+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как правильно подобрать стабилизатор напряжения

Время прочтения: 5 мин

Дата публикации: 23-12-2020

В какой части Украины Вы бы ни жили, везде имеет место одна и та же проблема — нестабильная работа централизованной сети. Это приводит к постоянным колебаниям напряжения. К сожалению, многие не в курсе опасности, которую представляет нестабильное электропитание и принимают этот факт как должное. На самом деле, немалая часть поломок электроприборов, например компрессора холодильника, связана именно с некачественной электроэнергией, на работу с которой техника попросту не рассчитана. Вся сертифицированная в Украине бытовая техника гарантированно работает под напряжением 220В с отклонением до 10%.  Производитель не может отвечать за исправность электроприбора, на который подается, например, 190 или 250 вольт. Следовательно, Вы должны позаботиться о защите бытовой техники от некачественной электроэнергии. Именно на этом и специализируется магазин стабильного электропитания «Вольтмаркет».

Самым популярным средством борьбы с некачественной электроэнергией являются стабилизаторы напряжения. Стабилизатор напряжения — это устройство, которое принимает на входе опасную нестабильную электроэнергию, а на выходе выдает качественный безопасный сигнал, пригодный для работы бытовой техники и электроники. Рынок Украины полон самых разнообразных отечественных и импортных моделей. От выбора может закружиться голова, однако, мы выделим основные критерии, определившись с которыми масштабы поиска сузятся с сотен стабилизаторов напряжения до единиц.

Как выбрать стабилизатор напряжения — основные критерии выбора

1.Количество фаз

Первое, на что стоит обратить внимание при выборе стабилизатора напряжения — это тип нагрузки. Вся домашняя бытовая техника — телевизор, компьютер, холодильник — работают от однофазной сети 220В. Соответственно, если Вы выбираете стабилизатор напряжения для дома, то сужайте поиск до однофазных моделей. Специально для промышленного оборудования в каталоге интернет-магазина «Вольтмаркет» Вы сможете найти трехфазные стабилизаторы.

2. Мощность

Мощность стабилизатора напряжения — это крайне важный критерий. Если выбрать слишком слабую модель, то устройство будет регулярно «уходить в защиту» при превышении максимально допустимого тока. А купив излишне мощный стабилизатор напряжения, Вы банально переплатите за ненужные характеристики. Обычно, для квартир и небольших частных домов выбирают модели из среднего сегмента, такие как ЭЛЕКС АМПЕР 12-1/40 v2.0 или Укртехнология OPTIMUM 9000. Интернет-магазин «Вольтмаркет» осуществляет все стадии обслуживания своих клиентов: от консультации по выбору оборудования до подключения и настройки. Поэтому, если Вы не знаете, на какую мощность рассчитывать при выборе стабилизатора, обратитесь к нашим специалистам.

3. Тип стабилизации

Все особенности работы стабилизатора напряжения зависят от применяемого типа стабилизации. Самые популярные из них — это релейный, электронный и сервоприводный. Каждый обладает достоинствами и недостатками, взвесив которые Вы сможете легко и правильно выбрать стабилизатор.

  • Электронные стабилизаторы напряжения являются самыми распространенными в нашей стране. Их принцип работы основан на ступенчатом тороидальном трансформаторе с множеством обмоток (ступеней), которые коммутируются полупроводниковыми тиристорами. В зависимости от выбранной ступени меняется коэффициент трансформации и, соответственно, выходное напряжения. К достоинствам данного типа стабилизаторов напряжения можно отнести отсутствие подвижных деталей, что делает их крайне надежными, практически бесшумную работу и высокую скорость реакции. Электронный стабилизатор реагирует на сетевые колебания
    в течение 20 миллисекунд
    , выдавая на выходе чистый сигнал. К минусам можно отнести ступенчатый принцип регулировки. Выходное напряжение меняется не плавно,а скачкообразно с разницей в одну ступень, которая, в зависимости от точности конкретной модели, в среднем составляет 5-10В. Этот недостаток никак не воспринимается холодильником и прочей бытовой техникой, отчего электронные стабилизаторы напряжения — крайне популярный выбор для дома и квартиры.
  • Релейные стабилизаторы работают по тому же принципу, что и электронные, поэтому по большей части имеют те же достоинства и недостатки. Разница лишь в том, что коммутацию ступеней трансформатора производят не тиристоры, а электромагнитные реле, которые имеют меньше (но,тем не менее, тоже крайне большой) ресурс работы и издают характерный щелчок при каждом переключении. Их достоинством является самая низкая цена среди всех остальных типов, однако они постепенно уступают место электронным моделям.
  • Сервоприводные, они же электромеханические стабилизаторы напряжения являются достойным конкурентом электронным моделям. Подробная информация поможет выбрать нужный. Особенностью сервопривода является то, что вместо ступени он коммутирует при помощи скользящего контакта каждый виток трансформатора. Как результат — максимально плавная регулировка напряжения и высокая точность выходного сигнала. Выбранные стабилизаторы отлично подходят для сетей, которым характерно стабильно завышенное или заниженное напряжение без резких перепадов, так как сервопривод не может мгновенно подстроиться под резкое изменение входного сигнала, как это делают электронные и релейные аналоги. Это происходит ввиду того, что при сильных колебаниях сетевого напряжения сервоприводу может потребоваться целая секунда, и даже больше, чтобы установить токопроводящий контакт в требуемое положение. Другим недостатком данных стабилизаторов является звук, издаваемый сервоприводом в момент вращения, поэтому их желательно подключать в отдельном помещении, например в котельной.

  • Также существуют электронные бесступенчатые стабилизаторы, которые благодаря различным дополнительным схемам способны осуществлять стабилизацию электронного типа с высокой скоростью срабатывания, но без характерных для ступеней “шагов” регулирования. Основным недостатком данного типа стабилизаторов является высокая цена, отчего их затмили более дешевые аналоги, упомянутые выше.

4. Характеристики

С мощностью мы уже довольно легко определились, однако количество характеристик у отдельно взятого стабилизатора напряжения очень велико. Не стоит этого пугаться, ведь при выборе особо важными являются буквально несколько из них.

  • Точность стабилизации

Как выбрать нужный аппарат опираясь на данный параметр? Ответ — легко! Именно он определяет, насколько выходное напряжение может отклоняться от требуемых 220В (или 380В в случае с трехфазными моделями). Стабильно высокой точностью обладают сервоприводные модели, у которых данный показатель

обычно составляет 1-3%. Это просто отличный выбор для самых чувствительных электроприборов, однако домашняя бытовая техника, такая как холодильник или газовый котел, допускают отклонения до 10%, что и объясняет огромную популярность электронных стабилизаторов. Модели электронного типа в зависимости от количества ступеней стабилизации чаще всего обладают точностью 2,5-7%, чего вполне достаточно. Некоторые флагманские электронные стабилизаторы напряжения, например ЭЛЕКС ГЕРЦ 36-1/40 v3.0 благодаря наличию 36 ступеней достигают точности 1%, догнав, и уверенно обогнав сервоприводные аналоги.

  • Рабочий диапазон стабилизации

Стабилизаторы напряжения не могут обеспечивать выход 220В при абсолютно любом номинале на входе. У каждой модели есть свой допустимый рабочий диапазон, на который следует обращать внимание. В наличии нашего интернет-магазина также есть особые стабилизаторы со сдвинутым в ту или иную сторону рабочим диапазоном, рассчитанные на сети, для которых характерны либо сильнейшие просадки, либо регулярные скачки напряжения. При выходе за рабочий диапазон, стабилизатор чаще всего отключает нагрузку и сообщает об аварии, поэтому данная характеристика является крайне важной при выборе конкретной модели.

  • Прочие особенности и функции стабилизаторов

Каждый стабилизатор напряжения индивидуален. Поэтому, определившись с критично важными характеристиками, Вы вышли на финишную прямую и дальнейший выбор зависит от Ваших индивидуальных предпочтений в дизайне корпуса, типе монтажа, органах управления, функционале меню и так далее.

О том как выбрать стабилизатор напряжения для газового котла читайте рекомендации в нашей статье.

При покупке стабилизатора напряжения в интернет-магазине «Вольтмаркет», Вам не стоит волноваться за подключение и настройку устройства, с этим Вам с радостью помогут наши квалифицированные специалисты. Если Вы хотите разобраться как выбрать стабилизатор напряжения, лучше всего посетите одну из наших торговых точек в Киеве или Днепре, чтобы лично ознакомиться с функционалом интересующих моделей и получить ответы на все интересующие Вас вопросы.

Выбор стабилизатора напряжения | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

В прошлой статье я рассказывал Вам про необходимость установки стабилизатора напряжения для дома, показатели качества электрической энергии и типы стабилизаторов. Сегодня проведем выбор стабилизатора напряжения по мощности на примере своего дома (дачи) в деревне. В конце статьи я расскажу Вам про виды крепления и установку стабилизаторов напряжения.

Пример выбора стабилизатора напряжения для однофазной сети

Вы решили приобрести стабилизатор напряжения, но не знаете, как его правильно выбрать. Привожу наглядный пример выбора стабилизатора напряжения для своего «домика в деревне».

Пока речь завели про деревянный дом, то рекомендую Вам почитать мои следующие полезные статьи:

1. Однофазная или трехфазная сеть

Для начала необходимо узнать количество фаз питающего напряжения. В моем примере это однофазная сеть, поэтому мне будет достаточно выбрать один однофазный стабилизатор напряжения.

Если у Вас трехфазная сеть, то в таком случае необходимо выбирать трехфазный стабилизатор напряжения, либо три однофазных стабилизатора, соединив их  «звездой».

2. Мощность потребителей

Теперь нам нужно определиться с мощностью потребителей, для которых будем использовать стабилизатор напряжения. Это может быть один или несколько электроприемников. Также стабилизатор напряжения можно установить на вводе для абсолютно всех потребителей. Но об этом чуть позже.

Мощность всех потребителей выписываю в один список с указанием их активной мощности. Активная мощность измеряется в ваттах (Вт). Ее можно найти в руководстве (паспорте) на прибор или на корпусе самого прибора.

Вот мой составленный список:

Подход к расчету мощности для выбора стабилизатора напряжения должен быть рациональным, ведь у Вас не всегда включены в сеть все перечисленные выше потребители. Поэтому здесь нужно точно определиться, что у нас будет включено одновременно.

Если не хотите с этим «заморачиваться», то берите всю мощность.

Например, для себя я определил потребителей, которые могут быть включены одновременно:

Далее из полученного списка необходимо выбрать те приборы, в которых содержатся электродвигатели.

Это нужно нам для того, чтобы учесть их пусковые токи, которые достигают величину в 3-5 раз больше, чем номинальные. Пусковая мощность или пусковой ток этих потребителей можно найти в паспортах. Если паспортов уже давно нет, то можно воспользоваться приблизительным расчетом, умножив их номинальную мощность на 3. Я так и сделал.

Далее рассчитаем общую полную мощность. Полная мощность измеряется в вольт-амперах (ВА) и отличается от активной мощности на коэффициент мощности «косинус фи» (cosφ). Этот коэффициент всегда указан в паспортах на приборы. Опять же, если паспортов у Вас нет, то можно принять приближенный cosφ = 0,75.

Еще хочу заметить, что нагреватель и утюг имеют cosφ = 1, т.к. это чисто активная нагрузка, которая идет только на образование тепла.

Освещение в моем доме выполнено с помощью энергосберегающих ламп, у которых коэффициент мощности равен примерно cosφ = 0,9. Кому интересно, то можете почитать мою статью о том, почему мигают энергосберегающие лампы.

Для остальных потребителей принимаем средний коэффициент мощности, равный cosφ = 0,75.

Чтобы перевести активную мощность в полную мощность необходимо разделить активную мощность на cosφ.

В итоге получаем суммарную полную мощность наших потребителей: 12322,22 + 12600 = 24922,22 (ВА) или 24,9 (кВА).

Можно округлить до 25 (кВА).

3. Фактическое напряжение сети

После расчета потребляемой мощности необходимо измерить фактическое напряжение питающей сети. Сделать это можно самостоятельно, воспользовавшись мультиметром. Более подробно об этом я писал в статье: «Как пользоваться мультиметром при измерении напряжения».

Еще вариант, это пригласить специалистов для проведения энергоаудита, но это обойдется Вам дороже. Они установят приборы на 24 часа для анализа качества электрической энергии и в конце выдадут Вам подробный отчет.

Допустим Вы зафиксировали, что напряжение в сети в вечернее время у Вас составляет 180 (В).

4. Выбор мощности стабилизатора напряжения

Номинальная полная мощность стабилизатора напряжения всегда указывается в вольт-амперах (В) и соответствует питающему напряжению 220 (В).

При снижении питающего напряжения, соответственно, снижается его выходная мощность. Также хочу сказать Вам, что не допускается длительная работа стабилизатора напряжения при пониженном напряжении, т.к. это вызывает перегрузку и может привести к его отключению, что приведет к обесточиванию всех потребителей.

Чтобы избежать таких последствий, необходимо к полученной полной мощности наших потребителей 25 (кВА) добавить коэффициент нижнего предела напряжения стабилизатора, который равен 1,2 при 180 (В), и 1,3 — при напряжении 170 (В). В нашем случае напряжение в вечернее время составляет 180 (В), поэтому применяем коэффициент 1,2.

25 · 1,2 = 30 (кВА)

Чтобы была возможность использовать стабилизатор напряжения длительное время со всей включенной нагрузкой, необходимо к полученной выше мощности добавить коэффициент запаса по мощности, равный 1,25.

30 · 1,25 = 37,5 (кВА)

Остается только выбрать стабилизатор напряжения из предложенных моделей, зная его необходимую мощность. Например, нам подойдет стабилизатор напряжения мощностью 40 (кВА) и больше.

 

Как выбрать стабилизатор напряжения для трехфазной сети

Выбор стабилизатора напряжения для трехфазной сети практически аналогичен. Производим расчет мощности для какой-то одной фазы, желательно наиболее загруженной. По этой фазе замеряем фактическое напряжение в сети в часы пиковых нагрузок. Полную мощность в вольт-амперах, умножаем на 3 (количество фаз).

Запас по мощности делаем порядка 10%.

Полученное значение и есть полная мощность стабилизатора напряжения для трехфазной сети. По этой мощности из всего ассортимента предлагаемой продукции выбираем необходимый стабилизатор напряжения.

А вообще выбор стабилизатора напряжения лучше доверить специалистам. Так будет надежнее.

Иногда меня спрашивают, можно ли вместо трехфазного стабилизатора напряжения приобрести три однофазных? Да конечно можно, так будет даже дешевле и практичнее. Например, при обрыве одной питающей фазы, остальные фазы будут в рабочем состоянии. Но если у Вас в доме имеется хоть какая нибудь трехфазная нагрузка, то в любом случае Вам нужен трехфазный стабилизатор напряжения, потому что он ведет контроль фаз по линейному напряжению сети. И если хоть одна фаза оборвется, то стабилизатор полностью отключается.

Еще два не менее важных совета по выбору стабилизатора напряжения для трехфазной сети:

  • стабилизаторы должны быть установлены в каждой фазе (оставлять без стабилизатора напряжения хоть одну фазу запрещено)
  • нагрузка по каждому стабилизатору напряжения должна быть примерно равная, иначе в нуле пойдет большой ток, который может вывести стабилизатор из строя
  • если разница линейных напряжений сети составляет более 25%, то стабилизаторы напряжений устанавливать запрещено

Функция BYPASS

Для начала давайте определимся что это за функция BYPASS (Байпас) и нужна ли она нам?

Практически во всех стабилизаторах мощностью от 3 (кВА) имеется функция BYPASS (Байпас). Включив автомат с этой надписью, стабилизатор на выходе выдает входное напряжение. Удобна эта функция тогда, когда напряжение в сети понижается не всегда, а например, только по вечерам, как в моем случае.

 

Выбор стабилизатора напряжения. Функция задержки

Еще одна из удобных функций стабилизатора напряжения, на которую стоит обратить внимание при покупке. Это функция задержки включения выходного напряжения, когда питающее напряжение вышло за пределы входного напряжения стабилизатора или совсем пропало. Существует несколько регулировок задержки — у разных производителей по-разному.

Крепление и установка стабилизатора напряжения

Стабилизатор напряжения можно крепить двумя способами:

  • на полу
  • на стене

Установка стабилизатора напряжения на полу или на полке применима к стабилизаторам небольшой мощности. У них малые габариты и вес. Например, мой небольшой и старенький стабилизатор напряжения «Ресанта» мощностью всего 0,5 (кВА) установлен прямо на подоконнике окна.

Более мощные стабилизаторы напряжения целесообразно размещать на стене, поэтому они выпускаются немного плоскими. Хотя по желанию их тоже можно установить на полу.

 

Заключение по выбору стабилизатора напряжения

В конце данной статьи хочу сделать небольшой вывод. Я показал пример расчета и выбора стабилизатора напряжения для однофазной сети. Мы получили, что стабилизатор напряжения для наших потребителей должен быть мощностью не ниже 37,5 (кВА). Можно идти покупать, но я задумался о его стоимости. Ведь стабилизатор напряжения такой мощности стоит совсем не дешево.

Как вариант можно через него не запитывать нагреватель и утюг, ведь при понижении напряжения в сети они будут лишь медленнее нагреваться. Остальным потребителям необходима только  качественная электрическая энергия. Если воспользоваться таким вариантом, то можно немного сэкономить.

P.S. На этом я заканчиваю статью на тему выбора стабилизатора напряжения. Если у Вас есть вопросы, то спрашивайте в комментариях. Можете поделиться данной статьей с друзьями и коллегами, особенно владельцев дач и домов. Спасибо.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как выбрать стабилизатор?

Каждый человек, столкнувшийся с проблемой некачественного электроснабжения, когда напряжение сети изменяется в значительных пределах, приходит к единственно верному решению — установке стабилизатора.

В этой статье мы рассмотрим параметры, по которым осуществляется выбор стабилизатора, а так же определим алгоритм для самостоятельного выбора стабилизатора для вашей сети.

  • Первое, с чего стоит начать, это определение количества фаз. Бытовая сеть может быть однофазной (220В), либо трехфазной (380В). Стабилизаторы также подразделяются на однофазные и трехфазные. Трехфазный стабилизатор представляет из себя три однофазных стабилизатора, объединенных в одном корпусе и управляемых единым блоком контроля (при пропадании или перекосе одной из фаз стабилизатор отключится). Если в трехфазной бытовой сети отсутствует трехфазная нагрузка, могут быть подключены три однофазных стабилизатора.
  • Второй крайне важный параметр это мощность. Для выбора мощности стабилизатора необходимо уяснить несколько важных моментов. Первое – мощность стабилизатора, как правило, указывается в вольт-амперах (полная мощность), что не равно ваттам. Полная мощность состоит из активной и реактивной, чтобы получить привычное нам значение в Вт, необходимо полную мощность умножить на коэффицент 0,8 (косинус фи). Второй важный момент – чтобы продлить срок службы стабилизатора, он не должен работать на предельной мощности, необходимо оставлять запас 25-30%.
  • Третий важный параметр – это диапазон входных напряжений. Этот параметр указывает разброс входных напряжений, при которых стабилизатор способен выдавать стабильное напряжение с заявленной погрешностью.
  • Четвертый параметр, который надо учитывать – это точность стабилизации. В большинстве случаев для бытовых приборов достаточно точности 7-8%. Более надежную защиту могут дать стабилизаторы с точностью стабилизации 3-6%. Если есть необходимость защитить оборудование с высокими требованиями к входному напряжению (серверное оборудование, медицинское, точные измерительные приборы, профессиональное фото/видео оборудование), используют стабилизаторы с точностью 1-1,5%

Давайте рассмотрим алгоритм выбора стабилизатора на конкретном примере:

Допустим, в связи с регулярными перепадами напряжения в диапазоне 160-245В есть необходимость обеспечить качественным напряжением трехфазную сеть загородного дома. Набор потребителей стандартный – насос, котел, освещение, посудомоечная и стиральная машины, холодильник и прочее. Потребители по фазам распределены равномерно.

Первым делом необходимо определиться – будет использован трехфазный стабилизатор, либо три однофазных. В случае отсутствия трехфазных нагрузок, рационально использовать три однофазных прибора – это позволит при выходе из строя одного из них продолжить эксплуатировать оставшиеся.

Второй момент с которым необходимо определиться – это мощность. Рассмотрим на примере наиболее часто встречающегося варианта – это загородные дома с трехфазной сетью и выделенной мощностью 5,5 кВт на фазу (вводной автомат 25А), оптимальным выбором будут три стабилизатора мощностью 7500 ВА.

Касаемо выбора по диапазону входных напряжений, большинство стабилизаторов перекрывают 160-245В (например у стабилизаторов Энерготех этот диапазон составляет 121-259 В рабочего напряжения и 60-267 В предельного). В случае более серьёзных отклонений может быть установлен прибор со смещённым диапазоном.

Если приборы с повышенными требованиями к входному напряжению не используются, выбор можно остановить на приборах точностью 7% или 5% этого будет достаточно в большинстве случаев.

Посмотреть фотографии наших монтажей стабилизаторов напряжения можно здесь

Рекомендуем посмотреть наиболее популярные модели стабилизаторов напряжения

Если у Вас остаются сомнения в правильности выбора модели стабилизатора, обращайтесь в компанию RealSolar. Наши специалисты имеют огромный опыт в установке и эксплуатации стабилизаторов напряжения.

Проконсультируйтесь у специалистов

Как выбрать стабилизатор напряжения — Статьи — Справочник

Основные эксплуатационные характеристики, по которым рекомендуется выбирать стабилизатор напряжения:

  • диапазон входных напряжений;
  • количество фаз;
  • мощность стабилизатора;
  • точность и скорость стабилизации напряжения;
  • дополнительные функциональные возможности;
  • габариты, масса.

 

Первоначально необходимо выяснить тип Вашей электросети – однофазная или трехфазная и исходя из этого подобрать необходимый вид прибора. Также стоит уточнить основные проблемы электропитания – постоянно пониженное или постоянно повышенное напряжение в сети либо частые скачки.

Многие модели стабилизаторов не рассчитаны на широкий диапазон входного напряжения и могут качественно отрабатывать только один вид отклонений – понижение либо скачки.

Также для выбора и подключения стабилизатора необходимо рассчитать примерную потребляемую суммарную мощность всех подключаемых к стабилизатору электроприборов. Основное условие выбора мощности стабилизатора напряжения – суммарная мощность подключаемой к нему нагрузки не должна превышать мощности самого стабилизатора (в противном случае автоматика современных стабилизаторов будет их просто отключать).

Ориентировочные значения мощности для различных приборов приведены в таблице. Точные значения можно узнать по паспортным данным.

Таблица: Ориентировочная потребляемая мощность наиболее распространённых бытовых электроприборов.

потребитель мощность, Вт потребитель мощность, Вт
БЫТОВЫЕ ПРИБОРЫ ЭЛЕКТРОИНСТРУМЕНТ
Фен для волос 450-2000 Электродрель 400-800
Утюг 500-2000 Перфоратор 600-1400
Электроплита 1100-6000 Электроточило 300-1100
Тостер 600-1500 Дисковая пила 750-1600
Кофеварка 800-1500 Электрорубанок 400-1000
Электрообогреватель 1000-2400 Электролобзик 250-700
Электрогриль 1200-2000 Шлифовальная машина 650-2200
Пылесос 400-2000 ЭЛЕКТРОПРИБОРЫ
Радио 50-250 Компрессор 750-2800
Телевизор 100-400 Водяной насос 500-900
Холодильник 150-600 Циркулярная пила 1800-2100
Электродуховка 1000-2000 Кондиционер 1000-3000
СВЧ печь 1500-2000 Электроника (плата и управления) и электронасосы газового котла 200-900
Компьютер 400-750 Электромоторы 550-3000
Электрочайник 1000-2000 Вентиляторы 750-1700
Электролампа 20-250 Газонокосилка 750-2500
Бойлер 1200-1500 Насос высокого давления 2000-2900

 

Также необходимо учитывать высокие пусковые токи, сопровождающие работу многих приборов оснащенных электродвигателями. Данная величина зависит от типа и конструкции электродвигателя, наличия или отсутствия устройства плавного запуска. Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), но его пусковой ток неизвестен, то паспортную потребляемую мощность двигателя необходимо умножить минимум на 3, во избежание перегрузки стабилизатора напряжения в момент включения устройства. Большие пусковые токи могут наблюдаться и у других устройств.

 

Рекомендуется выбирать модель стабилизатора напряжения как минимум с 30% запасом от потребляемой мощности нагрузки. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым увеличив его срок службы, во-вторых, создадите себе резерв мощности для подключения нового оборудования.

 

Настоятельно рекомендуется устанавливать стабилизатор в специально отведенном для этого месте, недоступном для детей. Стабилизатор нельзя устанавливать на чердаках, в шкафах, в закрытых нишах стен, в сырых (с повышенной влажностью воздуха) помещениях. Так же нельзя располагать стабилизатор в помещении с горючими, легковоспламеняющимися, химически активными материалами и жидкостями. При установке стабилизатора необходимо применять кабели, имеющие соответствующее сечение и изоляцию а так же обеспечить надёжное заземление его корпуса.

Мощность стабилизаторов «Эра» изначальна указана в Вт, чтобы упростить Вам выбор необходимой мощности стабилизатора. Кроме того, стабилизатор «Эра» снабжен индикатором нагрузки, который позволяет наглядно увидеть мощность подключенных к стабилизатору приборов и ее изменения – в частности — пуск электродвигателя, и тем самым предупредить нежелательные перегрузки стабилизатора.

Как выбрать стабилизатор напряжения. Вольтра

Стабильные характеристики электросети являются залогом долгой и верной службы электроприборов. Наверняка все замечали, как освещение в комнате становится более тусклым или, наоборот, более ярким. Это признаки нестабильного напряжения в электросети. Наиболее опасны для техники резкие скачки напряжения: так, изменение этого параметра на 10% способно уменьшить срок службы электроприборов в 4 раза. Скачки напряжения случаются даже в мегалополисах, что уже говорить о более мелких городах, деревнях или дачных поселках. Ремонтные мастерские регулярно принимают технику, вышедшую из строя из-за скачков напряжения.

Почему же скачет напряжение? Изменение характеристик сети неизбежно – любое включение или выключение электроприбора уменьшает или повышает нагрузки на сеть. К примеру, при использовании сварки в гаражном кооперативе свет тускнеет в такт работе сварщика. На качество тока также влияет общая нагрузка в сет.К примеру, в жилых многоквартирных домах нагрузка на сеть заметно вырастает по вечерам, когда большинство людей находятся дома. Еще одна причина падения напряжения кроется в самих проводах: чем они длиннее, тем больше потерь происходит. По этой причине довольно часто страдают дачные поселки и деревни.

Кто покупает стабилизаторы напряжения? В первую очередь, основными покупателями являются предприятия, производства, офисы и различные учреждения – скачок напряжения не только грозит солидными растратами на ремонт или покупку всего оборудования, но и влияет на работоспособность всего производства. Трудно работать в офисе, если компьютеры выключается едва ли не каждые 10 минут. Кроме того, на предприятиях с точными и сложными приборами стабильное напряжение является обязательным фактором для работы. Покупка стабилизатора напряжения для дома – вопрос и личное дело каждого, и если в квартире без него еще можно обойтись, то в частном доме или на даче жизнь без стабилизатора становится слегка напряженной.

В электротехнике существует несколько видов преобразователей напряжения. В данном случае речь идет о корректирующих стабилизаторах переменного тока. Они призваны регулировать напряжение, которое подается на технику – холодильники, стиральные машины, компьютеры и прочее. Главной задачей стабилизаторов является приведения характеристик тока к стандартным (и самое главное – стабильным) показателям. Это обеспечит сохранить подключенное оборудование или технику и продлит срок их службы.

Если Вы задумались о покупке стабилизатора напряжения для дома, стоит понять наверняка, существует ли необходимость в его приобретении. Для этого необходимо с помощью тестера несколько раз в будний и выходной дни произвести замеры. Критическими показателями являются 198В и 242В – выход за эти пределы способен испортить технику, покупать стабилизатор стоит для защиты всей сети. В среднем электроприборы способны выдерживать колебания напряжения в пределах 10%, но срок их эксплуатации при этом сокращается. Лампочки начинают перегорать при выходе из диапазона 205-235В. Если напряжение колеблется в пределах 210-230В, имеет смысл задуматься о покупке стабилизатора напряжения для одного самого дорогого прибора.

Стабилизатор подключается к сети таким образом, что ток подается на технику только после прохождения через него. Несмотря на одну функцию, различают три вида стабилизаторов – ферромагнитный, электромеханический, электронный (цифровой). Первоначально электромагнитные стабилизаторы были распространены больше всего, но сейчас наиболее популярны цифровое и электромеханические устройства — рассмотрим их подробнее.

Виды стабилизаторов напряжения

Электромеханические стабилизаторы

В основе такого устройства находится автотрансформатор с проводами, которые автоматически переключаются. Грубо говоря, это катушка с обмоткой из медной проволоки. Вторым главным элементом стабилизатора является электромагнитный механизм с ползунком. Если входное напряжение пониженное, этот ползунок перемещается вверх и повышает напряжение на выходе, и, соответственно, наоборот. В качестве ползунка используются графитовые щетки. Они способны установить необходимое выходное напряжение с погрешностью всего до 2%, регулировка напряжения – плавная. В некоторых стабилизаторах напряжения – например «Ресанта» — используются сразу две графитовые щетки, за счет этого возрастает скорость регулировки напряжения. Некоторые особо мощные стабилизаторы (30кВт и больше) оснащаются также дополнительным трансформатором.

В работе электромеханические стабилизаторы бесшумны, даже несмотря на наличие движущихся частей. Они не вносят в сеть никаких искажений и устойчивы к помехам в сети. Точность напряжения на выходе таких стабилизаторов достаточно высока, поэтому к ним можно смело подключать чувствительную аудиоаппаратуру, медицинские и измерительные приборы.

Из недостатков стоит отметить особенность эксплуатации, связанную с наличием движущихся щеток. Они подвержены естественному износу и требуют регулировки, ухода и замены. При изменении показателей электросети возможно небольшое отставание в их реакции. Мощные стабилизаторы отличаются внушительными габаритами и весам. Устройства достаточно требовательны к условиям эксплуатации: температура в помещении не должна быть ниже -5 градусов или выше +40 градусов. И естественно, использование их во влажных помещениях недопустимо.

Электронные (цифровые) стабилизаторы

Приборы этого типа производят регулировку напряжения ступенчато – из-за этого такие стабилизаторы также называются «дискретными». Как и в электромеханических стабилизаторах, в их основе находится автотрансформатор. Но графитовых щеток нет – вместо них используются реле или полупроводники (тиристоры и симисторы).

Работа цифровых стабилизаторов осуществляется по следующему принципу: каждый виток на трансформаторе добавляет от 4 до 22В (у однофазных). Реле или электронные ключи включают необходимую обмотку. Точность регулировка в зависимости модели колеблется от 2 до 10%. Этот показатель зависит от количества обмоток. Рассмотрим на примере бытового стабилизатора напряжения с точностью 8%, каждая обмотка которого прибавляет 17,6В. Если входное напряжение составляет 195В, происходит подключение двух обмоток – выходное значение составляет 230,2В. Регулировка происходит достаточно быстро, но при этом несколько страдает точность. Если точность стабилизатора составляет 2%, то при таких же показателях на выходе будет напряжение 221,4В. При этом будет задействовано шесть обмоток, соответственно, увеличится время регулировки. Большое количество элементов системы увеличивает ее цену, надежность, при этом, остается такой же.

Разница в точности моделей не столь критична, как может показаться. Бытовая техника способна нормально функционировать при изменении напряжения в пределах +/- 10%. Таким образом, холодильники, насосы и другие приборы с электродвигателем или нагревательным элементом будут работать нормально. Что касается компьютеров, домашних кинотеатров и другой точной бытовой электроники, то для них лучше купить стабилизатор с меньшей погрешностью. Электронные стабилизаторы напряжения оснащены цифровым управлением. Все управляющие элементы размещаются на одной микросхеме, что позволило значительно уменьшить вес и габариты прибора. Стабилизаторы оснащены электронным дисплеем, который, как правило, расположен на фронтальной части корпуса. На него выводятся значения входного и выходного напряжения.

Из преимуществ цифровых стабилизаторов стоит отметить отсутствие движущихся частей – отныне можно забыть о замене графитовых щеток. Качество стабилизатора и срок его службы напрямую зависят от качества тиристоров и симисторов. Кроме того, некоторые модели можно использовать в довольно суровых условиях – при температуре от -20 и ниже.

Недостатком электронным стабилизаторов напряжения является слабая перегрузочная сопротивляемость. Электронные ключи достаточно нежные, и большие нагрузки или короткое замыкание способны быстро вывести их из строя. При покупке цифрового стабилизатора желательно иметь как можно больший запас мощности.

Виды стабилизаторов напряжения по типу сети

Однофазные стабилизаторы напряжения используются в помещениях с однофазной электросетью – 220В. Мощность однофазных стабилизаторов составляет от 0,5 до 30кВт. Такой диапазон позволяет обеспечить защиту как всей техники в доме, так и отдельных устройств или приборов.

В помещениях с трехфазной сетью 380В необходимо использовать трехфазные стабилизаторы. Они представляют собой три однофазных стабилизатора, скомпонованных между собой. Мощность трехфазных стабилизаторов составляет от 3-30кВт и больше. Существуют модели стабилизаторов, мощность которых превышает 100кВт – это три трансформатора с одним сердечником.

И однофазные, и трехфазные стабилизаторы могут быть как электромеханического, так и электронного типа.

Технические характеристики стабилизаторов

При покупке стабилизатора для дома или дачи основная информация, на которую стоит ориентироваться, – технические характеристики прибора.

Однофазные и трехфазные стабилизаторы

Об этих типах стабилизаторов мы подробно рассказывали чуть выше, но все же рассмотрим основные случаи. В быту преимущественно используется однофазная сеть с напряжением 220В, в многоквартирных жилых домах с электроплитами есть трехфазная сеть. Кроме того, трехфазные сети можно встретить на дачах и в частных домах.

В сети 220В можно применять однофазные стабилизаторы напряжения. В сети 380В возможны комбинации из трех- и однофазных моделей.

Мощность

Все электроприборы при включении создают нагрузку на сеть – при подключении к стабилизатору эта нагрузка переходит на него. Нормальная работа стабилизатора будет обеспечена только в том случае, если мощность подключенных приборов не превышает его собственную. Если это условие будет нарушено, сработает защита и стабилизатор отключится. Чем больше витков обмотки и чем больше диаметр проволоки, тем выше будет мощность прибора. Эти параметры также напрямую влияют на вес и размеры прибора.

Мощность стабилизаторов напряжения в зависимости от модели может составлять от 0,5 до 100кВт. Приборы с минимальной мощностью покупают для защиты конкретной техники. Для защиты всех устройств необходим стабилизатор большой мощности – о том, как высчитать этот параметр, мы расскажем чуть ниже.

Входное напряжение

Основой стабилизатора является автотрансформатор, который состоит из первичной и вторичной обмотки. При его создании учитываются мощность и входное напряжение. По их значениям рассчитывается сечение проволоки, а также количество витков. Как правило, каждый производитель придерживается собственных «традиций». Так, у всех однофазных приборов «Ресанты» этот показатель составляет 140-260В, трехфазных – 240-430В. У других производителей этот диапазон может равняться 160-250В для однофазных и 280-430В для трехфазных. Выбор входного напряжения стабилизатора очень прост – оно не должно выходить за пределы напряжения электросети. Так, стабилизатор с входным напряжением 160В уже не сможет работать с сетью, напряжение которой составляет 150В.

Выходное напряжение

Выходное напряжение является прямым результатом работы стабилизатора. При его покупке стоит обращать внимание не только на значения в 220 или 380В, но и на погрешность, выраженную в процентах. Она отображает допустимые отклонения от нормы.

Как мы уже говорили, более точными являются электромеханические стабилизаторы. Значение погрешности любого из них не будет превышать 3%. Погрешность у электронных стабилизаторов может составлять от 2 до 10%. Чем дороже стабилизатор, тем он точнее – на стоимость напрямую влияет количество витков обмотки и электронных ключей. Для защиты всей сети лучше выбирать стабилизатор с минимальной погрешностью.

Частота питающей сети

Напряжение сети – важный, но не единственный ее параметр. Вторым важным показателем является частота питающей сети. Отклонения до 0,2Гц считаются достаточно серьезными, до 0,4Гц – критическими. Превышение этого отклонения способны нарушить работоспособность техники. К примеру, повышенной чувствительностью к колебаниям частоты отличаются асинхронные двигатели, которые используются в отопительных котлах (смотрите стабилизаторы для котлов) и насосах. Двигатели начинают работать с переменной частотой, что приводит к его поломке. Лучшим выходом станет покупка стабилизатора напряжения. Все модели, которые доступны к покупке в Беларуси, поддерживают частоту 50Гц.

Точность и скорость стабилизации

Как мы уже писали, точность стабилизаторов напряжения колеблется в пределах 2-10%. Этого вполне достаточно для большинства бытовой домашней техники. Для более нежной и чувствительной аппаратуры необходимо выбирать стабилизатор как можно с меньшей погрешностью. Скорость стабилизации отображает время реагирования стабилизатора на изменение характеристик тока. Чем меньше будет это время – тем лучше, однако, критичным этот параметр не является.

Габариты и вес

Вес стабилизаторов напряжения может колебаться от 3 до 700 кг, габариты – от размеров ящика до внушительного шкафа. При покупке стабилизатора для дома этот параметр играет немаловажную роль. Среди устройств с мощностью до 10кВт особую популярность у покупателей завоевали цифровые стабилизаторы с дисплеем — благодаря своей компактности, аккуратному внешнему виду, простоте отображения всех показателей на дисплее, а также некоторым другим показателям.

Системы стабилизаторов.

Как и любая сложная техника, у стабилизаторов напряжения есть не только чисто технические характеристики, но и дополнительные функции, которые упрощают работу с ними.

Защита по выходному напряжению – стабилизатор, как и любой другой прибор, имеет свой рабочий диапазон. Если напряжение в сети выходит за его пределы, стабилизатор отключает нагрузку. Как только происходит выравнивание необходимых характеристик ток, подача электроэнергии на приборы возобновляется.

Защита от перегрузки следит за мощностью подключенных к стабилизатору приборов. При превышении допустимой мощности, нагрузка на прибор будет отключена.

Защита от грозовых разрядов и коротких замыканий позволит сохранить стабилизатором работоспособным при возникновении перечисленных явлений.

Тепловая защита или термозащита отключит прибор при достижении критической температуры трансформатором. Это предупредит порчу прибора.

Байпас – функция провода тока напрямую, без участия стабилизатора. Может быть полезна в случае отключенной техники – это сэкономит электроэнергию.

Фильтрация сетевых помех помогает бороться с различными искажениями на входе.

Вольтметр и амперметр позволят следить на силой тока и его напряжением. Вольметр отражает входные и выходные показатели, амперметр замеряет ток на выходе.

Кроме того, работу некоторых моделей стабилизаторов можно отслеживать с помощью компьютера. Цифровые стабилизаторы также могут оснащаться пультом дистанционного управления.

Порядок выбора бытового стабилизатора напряжения

При решении о покупке стабилизатора напряжения в первую очередь следует определиться с количеством фаз. Следующим шагом станет замер напряжения, определение которого станет основным критерием выбора рабочего диапазона стабилизатора.

Следующим важным шагом является определенность мощности стабилизатора. Для этого необходимо сложить мощность всех устройств и техники. Приблизительное энергопотребление распространенной технике можно увидеть в таблице.

Наименование техники Потребляемая мощность, Вт
Промышленное и строительное оборудование
кондиционер 1000 – 3000
компрессор 750 – 2800
дисковая пила, циркулярная пила 750 – 1600, 1800 – 2100
электромотор 550 – 3000
водяной насос, насос высокого давления 500 – 900, 2000 – 2900
дрель, перфоратор 400 – 800, 900 – 1400
электролобзик, электрорубанок 250 – 700, 400 – 1000
шлифмашинка 650 – 2200
Бытовые электроприборы
телевизор 100 – 400
стиральная машина 1800 – 3000
фен, утюг 500 – 2000
тостер, кофеварка 700 – 1500
пылесос 400 – 2000
холодильник 150 – 600
духовка, микроволновка, электрочайник 1000 – 2000
компьютер 400 – 750
накопительный водонагреватель 1200 – 1500
проточный водонагреватель 5000 – 6000
обогреватель 1000 – 2400
электролампы 20 – 250

Перечисленные характеристики являются примерными – ни в коем случайте не используйте их для конечных расчетов! Более точную информацию о своей технике необходимо искать в паспортах или инструкциях.

После того, как Вы точно узнали мощность всех электроприборов, можно приступать к подсчетам мощности бытового стабилизатора. К примеру, в квартире постоянно работают холодильник, осветительные приборы, компьютер и телевизор. Итого получается 1950Вт.

Также стоит учитывать мощность электроприборов, которые включается периодически – чайники, пылесосы, утюги, стиральные машины и др. Предположим, что к нашей основной технике периодически добавляются утюг, микроволновка и обогреватель – суммарная мощность этих приборов составит 6400Вт.

Таким образом, максимальное значение потребляемой мощности будет состоять из этих двух сумм и составит 8350Вт.

После этого необходимо определить коэффициент изменения напряжения в сети. Для этого необходимы данные, полученные при замере входного напряжения.

Коэффициент изменения представлен в таблице.

Напряжение однофазной сети 130 150 170 210 220 230 250 270
Коэффициент отклонения 1,69 1,47 1,29 1,05 1 1,05 1,29 1,47

Коэффициент отклонения трехфазной сети определяется точно также, для этого необходимо взять диапазон +/- 380 В

Предположим, что в нашем случае напряжение в сети составляет 150В – необходимый нам коэффициент равняется 0,47.

Максимальное значение потребляемой мощности умножаем на коэффициент и получаем значение 12274Вт. Значит, стабилизатор напряжения должен иметь мощность как минимум 12Вт.

Важно: электроприборы с моторами в момент включения значительно увеличивают нагрузку на сеть. Это относится к стиральным машинам, холодильникам и другим приборам. Поэтому, необходимо покупать стабилизатор с запасом мощности – 20% является необходимым минимум. Кроме того, запас мощности позволит в дальнейшем подключать дополнительные электроприборы.

При покупке стабилизатора для предприятия, расчеты можно производить аналогичным образом, но стоит помнить об одном условии: мощность устройства должна быть в 3 раза больше номинальной, если к нему планируется подключение оборудования с асинхронными двигателям, компрессоров, насосов и др.

Чтобы избежать этих расчетов, можно также воспользоваться специальными токоизмерительными клещами. Их щупы прикрепляются к проводу, а энергию продолжает поступать к потребителям. Достаточно включить все электроприборы и прибор покажет потребляемую мощность, а также силу тока и сопротивление. Такой способ более точный, чем расчет.

После определения мощности стоит определить точность стабилизации. Ее погрешность измеряется в процентах, чем они больше – тем менее точный прибор. Для большинства техники будет допустима погрешность до 10%, однако, некоторым устройствам нужен более точный параметр. Желательно узнать это значение для каждого электроприбора в доме – в паспорте, инструкции, в местах выхода силовых кабелей или на сайте производителя.

Правила работы со стабилизатором напряжения: установка и начало использования

Как правило, установку и обслуживание стабилизаторов на предприятиях доверяют специалистам. Мы же рассмотрим, как правильно работать со стабилизатором дома.

Если стабилизатор был приобретен в холодное время года, необходимо перед подключением дать простоять ему без работы в нормальных условиях. Производители рекомендуют, чтобы это время составляло не менее суток. С подключением большинства моделей способен справится человек с базовыми навыками, в противном случае некоторые работы все же придется доверить специалисту.

Место установки

Место установки прибора должно отвечать всем требованиям в паспорте стабилизатора. Для большинства бытовых однофазных стабилизаторов минимальная температура составляет +5С. Использование трехфазных стабилизаторов допускается при температуре не ниже -5С. Максимальная температура большинства моделей составляет 45 градусов, поэтому не стоит ставить прибор на места с длительным воздействием солнечных лучей.

Стабилизатор во время работы нагревается, поэтому для отвода тепла в корпусе предусмотрена естественная или принудительная вентиляция. Расстояние между корпусом с вентиляционными отверстиями и стенами должно составлять не менее 50 см.

В зависимости от крепления стабилизатора, различают напольные и настенные модели. Первые можно поставить на пол, на полку или на стол, если позволяет вес изделия. Под стабилизатором не должно быть ковра, так как последний нарушает теплообмен.

Кроме того, не стоит забывать, что, несмотря на все заверения производителей, стабилизаторы напряжения все же шумят – негромко, но тем не менее. Поэтому от установки стабилизатора в спальне лучше отказаться. Идеальным решением станет установка его в нежилые комнаты – прихожую, гардеробную или подсобку.

Правила подключения стабилизатора напряжения

Самым главным правилом при подключении стабилизатора является его заземление. Для его проводки необходимо протянуть медный провод от корпуса к шине заземления. Это мера предосторожности напрямую влияет на безопасность прибора – она защищает пользователя от удара электрическим током. Кроме того, за счет этого уменьшается электромагнитный фон, чрезмерный уровень которого также способен повлиять на здоровье человека. При отсутствии необходимых навыков монтаж заземления лучше производить с помощью квалифицированного специалиста.

Сначала рассмотрим вариант подключения стабилизатора напряжения для отдельной техники – например компьютера, домашнего кинотеатра или холодильника. Для этих целей покупают однофазные стабилизаторы напряжения с мощностью в пределах 3кВт. При подключении стабилизатор обязательно должен быть выключен. Для подключения большинства стабилизаторов с небольшой мощностью не нужно иметь специальные знания: стабилизатор включается в сеть, а уже к нему подключается техника.

Существуют модели стабилизаторов, у которых на корпусе расположены клеммы. Чтобы его подключить, необходимо приобрести и подключить к ним шнур питания с вилкой. К клеммам прикрепляются соответствующие провода шнура. После этого необходимо включить стабилизатор на несколько секунд, чтобы на вольтметре отобразилось значение 220В. После этого стабилизатор необходимо отключить. Таким образом, щетки или электронные ключи установятся на свои рабочие положения. Провод с розеткой подключаются на выходные клеммы. После этого возможно подключать бытовую технику.

Теперь рассмотрим вариант подключения стабилизатора напряжения для защиты всей техники в доме. Для этих целей используются однофазные или трехфазные стабилизаторы. В случае, когда от распределительного щитка подается напряжение 380В, можно установить трехфазный или три однофазных стабилизатора, соединенных между собой. Последний способ более надежен – если один стабилизатор выйдет из строя, остальные продолжат работать. Но этот способ также и более затратный.

Чтобы подключить стабилизатор для всего дома, необходимо соединить фазу и ноль с выхода счетчика к соответствующим клеммам стабилизатора. Перед подключением техники, необходимо привести стабилизатор в рабочее положение способом, о котором мы писали выше. После этого к нагрузке стабилизатора необходимо подключить нейтральный провод от счетчика. Фазу к нему подключают от выходных клемм стабилизатора.

Эксплуатация

После всех необходимых манипуляций с проводами, можно включать стабилизатор. После этого он будет работать в автоматическом режиме. Даже если свет пропадет во всем доме, то после возобновления его работы, стабилизатор включится сам.

Как правило, производители стабилизаторов напряжения стараются максимально защитить их от неблагоприятных воздействий. Однако не стоит ставить на прибор бутылки с жидкостью или, например, чашку с чаем. Кроме того, по правилам электробезопасности, следует исключить возможность контакта корпуса с металлическими предметами. Следует следить за тем, чтобы вентиляционные решетки не были чем-нибудь перекрыты – в противном случае, существует вероятность выхода стабилизатора из строя из-за перегрева.

Еще один важный момент в эксплуатации стабилизатора – помнить о пределах его мощности. Перед подключением новых приборов необходимо проверить, выдержит ли стабилизатор дополнительную нагрузку. Как правило, если стабилизатор изначально был куплен со значительным запасом мощности, таких проблем не возникает.

Стабилизатор практически не требует ухода – необходимо лишь изредка протирать его корпус от пыли и следить за чистотой вентиляционных отверстий. При этом нельзя использовать влажные тряпки и моющие средства. В случае поломки стабилизатора, не стоит пытаться чинить его самостоятельно – ремонт должен производиться в сервисном центре.

Дополнительные расходы на стабилизатор

Большинство стабилизаторов готовы к работе «из коробки», но в некоторых случаях к ним необходимо докупить некоторые вещи.

Провода

Если у стабилизатора для подключения есть только клеммы, в таком случае необходимо отдельно приобретать провода. Они различаются между собой по сечению, количеству жил и допустимому напряжению. Напряжение – самый простой параметр. Провод с допустимым напряжением 380В можно использовать как в трехфазной, так и в однофазной сети. Если провод рассчитан на напряжение 220В, использование его в трехфазной сети недопустимо.

Количество жил – также немаловажный параметр. Проще говоря, жила – это проводник. В зависимости от провода, в нем может быть как одна, так и несколько жил, которые скручивают и закрывают изоляционной оболочкой. Чем больше будет жил, тем надежнее будет провод. Важным фактором является материал, из которого они изготовлены. Для стабилизатора лучше всего приобретать провода с медными жилами – они прочнее алюминия, а токопроводящие свойства выше.

Самым главным параметром при покупке провода является сечение кабеля. Сечение кабеля необходимо рассчитывать отдельно. Для этого необходимо мощность стабилизатора в ВА (ВА=Вт/0,7) разделить на минимальное входное напряжение. Таким образом мы узнаем максимальную силу тока на входе. После этого полученное значение силы тока необходимо найти в таблице. В случае несовпадения силы тока с данными в таблице, выбор сечения необходимо производить в большую сторону. Так, если ток равняется 46А, то необходимое сечение провода составит 6 мм. кв.

Ток, А Сечение, мм2
11 0,5
15 0,75
17 1,0
23 1,5
26 2,0
30 2,5
41 4,0
50 6,0
80 10,0
100 16,0
140 25,0
170 35,0

Все провода, которые есть в продаже, обозначены соответствующей маркировкой. Так как нам необходим медный кабель, в маркировке не должно быть буквы А – это провод с алюминиевым жилами. Другие буквы означают вид изоляции, первая цифра – это сечение, вторая – количество жил.

Как мы уже говорили, для подключения стабилизатора необходимо заземление – сечение кабеля составляет 2,5 мм. кв. Длину проводу стоит определять исходя из места монтажа. Для подключения стабилизатора к розетке, необходим кабель с вилкой.

Монтаж проводов удобнее всего производить с помощью крепежных скоб. Их размеры зависят от диаметра кабеля. Для соединения несколько проводов лучше всего использовать пластиковые хомуты – они дешевые и надежные. Самым простым способом изоляции станет изолента.

Автоматический выключатель

Автоматический выключатель устанавливают между счетчиком и стабилизатором. Его основная задача – защита прибора от коротких замыканий и перегрузок. Его «амперы» должны превышать максимальную силу тока стабилизатора, которую мы рассчитывали выше.

Трехходовой перекидной рубильник

Это устройство позволит сделать байпасную линию, которая будет подавать электроэнергию в обход стабилизатора. К примеру, подобная линия может понадобиться для подключения сварочного аппарата.

Дополнительное оборудование

При подключении стабилизатора самостоятельно могут понадобиться мультиметр, измерительные клещи или индикаторная отвертка.

Мультиметр (проще говоря – тестер) измеряет напряжение, силу тока и сопротивление. Замеры производят с помощью щупов, результат выводится на дисплей или шкалу.

При помощи токовых клещей можно измерить ток, напряжение, сопротивление или частоту провода, проверить его изоляцию на целостность. Для этого достаточно поместить проводник между двумя щупами.

Индикаторная отвертка (отвертка-пробник) позволяет определить фазу и ноль. От обычной ее легко отличить по внешнему виду – прозрачная ручка с диодом внутри.


Как выбрать стабилизатор напряжения

Определяем характеристики стабилизатора напряжения:
  1. Количество фаз. Трехфазные стабилизаторы выбираем при наличии трехфазного напряжения и оборудования. В остальных случаях приобретаем однофазные стабилизаторы.
  2. Определяем диапазон входящего напряжения. Определите какое напряжение у вас на объекте – низкое или высокое, стабильное или бывают скачки.
  3. Номинальная мощность стабилизатора должна быть не меньше суммарной мощности оборудования. При расчете учитываем коэффициент мощности и пусковые токи.
  4. При установке в дом или квартиру номинальный ток стабилизатора не должен быть меньше номинала входного автомата.
  5. Если напряжение в сети сильно занижено, берем дополнительный запас мощности. При этом обращаем внимание на диапазон напряжений, при которых данная модель может работать.
  6. В зависимости от характера изменения напряжения в сети, выбираем тип стабилизатора. Релейные и электромеханические типы не подходят там, где бывают частые и резкие скачки напряжения, для этого больше подходят электронные и инверторные стабилизаторы.
  7. При наличии потребителей с высокими требованиями к электросети (Hi-Fi техника и другое высокоточное оборудование) выбираем модели с наименьшей погрешностью напряжения на выходе.
  8. Если стабилизатор устанавливается в неотапливаемом помещении, выбираем морозостойкую модель, способную работать при низких температурах.
  9. Далее делаем выбор между настольным, напольным или настенным исполнением.

Теперь рассмотрим порядок и принципы подбора более подробно.

Электросети не всегда выдают нам стабильное напряжение. Особенно это проявляется за городом. Расстояния от подстанций до потребителей большие, линии перегружены, персонала не хватает. В таких условиях потребителям приходится самостоятельно решать эти проблемы с помощью стабилизаторов напряжения.

При выборе следует определиться по ряду вопросов:

  • Количество фаз.

Если на вашем объекте однофазная сеть 220В, и, соответственно однофазные потребители, ответ очевиден – для однофазной сети необходим однофазный стабилизатор напряжения на 220В. Если вам нужен стабилизатор на 220В для загородного дома или для дачи и вы не знаете какой лучше выбрать — на нашем сайте есть специальная подборка — стабилизаторы напряжения 220В для дома и дачи

В случае, если на объекте трехфазная сеть 380В, а также есть трехфазные потребители, то мы встаем перед выбором — один трехфазный стабилизатор (моноблок) или три однофазных стабилизатора (по одному на фазу). Трехфазный стабилизатор следит не только за напряжением в каждой фазе, но и за межфазными напряжениями, поддерживая в норме одновременно шесть величин. Поэтому трехфазный аппарат приобретаем только для трехфазного оборудования, в остальных случаях останавливаем выбор на однофазных моделях (для подключения по схеме «звезда» по одному на фазу).

Этот вопрос усложняется тем, что в характеристиках стабилизатора указывается полная мощность, выраженная в киловольтамперах (кВА), когда мы привыкли к киловаттам, характеризующим активную мощность. Не вдаваясь в подробности, отметим, что для большинства бытовых электроприборов коэффициент мощности (отношение активной мощности к полной) равен 0.8. Грубо говоря, предельная нагрузка для стабилизатор мощностью 1000 ВА будет 800 Вт. Исключение составляют лампы накаливания и нагревательные приборы — для них коэффициент мощности равен 1. У промышленного оборудования значение коэффициента мощности указывается в паспортных данных. Поэтому мы рекомендуем подбирать стабилизатор по мощности в кВт (лучше иметь запас по мощности, чем иметь её недостаток).

* Таким образом, 1 кВА=0,8кВт.

* Для расчета мощности в кВт используем формулу: 1кВАх0,8=0,8кВт.

* А для расчета мощности в кВА используем формулу: 1кВт/0,8=1,25кВА.

Если вам известен ток, потребляемый вашими электроприборами, то задача упрощается. Выбирайте стабилизатор, номинальный ток которого не меньше потребляемой величины. Как быть, когда потребителей много, например, при выборе стабилизатора для всего дома или квартиры? Очень просто — смотрим номинал вводного автомата и выбираем стабилизатор напряжения, номинальный ток которого не меньше данной величины.

Не всегда рационально ставить общий стабилизатор на всё электрооборудование (на весь объект в целом – дом или квартиру). Зачастую, его приобретают для стабилизации какого-то конкретного оборудования:
  • Для газового котла. Мощность здесь небольшая – как правило, до 3 кВт. Таким образом, определяем мощность котла, прибавляем некоторый запас — на пусковой ток насоса и т.д.. и получаем необходимую мощность стабилизатора.
  • Для холодильника тоже надо учитывать пусковые токи компрессора, которые могут в 5-7 раз превышать номинальные.
  • Стиральные (посудомоечные) машины отличаются тем, что имеют мощные ТЭНы, имеющие коэффициент мощности, равный единице. Для обычной бытовой стиральной машины эта мощность составляет порядка 1800 Вт. Плюс блок электроники 100 Вт и плюс двигатель около 200 Вт. Делаем поправки на коэф. мощности блока и двигателя, не забываем про пусковой ток последнего. В результате получаем, что мощность стабилизатора должна быть не менее 3 кВА.

Все вышесказанное справедливо лишь в том случае, когда напряжение в сети не опускается ниже 170-180 В. Когда же напряжение сильно занижено, входной ток стабилизатора возрастает настолько, что он уже не может работать на полную мощность, начинает перегреваться и уходит в защиту. Поэтому, если у вас сильно заниженное напряжение, нужно делать на это поправку. Так, при напряжении в сети 100 вольт, мощность стабилизатора рекомендуется брать в три раза выше. Также нужно учитывать, что далеко не каждый стабилизатор способен работать на сильно заниженном напряжении. Этот параметр указывается в паспортных данных.

Еще один важный аспект — характер изменения напряжения в сети. Если оно не скачет, а просто хронически завышено или занижено, то можно обойтись медленно реагирующим стабилизатором — электромеханическим или релейным. В том случае, когда напряжение может быстро изменяться за короткие промежутки времени, когда много всплесков и провалов, тогда нужны быстродействующие электронные аппараты на полупроводниковых силовых ключах (тиристорные, симисторные, транзисторные и т.д.) или инверторные (у них реагирование на изменения входного напряжения мгновенное).

Также, вы всегда можете обратиться за помощью в подборе и за консультацией к нашим специалистам по телефону 8(495)222-02-49.

Как выбирать стабилизаторы напряжения

ЗАКАЗАТЬ

Если Вам некогда (или просто лень:) читать данный объёмный текст, мы всегда с радостью поможем Вам подобрать стабилизатор напряжения, полностью отвечающий Вашим запросам.

Для правильного выбора модели стабилизатора необходимо определить сумму мощностей всех потребителей, нуждающихся одновременно в снабжении электроэнергией (Вт).

 

Бытовые электроприборы

Электроинструмент

потребитель

мощность

потребитель

мощность

фен для волос

450-2000

дрель

400-800

утюг

500-2000

перфоратор

600-1400

электроплита

1100-6000

электроточило

300-1100

тостер

600-1500

дисковая пила

750-1600

кофеварка

800-1500

электрорубанок

400-1000

обогреватель

1000-2400

электролобзик

250-700

гриль

1200-2000

шлифовальная машина

650-2200

пылесос

400-2000

Электроприборы

радио

50-250

компрессор

750-2800

телевизор

100-400

водяной насос

500-900

холодильник

150-600

циркулярная пила

1800-2100

духовка

1000-2000

кондиционер

1000-3000

СВЧ-печь

1500-2000

электромоторы

550-3000

компьютер

400-750

вентиляторы

750-1700

электрочайник

1000-2000

сенокосилка

1800-2100

электролампы

20-250

насос высокого давления

2000-2900

бойлер

1200-1500

стиральная машина

1800-3000

проточный водонагреватель

5000-6000

 

 

Необходимо также учитывать, что электромоторы нуждаются в момент запуска в более высокой мощности, затем во время работы их мощность равна номинальной.

Мощность стабилизатора при использовании асинхронных двигателей, компрессоров, насосов должна превышать в 3-4 раза мощность потребителей.

Пример: в стационарном режиме работают холодильник (мощностью 600Вт), телевизор (400Вт), кондиционер (1000Вт), радио (100Вт), электрические лампы (200Вт).

Суммарная мощность составляет: 600+400+1000+100+200=2300 (Вт).

Одновременно со стационарными электроприборами могут подключаться утюг (1000Вт), пылесос (800Вт), электрочайник (1000Вт). В этом случае общая нагрузка может увеличиваться на 800-2800 Вт.

Максимальная суммарная мощность составит 2300+2800=5100 (Вт).

Умножаем полученную сумму на коэффициент, учитывающий изменение напряжения в сети. Значения коэффициента приведены в таблице.

 

Напряжение

130

150

170

210

220

230

250

270

Коэффициент

1,69

1,47

1,29

1,05

1,00

1,05

1,29

1,47

 

Например, напряжение в сети 170 В, значение коэффициента при этом напряжении равно 1,29.

5100×1,29=6579 (Вт). Таким образом, при одновременном включении вышеперечисленных приборов, вам необходим стабилизатор мощностью не менее 7 кВт.

 

Предлагаем вам алгоритм для самостоятельного предварительного подбора.

1. Какой лучше электронный или электромеханический?

Электромеханические имеют небольшую стоимость, но требуют периодического сервисного обслуживания. При непрерывной работе раз в 2 года, а то и раз в год нужно вызывать специалиста для чистки рабочих контактов. При стирании трущихся частей — менять их. А при выходе из строя механических элементов встает вопрос о покупке нового стабилизатора.

Однако эти стабилизаторы напряжения имеют и преимущество. При выравнивании напряжения они делают это плавно, так что нет ни малейшего мигания ламп накаливания. Плавно… А преимущество ли это? Конечно, это комфортно. Но что будет, если скачек напряжения будет резким и высоким. В этом случае любое промедление убийственно для потребителей.

Для производств такие стабилизаторы непригодны, так как они «боятся» пыли. Стабилизаторы напряжения на электронных ключах не нуждаются в сервисном обслуживании. Раз в 5 лет нужно почистить вентилятор охлаждения. (Кстати, стабилизаторы Volter вентиляторов не имеют. Гарантированный заводом срок службы таких стабилизаторов 10 лет при непрерывной работе).

При изменении напряжения электронные стабилизаторы реагируют мгновенно (стабилизаторы напряжения Volter: 20 мс), чем и спасают электрооборудование и технику.

Плохи стабилизаторы напряжения на электронных ключах тем, что они дороже.

Выводы:

— электромеханические стабилизаторы напряжения лучше использовать, где потребители сравнительно недорогие и включаются редко, например, в гараже или небольшом дачном домике;

— стабилизаторы напряжения на электронных ключах следует устанавливать на дорогостоящие потребители или там, где требуется непрерывная работа и качественная защита потребителей.

2. Трехфазные и однофазные стабилизаторы напряжения

Если Ваш дом имеет однофазный ввод, то тут нечего думать. Надо ставить однофазный стабилизатор. При трехфазном питании дома есть варианты. Вы можете защитить все потребители, установив трехфазный стабилизатор (три блока Volter), а можете сэкономить, защитив только одну или две фазы из трех, перебросив на них нужные потребители.

3. Выбор по мощности:

Напрасно специалисты твердят о подсчете мощности потребителей, суммированию активной, реактивной мощности — оставьте эти сложные расчеты.

Для выбора мощности достаточно посмотреть на номинал вводного автомата Вашего дома (обычно он расположен рядом с прибором учета). Стабилизаторы напряжения тоже имеют защитный автомат.

Остается выбрать такой стабилизатор, у которого номинал защитного автомата совпадает с номиналом Вашего вводного автомата и все!

Пример: Ваш вводной автомат имеет номинал 50А. Следовательно, Вам нужен стабилизатор на 11кВт, т.е. СНПТО-11, если Вы выбрали стабилизаторы напряжения Volter (смотри прайс). Теперь, даже если Вы не потребляете такой мощности в настоящее время, за 10 — 15 лет Вы наверняка добавите потребителей. Стабилизаторы, подобранные под выделенную мощность не будут Вас ограничивать.

4. Выбор по точности и диапазону:

Такой выбор в большом ассортименте имеют только стабилизаторы напряжения Volter. Наиболее распространенные представлены в прайсе, остальные можно узнать при консультации с менеджером или в сервисном центре Volter.

Итак, при установке стабилизатора в доме, где колебания напряжения небольшие, выбирают стабилизаторы со средними характеристиками — с маркировкой «у» (узкий) или «пт» (повышенной точности). Например, СНПТО-11у или СНПТО-11пт — последний точнее, но дороже.

Если колебания напряжения сильные, выбирают стабилизаторы с широким диапазоном — с маркировкой «ш» (широкий), СНПТО-11ш.

Для спортивных тренажеров и медицинского оборудования выбирают высокую точность — с маркировкой «птт» или «пттт».

Не поверите, но встречаются места, где напряжение вечером падает ниже 100В! В этой, казалось безвыходной ситуации, Volter предлагает стабилизаторы напряжения с маркировкой «ПТш» или «ПТшн». Это стабилизаторы со смещенным диапазоном входного напряжения в меньшую сторону: от 100В до 250В и от 90В до 245В соответственно.

Также, стабилизаторы напряжения Volter есть и со смещенным диапазоном напряжения в большую сторону с маркировкой «ПТс» и «ПТшс». Верхний предел последнего 305В!

Какой бы ни была маркировка, все стабилизаторы напряжения Volter выравнивают напряжение до 220В (до 380В в трехфазной сети).

5. Выбор по другим характеристикам

В зависимости от места установки следует подумать о таких характеристиках как бесшумность и компактность.

Зачастую в частных домах и квартирах электрощит находится в непосредственной близости от зоны отдыха (от гостиной или спальни). В этом случае устанавливать блоки с принудительной вентиляцией недопустимо — вентиляторы будут постоянно гудеть. Кстати, электромеханические стабилизаторы тоже издают звуки, похожие на то, как скребется кошка.

Иногда только из-за этого покупатели склоняются к марке Volter.

Также стоит обратить внимание и на компактность приборов. Обычно коридоры, где расположены электрощиты, небольшой ширины. Неудобно устанавливать блоки с широкими, объемными корпусами.

Заметьте, что у блоков Volter, какая бы мощность не была, корпус всегда имеет небольшую ширину, что делает его удобным при расположении вдоль стены. В достаточно узком коридоре можно удачно расположить 3 блока СНПТО-27, что будет соответствовать мощности 81кВт.

6. Выбор по сервису

Пожалуй, это не самое главное, если Вы сами разбираетесь в электротехнике. Если же Вы специализируетесь в других областях, лучше доверить специалистам не только выбор, но и установку изделий.

Казалось бы, что произвести монтаж может любой сертифицированный электрик. Однако в случае со стабилизаторами многие таблицы расчетов сечений проводов не подходят. Вычисление характеристик усложняется из-за процессов трансформации. Электрик, не сталкивающийся раньше с подобными аппаратами, может просто ошибиться и неправильно подобрать те или иные материалы.

Самое оптимальное будет, если Вы привлечете для установки аппаратов специалистов организации, которая их и продает. Некоторые фирмы предоставляют такую возможность, некоторые нет.

Обычно установка обходится в 10 — 15% от стоимости изделия.

Сервис Volter имеет бесплатную услугу — замену блоков при неподходящих характеристиках на другие. Специалисты сервиса привозят другие блоки, сами снимают и сами ставят. Вам остается только доплатить или получить разницу в стоимости модификаций.

7. Выбор по цене

Чем дороже, тем лучше. Поэтому при покупке таких важных вещей, как стабилизаторы напряжения для дома, не стоит экономить. Хорошие дорогие аппараты не раз окупятся своей надежностью и грамотной работой. По данному поводу посмотрите: стабилизатор напряжения для газового котла и как купить стабилизатор напряжения для дома – эти материалы могут быть полезны.

Нам доверили решение проблем электропитания такие компании:

 

Как выбрать лучший стабилизатор напряжения для моей схемы?

Конференция APEC по энергетике является одновременно образовательной конференцией и выставкой поставщиков. Путешествие по выставочному залу 19 марта -го дало большую уверенность в первенстве, еще больше подчеркнув, что конференция APEC является главным событием в области силовой электроники.

Мой пресс-паспорт позволил мне проникнуть на выставку пораньше, чтобы я мог сделать несколько снимков стенда EPC, прежде чем он будет занят (Рис. 1 и 2) .

1.На стенде EPC на APEC 2019 было несколько отличных демонстраций и эталонных проектов.

2. Преобразователь 3 кВт, 48 в 12 В с использованием транзисторов EPC GaN.

EPC — компания, основанная бывшим президентом International Rectifier Алексом Лидоу (рис. 3). Он намеревался создать коммерческий, практичный высокоскоростной транзистор на основе GaN (нитрида галлия) для силовых приложений.

3. Алекс Лидоу, основатель EPC, объясняет преимущества своих высокоскоростных транзисторов на основе GaN на кремнии.

Для этого Лидоу использовал кремниевую подложку для слоев GaN. Это означает, что пластины могут изготавливаться на обычном оборудовании для обработки кремния. Вдобавок Лидоу считал важным сделать транзисторы GaN улучшенного типа, то есть нормально выключенными. Некоторые компании производят устройства с режимом истощения, но Лидоу считает, что они незнакомы большинству энергетиков. Наконец, Лидоу решил заставить свои устройства на основе GaN работать при умеренных напряжениях, от 15 до 200 В. Это не пытается конкурировать с высоковольтными возможностями SiC (карбид кремния) транзисторов или очень дешевыми низковольтными полевыми МОП-транзисторами.

4. Крис Джованниелло демонстрирует свое силовое реле MEMS.

Полупроводники — это здорово, но иногда физические переключатели — лучший способ справиться с питанием. Именно поэтому Menlo Micro разработала линейку реле MEMS (микроэлектромеханических систем). МЭМС десятилетиями использовались в радиочастотном переключении. Они имеют низкое сопротивление и очень контролируемый импеданс, что очень важно для ВЧ сигналов. Микросхемы силовых реле MEMS, которые производит Menlo Micro, отличаются номинальным током 8 А и напряжением 120 В.Чип меньше ногтя. Крис Джованниелло, соучредитель, старший вице-президент по разработке продуктов (рис. 4), по праву гордится этим достижением. Одно из приложений — замена твердотельных реле в силовых установках (рис. 5) .

5. Реле MEMS от Menlo Micro могут заменить механические и твердотельные реле (SSR).

Компании всех размеров

В то время как все крупные компании, производящие силовые полупроводники, приезжают в АТЭС, вы также можете увидеть несколько небольших компаний с интересными технологиями.Захид Рахим, вице-президент по маркетингу компании Silanna Semiconductor, продемонстрировал свой эталонный дизайн с фиксированным обратным ходом (рис. 6) . У них на выставке был дизайн, подключенный к сетевому напряжению. Там они могли провести измерения эффективности, которые показали улучшение на 2% при типичных нагрузках. Это действительно большое дело, выжать даже 0,5% улучшения из запаса обратного хода — большое достижение. Снижение потерь мощности, вероятно, означает меньшие EMI ​​(электромагнитные помехи), более легкие требования к охлаждению и более низкие счета за электроэнергию для потребителей.Улучшение на 2% при 90% -ной эффективности поставок означает, что потери увеличиваются с 10% до 8%, поэтому думайте об этом как о 20% -ном улучшении того, что имеет значение.

6. Захид Рахим из Силанны держит на ладони свой референсный дизайн с активным зажимом.

Я восхищаюсь Кри, отличной компанией из Северной Каролины. Они всегда лидировали в материалах с широкой запрещенной зоной. Несмотря на то, что компания больше всего известна своими потребительскими светодиодными лампами, она также пользуется уважением в области радиочастотных транзисторов и других силовых устройств.Теперь новый генеральный директор Грег Лоу продает осветительный бизнес и делает упор на полупроводниковую часть компании. По иронии судьбы, Кри создал бренд Wolfspeed, когда предыдущий генеральный директор хотел продать бизнес по производству транзисторов. Эта сделка была отклонена правительством, что, вероятно, было благословением для Кри. Гай Мокси (рис. 7) объяснил большой потенциал карбидокремниевых (SiC) транзисторов Wolfspeed в быстрорастущих электромобилях, солнечной энергии, ветре и промышленности.

7. Гай Мокси из подразделения Wolfspeed компании Cree рядом с эталонной конструкцией SiC на 60 кВт.

Появление практичных электромобилей дальнего действия, а также мягких гибридных электромобилей (mHEV) создает потребность в практических системах для моделирования и разработки систем электропривода. На стенде dSPACE Торстен Опперманн (рис.8) , менеджер по работе с клиентами, представил как программное обеспечение, так и оборудование, которое dSPACE предлагает в помощь производителям транспортных средств и подсистем (рис.9) .

8. Торстен Опперманн из dSPACE рассказал о своих автомобильных системах моделирования и тестирования.

9. Эта высоковольтная электронная нагрузка от dSPACE может имитировать двигатель и аккумулятор в электромобиле.

Магнитные материалы — фундаментальный строительный блок силовых электрических систем. Standex Electronics — известный производитель силовых магнетиков, датчиков, реле и герконов. Крис Риккарделла, инженер по эксплуатации в области магнетизма, работал на стенде Standex (рис.10) .

10. Крис Риккарделла из Standex Magnetics рассказал о широком ассортименте продукции компании.

Helix Semiconductors производит микросхемы с накачкой заряда на переключаемых конденсаторах. Эти высоковольтные зарядные насосы могут создавать интегральные передаточные отношения выпрямленного сетевого напряжения. Джефф Соренсен, старший главный инженер по приложениям (рис.11), продемонстрировал микросхемы Helix, которые также могут обеспечивать питание оптопар с обратной связью на вторичной стороне, а также изоляцию высоковольтных линий за счет использования конденсаторов с номиналом X или Y .

11. Джефф Соренсен из Helix Semiconductor присутствовал с демонстрацией своей линейки высоковольтных ИС с накачкой заряда.

У Microchip был отличный стенд на APEC (Рис. 12) . Несколько станций на стенде показывают, сколько силовых приложений можно использовать с продуктами Microchip.

12. Стенд Microchip на APEC 2019 был переполнен весь день.

Некоторыми интересными приложениями были системы управления двигателями (рис.13) , стабилизатор напряжения LDO (малое падение напряжения) (рис. 14) с блокировкой пульсаций и демонстрация PFC (коррекция коэффициента мощности) мощностью 30 кВт с использованием SiC-транзисторов Microchip (рис. 15) . Я был удивлен, что компания, известная своими микроконтроллерами PIC, имела устройства питания. Затем специалист по маркетингу Microchip Надин Кастильо напомнила мне, что они купили Microsemi несколько лет назад.

13. Патрик Хит рассказал о некоторых из обширных аппаратных средств и прошивок Microchip для управления двигателями.

14. LDO с блокировкой пульсаций Microchip может очищать выходной сигнал линейных и импульсных регуляторов.

15. Джейсон Чианг из Microchip демонстрирует эталонную трехфазную схему с коррекцией коэффициента мощности (PFC) мощностью 30 кВт.

Выставочная площадка APEC 2019 — это не просто стенды. Был театр, где целый день проходили интересные презентации. ROHM’s Mitch Van Ochten (рис. 16) . представил один по пригодным для автомобильной промышленности SiC-транзисторам, организованный хорошими людьми из Mouser Electronics.

16. Митч Ван Охтен из ROHM выступил с прекрасной презентацией SiC-транзисторов в демонстрационном зале Mouser.

Ametherm — еще одна компания, которая производит строительные блоки для силовой электроники. На стенде компании был Мехди Самии, вице-президент по проектированию (рис. 17) , который продемонстрировал лишь некоторые из своих многочисленных продуктов (рис. 18) .

17. Mehdi Samii от Ametherm представлял линейку ограничителей пускового тока с отрицательным температурным коэффициентом (NTC).

18. Ограничители броска тока Ametherm — это простой и надежный способ защиты силовых цепей.

Renesas — это крупное имя в сфере силовой электроники, у которого на APEC 2019 (Рис. 19) был очень загруженный стенд. Компания продемонстрировала систему управления двигателем для пылесоса, в котором используется бесщеточный двигатель постоянного тока (BLDC) для достижения значительного повышения эффективности. Помимо управления двигателем, Renesas предлагает микросхемы и устройства для радиационно-стойких (радиационно-жестких) спутниковых устройств на основе GaN и наземное приложение для управления питанием в промышленных, серверных и двунаправленных аккумуляторных системах.Renesas приобрела Intersil, которая только увеличила его мощность и расширила возможности для операционных усилителей.

19. Стенд Renesas был забит людьми, проверявшими его силовые и моторные компоненты.

Стенд Tamura привлек внимание своим чистым дизайном и логичной планировкой (Рис. 20) . Tamura производит силовые, коммутационные и импульсные трансформаторы. Он также производит трансформаторы для измерения тока, дроссели, реакторы и сборки панелей.

20.Стенд Tamura был чистым и привлекательным.

Я закончил день на стенде Silicon Labs (Рис. 21) . Брайан Миркин объяснил их изолированный модулятор дельта-сигма, который может передавать аналоговый сигнал через границы высокого напряжения. Он также представил преобразователь LLC (индуктор-индуктор-конденсатор) мощностью 20 кВт, разработанный совместно с дистрибьютором Arrow Electronics (рис. 22) . Arrow десятилетиями отстаивал эталонные проекты, и приятно видеть, что Silicon Labs вносит свой вклад в эти разработки.

21. Брайан Миркин из Silicon Labs с их эталонным дизайном изолированного дельта-сигма-модулятора.

22. Дистрибьютор Arrow Electronics работал с Silicon Labs над созданием эталонного проекта блока питания LLC на 20 кВт.

На выходе из выставочного зала APEC 2019 я наткнулся на трогательную сцену, где папа со своим сыном (рис. 23) . Было здорово увидеть человека, который знал, как важно не отставать от силовой электроники и поддерживать интерес и образование своих детей.Не ждите, что я скучаю по поводу «сегодняшней молодежи». Пока есть такие папы, молодые люди будут жить прекрасно, превзойдя все достижения нас, старых динозавров.

23. Папа с маленьким сыном хорошо проводят время на APEC 2019.

Назад к основам: выбор идеального регулятора

Регулятор напряжения выполняет две функции: изменение входного напряжения на другой уровень на выходе и регулирование (поддержание постоянного выходного напряжения, несмотря на изменение условий нагрузки).Регуляторы постоянного и переменного тока являются ключевым компонентом любой энергосистемы, поэтому выбор правильного регулятора имеет решающее значение для разработки оптимального решения.

Хотя инженеры понимают функции регулятора, менее опытным инженерам часто бывает трудно выбрать лучший регулятор для своего применения. В этом сообщении в блоге определены критерии, которые может использовать любой, кто не является опытным разработчиком электроэнергии, чтобы выбрать идеальный регулятор.

Понижающий, повышающий или понижающий-повышающий регулятор?

Есть три основных категории:

  • Buck — регуляторы с выходным напряжением ниже, чем на входе
  • Boost — регуляторы с выходным напряжением, превышающим входное
  • Понижающий-повышающий — регуляторы, которые могут обеспечивать выходное напряжение, которое выше, ниже или такое же, как входное

В большинстве приложений напряжение понижается от шины к нагрузке, поэтому обычно используются понижающие стабилизаторы.Другие приложения требуют увеличения напряжения с помощью повышающего регулятора: например, если мощность постоянного тока должна передаваться по длинному кабелю, потери I 2 R можно уменьшить, повысив напряжение перед передачей, а затем снова понизив его на Загрузка. В аккумуляторных батареях пониженно-повышающие регуляторы часто используются для обеспечения постоянного стабильного напряжения, преодолевая изменение выходного напряжения, которое проявляется как зарядка и разрядка аккумуляторов.

Номинальные входы и выходы

Многие системы имеют четкие требования к входному и выходному напряжению — например, вам может потребоваться понизить уровень напряжения 12 В до 3.3В. Для многих приложений в наличии будет подходящий регулятор, отвечающий требованиям к напряжению.

Очевидно, что регулятор должен обеспечивать мощность, требуемую нагрузкой. Мощность регулятора обычно определяется максимальным выходным током.

Диапазоны входов и выходов

Хотя приложениям часто требуется определенное напряжение, для других требуется регулируемый выход. Это может быть связано с изменением нагрузки — например, в части испытательного оборудования — или может быть, что нагрузка питается по длинному кабелю, и напряжение необходимо подрезать немного выше, чем требуется нагрузке, чтобы компенсировать падение напряжения на кабеле.

Диапазоны входного напряжения особенно важны для таких приложений, как системы с батарейным питанием. В автомобильном применении аккумулятор с номинальным напряжением 12 В может выдавать 12,5 В при полной зарядке и падать до 10 В или меньше по мере разряда аккумулятора. Регулятор с узким входным диапазоном может больше не работать при падении напряжения батареи, а это означает, что полная емкость батареи не может быть использована. Поэтому обеспечение достаточно широкого диапазона входных сигналов является важным критерием при выборе регулятора.

Выбор регуляторов с широким входом также имеет еще одно преимущество: они также могут снизить затраты на складские запасы, поскольку один регулятор может использоваться в различных ситуациях.

КПД

КПД — один из критериев для большинства проектируемых сегодня энергосистем. Выбор регулятора с высокими потерями мощности может сделать почти невозможным достижение целей эффективности. Также важно помнить, что эффективность регулятора не является постоянной: обычно эффективность регулятора резко падает по мере увеличения коэффициента понижения или повышения и уменьшения тока, потребляемого на выходе.

Современные регуляторы, например, на основе топологии переключения при нулевом напряжении (ZVS) Vicor, по своей сути обладают высокой эффективностью и более стабильны во всем рабочем диапазоне.

Шум

Импульсные регуляторы обеспечивают высокий КПД, но схема переключения генерирует шум. В некоторых системах, особенно с чувствительными аналоговыми компонентами, шум источника питания может ограничивать общую производительность. Излишний электронный шум также может затруднить получение сертификата ЭМС.

Как и в случае с эффективностью, топология регулятора является ключом к достижению низкого уровня шума: гораздо проще использовать компонент, который не генерирует шум, чем пытаться отфильтровать этот шум. ZVS, например, представляет собой топологию с мягким переключением, которая по своей сути является малошумной, что упрощает разработку высокопроизводительных систем.

Формат и упаковка

Сегодня электронные системы часто имеют ограниченное пространство. Даже если цель не состоит в том, чтобы сделать систему настолько маленькой, насколько это возможно, например, продукты, размещенные в стандартизированных 19-дюймовых стойках, уменьшение размера системы питания позволяет использовать сэкономленное пространство для добавления дополнительных функций.

При расчете размера следует также учитывать периферийные компоненты, необходимые для регулятора. За счет более высокого уровня интеграции и высокой частоты переключения размер и количество периферийных компонентов могут быть уменьшены, что потенциально может обеспечить большую экономию места, чем простой выбор регулятора в меньшем корпусе.

Доступные типы пакетов не только определяют необходимое пространство: часто пакеты меньшего размера могут быть расположены ближе к нагрузке, что обеспечивает более точное регулирование нагрузки и более быструю реакцию на переходные процессы.

Помимо размера, важным фактором может быть вес, особенно в тех случаях, когда оборудование может перемещаться. Примеры таких систем варьируются от переносного портативного оборудования до автомобильной электроники и дронов.

Рабочая температура и тепловые характеристики

Регуляторы

не могут быть эффективными на 100%, поэтому они всегда будут рассеивать тепло, которое необходимо отводить. Если требуется радиатор, это может значительно увеличить как размер, так и вес системы питания.Неспособность рассеять тепло также может повлиять на производительность системы и другими способами: например, в системах освещения или отображения, если регулятор вызывает повышение температуры светодиодов, это снизит интенсивность и изменит длину волны и, следовательно, оттенок светодиода. свет произведен.

Регулятор должен надежно работать во всем диапазоне температур, которым он может подвергаться. В целом, более эффективные регуляторы смогут работать при более высоких температурах, поскольку им не нужно рассеивать столько тепла, но продукты от разных поставщиков могут сильно различаться, поэтому важно проверять технические характеристики.

Дополнительные возможности

В дополнение к критериям, описанным выше, вашему приложению может потребоваться определенная функциональность, которая может ограничить выбор. Примеры этих дополнительных функций:

  • Возможность параллельного подключения: если регуляторы могут быть подключены параллельно, то могут быть получены более высокие выходные токи. Не все регуляторы могут иметь параллельные выходы, поскольку во многих топологиях это вызывает нестабильность.
  • Постоянный выходной ток: в аккумуляторных приложениях для питания нагрузки требуется постоянное напряжение, но для зарядки требуется постоянный ток.Некоторые регуляторы предлагают выходы, которые можно настроить как на постоянный ток, так и на постоянное напряжение, что делает их идеальными для этих систем.
  • Плавный запуск: возможность медленного увеличения напряжения помогает обеспечить стабильность системы питания, даже если к выходу регулятора подключена большая емкость.
  • Защита от перенапряжения: регуляторы, которые имеют защиту, гарантирующую, что они не могут выдавать напряжение, превышающее заданное выходное напряжение, гарантируют, что нагрузка не будет повреждена даже во время неисправности.Другая схема защиты может отключить регулятор, если входное напряжение выходит за пределы допустимого диапазона.
  • Переходный отклик: некоторые нагрузки быстро изменяют требуемый им ток. Быстрый переходный отклик гарантирует, что регулятор может выдавать необходимую мощность без больших выходных конденсаторов для хранения энергии.

Заключение

Хотя регуляторы концептуально являются простыми компонентами — они принимают напряжение на входе и подают другое напряжение на выходе — существует множество факторов, которые определяют лучший регулятор для вашего приложения.Тщательное рассмотрение критериев, изложенных выше, поможет выбрать идеальный регулятор для вашей системы.

Коммутация

или линейный стабилизатор напряжения: что лучше? | Блог

Altium Designer

| & nbsp Создано: 22 июля 2017 г. & nbsp | & nbsp Обновлено: 18 января 2021 г.

У вас когда-нибудь взрывался конденсатор перед вами? Так я начал свою карьеру в дизайне электроники.Я также испортил расчет бюджета мощности для того, что изначально было представлено как «простой» проект. Конечным результатом стал прототип печатной платы с раскаленным докрасна стабилизатором напряжения, способным поджарить яйцо … или того хуже.

С тех пор я пришел к выводу, что элегантность и изысканность дизайна мало что значат. Если вы сделаете ошибку при настройке схем управления питанием, ваша конструкция окажется практически бесполезной. Расчет бюджета мощности, температура окружающей среды и, в моем случае, выбор основного компонента управления питанием, такого как регулятор напряжения, могут сделать или сломать ваш проект печатной платы.

Функция цепи управления источником питания во встроенной системе

За более чем десять лет разработки встраиваемых систем я видел, как микроконтроллеры развиваются семимильными шагами. Они перешли от исторического Zilog к современному процессору Cortex M4. Такие технологии, как Bluetooth LE и ZigBee, совершили дальнейшую революцию в индустрии встроенных систем. Однако вам всегда понадобится хорошо спроектированная силовая схема. Без него эти крутые технологии просто ждут, чтобы растаять.

Конденсаторы в сторону, у вас есть регулятор напряжения, который лежит в основе всех хорошо спроектированных силовых схем. Как следует из названия, он обеспечивает стабильный источник напряжения, который позволяет встроенной системе стабильно работать. Стабилизаторы напряжения работают, получая входное высокое напряжение перед понижением и стабилизацией напряжения до уровня, необходимого для работы электронного устройства.

До того, как компоненты 3,3 В стали популярными, мы ограничивались микроконтроллерами (MCU) с питанием от 5 В и интегральными схемами (IC).LM7805 был популярным в то время артикулом, так как это был простой линейный стабилизатор напряжения 5 В. На самом деле, его простота довольно элегантна, что делает его популярным и сегодня. Когда 3,3 В стали основным рабочим напряжением, LM1117-33 стал довольно эффективным линейным стабилизатором напряжения.

Ограничения линейных регуляторов напряжения

Был период, когда интегральные схемы перешли на работу с напряжением 3,3 В, и за это время микроконтроллеры пережили этап быстрой эволюции.Раньше дизайнеры ориентировались на количество входов / выходов микроконтроллера. Затем они стали больше интересоваться количеством интегрированных функций, таких как UARTS, Ethernet, USB, и быстро растущей вычислительной мощностью. В конце концов, линейный регулятор напряжения был доведен до предела.

Эти удобные радиаторы для охлаждения линейных регуляторов.

Многие люди сделали ошибку новичка, имея дело с линейным регулятором напряжения, и приняли номинальный ток как абсолютный.Это было серьезной проблемой, потому что стабилизатор напряжения LM7805 рассчитан на 5 В, 1,5 А. Но это не означает, что линейный регулятор может выдерживать это напряжение, в лучшем случае не изнашиваясь или не сгорая при этом. Перед выбором линейного регулятора напряжения необходимо учесть еще как минимум три параметра.

Уровень рассеиваемой мощности рассчитывается с учетом разницы между входным и выходным напряжением; затем вы умножаете это число на ток нагрузки. Если вы регулируете напряжение с 12 В до 5 В, а ваша встроенная система потребляет 100 мА, то рассеиваемая мощность будет равна 0.7Вт. Имея это в виду, отметим, что линейный регулятор LM7805 может работать при температурах до 125 ° C. После этого вы начнете видеть нежелательные явления, такие как таяние и горение.

Но типичный LM7805 в корпусе TO-220 имеет термостойкость 65 ° C / Вт. Это означает, что на каждые 1 Вт вы увидите увеличение на 65 ° C сверх температуры окружающей среды. В некоторых регионах средняя температура составляет около 35 ° C, поэтому LM7805 будет работать при 100 ° C, что немного ниже допустимой максимальной температуры, но у вас меньше 10% номинального максимального тока, равного 1.5А.

Почему переключение регулятора напряжения — лучший выбор, буквально

Характеристики линейного регулятора напряжения сделали его неидеальным кандидатом в систему питания с высокими требованиями к мощности, поскольку выделяемое тепло может повредить регулятор или снизить срок службы соседних компонентов. Это повысило интерес к импульсному регулятору. Как следует из названия, импульсный стабилизатор очень быстро включает и выключает источник питания для изменения выходного напряжения, обеспечивая стабильный и эффективный источник питания.Импульсный регулятор может довольно эффективно рассеивать тепло, снижая температуру и сводя к минимуму риск буквально расплавления.


Импульсные регуляторы — это эффективность.

Деталь, которую я использовал, — это LM2576, популярный импульсный стабилизатор, который работает с КПД 75% при регулировании при напряжении 3,3 В. Это производит часть тепла, которое вы можете увидеть от сопоставимого линейного регулятора, что делает его идеальным для приложений, в которых требуется регулирование от высокого напряжения к низкому.Он также подходит для встроенных систем, в которых вы обычно работаете с высокой производительностью.

Коммутация и линейные регуляторы напряжения

При всей эффективности, которую обеспечивает импульсный стабилизатор напряжения, два критерия по-прежнему не позволяют использовать его по умолчанию. Стоимость импульсного регулятора и обязательных пассивных компонентов. Они могут быть значительными и в 30 раз выше, чем затраты на линейный стабилизатор напряжения и пару конденсаторов.

Кроме того, для импульсного регулятора требуется больше пассивных компонентов. Когда у вас больше пассивных компонентов, обслуживание становится намного сложнее. Вы должны убедиться, что вы тщательно выбираете номиналы катушек индуктивности и конденсаторов, и это также автоматически приводит к потребности в большем пространстве на печатной плате.

Короче говоря, если вы работаете над простым приложением, которое не потребляет много энергии, линейный стабилизатор напряжения — это логичный выбор. Но если вы работаете над мощным проектом или пытаетесь перейти с промышленного напряжения 24 В постоянного тока на 3.3 В, тогда вы можете рассмотреть возможность использования импульсного регулятора напряжения для вашего источника питания и выходного напряжения.

Есть вопросы по схемам управления питанием? Вам нужны советы и рекомендации по проектированию импульсных регуляторов напряжения? Свяжитесь с опытным разработчиком печатных плат в Altium Designer прямо сейчас.

Ознакомьтесь с Altium Designer

® в действии …

Мощный дизайн печатной платы

Различные типы регуляторов напряжения и принцип работы

ОСНОВНЫЕ ЗНАНИЯ — РЕГУЛЯТОР НАПРЯЖЕНИЯ Различные типы регуляторов напряжения и принцип работы

Автор / Редактор: Эммануэль Одунладе / Erika Granath

Регуляторы напряжения — это интегральные схемы, предназначенные для регулирования напряжения на их входе до постоянного, фиксированного напряжения на их выходе, независимо от изменений тока нагрузки или входного напряжения.

Связанные компании

Стабилизатор напряжения — это система, предназначенная для автоматического поддержания постоянного уровня напряжения.

(Источник: Adobe Stock)

Электронные конструкции / устройства обычно состоят из различных электронных компонентов, которые иногда работают на разных уровнях напряжения.Таким образом, для надежного удовлетворения требований к питанию конкретной конструкции или различных ее компонентов в блоке питания обычно используются регуляторы напряжения для регулирования напряжения в основном источнике до уровня, необходимого для различных секций устройства. .

При проектировании блока питания для любого устройства всегда приходится принимать массу решений. Одним из этих решений, хотя и трудным, является выбор регуляторов напряжения, поскольку они бывают разных «форм и размеров» с разными «прибамбасами», что делает их отличным выбором при использовании в одной цепи, но катастрофой в другие схемы.

В результате выбор правильного регулятора для вашего проекта (и его ограничений) требует глубокого понимания возможных вариантов, и сегодняшняя статья будет посвящена именно этому. Мы оценим различные типы регуляторов напряжения, их принципы работы и определим, когда имеет смысл использовать один перед другим.

Типы регуляторов напряжения

Регуляторы напряжения можно разделить на категории в зависимости от различных факторов, таких как их применение, напряжения, при которых они работают, механизмы преобразования мощности и многое другое.

В этой статье мы сосредоточимся на активных регуляторах напряжения и классифицируем их на две большие категории в зависимости от механизма, который они используют для регулирования. Эти две категории включают:

  • 1. Линейные регуляторы напряжения
  • 2. Импульсные регуляторы напряжения

1. Линейные регуляторы напряжения

Линейные регуляторы напряжения используют принцип делителей напряжения для преобразования напряжения на их входе в желаемое напряжение на их выходе.В них используется контур обратной связи, который автоматически изменяет сопротивление в системе, чтобы противодействовать влиянию изменений импеданса нагрузки и входного напряжения, и все это для обеспечения постоянного выходного напряжения.

Типичные реализации линейных регуляторов напряжения включают использование полевых транзисторов в качестве одной стороны делителя напряжения с петлей обратной связи, подключенной к затвору транзистора, управляя им по мере необходимости для обеспечения согласованности выходного напряжения.

Хотя такое использование транзисторов в качестве резисторов помогает упростить конструкцию и реализацию линейных регуляторов, оно в значительной степени способствует неэффективности, связанной с регуляторами.Причина этого в том, что транзисторы преобразуют избыточную электрическую энергию (разницу напряжений между входным и выходным напряжением) в тепло, что приводит к потере мощности в результате нагрева транзисторов.

В ситуациях, когда напряжение на входе или ток нагрузки на выходе слишком высоки, регуляторы могут выделять тепло, которое может привести к его выходу из строя. Чтобы смягчить это, разработчики обычно используют радиаторы, размер которых определяется величиной тока (мощности), проходящего через регулятор.

Еще один момент, о котором стоит поговорить для линейных регуляторов, — это необходимость в том, чтобы напряжение на входе было больше, чем напряжение на выходе, на минимальное значение, называемое напряжением падения. Это значение напряжения (обычно около 2 В) варьируется в зависимости от регулятора и иногда является серьезным источником беспокойства для разработчиков, работающих с приложениями с низким энергопотреблением, из-за потери мощности. Чтобы обойти это, используйте тип линейных регуляторов напряжения, называемых стабилизаторами LDO (с низким падением напряжения), поскольку они разработаны с возможностью работы при разнице между входным и выходным напряжением всего 100 мВ.

Некоторые популярные примеры линейных регуляторов напряжения включают регуляторы напряжения серии 78xx (например, L7805 (5 В), L7809 (9 В)).

Плюсы и минусы линейного регулятора напряжения LM7805

Плюсы

Некоторые преимущества линейных регуляторов напряжения включают: электромагнитных помех и шума

  • 3. Быстрое время отклика на изменения тока нагрузки или условий входного напряжения
  • 4.Низкие пульсации напряжения на выходе

Минусы

Некоторые недостатки линейных регуляторов напряжения включают:

  • 1. Низкий КПД, поскольку большое количество электроэнергии расходуется на тепло
  • 2. Падение напряжения Требование делает их плохим выбором для приложений с низким энергопотреблением
  • 4. Низкий КПД, поскольку большое количество электроэнергии тратится впустую в виде тепла
  • 5. Требование отпускания напряжения делает их плохим выбором для приложений с низким энергопотреблением
  • 6.Занимают больше места на печатных платах из-за потребности в радиаторах

2. Импульсные регуляторы напряжения

Хотя они имеют более сложную конструкцию и требуют для работы большего количества сопутствующих компонентов, импульсные регуляторы напряжения являются сверхэффективными регуляторами, используемыми в различных сценариях. где потеря мощности, как в линейных регуляторах, недопустима.

Механизм регулирования напряжения в импульсных регуляторах напряжения включает быстрое переключение элемента, соединенного последовательно с компонентом накопителя энергии (конденсатором или катушкой индуктивности), для периодического прерывания протекания тока и преобразования напряжения из одного значения в другое.Как это делается, зависит от управляющего сигнала от механизма обратной связи, подобного тому, который используется в линейных регуляторах.

В отличие от линейных регуляторов напряжения переключающий элемент находится либо в полностью проводящем, либо в выключенном состоянии. Он не рассеивает мощность и позволяет регулятору достичь высокого уровня эффективности по сравнению с линейными регуляторами.

В базовой реализации импульсного регулятора напряжения используется «проходной транзистор», работающий либо в состоянии отсечки, либо в состоянии насыщения, в качестве переключающего элемента.Когда проходной транзистор находится в состоянии отсечки, через него не протекает ток, как таковая мощность не рассеивается, но когда он находится в состоянии насыщения, на нем появляется незначительное падение напряжения, сопровождающееся рассеянием небольшого количества энергии. с максимальным током, передаваемым на нагрузку. В результате переключающего действия и экономии энергии в состоянии отключения КПД переключаемых регуляторов обычно составляет около 70%.

Управление на основе переключения и ШИМ дает довольно большую гибкость, что позволяет переключать регуляторы напряжения для работы в разных режимах и существовать в различных типах, в том числе: / Регуляторы повышающего переключения

1.Понижающие импульсные регуляторы напряжения

Понижающие импульсные регуляторы, также известные как понижающие регуляторы, преобразуют высокое напряжение на своих входных клеммах в более низкое напряжение на своих выходных клеммах. Эта операция аналогична работе линейных регуляторов, за исключением того факта, что понижающие регуляторы работают с более высокой степенью эффективности. Изображение, иллюстрирующее расположение компонентов понижающих регуляторов, приведено ниже.

2. Повышающие импульсные регуляторы напряжения

Повышающие импульсные регуляторы, также известные как повышающие регуляторы, могут преобразовывать низкое напряжение на входе в более высокое напряжение на выходе.Их конфигурация является одним из основных различий между линейными регуляторами и импульсными регуляторами, поскольку регулирование не происходит, если напряжение на входе линейных регуляторов напряжения больше, чем напряжение, требуемое на их выходе. Схема, иллюстрирующая повышающие импульсные регуляторы напряжения, представлена ​​ниже.

3. Понижающий / повышающий импульсный регулятор напряжения

Понижающий / повышающий стабилизатор сочетает в себе характеристики двух регуляторов, описанных выше. Он может обеспечивать фиксированное выходное напряжение независимо от разницы (+ или -) между входным и выходным напряжениями.Они очень полезны в аккумуляторных приложениях, где напряжение на входе, которое может быть выше, чем выходное напряжение в начале, со временем снижается до уровня ниже выходного напряжения. Схема, иллюстрирующая импульсный стабилизатор напряжения, представлена ​​ниже:

Плюсы и минусы

Минусы

Какими бы эффективными и совершенными ни казались импульсные регуляторы напряжения, они имеют недостатки, некоторые из которых включают:

  • 2. Требуется больше дополнительных компонентов
  • 4.Высокие уровни электромагнитных помех и генерации шума, которые могут повлиять на сертификацию продукта при неправильном управлении
  • 5. Высокая пульсация выходного напряжения
  • 6. Более медленное переходное время восстановления по сравнению с линейными регуляторами. Применение импульсных регуляторов может перевесить их недостатки. Вот некоторые из преимуществ:

    • 3. Они могут обеспечивать выходное напряжение, которое больше или меньше входного напряжения
    • 4.Подходит для приложений с низким энергопотреблением
    • 7. Они могут обеспечивать выходное напряжение, которое больше или меньше входного напряжения
    • 8. Подходит для приложений с низким энергопотреблением

    Выбор правильного регулятора напряжения для вашего проекта

    Выбор подходящего регулятора напряжения для вашего проекта обычно не является проблемой выбора между линейным или импульсным стабилизатором напряжения. Выбор между ними можно сделать, просто рассмотрев их плюсы и минусы и решив, какой из них лучше всего подходит вам.Однако необходимо проверить другие специфические свойства регулятора (переключательные или линейные), чтобы убедиться, что он идеально подходит для вашего проекта. Пять из этих основных свойств описаны ниже:

    1. Выходное напряжение (или диапазон напряжений)

    Это, вероятно, первое, на что следует обратить внимание при работе с регулятором. Убедитесь, что выходное напряжение (или диапазон напряжений) регулятора соответствует требуемому значению для вашего приложения. Для некоторых регуляторов могут потребоваться внешние компоненты для поддержания постоянного выходного напряжения на желаемом уровне напряжения.Все это необходимо подтвердить, прежде чем штамповать регулятор для вашего проекта.

    2. Выходной ток

    Стабилизаторы напряжения разработаны с учетом конкретных номинальных значений тока. Подключение их к нагрузке с требованиями по току, превышающими их номинальный ток, может привести к повреждению регулятора или неправильной работе нагрузки. Это еще более важно в случае линейных регуляторов напряжения, поскольку ток оказывает прямое влияние на потери мощности.

    Всегда следите за тем, чтобы выбранный вами регулятор выдерживал предполагаемый ток нагрузки.

    3. Диапазон входного напряжения

    Это относится к допустимому диапазону входных напряжений, поддерживаемых регулятором. Обычно это указывается в техническом описании, и как разработчику важно убедиться, что возможное входное напряжение для вашего приложения находится в пределах этого диапазона. Одна из ошибок, которую совершает большинство молодых разработчиков в связи с этим, состоит в том, что они сосредотачиваются только на максимальном входном напряжении, забывая, что входное напряжение ниже указанного минимального напряжения может привести к ошибкам регулирования, особенно в случае линейных регуляторов.Знание этих значений поможет вам оценить условия, при которых регулятор выйдет из строя либо из-за чрезмерного тепловыделения в случае линейных регуляторов, либо из-за неисправностей в случае импульсных регуляторов.

    4. Диапазон рабочих температур

    В большинстве технических описаний диапазон рабочих температур определяется как температура окружающей среды (Ta) или температура перехода. Это диапазон температур, в котором регулятор функционирует должным образом. Говоря более конкретно, температура перехода обычно относится к максимальной рабочей температуре транзистора.Напротив, температура окружающей среды относится к температуре окружающей среды вокруг устройства. Оба значения важны, особенно для линейных регуляторов, поскольку они способствуют процессу выбора идеального радиатора для регулятора.

    5. Падение напряжения

    Это важно при выборе линейных регуляторов напряжения. Как объяснялось ранее, падение напряжения относится к величине, на которую входное напряжение должно быть больше, чем выходное напряжение, чтобы произошло регулирование.Хотя это может быть неважным фактором для большинства приложений, для приложений, в которых важны эффективность и низкое энергопотребление, имеет смысл использовать регуляторы напряжения с низким падением напряжения.

    Другие факторы, такие как эффективность, размер корпуса, переходная характеристика и потенциальные электромагнитные помехи / шум, также должны быть приняты во внимание.

    В заключение, простой способ решить, какой регулятор использовать, — это сначала решить, будет ли линейный или импульсный регулятор напряжения лучшим выбором, исходя из их плюсов и минусов.После этого уровня принятия решения можно будет провести дальнейшие исследования свойств регулятора, так как это может повлиять на вашу конструкцию. Как бы ни казалась такая должная осмотрительность иногда ненужной, она может иметь решающее значение для успеха вашего проекта.

    (ID: 46489302)

    Как выбрать правильные ИС линейных регуляторов напряжения для современных схемотехнических решений

    Регуляторы напряжения являются неотъемлемой частью любой электронной конструкции, вы можете не заметить, но более 90% проектов / продуктов в области электроники требуют какого-либо регулятора напряжения работать функционально.Это делает их одними из наиболее часто используемых и легкодоступных электронных компонентов для различных приложений.

    Но часто возникает ситуация, когда ваш лучший в своем классе регулятор напряжения не соответствует конкретным требованиям для конкретного приложения, и после небольшого поиска регулятора напряжения в mouser, element14 или Digikey вы попали в ситуацию, когда вы не можете решить. как выбрать стабилизатор напряжения IC для вашей электронной конструкции.

    Итак, в этой статье мы узнаем о некоторых из самых дешевых и часто используемых стабилизаторов напряжения , доступных на рынке.Кроме того, я подробно покажу вам, какие параметры необходимо учитывать перед выбором регулятора напряжения для конкретного приложения. Наконец, я выберу несколько крутых Top 10 Modern Linear Regulator IC , которые можно использовать как современную замену старым LM7805, LM317, AMS1117 и т. Д., А также будет краткое описание для каждого из них.

    Выбор правильного типа регулятора для вашей схемотехники

    Перед тем, как подобрать микросхему регулятора напряжения, вам нужно сначала настроить самые основные параметры, хотя существуют и другие критические параметры, на данный момент мы собираемся сосредоточиться на трех основных: входное напряжение , выходное напряжение и . ток нагрузки .

    Зная входное и выходное напряжение, вы можете определить входной и выходной ток. Зная все эти параметры, вы можете легко рассчитать входную и выходную рассеиваемую мощность и определить, какой тип регулятора напряжения вам нужен для вашего конкретного приложения.

    Говоря о типах регуляторов напряжения , как вы все знаете, существует только два основных типа регуляторов напряжения: это импульсные регуляторы и линейные регуляторы , и они также подразделяются на повышающих и понижающих. Регуляторы .Для лучшего понимания ниже представлена ​​подробная блок-схема.

    Если вы ищете выходное напряжение ниже входного, просто выберите линейный стабилизатор напряжения, потому что линейный стабилизатор напряжения дешевый и его легко найти на рынке, поскольку он часто используется во многих приложениях

    Если вы смотрите на выходное напряжение, превышающее входное, тогда просто используйте импульсный стабилизатор, по-видимому, если ваша рассеиваемая мощность очень высока, что означает, что ваш выходной ток находится в нескольких элементах, в этой ситуации вы можете выбрать импульсный стабилизатор. вместо. Импульсные регуляторы напряжения более эффективны, чем линейные регуляторы.

    Расчет мощности и тепловыделения для повышения эффективности

    Линейное напряжение дешевое, простое в использовании и легко доступное, но основным недостатком линейного регулятора является рассеиваемая мощность, если ее не учитывать внимательно, это может привести к быстрому расходу заряда батареи (для приложений с питанием от батареи) или к перегреву, что может привести к необратимому повреждению устройства.Чтобы лучше понять эту концепцию, давайте проясним ситуацию на нескольких примерах,

    Предположим, у нас есть входное напряжение 12 В и выходное напряжение 3,3 В, разница напряжений составляет 12 В — 3,3 В = 8,7 В. Теперь предположим, что ток нагрузки составляет 500 мА, а в другом сценарии ток нагрузки составляет 100 мА.

    В первом сценарии регулятор должен рассеивать 8,7 В * 0,5 А = 4,35 Вт мощности в виде тепла, а это очень много для любого регулятора на 3,3 В.

    Во втором сценарии регулятор должен рассеивать 8.7 В * 0,05 А = 0,43 Вт, с чем легко справится любой хороший стабилизатор на 3,3 В.

    Еще один ключевой аспект, на который следует обратить внимание, известен как тепловое сопротивление , он определяется как «-JA», а его единица измерения записывается как ° C / Вт. А теперь вы спрашиваете, что вообще это за параметр «Θ-JA»?

    Он определяет, насколько будет нагреваться ИС (выше температуры окружающей среды), чтобы рассеять один ватт мощности. Умножение мощности на «Θ-JA» даст вам повышение температуры выше температуры окружающей среды.

    Низкое падение напряжения (LDO) для низковольтных аккумуляторных батарей

    Чтобы преодолеть некоторые из основных проблем в линейном регуляторе, были введены LDO и импульсные регуляторы. Как следует из названия, LDO — это тип регулятора с очень низким падением напряжения. Вы можете узнать больше о стабилизаторах напряжения с низким падением напряжения, перейдя по ссылке на статью.

    Но теперь остается вопрос: что вообще означает с низким падением напряжения ?

    Чтобы понять концепцию падения напряжения, давайте возьмем на примере наиболее популярные регуляторы серии 78XX, такие как микросхемы регуляторов напряжения LM7805 или LM7809.Просто взглянув на таблицу 78-й серии, вы увидите, что у этой серии регуляторов есть падение напряжения 2 В. Это означает, что регулятор будет работать правильно только тогда, когда входное напряжение на 2 В выше выходного напряжения.

    Если вы думаете, что 2 В — это не так много, вы снова ошибаетесь, если вы потребляете значительный ток с падением напряжения на 2 В. Допустим, вы потребляете ток 500 мА, затем вы тратите 1 Вт мощности на регулятор, а это большая потеря мощности для регулятора 7805.

    Более новые наиболее эффективные LDO имеют очень низкое падение напряжения, которое может быть менее 200 мВ при полной нагрузке. Вот почему такие LDO могут обеспечивать в 10 раз больший выходной ток при 10 раз меньшей рассеиваемой мощности. Список таких LDO будет рассмотрен далее в статье.

    Лучшие 10 современных ИС линейных стабилизаторов напряжения

    HT7333-A от Holtek Semiconductor

    HT7333-A — это промышленный классический, очень дешевый однокристальный стабилизатор с малым падением напряжения с максимальным входным напряжением 12 В, и выходным напряжением , равным 3.3В . С допуском на выходное напряжение 3% эта микросхема может выдерживать максимальный выходной ток 250 мА .

    Это очень часто используемый чип, который используется в различных продуктах и ​​поставляется в корпусе TO-92, который представляет собой сквозную версию. Версия для поверхностного монтажа также доступна в пакете SOT-89. Последние две цифры номера детали представляют собой выходное напряжение. Итак, HT73 33 означает 3,3 В, также есть другие версии с фиксированным выходом, доступные для этого чипа, которые варьируются от 1.8В — 5В. Пожалуйста, обратитесь к таблице данных для получения дополнительной информации.

    Приложения включают оборудование с батарейным питанием, регулятор напряжения для микроконтроллера и микропроцессора, оборудование для беспроводной связи и многое другое. Этот чип стоит 0,49 доллара за одну штуку, а выпадает всего за 0,016 доллара за за всю катушку из 3000.

    Название детали: HT7333

    Лист данных: HT7333 Лист данных

    AP2112K, компания Diodes Incorporated

    AP2112K — это немного современный, однокристальный, очень дешевый стабилизатор со сверхнизким падением напряжения, который имеет входное напряжение , равное 6.5 В и выходное напряжение 3,3 В и имеет точность выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток 600 мА при типичном падении напряжения 250 мВ. Он имеет встроенную защиту от короткого замыкания и специальный вывод для включения или отключения микросхемы извне.

    Он имеет ток покоя 55 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Его можно сконфигурировать как вторичный регулятор в системе регулирования, состоящей из двух частей.Эта ИС также имеет большой диапазон фиксированных выходных напряжений и поставляется в крошечном корпусе SOT23-5. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей.

    Приложения

    включают в себя эффективные регуляторы напряжения, блоки питания для микроконтроллеров, блоки питания для ЖК-дисплеев и ноутбуков. Этот чип стоит 0,47 доллара за единицу и упадет до 0,098 доллара за всю катушку из 3000.

    Название детали: AP2112K

    Лист данных: AP2112K Лист данных

    NX1117CE, компания NXP Semiconductors

    NX1117CE также является отраслевым стандартом, очень дешевая, легко доступная однокристальная и, безусловно, наиболее часто используемый LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение 20 В, макс @ 6 мА и выходное напряжение из 3.3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток , равный 1 А, при типичном падении напряжения 500 мВ.

    Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа.

    Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Этот чип стоит 0,37 доллара за одну штуку, а упадет с 0,067 доллара за за всю катушку из 3000.

    Название детали: NX1117CE

    Лист данных: NX1117CE Лист данных

    LP2985 от Texas Instruments

    LP2985 — это новый, очень дешевый, однокристальный стабилизатор со сверхнизким падением напряжения, который имеет входное напряжение не более 16 В, и выходное напряжение , равное 3.3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток , равный 150 мА, при типичном падении напряжения 280 мВ.

    Он имеет встроенную защиту от короткого замыкания и специальный вывод байпаса, в который можно добавить конденсатор емкостью 10 нФ для сверхмалошумной работы. Он имеет ток покоя 850 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Он поставляется в крошечном корпусе SOT23-5, поэтому его можно использовать в некоторых из самых густонаселенных сверхмалых приложений, все эти функции делают его идеальным кандидатом в качестве вторичного регулятора после первичного импульсного регулятора.

    Он также имеет большой диапазон постоянных выходных напряжений. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей. Приложения включают портативные устройства, цифровые камеры и видеокамеры, проигрыватели компакт-дисков и многое другое. Этот чип стоит 0,51 доллара за единицу и упадет до 0,298 доллара за всю катушку из 3000.

    Название детали: LP2985

    Лист данных: LP2985 Лист данных

    MIC29302WU от Microchip

    MIC29302WU также является промышленным стандартом, очень дешевым, сильноточным LDO (Low Dropout Regulator) (Low Dropout Regulator), который имеет входное напряжение макс. 26 В и выходное напряжение 3.3 В (для версии 3,3 В) и с гарантированной точностью выходного напряжения 1%, этот чип может выдерживать максимальный выходной ток , равный 3 А, при типичном падении напряжения 500 мВ. В качестве дополнительной функции эта ИС предоставляет дополнительный логический уровень для включения и вывод состояния. Вывод EN предназначен для управления выходом регулятора, а вывод состояния — для состояния ИС.

    Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Функции защиты включают в себя перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков напряжения.С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.

    Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, микропроцессорное питание, зарядное устройство, автомобильную электронику и многое другое. Этот чип стоит $ 2,14 за одну штуку и падает до $ 1,61 за всю катушку из 3000.

    Название детали: MIC29302WU

    Лист данных: MIC29302WU Лист данных

    LM1084 от Texas Instruments

    LM1084 также является отраслевым стандартом, это очень недорогой, однокристальный, сильноточный LDO (стабилизатор с малым падением напряжения), который имеет переменное входное напряжение макс. 25-29 В, в зависимости от выходного напряжения он имеет три варианта один рассчитан на 3,3 В, второй — на 5 В, а также есть регулируемый вариант, в котором выходное напряжение может быть установлено с помощью комбинации резисторов обратной связи.Это чудовищный LDO с выходным током мощностью 5А .

    Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпусов эту ИС можно использовать в качестве первичного стабилизатора напряжения для множества приложений. Для получения информации о различных вариантах выходного напряжения и комплектации см. Техническое описание этого чипа.Этот LDO также производится китайской компанией под названием HGSEMI , но таблица данных на мандарине; Если вы зритель из Китая или умеете читать на мандарине, вы также можете проверить эту альтернативную часть. Цена этого регулятора значительно снижается с китайской версией.

    Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Эта микросхема стоит 2,65 доллара за за единицу, а ее стоимость составляет всего 1 доллар.13 для всего барабана 3000.

    Название детали: LM1084

    Лист данных: LM1084 Лист данных

    AZ1084C, компания Diodes Incorporated

    AZ1084C также является отраслевым стандартом, очень дешевый, сильноточный LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение не более 13,2 В и выходное напряжение 3,3 В (для версии 3,3 В) , и с точностью выходного напряжения ±.015%, этот чип может выдерживать максимальный выходной ток 5 А при типичном падении напряжения 1,35 В.

    Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.

    Приложения

    включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, источник питания микропроцессора, зарядное устройство, настольные ПК, блоки питания RISC и встроенных процессоров и многое другое. Этот чип стоит 0,50 доллара за за единицу и падает до 0,167 доллара за всю катушку из 3000.

    Я упомянул эту деталь, потому что она не производится ни компанией Biggy, как Texas Instruments, ни китайской компанией, которая предоставляет свои технические данные только на мандарине.Diodes Incorporated — известная компания, продукту которой мы можем доверять с закрытыми глазами, и в качестве бонуса он действительно дешев.

    Название детали: AZ1084C

    Лист данных: AZ1084C Лист данных

    LT1085 от Linear Technologies

    LT1085 также является отраслевым стандартом, очень дешевый, сильноточный LDO (Low Dropout Regulator), который имеет входное напряжение не более 30 В и доступен в версиях с регулируемым и фиксированным выходным напряжением с точностью выходного напряжения. из ±.015% этот чип может выдерживать максимальный выходной ток 7,5 А при типичном падении напряжения 1 В.

    Он имеет ток покоя 10 мкА с диапазоном рабочих температур от -40 ° C до + 150 ° C в зависимости от размера корпуса. Функции защиты включают в себя перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков напряжения. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений.Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.

    Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство, регуляторы постоянного тока и многое другое. Этот чип стоит 0,50 доллара за за единицу и падает до 0,167 доллара за всю катушку из 3000.

    Название детали: LT1085

    Лист данных: LT1085 Лист данных

    BA3258HFP от Rohom Semiconductors

    BA3258HFP также является отраслевым стандартом, недорогим, однокристальным, двойным выходом, сильноточным LDO (Low Dropout Regulator), который имеет входное напряжение макс. 14 В, эта ИС имеет двойной выходной каскад в показанной версии.Он может производить две шины питания с регулируемым выходом: одну 3,3 В и одну шину питания 1,5 В из одного входа. Это очень компактный LