маленькие размеры, что нанести на корпус резистора его параметры технически невозможно. Это также относиться к обозначению SMD резисторов, которые получили в последнее время широкое распространение благодаря миниатюрным размерам. Используются они для поверхностной пайки в электронных платах различных изделий.

Обозначение номиналов SMD резисторов

Данные типы резисторов отличаются по внешнему виду от привычных изделий и как говорилось выше имеют минимальные размеры. Обозначение номинала сопротивления SMD резисторов может осуществляться их буквенно-цифровой маркировкой в следующих вариантах:

  • трехзначное число. Первые две сообщают о величине сопротивления в Омах, а последняя является множителем. Проще говоря первые два числа умножаются на 10 в степени соответствующей последней цифре;
  • четырехзначное число. Первые три цифры являются номиналом, а последняя множителем, как и в предыдущем случае;
  • двухзначное число, дополненное буквенным индексом. Это наиболее непростой вариант и для выяснения номинала сопротивления такого SMD резистора необходимо воспользоваться специальной таблицей.

Цветовое обозначение характеристик резисторов

Идея маркировки резисторов цветами, появилась вследствие минимизации их размеров и невозможности нанесения на корпус деталей буквенно-цифрового кода. Данное обозначение наносится в виде полос или колец, таким образом, чтобы характеристики детали можно было определить вне зависимости от ее положения на плате или в электрической цепи устройства.

Требования к цветовому обозначение характеристик проволочных резисторов изложены в ГОСТ 28883-90 (МЭК 62-74), а сами значения приведены в таблице 1 данного документа.

Таблица 1 ГОСТ 28883-90

Количество цветных колец может колебаться от трех до шести. Считывание необходимо начинать с той полосы которая расположена наиболее близко к одному из контактов. В отдельных случаях, когда нет возможности нанести маркировку с однозначной интерпретацией какой цвет является начальным, первый цвет наносят в виде утолщённой в 2 раза полосы или кольца.

В заключение можно отметить, чтобы однозначно и правильно идентифицировать маркировку и обозначения характеристик резисторов необходимо обратиться к вышеуказанным нормативным документам. Также желательно отслеживать появление новых изменений в данную литературу, что является особенно актуальным в современных условиях развития электротехники и выпуску новых видов деталей, применяемых в электрических схемах приборов и устройств.

Резисторы

Добавлено 6 октября 2020 в 13:15

Сохранить или поделиться

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько постоянное, мы можем надежно контролировать в цепи любую из этих переменных, просто управляя двумя другими. Возможно, самой простой для управления переменной в любой цепи является ее сопротивление. Это управление сопротивлением можно реализовать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, созданы специально для создания точного количества сопротивления, добавляемого в схему. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды. В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку в работающей схеме ими рассеивается электрическая энергия. Однако обычно резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и номиналы резисторов на схеме

Условное обозначение резистора на схеме согласно ГОСТу – прямоугольник размером 4 мм x 8 мм. В англоязычной литературе распространено обозначение резистора в виде пилообразной линии:

Рисунок 1 – Условное графическое обозначение резистора

Номиналы резисторов в омах обычно отображаются на схеме в виде чисел рядом с условным обозначением, а если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, таким как R1, R2, R3 и т.д. Как видите, обозначения резисторов могут быть показаны горизонтально или вертикально:

Рисунок 2 – Обозначение номиналов резисторов на схеме (резисторы 150 Ом и 25 Ом)

Ниже показано несколько примеров резисторов разных типов и размеров:

Рисунок 3 – Примеры резисторов

Также на схеме можно показать, что резистор имеет переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного для обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто имеет нестабильное сопротивление:

Рисунок 4 – Условное графическое обозначение переменного резистора

Фактически, каждый раз, когда вы видите обозначение компонента с нарисованной по диагонали стрелкой, это означает, что этот компонент имеет переменное, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным дополнением к обозначению электронных компонентов.

Переменные резисторы

Переменные резисторы должны иметь какие-то физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать, чтобы изменять величину электрического сопротивления. На фотографии ниже показаны устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Рисунок 5 – Потенциометр

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах. Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов посмотрите фотографию ниже. Это изображение печатной платы: сборка, состоящая из изолирующих слоев стеклотекстолита и слоем проводящих медных дорожек, в которую можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены напечатанными метками. Резисторы обозначаются любой меткой, начинающейся с буквы «R».

Рисунок 6 – Пример резисторов на печатной плате

Эта конкретная печатная плата представляет собой дополнение к компьютеру, называемое «модемом», которое позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть, как минимум, дюжину резисторов (все с номинальной рассеиваемой мощностью 0,25 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами», или «чипами») также содержит свой собственный массив резисторов, необходимый для работы. На другом примере печатной платы показаны резисторы, упакованные в еще меньшие корпуса, называемые SMD («surface mount device», «устройство поверхностного монтажа»). Эта конкретная печатная плата является нижней стороной жесткого диска компьютера; и снова припаянные к ней резисторы обозначены метками, начинающимися с буквы «R»:

Рисунок 7 – Пример резисторов на печатной плате

На этой печатной плате более сотни резисторов поверхностного монтажа, и это количество, конечно, не включает резисторы, встроенные в черные «чипы». Эти две фотографии должны убедить любого, что резисторы (устройства, которые «просто» препятствуют прохождению электрического тока) – очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схемах символы резисторов иногда используются для иллюстрации обобщенного типа устройств, выполняющих что-то полезное с электрической энергией. Любое неконкретизированное электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схему с символом резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей какие-либо концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ резисторных схем

Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:

Рисунок 8 – Пример схемы

Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:

\(R=\frac{E}{I} \qquad и \qquad P=IE\)

Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

\(R = \frac{10 \ В}{2 \ А} = 5 \ Ом\)

\(P = (2 \ А)(10 \ В) = 20 \ Вт\)

Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Ключевые показатели эффективности (KPI)

Ключевые показатели эффективности резисторов для каждого материала можно найти ниже:

Ключевые показатели эффективности резисторов в зависимости от материала
ХарактеристикаМеталлопленочные резисторыТолстопленочные резисторыТонкопленочные резисторыУглеродные композиционные резисторыУглеродные пленочные резисторы
Диапазон рабочих температур, °C-55 … +125-55 … +130-55 … +155-40 … +105-55 … +155
Максимальный температурный коэффициент сопротивления100100151200250–1000
Максимальное напряжение, В250–350250200350–500350–500
Шум, мкВ на 1 В приложенного постоянного напряжения0,50,10,145
Сопротивление изоляции, кОм1010101010
Изменение сопротивления при пайке, %0,200,150,0220,50
Изменение сопротивления при воздействии высокой температуры и влажности, %0,5010,50153,5
Изменение сопротивления при длительном хранении, %0,100,100,0052
Изменение сопротивления при работе в течение 2000 часов при температуре 70°C, %110,03104

Резюме

  • Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
  • Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.

Оригинал статьи:

Теги

ОбучениеРассеиваемая мощностьРезисторСопротивлениеСхемотехникаТемпературный коэффициент сопротивления / ТКС

Сохранить или поделиться

Резисторы

Резистор (или сопротивление) — пассивный элемент электрической цепи. Он может обладать конкретным значением сопротивления или переменным. Резисторы используются практически во всех электронных и электрических устройствах. В электрических цепях резисторы используют в разных целях:

  • Для преобразования силы тока в напряжение
  • Для преобразования напряжения в силу тока
  • Для ограничения тока
  • Для поглощения эл. энергии

Их основные технические параметры — номинальное сопротивление (номинал) в Омах, максимальная рассеиваемая мощность, максимальное рабочее напряжение и класс точности. Есть и другие параметры, такие как температурный коэффициент, термостойкость, влагоустойчивость и другие. Так же имеются паразитные параметры — емкость и индуктивность. Эти параметры важно учитывать при разработке устройств, предназначенных для работы в сложных условиях или требующих высокой точности, но можно опустить при небольших самоделках на Arduino.

Обозначение резисторов

В мире есть несколько общепринятых условных графических обозначений резисторов на схемах. В США рисунок резистора похож на зигзаг, а в России и Европе он выглядит как прямоугольник.

Пример рисунка резисторов в России и Европе (а), и в США (б)

В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:

Обозначения постоянных резисторов по ГОСТ 2.728-74

По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:

Обозначение переменных резисторов по ГОСТ 2.728-74

Маркировка резисторов

Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.

Резистор большой мощности

Для удобства обозначения основных параметров мелких постоянных резисторов используют цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица цветовой маркировки постоянных резисторов либо онлайн калькуляторы.

Цветовая маркировка резисторов

Виды резисторов

Классификаций резисторов очень много:

  • По области применения:
    • Высокоомные (обладающие сопротивление более 10 МОм)
    • Высокочастотные (с уменьшенной паразитарной индуктивностью и емкостью)
    • Высоковольтные (способные пропускать через себя тысячи вольт)
    • Прецизионные (повышенной точности с допуском менее 1%)
  • По способности изменять сопротивление
    • Переменные подстроечные
    • Постоянные
    • Переменные регулировочные
  • По влагозащищенности
    • Обычные незащищенные
    • Покрытые лаком
    • Залитые компаундом
    • Впрессованные в пластмассу
    • Вакуумные
  • По способу монтажа
    • Для навесного монтажа
    • Для монтажа на печатных платах
    • Для микромодулей и микросхем
  • По виду ВАХ (вольт-амперной характеристики)
    • Линейные
    • Нелинейные (фоторезисторы, терморезисторы, варисторы и другие)
  • В зависимости от используемых проводящих элементов
    • Проволочные
    • Непроволочные
  • По виду используемых материалов
    • Углеродистые
    • Металлопленочные
    • Интегральные
    • Проволочные

Далее рассмотрим несколько видов резисторов такие как постоянные, переменные и некоторые нелинейные резисторы.

Постоянный резистор

Постоянный резистор — это тот резистор, характеристики которого предопределены и не изменяются. Иначе говоря это элемент электрической цепи с фиксированным сопротивлением, предельным напряжением, классом точности. Такие резисторы изображены на картинках выше.

Расчет постоянного резистора для светодиода

Постоянные резисторы мы использовали во многих проектах. Например в проекте с подключением светодиода к Ардуино. Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.

Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.

Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. Источником питания для нашего светодиода выступает плата Arduino Uno. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.

  • Vps — напряжение источника питания (5 Вольт)
  • Vdf — падение напряжения на светодиоде (2 Вольта)
  • If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)

Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом

Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).

Подключение светодиода к Arduino

Переменный резистор

Переменный резистор — это электротехническое устройство, используемое для регулирования параметров электрической цепи (напряжение, сила тока) за счет заданного изменения сопротивления.

У переменного резистора есть множество названий и подвидов: реостат, потенциометр, переменное сопротивление, подстроечный резистор, регулировочный резистор. Попробуем разобраться в чем отличия. Переменное сопротивление, переменный резистор и реостат — это всё названия одного класса резисторов. «Потенциометр» — это жаргонное название переменного резистора, подключенного как делитель напряжения (о резисторных сборках и делителях напряжения мы расскажем в отдельной статье).

Реостат, потенциометр, переменный резистор, переменное сопротивление
  • Регулировочный резистор — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
  • Подстроечный резистор — это тоже переменный резистор, который используется для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора.
Подстроечные резисторы в разных исполнениях

Нелинейные резисторы

Нелинейные резисторы — это резисторы сопротивление которых изменяется в зависимости от внешних факторов. Внешними факторами могут быть: температура, количество света, магнитное поле, напряжение в электрической цепи и другие. Вот некоторые примеры нелинейных резисторов, подробнее о которых вы сможете почитать по ссылкам в википедии:

  • терморезисторы — сопротивление меняется в зависимости от температуры;
  • варисторы — сопротивление меняется в зависимости от приложенного напряжения;
  • фоторезисторы — сопротивление меняется в зависимости от освещённости;
  • тензорезисторы — сопротивление меняется в зависимости от деформации резистора;
  • магниторезисторы — сопротивление меняется в зависимости от величины магнитного поля.

Не путайте такие резисторы с датчиками, они не показывают реальные величины, воздействующих на них сил. Изменяется лишь сопротивление. Можно откалибровать данные и привязать значение сопротивления, например терморезистора, к определенной температуре, но это не лучший вариант.

На сегодня это всё. В отдельной статье мы поговорим о соединении резисторов в разных комбинациях, таких как делители напряжения, подключение резисторов последовательно и параллельно.

Учебное пособие по физике

: схемы серии

Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением. Когда все устройства соединены последовательным соединением, схема называется последовательной схемой . В последовательной цепи каждое устройство подключается таким образом, что существует только один путь, по которому заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет последовательно проходить через каждый резистор.

Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4. В этом разделе было подчеркнуто, что добавление большего количества резисторов к последовательной цепи приводит к довольно ожидаемому результату — увеличению общего сопротивления. . Поскольку в цепи есть только один путь, каждый заряд встречает сопротивление каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это увеличенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).

Эквивалентное сопротивление и ток

Заряды проходят через внешнюю цепь со скоростью, которая везде одинакова. В одном месте ток не больше, чем в другом. Фактическое количество тока обратно пропорционально общему сопротивлению. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов.Что касается батареи, которая нагнетает заряд, наличие двух последовательно соединенных резисторов с сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора с сопротивлением 12 Ом. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом. И наличие четырех последовательно соединенных резисторов 6 Ом было бы эквивалентно наличию в цепи одного резистора 24 Ом.

Это концепция эквивалентного сопротивления. Эквивалентное сопротивление цепи — это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от набора резисторов, присутствующих в цепи.Для последовательных цепей математическая формула для вычисления эквивалентного сопротивления (R eq ) составляет

. рэндов экв. = 1 рэндов + 2 рэндов + 3 рэндов + …

, где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, соединенных последовательно.

Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже.Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.

Ток в последовательной цепи везде одинаковый. Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами, поэтому в одном месте его меньше по сравнению с другим. Можно представить, что заряды движутся вместе по проводам электрической цепи и везде движутся с одинаковой скоростью.Ток — скорость, с которой течет заряд — везде одинаков. То же самое на первом резисторе, как на последнем резисторе, как в батарее. Математически можно написать

I аккумулятор = I 1 = I 2 = I 3 = …

, где I 1 , I 2 и I 3 — значения тока в отдельных местах расположения резисторов.

Эти значения тока легко вычислить, если известно напряжение батареи и известны отдельные значения сопротивления.Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление. А используя закон Ома (ΔV = I • R), ток в батарее и, следовательно, через каждый резистор можно определить, найдя соотношение напряжения батареи и эквивалентного сопротивления.

I аккумулятор = I 1 = I 2 = I 3 = ΔV аккумулятор / R экв

Разность электрических потенциалов и падения напряжения

Как обсуждалось в Уроке 1, электрохимический элемент схемы подает энергию на заряд, чтобы перемещать его через элемент и устанавливать разность электрических потенциалов на двух концах внешней цепи.Элемент с напряжением 1,5 В создает разность электрических потенциалов во внешней цепи 1,5 В. Это означает, что электрический потенциал на положительной клемме на 1,5 В больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольт электрического потенциала. Эта потеря электрического потенциала обозначается как падение напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. Д.).) внутри резисторов или нагрузок. Если электрическая цепь, питаемая от элемента на 1,5 В, оснащена более чем одним резистором, то совокупная потеря электрического потенциала составляет 1,5 В. Для каждого резистора существует падение напряжения, но сумма этих падений составляет 1,5 В — то же самое, что и номинальное напряжение источника питания. Это понятие может быть выражено математически следующим уравнением:

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +…

Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим две схемы, показанные ниже на диаграммах A и B. Предположим, вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам нужно будет использовать приведенное выше уравнение. Батарея обозначается обычным схематическим символом, а рядом с ней указывается ее напряжение. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.

Ранее в Уроке 1 обсуждалось использование диаграммы электрических потенциалов. Диаграмма электрических потенциалов — это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.

Схема, показанная на схеме выше, питается от источника энергии 12 В.В цепи последовательно соединены три резистора, каждый из которых имеет собственное падение напряжения. Отрицательный знак разности электрических потенциалов просто означает потерю электрического потенциала при прохождении через резистор. Обычный ток направляется через внешнюю цепь от положительной клеммы к отрицательной. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительного вывода, точка A на схеме находится на положительном выводе или выводе с высоким потенциалом.В точке A электрический потенциал 12 вольт, а в точке H (отрицательный вывод) — 0 вольт. Проходя через батарею, заряд приобретает электрический потенциал 12 вольт. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются в три этапа, каждый из которых соответствует прохождению через резистор. При прохождении через соединительные провода между резисторами происходит небольшая потеря электрического потенциала из-за того, что провод оказывает относительно небольшое сопротивление потоку заряда.Поскольку точки A и B разделены проводом, они имеют практически одинаковый электрический потенциал 12 В. Когда заряд проходит через свой первый резистор, он теряет 3 В электрического потенциала и падает до 9 В в точке C. точка D отделена от точки C простым проводом, она имеет практически тот же электрический потенциал 9 В, что и C. Когда заряд проходит через второй резистор, он теряет 7 В электрического потенциала и падает до 2 В в точке E. Поскольку точка F отделена от точки E простым проводом, она имеет практически тот же электрический потенциал 2 В, что и E.Наконец, когда заряд проходит через свой последний резистор, он теряет 2 В электрического потенциала и падает до 0 В в точке G. В точках G и H в заряде заканчивается энергия, и ему требуется повышение энергии, чтобы пройти через внешнее сопротивление. цепь снова. Прирост энергии обеспечивается аккумулятором при перемещении заряда с H на A.

В Уроке 3 закон Ома (ΔV = I • R) был введен как уравнение, которое связывает падение напряжения на резисторе с сопротивлением резистора и током на резисторе.Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсужденными на этой странице, возникает большая идея.

В последовательных цепях резистор с наибольшим сопротивлением имеет наибольшее падение напряжения.

Поскольку в последовательной цепи ток везде одинаковый, значение I ΔV = I • R одинаково на каждом из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) будет изменяться с изменением сопротивления.Где бы сопротивление ни было наибольшим, падение напряжения будет наибольшим у этого резистора. Уравнение закона Ома можно использовать не только для прогнозирования того, что резистор в последовательной цепи будет иметь наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.

Δ В 1 = I • R 1 Δ В 2 = I • R 2 Δ В 3 = I • R 3

Математический анализ последовательных цепей

Приведенные выше принципы и формулы могут быть использованы для анализа последовательной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в последовательной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I до ), а также падений напряжения и тока для каждого из трех резисторов.

Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.

R экв = R 1 + R 2 + R 3 = 17 Ом + 12 Ом + 11 Ом = 40 Ом

Теперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома.При использовании уравнения закона Ома (ΔV = I • R) для определения тока в цепи важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R. Расчет показан здесь:

I до = ΔV аккумулятор / R экв = (60 В) / (40 Ом) = 1,5 А

Значение тока 1,5 А — это ток в месте расположения батареи. В последовательной цепи без точек разветвления ток везде одинаковый.Ток в месте расположения батареи такой же, как ток в каждом месте расположения резистора. Впоследствии 1,5 ампер — это значение I 1 , I 2 и I 3 .

I аккумулятор = I 1 = I 2 = I 3 = 1,5 А

Осталось определить три значения — падение напряжения на каждом отдельном резисторе. Закон Ома снова используется для определения падений напряжения для каждого резистора — это просто произведение тока на каждом резисторе (вычисленное выше как 1.5 ампер) и сопротивление каждого резистора (указано в постановке задачи). Расчеты показаны ниже.

ΔV 1 = I 1 • R 1

ΔV 1 = (1,5 A) • (17 Ом)

ΔV 1 = 25,5 В

ΔV 2 = I 2 • R 2

ΔV 2 = (1,5 A) • (12 Ом)

ΔV 2 = 18 В

ΔV 3 = I 3 • R 3

ΔV 3 = (1.5 А) • (11 Ом)

ΔV 3 = 16,5 В

В качестве проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма падений напряжения для каждого отдельного резистора равна номинальному напряжению батареи. Другими словами, ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

Является ли ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

Это 60 В = 25.5 В + 18 В + 16,5 В?

60 В = 60 В?

Да !!

Математический анализ этой последовательной схемы включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом. Здесь необходимо учитывать концепции, согласно которым ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ.В следующей части Урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход сочетания концепций с уравнениями будет не менее важен для этого анализа.

Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие — это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:

а. Два резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 5 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

2. По мере увеличения количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается прежним) и ток в цепи __________ (увеличивается, уменьшается, остается прежним).


3. Рассмотрим следующие две схемы последовательных цепей. На каждой диаграмме используйте стрелки, чтобы указать направление обычного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.


4. Три одинаковые лампочки подключены к D-ячейке, как показано справа.Какое из следующих утверждений верно?

а. Все три лампочки будут иметь одинаковую яркость.

г. Лампа между X и Y будет самой яркой.

г. Лампа между Y и Z будет самой яркой.

г. Лампочка между Z и батареей будет самой яркой.

5. Три одинаковые лампочки подключены к батарее, как показано справа.Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все подходящие варианты.

а. Увеличьте сопротивление одной из лампочек.

г. Увеличьте сопротивление двух лампочек.

г. Уменьшите сопротивление двух лампочек.

г. Увеличьте напряжение аккумулятора.

e. Уменьшите напряжение аккумулятора.

ф. Удалите одну из луковиц.


6. Три одинаковые лампочки подключены к батарее, как показано справа. W, X, Y и Z обозначают места на трассе. Какое из следующих утверждений верно?

а. Разница потенциалов между X и Y больше, чем между Y и Z.

г. Разница потенциалов между X и Y больше, чем между Y и W.

г. Разность потенциалов между Y и Z больше, чем между Y и W.

г. Разность потенциалов между X и Z больше, чем между Z и W.

e. Разность потенциалов между X и W больше, чем на батарее.

ф. Разница потенциалов между X и Y больше, чем между Z и W.


7.Сравните схему X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на единственном резисторе в цепи X.

а. меньше чем

г. больше

г. то же, что

8. Аккумулятор на 12 В, резистор на 12 Ом и лампочка подключаются, как показано на схеме X ниже.Резистор на 6 Ом добавлен к резистору на 12 Ом и лампочке, чтобы создать цепь Y, как показано. Лампочка появится ____.

а. диммер в контуре X

г. диммер в контуре Y

г. одинаковая яркость в обеих цепях


9. Три резистора включены последовательно. При размещении в цепи с источником питания 12 В.Определите эквивалентное сопротивление, полный ток цепи, падение напряжения и ток на каждом резисторе.

10.3: Последовательные и параллельные резисторы

Цели обучения

К концу раздела вы сможете:

  • Определите термин эквивалентное сопротивление
  • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
  • Рассчитайте эквивалентное сопротивление резисторов, включенных параллельно

В статье «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где \ (V = IR \). В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (Рисунок \ (\ PageIndex {1} \)).В схеме серии выходной ток первого резистора течет на вход второго резистора; следовательно, ток в каждом резисторе одинаков. В параллельной схеме все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными, в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

Рисунок \ (\ PageIndex {1} \): (a) При последовательном соединении резисторов ток одинаков в каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое. Резисторы

серии

Считается, что резисторы

включены последовательно, если ток течет через резисторы последовательно. Рассмотрим рисунок \ (\ PageIndex {2} \), на котором показаны три последовательно включенных резистора с приложенным напряжением, равным \ (V_ {ab} \).Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

Рисунок \ (\ PageIndex {2} \): (a) Три резистора, подключенные последовательно к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

На рисунке \ (\ PageIndex {2} \) ток, исходящий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии при прохождении тока через каждый резистор. Согласно закону Ома, падение потенциала \ (V \) на резисторе при протекании через него тока рассчитывается с использованием уравнения \ (V = IR \), где \ (I \) — ток в амперах (\ (A \)), а \ (R \) — сопротивление в Ом \ ((\ Omega) \).N V_i = 0. \]

Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе. На рисунке \ (\ PageIndex {2} \) сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

\ [\ begin {align *} V — V_1 — V_2 — V_3 & = 0, \\ [4pt] V & = V_1 + V_2 + V_3, \\ [4pt] & = IR_1 + IR_2 + IR_3, \ end { выровнять *} \]

Решение для \ (I \)

\ [\ begin {align *} I & = \ frac {V} {R_1 + R_2 + R_3} \\ [4pt] & = \ frac {V} {R_ {S}}. N R_i.\ label {серия эквивалентных сопротивлений} \]

Одним из результатов включения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

Пример \ (\ PageIndex {1} \): эквивалентное сопротивление, ток и мощность в последовательной цепи

Батарея с напряжением на клеммах 9 В подключена к цепи, состоящей из четырех последовательно соединенных резисторов \ (20 \, \ Omega \) и одного \ (10 ​​\, \ Omega \) (Рисунок \ (\ PageIndex {3 } \)).Предположим, что батарея имеет незначительное внутреннее сопротивление.

  1. Рассчитайте эквивалентное сопротивление цепи.
  2. Рассчитайте ток через каждый резистор.
  3. Рассчитайте падение потенциала на каждом резисторе.
  4. Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.
Рисунок \ (\ PageIndex {3} \): Простая последовательная схема с пятью резисторами.

Стратегия

В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.2R \), а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, подаваемая батареей, можно найти с помощью \ (P = I \ epsilon \).

Решение

  1. Эквивалентное сопротивление — это алгебраическая сумма сопротивлений (Уравнение \ ref {серия эквивалентных сопротивлений}): \ [\ begin {align *} R_ {S} & = R_1 + R_2 + R_3 + R_4 + R_5 \\ [4pt ] & = 20 \, \ Омега + 20 \, \ Омега + 20 \, \ Омега + 20 \, \ Омега + 10 \, \ Омега = 90 \, \ Омега.2 (10 \, \ Omega) = 0,1 \, W, \ nonumber \] \ [P_ {рассеивается} = 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,1 \, W = 0,9 \, W, \ nonumber \] \ [P_ {источник} = I \ epsilon = (0,1 \, A) (9 \, V) = 0,9 \, W. \ nonumber \]

Значение

Есть несколько причин, по которым мы использовали бы несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи. Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов.Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

Упражнение \ (\ PageIndex {1} \)

Некоторые гирлянды миниатюрных праздничных огней закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи. «Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серию по девять луковиц.Если перегорает слишком много лампочек, в конечном итоге открываются шунты. Что вызывает это?

Ответ

Эквивалентное сопротивление девяти последовательно соединенных лампочек составляет 9 R . Ток равен \ (I = V / 9 \, R \). Если одна лампочка перегорит, эквивалентное сопротивление составит 8 R , и напряжение не изменится, но ток возрастет \ ((I = V / 8 \, R \). Чем больше лампочек перегорят, ток станет равным. В конце концов, ток становится слишком большим, что приводит к сгоранию шунта.№ Р_и. \]

  • Одинаковый ток протекает последовательно через каждый резистор.
  • Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.
  • Параллельные резисторы

    На рисунке \ (\ PageIndex {4} \) показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома \ (I = V / R \), где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

    Рисунок \ (\ PageIndex {4} \): Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    Ток, протекающий от источника напряжения на рисунке \ (\ PageIndex {4} \), зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в переход или узел, где цепь разделяется, протекая через резисторы \ (R_1 \) и \ (R_2 \). По мере того, как заряды идут от аккумулятора, некоторые проходят через резистор \ (R_1 \), а некоторые — через резистор \ (R_2 \).Сумма токов, текущих в переход, должна быть равна сумме токов, текущих из перехода:

    \ [\ sum I_ {in} = \ sum I_ {out}. {- 1}.{-1}. \ label {10.3} \]

    Это соотношение приводит к эквивалентному сопротивлению \ (R_ {P} \), которое меньше наименьшего из отдельных сопротивлений. Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

    Пример \ (\ PageIndex {2} \): Анализ параллельной цепи

    Три резистора \ (R_1 = 1,00 \, \ Omega \), \ (R_2 = 2,00 \, \ Omega \) и \ (R_3 = 2,00 \, \ Omega \) подключены параллельно.Параллельное соединение подключается к источнику напряжения \ (V = 3,00 \, V \).

    1. Какое эквивалентное сопротивление?
    2. Найдите ток, подаваемый источником в параллельную цепь.
    3. Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.
    4. Рассчитайте мощность, рассеиваемую каждым резистором.
    5. Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия

    (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью уравнения \ ref {10.3}. (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)

    (b) Ток, подаваемый источником, можно найти из закона Ома, заменив \ (R_ {P} \) на полное сопротивление \ (I = \ frac {V} {R_ {P}} \).

    (c) Отдельные токи легко вычислить по закону Ома \ (\ left (I_i = \ frac {V_i} {R_i} \ right) \), поскольку каждый резистор получает полное напряжение.{-1} = 0,50 \, \ Omega. \ Nonumber \] Общее сопротивление с правильным количеством значащих цифр равно \ (R_ {eq} = 0,50 \, \ Omega \). Как и предполагалось, \ (R_ {P} \) меньше наименьшего индивидуального сопротивления.

  • Полный ток можно найти из закона Ома, заменив полное сопротивление \ (R_ {P} \). Это дает \ [I = \ frac {V} {R_ {P}} = \ frac {3.00 \, V} {0.50 \, \ Omega} = 6.00 \, A. \ nonumber \] Текущий I для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.
  • Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом, \ [I_1 = \ frac {V} {R_1} = \ frac {3.00 \, V} {1.00 \, \ Omega} = 3.00 \, A. \ nonumber \] Аналогично, \ [I_2 = \ frac {V } {R_2} = \ frac {3.00 \, V} {2.00 \, \ Omega} = 1.50 \, A \ nonumber \] и \ [I_3 = \ frac {V} {R_3} = \ frac {3.00 \, V } {2.00 \, \ Omega} = 1.50 \, A. \ nonumber \] Полный ток — это сумма отдельных токов: \ [I_1 + I_2 + I_3 = 6.2} {2.00 \, \ Omega} = 4.50 \, W. \ nonumber \]
  • Общую мощность также можно рассчитать несколькими способами. Выбор \ (P = IV \) и ввод общей текущей доходности \ [P = IV = (6.00 \, A) (3.00 \, V) = 18.00 \, W. \ nonumber \]
  • Значение

    Общая мощность, рассеиваемая резисторами, также 18,00 Вт:

    \ [P_1 + P_2 + P_3 = 9,00 \, W + 4,50 \, W + 4,50 \, W = 18,00 \, W. \ nonumber \]

    Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой источником.

    Упражнение \ (\ PageIndex {2A} \)

    Рассмотрим одну и ту же разность потенциалов \ ((V = 3,00 \, V) \), приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно подключенными резисторами, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

    Решение

    Эквивалент последовательной схемы будет \ (R_ {eq} = 1.00 \, \ Omega + 2.00 \, \ Omega + 2.00 \, \ Omega = 5.00 \, \ Omega \), что выше эквивалентного сопротивления параллельной цепи \ (R_ {eq} = 0.50 \, \ Omega \ ). Эквивалентное сопротивление любого количества резисторов всегда выше, чем эквивалентное сопротивление тех же резисторов, соединенных параллельно. Ток через последовательную цепь будет \ (I = \ frac {3.00 \, V} {5.00 \, \ Omega} = 0.60 \, A \), что меньше суммы токов, проходящих через каждый резистор в параллельная цепь, \ (I = 6.00 \, А \). Это неудивительно, поскольку эквивалентное сопротивление последовательной цепи выше. Ток при последовательном соединении любого количества резисторов всегда будет ниже, чем ток при параллельном соединении тех же резисторов, поскольку эквивалентное сопротивление последовательной цепи будет выше, чем параллельной цепи. Мощность, рассеиваемая последовательно подключенными резисторами, будет равна \ (P = 1,800 \, Вт \), что ниже мощности, рассеиваемой в параллельной цепи \ (P = 18.00 \, Вт \).

    Упражнение \ (\ PageIndex {2B} \)

    Как бы вы использовали реку и два водопада, чтобы смоделировать параллельную конфигурацию двух резисторов? Как разрушается эта аналогия?

    Решение

    Река, текущая горизонтально с постоянной скоростью, разделяется на две части и течет через два водопада. Молекулы воды аналогичны электронам в параллельных цепях. Количество молекул воды, которые текут в реке и падает, должно быть равно количеству молекул, которые текут над каждым водопадом, точно так же, как сумма тока через каждый резистор должна быть равна току, текущему в параллельном контуре.Молекулы воды в реке обладают энергией благодаря своему движению и высоте. Потенциальная энергия молекул воды в реке постоянна из-за их одинаковой высоты. Это аналогично постоянному изменению напряжения в параллельной цепи. Напряжение — это потенциальная энергия на каждом резисторе.

    При рассмотрении энергии аналогия быстро разрушается. В водопаде потенциальная энергия преобразуется в кинетическую энергию молекул воды. В случае прохождения электронов через резистор падение потенциала преобразуется в тепло и свет, а не в кинетическую энергию электронов.

    Суммируем основные характеристики резисторов параллельно:

    1. Эквивалентное сопротивление находится по формуле \ ref {10.3} и меньше любого отдельного сопротивления в комбинации.
    2. Падение потенциала на каждом параллельном резисторе одинаковое.
    3. Параллельные резисторы не получают суммарный ток каждый; они делят это. Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

    В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Как вы помните, из раздела «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. Таблица \ (\ PageIndex {1} \) суммирует уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.

    Таблица \ (\ PageIndex {1} \): Сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях
    Комбинация серии Параллельная комбинация
    Эквивалентная емкость \ [\ frac {1} {C_ {S}} = \ frac {1} {C_1} + \ frac {1} {C_2} + \ frac {1} {C_3} +.N R_i \ nonumber \] \ [\ frac {1} {R_ {P}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ frac {1} {R_3} +. . . \ nonumber \]

    Сочетания последовательного и параллельного

    Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения. Такие комбинации обычны, особенно если учесть сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинации последовательного и параллельного подключения можно свести к одному эквивалентному сопротивлению с помощью техники, показанной на рисунке \ (\ PageIndex {5} \).Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс занимает больше времени, чем труден. Здесь мы отмечаем эквивалентное сопротивление как \ (R_ {eq} \).

    Рисунок \ (\ PageIndex {5} \): (а) Исходная схема из четырех резисторов. (b) Шаг 1: резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, и эквивалентное сопротивление равно \ (R_ {34} = 10 \, \ Omega \). (c) Шаг 2: сокращенная схема показывает, что резисторы \ (R_2 \) и \ (R_ {34} \) включены параллельно, с эквивалентным сопротивлением \ (R_ {234} = 5 \, \ Omega \).(d) Шаг 3: сокращенная схема показывает, что \ (R_1 \) и \ (R_ {234} \) включены последовательно с эквивалентным сопротивлением \ (R_ {1234} = 12 \, \ Omega \), которое является эквивалентное сопротивление \ (R_ {eq} \). (e) Уменьшенная схема с источником напряжения \ (V = 24 \, V \) с эквивалентным сопротивлением \ (R_ {eq} = 12 \, \ Omega \). Это приводит к току \ (I = 2 \, A \) от источника напряжения.

    Обратите внимание, что резисторы \ (R_3 \) и \ (R_4 \) включены последовательно. Их можно объединить в одно эквивалентное сопротивление.Один из методов отслеживания процесса — включить резисторы в качестве индексов. {- 1} = 5 \, \ Omega.\ nonumber \]

    Этот шаг процесса сокращает схему до двух резисторов, показанных на рисунке \ (\ PageIndex {5d} \). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

    \ [R_ {eq} = R_ {1234} = R_1 + R_ {234} = 7 \, \ Omega + 5 \ Omega = 12 \, \ Omega. \ nonumber \]

    Основная цель этого анализа схемы достигнута, и теперь схема сводится к одному резистору и одному источнику напряжения.

    Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен \ (I = \ frac {V} {R_ {eq}} = \ frac {24 \, V} {12 \, \ Omega} = 2 \, A \). Этот ток проходит через резистор \ (R_1 \) и обозначается как \ (I_1 \). Падение потенциала на \ (R_1 \) можно найти с помощью закона Ома:

    \ [V_1 = I_1R_1 = (2 \, A) (7 \, \ Omega) = 14 \, V. \ nonumber \]

    Глядя на рисунок \ (\ PageIndex {5c} \), это оставляет \ (24 \, V — 14 \, V = 10 \, V \) отбрасывать в параллельной комбинации \ (R_2 \) и \ ( R_ {34} \).Ток через \ (R_2 \) можно найти с помощью закона Ома:

    \ [I_2 = \ frac {V_2} {R_2} = \ frac {10 \, V} {10 \, \ Omega} = 1 \, A. \ nonumber \]

    Резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, поэтому токи \ (I_3 \) и \ (I_4 \) равны

    .

    \ [I_3 = I_4 = I — I_2 = 2 \, A — 1 \, A = 1 \, A. \ nonumber \]

    Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах. Потенциальные капли равны \ (V_3 = I_3R_3 = 6 \, V \) и \ (V_4 = I_4R_4 = 4 \, V \).2 (4 \, \ Omega) = 4 \, W, \\ [4pt] P_ {рассеивается} & = P_1 + P_2 + P_3 + P_4 = 48 \, W. \ end {align *} \]

    Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, составляет

    \ [\ begin {align *} P_s & = IV \\ [4pt] & = (2 \, A) (24 \, V) = 48 \, W \ end {align *} \]

    Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

    Пример \ (\ PageIndex {3} \): объединение последовательных и параллельных цепей

    На рисунке \ (\ PageIndex {6} \) показаны резисторы, подключенные последовательно и параллельно.Мы можем считать \ (R_1 \) сопротивлением проводов, ведущих к \ (R_2 \) и \ (R_3 \).

    1. Найдите эквивалентное сопротивление цепи.
    2. Какое падение потенциала \ (V_1 \) на резисторе \ (R_1 \)?
    3. Найдите ток \ (I_2 \) через резистор \ (R_2 \).
    4. Какая мощность рассеивается \ (R_2 \)?
    Рисунок \ (\ PageIndex {6} \): Эти три резистора подключены к источнику напряжения так, чтобы \ (R_2 \) и \ (R_3 \) были параллельны друг другу, и эта комбинация была последовательно с \ (R_1 \).

    Стратегия

    (a) Чтобы найти эквивалентное сопротивление, сначала найдите эквивалентное сопротивление параллельного соединения \ (R_2 \) и \ (R_3 \). Затем используйте этот результат, чтобы найти эквивалентное сопротивление последовательного соединения с \ (R_1 \).

    (b) Ток через \ (R_1 \) можно найти с помощью закона Ома и приложенного напряжения. Ток через \ (R_1 \) равен току от батареи. Падение потенциала \ (V_1 \) на резисторе \ (R_1 \) (которое представляет собой сопротивление в соединительных проводах) можно найти с помощью закона Ома.{-1} = 5.10 \, \ Omega. \ Nonumber \] Общее сопротивление этой комбинации является промежуточным между значениями чистой серии и чисто параллельной (\ (20.0 \, \ Omega \) и \ (0.804 \, \ Omega \) ), соответственно).

  • Ток через \ (R_1 \) равен току, обеспечиваемому батареей: \ [I_1 = I = \ frac {V} {R_ {eq}} = \ frac {12.0 \, V} {5.10 \, \ Omega} = 2.35 \, A. \ nonumber \] Напряжение на \ (R_1 \) равно \ [V_1 = I_1R_1 = (2.35 \, A) (1 \, \ Omega) = 2.35 \, V. \ nonumber \] Напряжение, приложенное к \ (R_2 \) и \ (R_3 \), меньше напряжения, подаваемого батареей, на величину \ (V_1 \).Когда сопротивление провода велико, это может существенно повлиять на работу устройств, представленных \ (R_2 \) и \ (R_3 \).
  • Чтобы найти ток через \ (R_2 \), мы должны сначала найти приложенное к нему напряжение. Напряжение на двух параллельных резисторах одинаковое: \ [V_2 = V_3 = V — V_1 = 12.0 \, V — 2.35 \, V = 9.65 \, V. \ nonumber \] Теперь мы можем найти ток \ (I_2 \) через сопротивление \ (R_2 \) по закону Ома: \ [I_2 = \ frac {V_2} {R_2} = \ frac {9.65 \, V} {6.00 \, \ Omega} = 1.2 (6.00 \, \ Omega) = 15.5 \, W. \ nonumber \]
  • Значение

    Анализ сложных схем часто можно упростить, сведя схему к источнику напряжения и эквивалентному сопротивлению. Даже если вся схема не может быть сведена к одному источнику напряжения и одному эквивалентному сопротивлению, части схемы могут быть уменьшены, что значительно упрощает анализ.

    Упражнение \ (\ PageIndex {3} \)

    Рассмотрите электрические цепи в вашем доме.Приведите по крайней мере два примера схем, которые должны использовать комбинацию последовательных и параллельных схем для эффективной работы.

    Решение

    Все цепи верхнего освещения параллельны и подключены к основному питанию, поэтому при перегорании одной лампочки все верхнее освещение не гаснет. У каждого верхнего света будет по крайней мере один переключатель, включенный последовательно с источником света, поэтому вы можете включать и выключать его.

    В холодильнике есть компрессор и лампа, которая загорается при открытии дверцы.Обычно для подключения холодильника к стене используется только один шнур. Цепь, содержащая компрессор, и цепь, содержащая цепь освещения, параллельны, но есть переключатель, включенный последовательно со светом. Термостат управляет переключателем, который включен последовательно с компрессором, чтобы контролировать температуру холодильника.

    Практическое применение

    Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение IR в проводах также может быть значительным и проявляться в виде тепла, выделяемого в шнуре.

    Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    Что происходит в этих сильноточных ситуациях, показано на рисунке \ (\ PageIndex {7} \). Устройство, обозначенное символом \ (R_3 \), имеет очень низкое сопротивление, поэтому при его включении протекает большой ток. Этот увеличенный ток вызывает большее падение IR в проводах, обозначенных символом \ (R_1 \), что снижает напряжение на лампочке (которое равно \ (R_2 \)), которое затем заметно гаснет.

    Рисунок \ (\ PageIndex {7} \): Почему свет тускнеет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение IR в проводах и снижает напряжение на свету.

    Стратегия решения проблем: последовательные и параллельные резисторы

    1. Нарисуйте четкую принципиальную схему, пометив все резисторы и источники напряжения. Этот шаг включает список известных значений проблемы, поскольку они отмечены на вашей принципиальной схеме.
    2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
    3. Определите, включены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно.Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные. Есть один список для серий, а другой — для параллелей.
    5. Проверьте, являются ли ответы разумными и последовательными.

    Пример \ (\ PageIndex {4} \): объединение последовательных и параллельных цепей

    Два резистора, соединенных последовательно \ ((R_1, \, R_2) \), соединены с двумя резисторами, включенными параллельно \ ((R_3, \, R_4) \).Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление 10,00 Ом. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление. Через резистор \ (R_1 \) проходит ток 2,00 А. Какое напряжение подается от источника напряжения?

    Стратегия

    Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

    Решение

    Рисунок \ (\ PageIndex {8} \): Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.
    1. Нарисуйте четкую принципиальную схему (Рисунок \ (\ PageIndex {8} \)).
    2. Неизвестно напряжение аккумулятора. Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
    3. В этой схеме мы уже знаем, что резисторы \ (R_1 \) и \ (R_2 \) включены последовательно, а резисторы \ (R_3 \) и \ (R_4 \) включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов \ (R_3 \) и \ (R_4 \) последовательно с последовательной конфигурацией резисторов \ (R_1 \) и \ (R_2 \).{-1} = 5,00 \, \ Омега. \ nonumber \] Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление схемы равно \ (R_ {eq} = R_1 + R_2 + R_ {34} = (25.00 \, \ Omega \). поэтому напряжение, подаваемое батареей, равно \ (V = IR_ {eq} = 2.00 \, A (25.00 \, \ Omega) = 50.00 \, V \).
    4. Один из способов проверить соответствие ваших результатов — это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами. Мощность, обеспечиваемая аккумулятором, равна \ (P_ {batt} = IV = 100.2R_4 \\ [4pt] & = 40.00 \, W + 40.00 \, W + 10.00 \, W + 10.00 \, W = 100. \, W. \ end {align *} \]

      Поскольку мощность, рассеиваемая резисторами, равна мощности, обеспечиваемой батареей, наше решение кажется последовательным.

      Значение

      Если проблема имеет комбинацию последовательного и параллельного соединения, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При нахождении \ (R_ {eq} \) для параллельного соединения необходимо с осторожностью относиться к обратному. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.

      Авторы и авторство

      • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами.Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

      6.2 Последовательные и параллельные резисторы — Введение в электричество, магнетизм и схемы

      ЦЕЛИ ОБУЧЕНИЯ

      К концу раздела вы сможете:
      • Определите термин эквивалентное сопротивление
      • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
      • Рассчитайте эквивалентное сопротивление резисторов, включенных параллельно

      В статье «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где. В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

      Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (рисунок 6.2.1). В схеме серии выходной ток первого резистора течет на вход второго резистора; следовательно, ток в каждом резисторе одинаков. В параллельной схеме все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными, в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

      (рисунок 6.2.1)

      Рисунок 6.2.1 (a) При последовательном соединении резисторов ток одинаков на каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое.

      Резисторы серии

      Считается, что резисторы

      включены последовательно, если ток течет через резисторы последовательно. Рассмотрим рисунок 6.2.2, на котором показаны три последовательно включенных резистора с приложенным напряжением, равным.Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

      (рисунок 6.2.2)

      Рисунок 6.2.2 (a) Три резистора, подключенные последовательно к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

      На рисунке 6.2.2 ток, идущий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии при прохождении тока через каждый резистор. Согласно закону Ома падение потенциала на резисторе при протекании через него тока рассчитывается по формуле, где — ток в амперах (), а — сопротивление в омах (). Поскольку энергия сохраняется, а напряжение равно потенциальной энергии на заряд, сумма напряжения, приложенного к цепи источником, и падения потенциала на отдельных резисторах вокруг контура должны быть равны нулю:

      Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе.На рисунке 6.2.2 сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

      Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления, которое представляет собой просто сумму сопротивлений отдельных резисторов.

      Любое количество резисторов может быть подключено последовательно. Если резисторы соединены последовательно, эквивалентное сопротивление составляет

      Ом.

      (6.2.1)

      Одним из результатов включения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

      ПРИМЕР 6.2.1


      Эквивалентное сопротивление, ток и мощность в последовательной цепи

      Батарея с напряжением на клеммах подключена к цепи, состоящей из четырех и одного резистора, соединенных последовательно (рисунок 6.2.3). Предположим, что батарея имеет незначительное внутреннее сопротивление. (а) Рассчитайте эквивалентное сопротивление цепи. (б) Рассчитайте ток через каждый резистор. (c) Рассчитайте падение потенциала на каждом резисторе. (d) Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.

      (рисунок 6.2.3)

      Рисунок 6.2.3 Простая последовательная схема с пятью резисторами.
      Стратегия

      В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.Ток в цепи можно найти из закона Ома и равен напряжению, деленному на эквивалентное сопротивление. Падение потенциала на каждом резисторе можно найти с помощью закона Ома. Мощность, рассеиваемая каждым резистором, может быть найдена с помощью, а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, подаваемую аккумулятором, можно найти с помощью.

      Решение

      а. Эквивалентное сопротивление — это алгебраическая сумма сопротивлений:

      г.Ток в цепи одинаков для каждого резистора в последовательной цепи и равен приложенному напряжению, деленному на эквивалентное сопротивление:

      г. Падение потенциала на каждом резисторе можно найти с помощью закона Ома:

      .

      Обратите внимание, что сумма падений потенциала на каждом резисторе равна напряжению, подаваемому батареей.

      г. Мощность, рассеиваемая резистором, равна, а мощность, отдаваемая аккумулятором, равна:

      Значение

      Есть несколько причин, по которым мы использовали бы несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи.Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов. Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.2

      Некоторые гирлянды миниатюрных праздничных огней закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи.«Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серию по девять луковиц. Если перегорает слишком много лампочек, в конечном итоге открываются шунты. Что вызывает это?

      Кратко обозначим основные характеристики последовательно соединенных резисторов:

      1. Последовательные сопротивления суммируются, чтобы получить эквивалентное сопротивление:

      2. Одинаковый ток протекает последовательно через каждый резистор.
      3. Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.

      Параллельные резисторы

      На рисунке 6.2.4 показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома, где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

      (рисунок 6.2.4)

      Рисунок 6.2.4 (a) Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

      Ток, протекающий от источника напряжения на рисунке 6.2.4, зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в переход или узел, где цепь разделяется, протекая через резисторы и. По мере того, как заряды проходят от батареи, некоторые проходят через резистор, а некоторые — через резистор. Сумма токов, текущих в переход, должна быть равна сумме токов, текущих из перехода:

      Это уравнение называется правилом соединения Кирхгофа и будет подробно обсуждено в следующем разделе.На рисунке 6.2.4 показано правило соединения. В этой схеме есть две петли, что приводит к уравнениям и Обратите внимание, что напряжение на резисторах, включенных параллельно, одинаковое (), а ток является аддитивным:

      Если обобщить на любое количество резисторов, эквивалентное сопротивление параллельного соединения связано с отдельными сопротивлениями на

      (6.2.2)

      Это соотношение приводит к эквивалентному сопротивлению, которое меньше наименьшего из отдельных сопротивлений.Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

      ПРИМЕР 6.2.2


      Анализ параллельной цепи

      Три резистора, и соединены параллельно. Параллельное соединение подключается к источнику напряжения. а) Какое эквивалентное сопротивление? (б) Найдите ток, подаваемый источником в параллельную цепь. (c) Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.(d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

      Стратегия

      (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью.
      (Обратите внимание, что в этих вычислениях каждый промежуточный ответ отображается с дополнительной цифрой.)

      (b) Ток, подаваемый источником, можно найти из закона Ома, заменив полное сопротивление.

      (c) Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение.Полный ток — это сумма отдельных токов:.

      (d) Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. Давайте использовать, так как каждый резистор получает полное напряжение.

      (e) Общую мощность также можно рассчитать несколькими способами, используйте.

      Решение

      а. Общее сопротивление для параллельной комбинации резисторов находится с помощью уравнения 6.2.2.Ввод известных значений дает

      Общее сопротивление с правильным количеством значащих цифр составляет. Как и предполагалось, меньше минимального индивидуального сопротивления.

      г. Полный ток можно найти из закона Ома, заменив полное сопротивление. Это дает

      Ток для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример). Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.

      г. Отдельные токи легко вычислить по закону Ома, поскольку на каждый резистор подается полное напряжение. Таким образом,

      Аналогично

      и

      Общий ток складывается из отдельных токов:

      г. Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны.Давайте использовать, так как каждый резистор получает полное напряжение. Таким образом,

      Аналогично

      и

      e. Суммарную мощность также можно рассчитать несколькими способами. Выбор и ввод общей текущей доходности

      Значение

      Общая мощность, рассеиваемая резисторами, также составляет:

      Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой источником.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.3


      Рассмотрим одну и ту же разность потенциалов, приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно подключенными резисторами, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.4


      Как бы вы использовали реку и два водопада, чтобы смоделировать параллельную конфигурацию двух резисторов? Как разрушается эта аналогия?

      Суммируем основные характеристики резисторов параллельно:

      1. Эквивалентное сопротивление находится из

        и меньше любого отдельного сопротивления в комбинации.

      2. Падение потенциала на каждом параллельном резисторе одинаковое.
      3. Параллельные резисторы не получают суммарный ток каждый; они делят это.Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

      В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Вы можете вспомнить, что в разделе «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. В таблице 6.2.1 приведены уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.

      (таблица 6.2.1)

      Комбинация серии Параллельная комбинация
      Эквивалентная емкость
      Эквивалентное сопротивление

      Таблица 10.1 Сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях

      Сочетания последовательного и параллельного

      Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения.Такие комбинации обычны, особенно если учесть сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

      Последовательные и параллельные комбинации можно уменьшить до одного эквивалентного сопротивления, используя методику, показанную на Рисунке 6.2.5. Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс занимает больше времени, чем труден.Здесь мы отмечаем эквивалентное сопротивление как.

      (рисунок 6.2.5)

      Обратите внимание, что резисторы и включены последовательно. Их можно объединить в одно эквивалентное сопротивление. Один из методов отслеживания процесса — включить резисторы в качестве индексов. Здесь эквивалентное сопротивление и равно

      .

      Теперь схема сокращается до трех резисторов, показанных на Рисунке 6.2.5 (c). Перерисовывая, мы теперь видим, что резисторы и составляют параллельную цепь.Эти два резистора можно уменьшить до эквивалентного сопротивления:

      Этот шаг процесса сокращает схему до двух резисторов, показанных на Рисунке 6.2.5 (d). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

      Основная цель этого анализа схемы достигнута, и теперь схема сводится к одному резистору и одному источнику напряжения.

      Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен. Этот ток проходит через резистор и обозначен как. Падение потенциала можно найти с помощью закона Ома:

      Глядя на рис. 6.2.5 (c), можно не заметить параллельную комбинацию и. Проходной ток можно найти с помощью закона Ома:

      Резисторы и включены последовательно, поэтому токи и равны

      .

      Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах.Потенциальные падения равны и. Окончательный анализ заключается в рассмотрении мощности, подаваемой источником напряжения, и мощности, рассеиваемой резисторами. Мощность, рассеиваемая резисторами

      Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, равна. Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.5


      Рассмотрите электрические цепи в вашем доме. Приведите по крайней мере два примера схем, которые должны использовать комбинацию последовательных и параллельных схем для эффективной работы.

      Практическое применение

      Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если протекает большой ток, провал в проводах также может быть значительным и проявляться в виде тепла, выделяемого в шнуре.

      Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

      Что происходит в этих сильноточных ситуациях, показано на Рисунке 6.2.7. Устройство, представленное значком, имеет очень низкое сопротивление, поэтому при его включении протекает большой ток.Этот увеличенный ток вызывает большее падение в проводах, представленных значком, уменьшая напряжение на лампочке (которая есть), которое затем заметно гаснет.

      (рисунок 6.2.7)

      Рисунок 6.2.7 Почему свет тускнеет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.

      Стратегия решения проблем: последовательные и параллельные резисторы


      1. Нарисуйте четкую принципиальную схему, обозначив все резисторы и источники напряжения.Этот шаг включает список известных значений проблемы, поскольку они отмечены на вашей принципиальной схеме.
      2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
      3. Определите, включены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно. Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
      4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные.Есть один список для серий, а другой — для параллелей.
      5. Проверьте, являются ли ответы разумными и последовательными.

      ПРИМЕР 6.2.4


      Объединение последовательных и параллельных цепей

      Два резистора, соединенных последовательно, подключены к двум резисторам, включенным параллельно. Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление.Ток проходит через резистор. Какое напряжение подается от источника напряжения?

      Стратегия

      Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

      Решение
      1. Нарисуйте четкую принципиальную схему (рисунок 6.2.8).

        (рисунок 6.2.8)

        Рисунок 6.2.8 Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.
      2. Неизвестно напряжение аккумулятора.Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
      3. В этой схеме мы уже знаем, что резисторы и включены последовательно, а резисторы и включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов и последовательно с последовательной конфигурацией резисторов и.
      4. Напряжение, подаваемое батареей, можно найти, умножив ток от батареи на эквивалентное сопротивление цепи.Ток от батареи равен току через и равен. Нам нужно найти эквивалентное сопротивление, уменьшив схему. Чтобы уменьшить схему, сначала рассмотрите два резистора, включенных параллельно. Эквивалентное сопротивление составляет. Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление цепи равно. Таким образом, напряжение, подаваемое батареей, составляет.
      5. Один из способов проверить соответствие ваших результатов — это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами.Мощность, подаваемая аккумулятором, составляет

        Поскольку они включены последовательно, сквозной ток равен сквозному току. Т.к. ток через каждый будет. Мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором:


        Поскольку мощность, рассеиваемая резисторами, равна мощности, выделяемой батареей, наше решение кажется последовательным.

      Значение

      Если проблема имеет комбинацию последовательного и параллельного соединения, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При поиске параллельного подключения необходимо соблюдать осторожность. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.

      Кандела Цитаты

      Лицензионный контент CC, конкретная атрибуция

      • Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution

      Принципиальная схема

      Общие символы принципиальной схемы (символы США)

      Принципиальная схема (также известная как электрическая схема , элементарная схема или электронная схема ) представляет собой упрощенное традиционное графическое представление электрической схемы.На графической схеме используются простые изображения компонентов, а на схематической диаграмме компоненты схемы показаны в виде упрощенных стандартных символов; оба типа показывают соединения между устройствами, включая силовые и сигнальные соединения. Расположение соединений компонентов на схеме не соответствует их физическому расположению в готовом устройстве.

      В отличие от блок-схемы или схемы компоновки, принципиальная схема показывает фактические используемые соединения проводов.На схеме не показано физическое расположение компонентов. Чертеж, предназначенный для изображения физического расположения проводов и компонентов, которые они соединяют, называется «иллюстрацией», «компоновкой» или «физическим дизайном».

      Принципиальные схемы используются для проектирования (схемотехническое проектирование), изготовления (например, разводки печатных плат) и обслуживания электрического и электронного оборудования.

      Обозначения

      Обозначения на принципиальных схемах различались от страны к стране и менялись с течением времени, но теперь они в значительной степени стандартизированы на международном уровне.Простые компоненты часто имели символы, предназначенные для обозначения некоторых особенностей физической конструкции устройства. Например, обозначение резистора, показанное здесь, восходит к тем временам, когда этот компонент был сделан из длинного куска провода, намотанного таким образом, чтобы не создавать индуктивность, которая могла бы сделать его катушкой. Эти резисторы с проволочной обмоткой теперь используются только в приложениях большой мощности, меньшие резисторы отлиты из углеродного состава (смесь углерода и наполнителя) или изготовлены в виде изолирующей трубки или чипа, покрытого металлической пленкой.Таким образом, международно стандартизованный символ резистора теперь упрощен до продолговатого, иногда со значением в омах, написанном внутри, вместо символа зигзага. Менее распространенный символ — это просто серия пиков на одной стороне линии, представляющая проводник, а не взад и вперед, как показано здесь.

      Схема соединений проводов:
      1. Старый стиль: (а) соединение, (б) отсутствие соединения.
      2. Один стиль САПР: (а) связь, (б) нет связи.
      3. Альтернативный стиль САПР: (а) соединение, (б) нет соединения.

      Связи между выводами когда-то были простым пересечением линий; один провод изолирован от другого и «перепрыгивает» через другой, на что указывает то, что он образует небольшой полукруг над другой линией. С появлением компьютерного черчения соединение двух пересекающихся проводов было показано пересечением с точкой или «каплей», а пересечение изолированных проводов — простым пересечением без точки. Однако существовала опасность перепутать эти два представления, если точка была нарисована слишком маленькой или опущенной.Современная практика заключается в том, чтобы избегать использования символа «кроссовер с точкой» и рисовать провода, пересекающиеся в двух точках вместо одной. Также часто используется гибридный стиль, когда соединения отображаются в виде креста с точкой, в то время как изолированные пересечения используют полукруг.


      На принципиальной схеме символы компонентов помечены дескриптором или позиционным обозначением, соответствующим таковому в списке частей. Например, C1 — первый конденсатор, L1 — первая катушка индуктивности, Q1 — первый транзистор, а R1 — первый резистор (обратите внимание, что это не индексируется, как в R 1 , L 1 , …).Часто значение или обозначение типа компонента указывается на схеме рядом с частью, но подробные спецификации будут указаны в списке частей.

      Подробные правила для условных обозначений приведены в международном стандарте IEC 61346.

      Внешние ссылки

      Условные обозначения на схемах компонентов »Примечания к электронике

      Электронные схемы являются ключом к проектированию и определению электронных схем: каждый отдельный тип компонента имеет свой собственный символ схемы, позволяющий рисовать и лаконично читать схемы.


      Цепи, схемы и символы Включает:
      Обзор условных обозначений цепей Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, переключатели и соединители Блоки аналоговых и функциональных схем Логика


      Четкие символы использовались для обозначения различных типов электронных компонентов в схемах с самого зарождения электротехники и электроники.

      Сегодня условные обозначения схем и их использование в значительной степени стандартизированы. Это позволяет любому относительно быстро прочитать принципиальную схему и узнать, что она делает. Схематические символы используются для представления различных электронных компонентов и устройств в принципиальных схемах от проводов до батарей и пассивных компонентов до полупроводников, логических схем и очень сложных интегральных схем.

      Используя общий набор символов схем в схемах, инженеры-электронщики во всем мире могут передавать информацию о схемах кратко и без двусмысленности.

      Понять, что означают различные символы цепи, не займет много времени. Часто это все равно происходит, когда вы изучаете общую электронику. Символы для более сложных интегральных схем и т.п., как правило, представляют собой прямоугольники с включенными номерами их типов, а это означает, что не существует бесконечного разнообразия различных символов, которые необходимо изучить и понять.

      Хотя существует ряд различных стандартов, используемых для различных обозначений схем по всему миру, различия обычно невелики, а поскольку большинство систем хорошо известны, обычно остается мало места для двусмысленности.

      Система обозначений цепей

      Во всем мире для схематических символов используются различные системы. Хотя между ними есть некоторые различия, разные органы по стандартизации осознают потребность в общих символах, и большинство из них одинаковы. Основные системы условных обозначений и органы стандартизации:

      • IEC 60617: Этот стандарт выпущен Международной электротехнической комиссией, и этот стандарт для символов электронных компонентов основан на более старом британском стандарте BS 3939, который, в свою очередь, был разработан на основе гораздо более старого британского стандарта 530.Часто делается ссылка на стандарт электрических компонентов BS, и теперь используется стандарт IEC. Всего в базе данных около 1750 обозначений схем.
      • Стандарт ANSI Y32: Этот стандарт для обозначений электронных компонентов является американским и известен также как IEEE Std 315. Этот стандарт IEEE для обозначений цепей имеет различные даты выпуска.
      • Австралийский стандарт AS 1102: Это австралийский стандарт символов электронных компонентов.

      Из них наиболее широко используются стандарты IEC и ANSI / IEEE для электронных символов, то есть схематические символы. Оба очень похожи друг на друга, хотя есть ряд различий. Однако, поскольку многие принципиальные схемы используются во всем мире, обе системы будут хорошо известны большинству инженеров-электронщиков.

      Обозначения схем и условные обозначения

      При разработке принципиальной схемы или схемы необходимо идентифицировать отдельные компоненты.Это особенно важно при использовании списка деталей, поскольку компоненты на принципиальной схеме могут быть перекрестно связаны со списком деталей или спецификацией материалов. Также важно идентифицировать компоненты, поскольку они часто маркируются на печатной плате, и таким образом можно идентифицировать схему и физический компонент для таких действий, как ремонт и т. Д.

      Для идентификации компонентов используется то, что называется условным обозначением цепи. Это условное обозначение цепи обычно состоит из одной или двух букв, за которыми следует цифра.Буквы обозначают тип компонента, а число определяет, какой именно компонент этого типа. Примером может быть R13 или C45 и т. Д.

      Чтобы стандартизировать способ идентификации компонентов на схемах, IEEE представил стандарт IEEE 200-1975 как «Стандартные справочные обозначения для электрических и электронных деталей и оборудования». Позже он был отозван, и позже ASME (Американское общество инженеров-механиков) инициировало новый стандарт ASME Y14.44-2008.

      Некоторые из наиболее часто используемых позиционных обозначений схем приведены ниже:

      Транзистор Стабилитрон
      Более часто используемые условные обозначения на принципиальных схемах
      Условное обозначение Тип компонента
      ATT Аттенюатор
      BR Мостовой выпрямитель
      BT аккумулятор
      С Конденсатор
      D Диод
      Ф Предохранитель
      IC Интегральная схема — альтернатива широко используемой нестандартной аббревиатуре
      Дж Разъем разъема (обычно, но не всегда относится к гнезду)
      л Катушка индуктивности
      LS Громкоговоритель
      п. Заглушка
      PS Блок питания
      Q Транзистор
      R Резистор
      S Переключатель
      SW Switch — альтернатива широко используемой нестандартной аббревиатуре
      Т Трансформатор
      TP Контрольная точка
      TR — альтернатива широко применяемой нестандартной аббревиатуре
      U Микросхема
      VR Переменный резистор
      х Преобразователь
      XTAL Кристалл — альтернатива широко применяемой нестандартной аббревиатуре
      Z Стабилитрон
      ZD — альтернатива широко применяемой нестандартной аббревиатуре

      Обозначения принципиальных схем

      Поскольку существует очень много различных символов схем, охватывающих широкий диапазон различных компонентов всех типов, они были разделены и представлены на разных страницах в соответствии с их категориями.

      Используя различные стандартные символы схемы в схематических диаграммах, можно создать схему, которая не только легко читается, но и допускает меньшее количество неверных интерпретаций, чем при использовании нестандартных символов.

      Другие схемы и схемотехника:
      Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
      Вернуться в меню «Конструкция схемы». . .

      Обозначения электронных схем — Обозначения компонентов и принципиальных схем

      В электронных схемах есть много электронных символов, которые используются для обозначения или идентификации основного электронного или электрического устройства.Они в основном используются для построения принципиальных схем и стандартизированы на международном уровне стандартом IEEE (IEEE Std 315) и британским стандартом (BS 3939). Пользователь не может вносить изменения в любой электронный символ, но пользователь может вносить любые изменения в архитектурные чертежи, такие как источник питания и освещение.

      Электронные символы

      Символы для различных электронных устройств показаны ниже. Щелкните каждую ссылку, приведенную ниже, чтобы просмотреть символы.Помимо обозначений схем, каждому устройству также присвоено короткое имя. Хотя эти имена не утверждены в качестве стандартных обозначений, они обычно используются большинством людей. Эти обозначения также приведены в списке.

      Провода | Источники питания | Резистор | Конденсатор | Диод | Транзистор | Логические ворота | Метры | Датчики | Переключатели | Аудио и радиоустройства | Устройства вывода

      Обозначения проводов
      Электронный компонент Обозначение цепи Описание
      Провод Обозначение цепи провода Используется для подключения одного компонента к другому.
      Провода соединены Обозначение соединенной цепи проводов

      Одно устройство может быть подключено к другому с помощью проводов. Это представлено рисованием «пятен» в месте замыкания.

      Несоединенные провода Обозначение провода, не входящего в цепь,

      Когда цепи нарисованы, одни провода могут не касаться других. Это можно показать, только соединив их или нарисовав без пятен. Но наложение мостов обычно практикуется, так как здесь не возникает путаницы.

      Обозначения источников питания
      Электронный компонент Обозначение цепи Описание
      Ячейка Обозначение клеточной цепи Используется для питания цепи.
      Аккумулятор Обозначение цепи аккумулятора

      Батарея состоит из нескольких элементов и используется с той же целью.Меньшая клемма — отрицательная, а большая — положительная. Сокращенно «B».

      Источник постоянного тока Обозначение цепи питания постоянного тока Используется как источник постоянного тока, то есть ток всегда течет в одном направлении.
      Электропитание переменного тока Обозначение цепи питания переменного тока Используется в качестве источника питания переменного тока, то есть ток будет иметь переменное направление.
      Предохранитель Обозначение цепи предохранителя Используется в цепях, где существует вероятность чрезмерного протекания тока.Предохранитель разорвет цепь, если будет протекать чрезмерный ток, и убережет другие устройства от повреждений.
      Трансформатор Обозначение цепи трансформатора

      Используется как источник питания переменного тока. Состоит из двух катушек, первичной и вторичной, соединенных между собой железным сердечником. Между двумя катушками нет физического соединения. Для получения мощности используется принцип взаимной индуктивности. Сокращенно «Т».

      Земля / Земля Обозначение цепи заземления

      Используется в электронных схемах для обозначения 0 вольт источника питания.Его также можно определить как настоящую землю, когда он применяется в радиосхемах и силовых цепях.

      Обозначения резисторов
      Электронный компонент Обозначение цепи Описание
      Резистор Обозначение цепи резистора

      Резистор используется для ограничения силы тока, протекающего через устройство.Сокращенно «R».

      Реостат Обозначение цепи реостата

      Реостат используется для управления током с помощью двух контактов. Применимо для управления яркостью лампы, скоростью заряда конденсатора и т. Д.

      Потенциометр Обозначение цепи потенциометра

      Потенциометр используется для управления потоком напряжения и имеет три контакта. Применяются при изменении механического угла изменения электрического параметра.Сокращенно «POT».

      Предустановка Обозначение предустановленной цепи

      Presets — это недорогие переменные резисторы, которые используются для управления потоком заряда с помощью отвертки. Приложения, в которых сопротивление определяется только в конце схемы.

      Конденсаторные символы
      Электронный компонент Обозначение цепи Описание
      Конденсатор Обозначение цепи конденсатора

      Конденсатор — это устройство, которое используется для хранения электрической энергии.Он состоит из двух металлических пластин, разделенных диэлектриком. Он применим в качестве фильтра, то есть для блокировки сигналов постоянного тока и разрешения сигналов переменного тока. Обозначается буквой «C».

      Конденсатор — поляризованный Обозначение цепи поляризованного конденсатора Конденсатор можно использовать в схеме таймера, добавив резистор.
      Конденсатор переменной емкости Обозначение цепи переменного конденсатора

      Используется для изменения емкости поворотом ручки.Тип переменного конденсатора — это небольшой по размеру подстроечный конденсатор. Обозначения все те же.

      Символы диодов
      Электронный компонент Обозначение цепи Описание
      Диод Обозначение диодной цепи

      Диод используется для пропускания электрического тока только в одном направлении. Сокращенно «D».

      Светоизлучающий диод (LED) Светодиодный индикатор цепи

      Светодиод используется для излучения света, когда через устройство проходит ток. Сокращенно он обозначается как LED.

      Стабилитрон Обозначение цепи стабилитрона

      После пробоя напряжения устройство позволяет току течь и в обратном направлении. Он обозначается аббревиатурой «Z».

      Фотодиод Обозначение схемы фотодиода

      Фотодиод работает как фотодетектор и преобразует свет в соответствующее ему напряжение или ток.

      Туннельный диод Обозначение цепи туннельного диода

      Туннельный диод известен своей высокоскоростной работой из-за его применения в квантово-механических эффектах.

      Диод Шоттки Обозначение цепи диода Шоттки

      Диод Шоттки известен своим большим прямым падением напряжения и, следовательно, имеет большое применение в схемах переключения.

      Обозначения транзисторов
      Электронный компонент Обозначение цепи Описание
      NPN транзистор Обозначение цепи транзистора NPN

      Это транзистор со слоем полупроводника, легированного P, закрепленным между двумя слоями полупроводников, легированных азотом, которые действуют как эмиттер и коллектор.Сокращенно «Q».

      PNP транзистор Обозначение цепи транзистора PNP

      Это транзистор со слоем полупроводника с примесью азота, закрепленным между двумя слоями полупроводников с примесью фосфора, которые действуют как эмиттер и коллектор. Сокращенно «Q».

      Фототранзистор Обозначение цепи фототранзистора

      Фототранзистор работает аналогично биполярному транзистору с той разницей, что он преобразует свет в соответствующий ему ток.Фототранзистор также может действовать как фотодиод, если эмиттер не подключен.

      Полевой транзистор Обозначение цепи полевого транзистора

      Подобно транзистору, полевой транзистор имеет три вывода: затвор, исток и сток. Устройство имеет электрическое поле, которое контролирует проводимость канала носителей заряда одного типа в полупроводниковом веществе.

      Полевой транзистор с N-каналом Обозначение схемы полевого транзистора с n-канальным переходом (JFET)

      Полевой транзистор Junction Field Effect Transistor (JFET) — это простейший тип полевого транзистора, применяемый в коммутации и переменном резисторе напряжения.В N-канальном JFET кремниевый стержень N-типа имеет два меньших куска кремниевого материала P-типа, рассеянных с каждой стороны его средней части, образуя P-N-переходы.

      Полевой транзистор с P-каналом Обозначение схемы полевого транзистора (FET) с p-канальным переходом

      P-канальный JFET аналогичен по конструкции N-канальному JFET, за исключением того, что полупроводниковая основа P-типа зажата между двумя переходами N-типа. В этом случае основными носителями являются дыры.

      Металлооксидный полупроводниковый полевой транзистор Указано ниже

      Сокращенно MOSFET. MOSFET — трехполюсное устройство, управляемое смещением затвора. Он известен своей низкой емкостью и низким входным сопротивлением.

      МОП-транзистор расширения Обозначение цепи электронного МОП-транзистора

      Усовершенствованная структура полевого МОП-транзистора не имеет канала, сформированного при ее создании. Напряжение прикладывается к затвору, чтобы создать канал носителей заряда, чтобы ток возникал при приложении напряжения к клеммам сток-исток.Сокращенно e-MOSFET.

      Истощающий МОП-транзистор Обозначение цепи d-MOSFET

      В конструкции, работающей в режиме обеднения, физически создается канал, и ток между стоком и истоком возникает из-за напряжения, приложенного к клеммам сток-исток. Сокращенно d-MOSFET.

      Символы логических вентилей
      Выход Стандартный символ Символ IEC Описание
      И Ворота И ВОРОТА Символ И ворота IEC Symbol

      Если на всех входах логического элемента И ВЫСОКИЙ, то на выходе также будет ВЫСОКИЙ.Если любой из них имеет значение НИЗКИЙ, выход также будет НИЗКИЙ.

      NAND
      Gate
      Символ ворот NAND Ворота NAND, IEC, символ

      Краткая форма для ворот НЕ И. Из всех входов ВЫСОКИЙ, выход будет НИЗКИЙ. Если какой-либо из входов НИЗКИЙ, выход будет ВЫСОКИЙ.

      OR Выход ИЛИ символ ворот ИЛИ Ворота IEC Symbol

      Если любой из входов ВЫСОКИЙ, выход также будет ВЫСОКИЙ.Если оба входа LOW, выход также будет LOW.

      NOR Gate Символ ворот NOR Ворота NOR, IEC, символ

      Краткая форма НЕ ИЛИ. Если оба входа LOW, выход также будет LOW. В других случаях выходной сигнал будет ВЫСОКИЙ.

      EX-OR Ворота Символ ворот EX-OR Ворота EX-OR, символ IEC

      Краткая форма эксклюзивного НОР. Если оба входа находятся в состоянии НИЗКИЙ или ВЫСОКИЙ, на выходе будет НИЗКИЙ.Если оба входа различаются, выход будет ВЫСОКИЙ.

      EX-NOR Gate Символ ворот EX-NOR Выход EX-NOR, IEC, символ

      Краткая форма исключающего НЕ ИЛИ. Если оба входа одинаковы, выход будет ВЫСОКИЙ. Если оба они разные, результат также будет другим.

      НЕ Ворота НЕ символ ворот НЕ символ ворот

      Также известен как инверторный затвор.У этих ворот только один вход. Если вход ВЫСОКИЙ, выход будет НИЗКИЙ. Если вход LOW, выход будет HIGH.

      Метры
      Электронный компонент Обозначение цепи Описание
      Вольтметр Обозначение цепи вольтметра Вольтметр предназначен для измерения напряжения в определенной точке цепи.
      Амперметр Обозначение цепи амперметра

      Амперметр используется для измерения тока, который проходит через цепь в определенной точке.

      Гальванометр Обозначение цепи гальванометра

      Гальванометр используется для измерения очень малых токов порядка 1 миллиампер или меньше.

      Омметр Обозначение цепи омметра Сопротивление цепи измеряется омметром.
      Осциллограф Обозначение цепи осциллографа

      Осциллограф используется для измерения напряжения и периода времени сигналов, а также их формы.

      Обозначения датчиков
      Электронный компонент Обозначение цепи Описание
      Светозависимый резистор (LDR) Обозначение цепи LDR

      Сокращенно LDR. Светозависимый резистор используется для преобразования света в соответствующее ему сопротивление. Вместо того, чтобы напрямую измерять свет, он определяет содержание тепла и преобразует его в сопротивление.

      Термистор Обозначение цепи термистора

      Вместо прямого измерения света термистор определяет содержание тепла и преобразует его в сопротивление. Сокращенно «TH».

      Обозначения переключателей
      Электронный компонент Обозначение цепи Описание
      Нажимной переключатель Обозначение цепи нажимного переключателя Это обычный переключатель, пропускающий ток только при нажатии.
      Нажимной выключатель Обозначение цепи переключателя Push to Break

      Переключающий переключатель обычно находится в состоянии ВКЛ. (Замкнут). Он переходит в состояние ВЫКЛ. (Разомкнут) только при нажатии переключателя.

      Однополюсный однопозиционный переключатель Обозначение цепи выключателя (SPST)

      Также известен как переключатель ВКЛ / ВЫКЛ. Этот переключатель позволяет протекать току только тогда, когда он находится во включенном состоянии. Сокращенно SPST.

      Однополюсный двухпозиционный переключатель Обозначение цепи двухпозиционного переключателя (SPDT)

      Также известен как двухпозиционный переключатель. Его также можно назвать переключателем ВКЛ / ВЫКЛ / ВКЛ, поскольку он имеет положение ВЫКЛ в центре. Переключатель вызывает прохождение тока в двух направлениях, в зависимости от его положения. Сокращенно его можно обозначить как SPDT.

      Двухполюсный однопозиционный переключатель Обозначение цепи двойного двухпозиционного переключателя (DPST)

      Сокращенно DPST.Также может называться двойным переключателем ВКЛ-ВЫКЛ. Он используется для изоляции соединения под напряжением и нейтрали в главной электрической линии.

      Двухполюсный двухпозиционный переключатель Обозначение цепи DPDT

      Сокращенно DPDT. Переключатель использует центральное положение ВЫКЛ. И используется как реверсивный переключатель для двигателей.

      Реле Обозначение цепи реле

      Реле сокращенно «RY».Это устройство может легко переключать сеть переменного тока 230 Вольт. Он имеет три ступени переключения, которые называются нормально разомкнутыми (NO). Нормально замкнутый (NC) и общий (COM).

      Символы аудио и радиоустройств
      Электронный компонент Обозначение цепи Описание
      Микрофон Обозначение цепи микрофона

      Это устройство используется для преобразования звука в соответствующую ему электрическую энергию.Сокращенно «MIC».

      Наушники Обозначение цепи наушников Выполняет обратный процесс микрофона и преобразует электрическую энергию в звук.
      Громкоговоритель Обозначение цепи громкоговорителя

      Выполняет те же операции, что и наушники, но преобразует усиленную версию электрической энергии в соответствующий звук.

      Пьезоэлектрический преобразователь Обозначение цепи пьезопреобразователя Это преобразователь, преобразующий электрическую энергию в звук.
      Усилитель Обозначение цепи усилителя

      Используется для усиления сигнала. В основном он используется для представления всей схемы, а не только одного компонента.

      Антенна Обозначение воздушной цепи Это устройство используется для передачи / приема сигналов. Сокращенно «АЕ».

      Устройства вывода
      Электронный компонент Обозначение цепи Описание
      Лампа освещения Обозначение цепи лампы Используется для освещения выхода.
      Контрольная лампа Обозначение цепи индикатора лампы Используется для преобразования электрической энергии в свет. Лучшим примером является сигнальная лампа на приборной панели автомобиля.
      Нагреватель Обозначение цепи нагревателя Этот преобразователь используется для преобразования электрической энергии в тепло.
      Катушка индуктивности Обозначение цепи индуктивности

      Индуктор используется для создания магнитного поля, когда определенный ток проходит через катушку с проволокой.Проволока намотана на сердечник из мягкого железа. Имеют применение в двигателях и цепях резервуаров. Сокращенно «L».

      Двигатель Обозначение цепи двигателя

      Это устройство используется для преобразования электрической энергии в механическую. Также может использоваться как генератор. Сокращенно «М».

      Колокол Обозначение контура звонка

      Используется для создания звука на выходе в соответствии с производимой на входе электрической энергией.

      Зуммер Обозначение цепи зуммера

      Он используется для создания выходного звука, соответствующего входной электрической энергии.

      СИМВОЛЫ, КОМПОНЕНТЫ И ССЫЛКИ ЭЛЕКТРОНИКИ




      Изучив этот раздел, вы сможете:

      • Обозначьте компоненты символом.
      • Считайте цветовой код резистора.
      • Правильно нарисуйте символы компонентов с помощью шаблона.
      • Правильно указывайте компоненты.
      • Правильно запишите значения компонентов.

      Электронные схемы обычно состоят из отдельных компонентов. В знание этих компонентов, их символов и ссылок. является обязательным. Вам необходимо знать эти важные факты, чтобы вы могли представлять компоненты в схеме.Инженер разработает схему и проанализировать его осуществимость.

      После выполнения инженерного задания появится эскиз схемы. быть переданы в редакцию. Чертеж будет использовать эскиз для создания формального схематический рисунок. Редакционный отдел отвечает за создание убедитесь, что каждый компонент отображается правильно. Для этого нужно быть знакомым со следующими стандартами:

      1. Y32.2 ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ СХЕМЫ, ГРАФИЧЕСКИЕ СИМВОЛЫ для.

      2. Y32.14 ЛОГИЧЕСКИЕ СХЕМЫ, ГРАФИЧЕСКИЕ СИМВОЛЫ для.

      3. Y32.1 6 ОБОЗНАЧЕНИЯ ДЛЯ ЭЛЕКТРИЧЕСКИХ И ЭЛЕКТРОННЫХ ЧАСТЕЙ И ОБОРУДОВАНИЕ.

      Эти стандарты гарантируют, что ваши чертежи верны и имеют общеотраслевое признание.

      ВЗАИМОСВЯЗЬ КОМПОНЕНТОВ И СИМВОЛОВ

      Во многих случаях символ очень похож на физический компонент. Коммутатор — хороший тому пример.Обратите внимание на взаимосвязь на фиг. 1. В учебе В этом разделе поищите другие символы, которые очень похожи на их компоненты.

      КОМПОНЕНТЫ

      В электронике используется множество различных компонентов. Объем это руководство позволит вам изучить только основные из них. Ты начнешь с резистором.

      РЕЗИСТОР

      Резистор — это компонент, который вносит определенное СОПРОТИВЛЕНИЕ в схема.См. Фиг. 2. Сопротивление противоположно потоку электронов. Величина противодействия регулируется изменением длины, диаметра, или материал проводника. Резисторы обычно изготавливаются из углерода или никромовая проволока. Оба эти материала плохо проводят электричество.


      РИС. 1. Поворотный переключатель и символическое изображение.


      РИС. 2. Некоторые типичные стили резисторов. A — Угольные резисторы с фиксированным размером по номинальной мощности.B — фиксированные, проволочные, жаропрочные резисторы с номинальная мощность 2 Вт и выше.

      Резисторы

      обозначаются буквой «ER». Каждое семейство компонентов будет иметь другую букву для ссылки, РИС. 3.


      РИС. 3. Обозначение резистора с полной информацией.

      Резисторы указаны в омах. Их значения могут колебаться от дроби от ома до миллионов ом. Углеродные резисторы имеют цветовую маркировку, которая используется для идентификации их значений (цветовую маркировку резисторов см. в приложениях).

      Резисторы

      также указаны в ваттах. Значение в ваттах является максимальным. с питанием резистор может спокойно справиться. Угольные резисторы в норме от 1/8 до 2 Вт. Резисторы мощностью более 2 Вт обычно имеют проволочную обмотку. Резисторы будут больше при увеличении напряжения.

      Резисторы

      , как и другие компоненты, не могут быть доведены до совершенства. Терпимость должны быть даны, чтобы учесть производственные ошибки. Допуск обычно отклоняться от заявленного значения на 1–10%.

      ОБЩИЙ РЕЗИСТОР

      Общий резистор — это тот, в котором нет опций. Это служит функция предоставления заданного и установленного значения. Эти резисторы называются постоянными резисторами. Теперь давайте посмотрим на некоторые регулируемые резисторы.

      РЕОСТАТ

      Реостат — один из переменных резисторов. Имеет два терминала. Типичное использование — приглушить свет над обеденным столом. Символ для реостата показан на фиг.4А. Движущаяся стрелка называется дворником. Стеклоочиститель перемещается по резистору, позволяя регулировать величину сопротивления в цепи.

      На ФИГ. 4B вы видите пунктирную линию между двумя символами реостата. Этот Линия означает составные или механически соединенные компоненты. Как регулировка вала компонента D, он одновременно регулирует оба реостата. Примечание: Изучая этот новый язык, электронику, вы найдете и другие компоненты. со стрелками.Посмотрите, изменчивы ли они.


      РИС. 4. A и B — два символа, используемые для реостатов. C и D — физические составные части. Рисунки на E и F показывают, как резистивный провод в реостате накручивается. Вращение стеклоочистителя по часовой стрелке увеличивает сопротивление.

      ПОТЕНЦИОМЕТР

      Потенциометр также является переменным резистором. Это отличается от реостат в том, что он имеет три вывода. См. Фиг. 5. Его можно использовать для балансировки стереосистемы.

      Потенциометр также можно использовать как реостат. Стеклоочиститель завязан к одному концевому выводу, что делает его двухполюсным резистором, таким как реостат, ИНЖИР. 6.

      РЕЗИСТОР НАКОНЕЧНИК

      Резисторы с ответвлениями обычно имеют проволочную обмотку. См. Фиг. 7. Может иметь один или несколько выводов по его длине. Резисторы с ответвлениями обычно используется для делителей напряжения.

      КОМПЛЕКТЫ РЕЗИСТОРОВ

      Можно приобрести резисторы в одном корпусе.Этот корпус выглядит так же, как микросхема интегральной схемы, фиг. 8. Программа резисторы в упаковке обычно имеют одинаковое номинальное значение.


      РИС. 5. Потенциометры имеют три вывода. Обратите внимание на разные физические формы компонентов. Это зависит от того, как они будут использоваться, и настроен в оборудовании. A — Роторный. B — поворотный. C — символ. D — Слайд. E — схематический пример.


      РИС. 6. Потенциометры с прикрепленными к одной стороне дворниками работают как реостаты.


      РИС. 7. A — резистор с двойным ответвлением. B — символ двойного нажатия резистор. C — регулируемый резистор ответвления.


      РИС. 8. A — Один тип пакета резисторов. B — Схема упаковки. C — Как вызвать резистор из блока резисторов 1.

      ПОЛУПРОВОДНИКИ

      Вы будете изучать семейство компонентов, называемых полупроводниками. В виде компоненты идут, полупроводники относительно новые. Это компоненты что привело к миниатюризации электронных компонентов.Начинать с диодом.

      ДИОД

      Диод — двухэлектродный полупроводник. Это обеспечивает легкий поток электроны только в одном направлении. Поток идет от катода к анод, фиг. 9. Разработчику необходимо знать катод и анодные концы диода. Эти знания помогут нам показать это правильно в сборке схемы.

      Обратите внимание на номер 1N662, показанный на фиг. 9. Этот номер является каталожным номером.Инженер позвонит по этому номеру, чтобы указать требуемый компонент. в цепи.


      РИС. 9. Общие обозначения концов диодных компонентов. A и B — типичный компонент формы. C — показан символ с простым указанием направления. D — символ с обозначением. (CR) и номер по каталогу.

      ЗЕНЕР ДИОД

      Стабилитрон — это пробойный диод, РИС. 10. Это означает, что он привлекает больше ток при достижении номинального напряжения.Зенеры используются для регулирования напряжение в цепи. Они могут выдерживать от одного до сотен вольт. В Символ стабилитрона отличается от стандартного диода только в как показан катод.

      МОСТ ВЫПРЯМИТЕЛЬ

      Мостовой выпрямитель используется для преобразования переменного тока в постоянный. ток, фиг. 11. Переменный ток — это электрический ток, меняющий направление на противоположное. направление потока через равные промежутки времени.Постоянный ток — это электрический ток течет только в одном направлении. В наших автомобилях используется выпрямитель. для переключения выхода генератора переменного тока на постоянный ток, необходимый для аккумулятор и другие электрические устройства. Мостовой выпрямитель может быть называется двухполупериодным выпрямителем. он имеет четыре диода, которые работают вместе, чтобы разрешить ток только в одном элементе dir
      .


      РИС. 10. Символ стабилитрона.


      РИС. 11. A — мостовой выпрямитель.B — Как диодные элементы связаны выполнить исправление.

      ТРАНЗИСТОР

      Транзистор — это активное полупроводниковое устройство, используемое в твердотельной электронике, ИНЖИР. 12. Этот компонент вместе с диодом практически устранил трубка или вакуумная трубка. Обычно он имеет три электрода: эмиттер, базу, и коллектор.

      Есть два основных типа транзисторов; типа PNP и NPN. На чертеже символ, единственное заметное отличие — это направление стрелки.Стрелка NPN на эмиттере указывает за пределы конверта (кружок символ), (А). Стрелка PNP указывает на основание (B). Способ запомнить тип NPN: «NPN» напоминает вам, что стрелка «Не указывая внутрь» Существуют и другие типы транзисторов, фиг. 1 3. Эти символы предназначены для единиц, выполняющих специальные функции. Символы будут использоваться реже, чем для других транзисторов.


      РИС. 12. A — Транзистор NPN.B — транзистор PNP. C — символ транзистора. с опознанными ногами. D — Корпус транзистора с идентифицированной правой ножкой. как нога эмиттера. Маленький язычок — индикатор. E — транзистор который имеет корпус для коллектора. E, F — оба транзистора сделаны больше чтобы они могли рассеивать свое тепло. Иногда они устанавливаются на другие металлические формы, которые помогают отводить тепло.


      РИС. 13. Полевые транзисторы (FET), показанные в этом примере. имеют имена по их символам.Это просто объяснение руководства и не является частью символа.

      ИНТЕГРИРОВАННАЯ ЦЕПЬ

      Интегральная схема (ИС) — электронное устройство, в котором оба активных и пассивные компоненты содержатся в одном корпусе, фиг. 14. Эти компоненты электрически связаны между собой во время изготовления. Взаимосвязанные затем детали упаковываются в защитное покрытие. В пакете будет плоские выводы, A, C, или круглые выводы, B, выходящие наружу для электрических соединения.

      Пассивными компонентами, используемыми в схемах ИС, являются резисторы, конденсаторы и катушки. На эти компоненты не подается питание, они не создают и не усиливают энергию. Они полагаются на сигнал для выполнения своей функции.

      Активными компонентами, используемыми в схемах ИС, являются транзисторы и диоды. Эти компоненты способны управлять напряжением или током. Они могут производят энергию или переключающее действие в цепи. Их результат зависит от источника питания.

      Миниатюризация схем — одно из важнейших достижений в области электроники. Цепи настолько малы, что их нужно строить. техниками, использующими микроскопы. Схемы сделаны из очень маленьких кусочки кремния, обычно называемые чипами.


      РИС. 14. A — Типичная плоская упаковка. B — круглая металлическая банка. C — дуальный встроенный пакет, наиболее часто используемый стиль интегрированного пакета микросхемы. D — плоский блок с открытой внутренней схемой.E — Пример компонентов обычно находится внутри микросхемы IC.

      КАК СОЗДАЮТСЯ ИНТЕГРИРОВАННЫЕ ЦЕПИ

      Интегральные схемы создаются путем маскирования, травления и диффузии на МОНОЛИТНАЯ ПОДЛОЖКА (большая листовая основа) из кремния. Маска набор шаблонов, используемых для контроля избирательного травления или пропитки части полупроводникового материала с примесными атомами. Офорт — это удаление химическими веществами нежелательного материала с поверхности.Диффузия это процесс легирования примесей в кремний с образованием желаемого переходы. Из этого сложного объяснения очевидно, что полное исследование Описание конструкции и изготовления микросхемы выходит за рамки этого текста. Однако мы можем воспользоваться упрощенным исследованием чипа, чтобы дать вам оценка этого устройства.

      Интегральные схемы выполнены на тонком пластине кремния диаметром от одного до двух дюймов. Обычный срез может содержать от 1 00 до 1000 цепей. бок о бок.После обработки цепи разделяются, чтобы равное количество отдельных цепей, называемых микросхемами.

      Для создания микросхемы используются следующие типичные процессы:

      1. Взять пластину кремния P-типа в качестве подложки. Вафля будет тонкой срез кремния, легированного или пропитанного положительными примесями, фиг. 15.

      2. Добавьте слой кремния N-типа толщиной около 0,20 мкм. Слой выращивается на вафле. Этот слой N-типа станет коллектором для транзистор.

      3. Нанесите тонкий слой диоксида кремния. Он выращен на материале N-типа.

      4. Замаскируйте участки, которые нужно протравить. Маска установит области кислотостойкость. Затем пластина протравливается кислотой. Кислотостойкость будет оставляют желаемые области, фиг. 1 6.

      5. На следующем этапе материал P-типа распространяется по всем областям. не покрыт диоксидом кремния. Распространение — это надевание и проникновение основа из материала P- или N-типа, фиг.1 7.

      6. В процессе диффузии образуется новый слой диоксида кремния. над зонами типа P, а также на вершине острова.


      РИС. 15. Первые три шага в построении ИС.


      РИС. 16. Слой диоксида кремния после травления.

      РИС. 17. Материал P-типа был распространен в незащищенные районы.

      РИС. 18. Офорт создал область для нового региона.


      РИС.19. A — Шаги показали, как транзистор создается в ИС. схема. Остальные компоненты создаются с помощью тех же методов. B — фотоплоттер. создает изображения интегральных схем быстрее, чем вручную. (Gerber Scientific, Inc.)

      7. Снова используя маскировку, мы будем контролировать вытравливание N-типа. остров для создания новой области, фиг. 18.

      8. Пластина подвергается воздействию другого диффузанта P-типа, и создается область для области эмиттера транзистора, фиг.19. Резисторы, диоды и между этими областями также могут быть созданы конденсаторы.

      9. После завершения цепи тонкий слой алюминия напыляется в вакууме. по всей цепи. Затем алюминий травится, чтобы сформировать узоры. между резисторами, диодами и транзисторами. Алюминий также будет создать площадки для крепления проводов, идущих к внешним соединениям.

      10. Затем пластину разрезают на отдельные цепи. Это очень упрощенный посмотрите на изготовление ИС.Существуют также другие методы и техники для Производство микросхем. Ученые сейчас работают над чипом, созданным из выращенных белок. Успехи происходят ежедневно.

      Преимущества микросхем ИС — их размер, вес, стоимость и надежность. Размер ИС является преимуществом перед эквивалентным количеством отдельных лиц. составные части. Размер дает ему огромное преимущество в весе. Цена полные микросхемы IC очень часто сопоставимы с отдельными транзисторы.Микросхема отличается большой надежностью. В 100 раз надежнее чем одиночный транзистор. При всех этих преимуществах еще есть недостатки.

      Недостатки: сложно создать катушки и конденсаторы в пакет IC. Они должны работать при низких рабочих напряжениях и токах. рейтинги. Миниатюрные диоды и транзисторы хрупкие и не могут терпеть грубое обращение или чрезмерную жару. Недостатки незначительны и незначительные по сравнению с преимуществами.

      Некоторыми приложениями для микросхем IC являются цифровые часы, карманные калькуляторы, электронные игры, стереооборудование, компьютеры и многие другие устройства. Размер и стоимость делают микросхемы ИС желательными для этих приложений.

      КОНДЕНСАТОРЫ И КОМПОНЕНТЫ AC / DC

      Конденсатор — это устройство, состоящее из двух проводящих поверхностей. разделены изоляционным материалом. Изоляционным материалом может быть бумага, слюда, стекло, полиэтиленовые пленки, масло или воздух.Конденсатор накапливает энергию, блоки поток постоянного тока и позволяет. поток переменного тока.

      ОБЩИЙ КОНДЕНСАТОР

      Как и общий резистор, общий конденсатор имеет один фиксированный и установленный значение. Это значение устанавливается интервалом, фиг. 20 и / или размер тарелок.

      ПЕРЕМЕННЫЙ КОНДЕНСАТОР

      Переменные конденсаторы можно регулировать, изменяя полезную площадь пластины или расстояние между ними, фиг.21.

      КОНДЕНСАТОР ПОЛЯРИЗОВАННЫЙ

      Поляризованные конденсаторы можно включать в цепь только в одном направлении. Символ следует размещать с плюсовой полярностью. Положительная сторона будет — прямая сторона символа, фиг. 22.

      Информация для конденсатора должна быть записана, как показано на фиг. 23.

      РАССТОЯНИЕ С ИЗОЛЯЦИОННЫМ МАТЕРИАЛОМ ИЛИ ВОЗДУХОМ


      РИС. 20. A — Три из многих стилей обычных конденсаторов.B — Базовый структура конденсатора. C — общий символ конденсатора. Обратите внимание на символ обозначает основную функцию.


      РИС. 21. A, B — два типа переменных конденсаторов. C — символ для переменный конденсатор. Обратите внимание на стрелку для переменной.


      РИС. 22. Поляризованный (электролитический) конденсатор с обозначением. В положительный конец указан на физическом компоненте. Чтобы купить генерала конденсатора, вы должны сообщить продавцу три вещи: значение в фарадах, номинальное напряжение и допуск.


      РИС. 23. Символ конденсатора с полной информацией.

      КАТУШКА, ДРОССЕЛЬ ИЛИ ИНДУКТОР

      Катушка, дроссель или индуктор — это устройство, состоящее из катушки с изолированной Проволока вокруг железного, керамического или воздушного сердечника. См. Фиг. 24. Он сопротивляется изменение переменного тока и его прохождение, но дает небольшое сопротивление к протеканию постоянного тока.

      Катушки оцениваются в генри, единицах индуктивности.Сопротивление в Ом, и допустимая нагрузка по току в амперах также может быть указана на фиг. 25.


      РИС. 24. A — Общая катушка и символ. B — переменная катушка и символ.

      СОЛЕНОИД

      Соленоид — это электромагнитное устройство, имеющее катушку под напряжением и магнитный сердечник, фиг. 26. Этот сердечник будет двигаться, когда катушка находится под напряжением. Он выполняет механические функции. На наших машинах он используется для включения шестерня бендикса стартера, когда на него подано питание поворотом ключа для запуска машина.

      Соленоиды можно условно показать тремя способами, РИС. 27.

      РЕЛЕ

      Реле — это электромеханическое устройство, используемое для размыкания и / или замыкания контактов. или переключатели, как их иногда называют. См. Фиг. 28. Часть для работы контакты — это электромагнит. Это моток проволоки вокруг мягкого железное ядро. Электромагнит перемещает рычаг, размыкающий или замыкающий контакты. Реле используются для запуска и остановки многих механических устройств.

      Символы реле отображаются по-разному в разных компаниях. Они все описывают одно и то же устройство с некоторыми вариациями символов, фиг. 29.


      РИС. 25. Символ катушки с информацией.


      РИС. 26. Общий соленоид. Соленоиды используют ту же ссылочную букву как катушка: «L.»


      РИС. 27. Символы, обычно используемые для соленоида.


      РИС. 28. A — Открытое реле, показывающее контакты. B — капсулированное реле используется на печатных платах.


      РИС. 29. Различные способы показать катушку реле и контакты.

      ТРАНСФОРМАТОР

      Трансформатор — это еще одно электромагнитное устройство, фиг. 30. По индукции он изменяет значения первичного напряжения и тока на разные значения на вторичный. Частота осталась прежней.

      Трансформатор имеет две катушки или катушку с ответвлениями. Одна катушка будет первичной раздел, другой второстепенный. Они могут повышать или понижать напряжение.


      РИС. 30. A — Типовой трансформатор. B — символ трансформатора с железным сердечником. C — символ керамического сердечника. D — символ воздушного ядра. E — Автотрансформатор (одинарная обмотка с отводом). F — трансформатор с двумя вторичными обмотками, один из которых центр нажат.

      Трансформаторы, которые мы видим на опорах в старых кварталах являются понижающим типом. Они понижают напряжение до уровня, который мы можем использовать в наших домах. Большинство трансформаторов, используемых в электронике, также являются понижающими. тип.Они понижают входящее напряжение 120 вольт до уровня, используемого электроникой. оборудование.

      ВЫКЛЮЧАТЕЛЬ

      Выключатель a — это механическое или электрическое устройство, которое открывает или закрывает цепь. Коммутацию также можно назвать замыканием или размыканием цепи. Есть много разных типов переключателей. ИНЖИР. 31 показывает поворотный переключатель. Другие типы переключателей — тумблерные, скользящие, кулисные и прецизионные, фиг. 32.


      РИС. 31.Поворотный переключатель с двумя деками. Каждая колода имеет несколько дворников. которые соединены или механически соединены с вращающимся валом.


      РИС. 32. Вышеуказанные переключатели показывают основные типы, используемые в промышленности и их символы.

      Замыкание переключателя называется замыканием цепи. Открытие выключатель называется разрывом цепи. Такие термины, как однополюсный, двойной бросок, прерывание перед включением используются при переключении. На Рис. 33 показаны некоторые из эти формы символов.


      РИС. 33. Общие условия переключения.

      Переключатели обозначаются буквой «s». Чтобы купить switch мы должны указать тип переключателя, напряжение и ток. Информация о переключателе представлен на фиг. 34. Символ переключателя должен быть нарисован вместе с переключателем. в нормальном положении. В примере на фиг. 34, переключатель нормально открытого типа.

      АККУМУЛЯТОР

      Батарея — это источник постоянного тока, состоящий из одной или нескольких ячеек.Ссылаться на фиг. 35. Эти клетки будут преобразовывать химическую энергию в электрическую. энергия. Батареи содержат источник питания для большей части наших портативных электронное оборудование. Калькуляторы, транзисторные радиоприемники и фонарики — это некоторые из используемых вами устройств с батарейным питанием. Батареи есть рассчитаны в вольтах и ​​амперах.


      РИС. 34. Значок переключателя с необходимой информацией.


      РИС. 35. A, B, C — Одноэлементные батареи. D — многоэлементный аккумулятор.

      Символы батареи дополняются информацией, показанной на фиг. 36. Длинная линия на символе указывает на положительную сторону, но знак «+» обычно добавляется для дальнейшего пояснения.


      РИС. 36. Символ батареи со справочной информацией.

      АНТЕННА

      Антенны также могут называться антеннами. Антенны используются для приема или передавать излучающие волны. Есть разные типы антенн, поэтому вы будете использовать разные символы для обозначения использования каждого из них, РИС.37.


      РИС. 37. Типы антенн и соответствующие символы.

      ПРЕДОХРАНИТЕЛЬ

      Защитные устройства используются для защиты электронного оборудования. Некоторый из них предохранители. Предохранитель обычно состоит из короткого отрезка провода. или металл, который отделяется, когда ток превышает заданные пределы, ИНЖИР. 38. Предохранители указаны в амперах. Достаточный ток вызывает нагрев в цепь, которая перегорит или оплавит предохранительный провод. Люди обычно звонят это перегоревший предохранитель.Если бы не предохранители в цепи, электроника оборудование будет повреждено и потребует гораздо больших затрат на ремонт, чем замена предохранитель.

      ВЫКЛЮЧАТЕЛЬ

      Автоматический выключатель — еще один компонент, используемый для защиты электрооборудования, ИНЖИР. 39. В отличие от предохранителя, автоматический выключатель размыкает цепь с перегрузкой. не повреждая себя. Нагрев контура вызовет его размыкание. потом как только температура вернется в нормальный рабочий диапазон, контур могут быть повторно закрыты.Автоматические выключатели защищают наши дома. Большинство автоматических выключателей работают за счет термической перегрузки, но некоторые используют магнитную перегрузку.


      РИС. 38. A — Предохранитель общего типа. B — плавкий предохранитель. C — символ предохранителя, обозначающий предохранитель на 1/2 ампера.


      РИС. 39. A — Стандартный автоматический выключатель с ручным управлением. B — тепловая перегрузка символ автоматического выключателя. C — Обозначение магнитной перегрузки со ссылкой. обозначение и мощность.

      КРИСТАЛЛ

      Кристалл представляет собой тонкую пластину кварца, фиг.40. Он построен с предустановкой толщину, поэтому он будет вибрировать с определенной частотой при подаче напряжения. Он используется в качестве элемента управления частотой в радиочастотных генераторах. Каналы гражданского радио контролируются кристаллами.


      РИС. 40. Кристалл и символ с обозначением. Это 250 килогерц кристалл. Герц (Гц) означает частоту или количество циклов в секунду. Этот кристалл циклов 250 000 раз в секунду.

      ОСЦИЛЛЯТОР

      Генераторы вырабатывают переменный ток.В радиочастотах переменный ток может составлять от тысяч до миллионов циклов на второй. Осциллятор — это отправная точка для радиопередачи. Один стиль осциллятора показан на фиг. 41.


      РИС. 41. Осциллятор и символ.

      ФИЛЬТР

      Фильтр — это компонент, предназначенный для отделения полезных сигналов от нежелательных. сигналы или частоты. Фильтры используются для подавления определенных полос частот, легко передавая другие.Три категории фильтров бывают: высокочастотный, низкочастотный и полосовой. High-pass позволит только высокий частота прохождения. Низкочастотный пропускает низкие частоты. Band-pass позволит диапазон частот, вырезая те, что на высоких и низкие концы.

      Фильтры бывают разных типов. См. Один тип кузова на фиг. 42.


      РИС. 42. Фильтр и символ.

      ТРУБКА

      Хотя лампы заменяются полупроводниковыми, некоторые из них все еще в использовании.Лампы контролируют поток электронов во многом так же, как диоды и транзисторы. делать. Они могут усиливать, как транзисторы, и выпрямлять, как диод. ИНЖИР. 43 показаны элементы символов трубок. Используя эти элементы, вы можете создавать полные символы устройства, фиг. 44. Трубки намного больше, чем их полупроводники. аналоги.


      РИС. 43. Детали электронных ламп в символическом представлении.


      РИС. 44. A — Простейший тип лампы — выпрямитель. B — Триод с подогревом катод.C — пятиэлементная трубка с тремя решетками. D — электронно-лучевая трубка. символически показано.

      Они выделяют больше тепла во время работы. Эта температура требует компонент большего размера, чтобы тепло могло рассеиваться. Большинство трубок подключены в схему, вставив в патроны для трубок, РИС. 45. Это позволяет их легко заменить и проверить.


      РИС. 45. A — Телефонная трубка. B — розетка с ключом. Примечание: центральная направляющая штифт позволит симметричному соединению поместиться только в одном положении.C — выпрямитель.

      РАЗЪЕМ

      Разъем — это любое устройство на конце провода или кабеля, позволяющее оборудованию быть подключенным к другому оборудованию или отключенным от него.

      Существует много типов разъемов, но мы используем лишь несколько символов. Видеть ИНЖИР. 46. ​​


      РИС. 46. ​​А, Б — разъем распределительного щита. C, D — разъем Phono. E — терминал блокировать. F, G — разъем печатной платы. H, I — разъемы блока питания.

      КАБЕЛЬ, ПРОВОДНИК ИЛИ ПРОВОД

      Кабель может называться проводником или проводом. Он бывает разных стили для конкретных целей. Показаны типы кабелей и их обозначения. на фиг. 47.


      РИС. 47. A — Коаксиальный кабель с символом. B — витая пара с экраном. C — Коаксиальные вилки и кабель.

      ВХОДНЫЕ И ВЫХОДНЫЕ УСТРОЙСТВА

      Электронным системам требуется вход и выход для завершения функция.Входами могут быть микрофоны или записывающие головки. Выходы могут быть колонки или наушники, фиг. 48. Каждый компонент обозначен значком символ и условное обозначение.

      Микрофон — это электроакустический преобразователь, реагирующий на звук. волн и подает на усилитель по существу эквивалентные электрические волны. Громкоговоритель излучает в воздух акустическую мощность, по существу такая же форма волны, как и у электрического входа.


      РИС.48. A — Обычный микрофон. B — чтение, запись и стереомагнитный ленточные головки. C — наушники. D — динамик или громкоговоритель. Каждый компонент показан с символом и условным обозначением.

      ИНДИКАЦИОННЫЕ, ЭКСПЕРИМЕНТАЛЬНЫЕ И СИГНАЛЬНЫЕ СВЕТИЛЬНИКИ

      Фары выполняют в электронике разные функции. Их можно использовать как индикаторные огни. См. Фиг. 49. Эти огни обычно указывают такие вещи, как «питание включено», «температура слишком высока» или некоторая информация, которую необходимо указать.


      РИС. 49. Контрольные лампы и сопутствующие символы. Обратите внимание на светодиодную лампу.

      ОСВЕЩЕНИЕ

      Светильники для площадей — это огни, которые используются для освещения наших домов и дворов, ИНЖИР. 50. Лампы, которые загораются на панели управления, так что счетчики и датчики можно прочитать, называются светящимися огнями. Они такие же, как и площадь горит, но обычно меньше по мощности.


      РИС. 50. Типовые лампы. A — флуоресцентный.B — в луче света. C — соответствующий символ. «DS» — рекомендательное письмо.

      СЧЕТЧИК

      Измерители используются для отображения уровней тока, частоты, скорости, температуры, время и другая информация. Примеры счетчиков и их обозначений: показанный на фиг. 51.


      РИС. 51. A — Три типа счетчиков. B — символы для стандартных счетчиков.

      ВРАЩАЮЩИЙ ОБОРУДОВАНИЕ

      Многие из наших чертежей электроники включают двигатели, генераторы и их схемы управления.

      ДВИГАТЕЛЬ

      Двигатель — это машина, преобразующая электрическую энергию в механическую. энергия. Обычно он создает вращающую силу, вращая приводной вал. Двигатели используются для привода звукового оборудования: фонографов, магнитной ленты. плееры, охлаждающие вентиляторы и многие другие приложения, фиг. 52.


      РИС. 52. А — Электродвигатель. B — символ электродвигателя и ссылочная буква. C — двигатель, который может работать как комбинированный двигатель-генератор.

      ГЕНЕРАТОР

      Генератор — это вращающаяся машина, преобразующая механическую энергию в электрическая энергия, фиг. 53. Может использоваться также для преобразования постоянного тока. напряжение в переменный ток нужной частоты и амплитуды.


      РИС. 53. Генератор и условное обозначение с условным обозначением.

      ВОЗВРАТ ЦЕПИ

      Для возврата схемы используются три символа.Они земля земля, заземление шасси и символы общего заземления. Земля заземления, фиг. 54А, есть используется для возврата цепи непосредственно на землю. В цепях переменного тока будет использоваться символ заземления. Основания шасси, фиг. 54B, используются для обозначения цепи, которые возвращаются в раму или шасси оборудования. Авто хороший пример наземного блока шасси. Общая земля, фиг. 54C и D используются для отображения доходов с одинаковым потенциалом. Этот потенциал не обязательно быть нулем.Общие точки соприкосновения иногда называют авиакомпанией.


      РИС. 54. A — символ заземления. B — символ заземления корпуса. C — общий язык символ. D — символ общего заземления с модификатором, который сделает его общим. к прочим — 1 источник 5V рисунка.

      ЗНАЧЕНИЯ КОМПОНЕНТОВ

      Есть предпочтительные способы записи величин в таких единицах, как Ом, вольт или генри. Значения должны быть короткими и удобочитаемыми. Составная часть значения выражены, как показано на фиг.55.


      РИС. 55. A — Как записать значения резисторов. Символ K будет написан от руки. в столицах. B — Как записать значения конденсаторов и катушек индуктивности.

      СТАНДАРТЫ

      Все символы и условные обозначения в этом разделе соответствуют со стандартом. Два основных стандарта:

      USAS Y32.16 Справочные обозначения электрических и электронных деталей и оборудование.

      USAS Y32.2 Графические символы для электронных и электрических схем.

      Военные стандарты учитываются при заключении военных или государственных контрактов. вовлечены.

      МОДИФИКАТОРЫ СИМВОЛОВ

      Есть много вещей, которые мы можем сделать с основным символом, чтобы изменить его значение. Модификаторы используются для изменения значения компонента. Вы видели некоторые модификаторов, использованных ранее в этом разделе. Обратите внимание на некоторые дополнительные модификаторы и их использование на фиг. 56.

      Полярность. Используется, чтобы указать, в каком направлении установлено устройство. схема.


      РИС. 56. Модификаторы, используемые для добавления смысла к основным символам.

      ВОПРОСЫ НА ОБЗОР

      1. Какую функцию выполняет резистор?

      2. Что регулирует величину сопротивления?

      3. Какая фраза вам напоминает транзистор типа NPN?

      4. Используя цветовую кодировку резистора (приложение), укажите значение для следующие резисторы.

      а. коричневый черный коричневый серебристый

      г.оранжевый зеленый оранжевый золото

      г. коричневый зеленый оранжевый серебристый

      г. оранжевый черный зеленый золото

      5. Укажите следующие цвета:

      а. 270 ± 5%

      г. 2400 ± 10%

      г. 4,7 К ± 10%

      г. 5,6 К ± 5%

      e. 0,18M ± 5%

      ф. 1,1 млн ± 5%

      6. Объясните, как работает реостат.

      7. Конденсаторные блоки _________ (AC, DC).

      8.Какую информацию необходимо предоставить при покупке конденсатора?

      9. Что делает катушка?

      10. Сколько символов используется для обозначения соленоидов?

      11. Какие две секции трансформатора?

      12. Какие функции выполняют реле?

      13. Что означает размещение между двумя настраиваемыми символами?

      14. Какой источник тока обеспечивает батарея?

      15. В чем основное отличие предохранителя от автоматического выключателя?

      16.Какие два конца диода?

      17. Как используются стабилитроны?

      18. Какие компоненты заменены?

      19. Что для вас значит, когда указано — разъем имеет ключ?

      20. Что значит правильно указать резистор? Список о три идеи.

      ПРОБЛЕМЫ

      PROB. 1. Нарисуйте символ резистора и предоставьте всю идентифицирующую информацию.

      PROB.2. Потренируйтесь рисовать символ трансформатора. Добавьте символ крана в центре. Предоставьте всю необходимую информацию.

      PROB. 3. Используя свой шаблон символа, создайте следующие компоненты: Обозначьте каждый из них соответствующим условным обозначением.

      1. Транзистор (PNP).

      2. Рамочная антенна.

      3. Диод (стабилитрон).

      4. Потенциометр используется как реостат.

      5. Трансформатор (железный сердечник)

      6.Резистор с отводом.

      7. Однопереходный транзистор.

      8. Предохранитель.

      9. Шасси заземлено.

      10. Коаксиальный кабель.

      11. Батарея многоэлементная.

      12. Автоматический выключатель.

      13. Индуктор.

      14. Конденсатор (переменный).

      15. Переключатель (механический) (поворотный).

      16. Спикер.

      17. Микрофон.

      18. Головка подборщика.

      19. Мотор.

      20. Транзистор (NPN).

      .
    Схем

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *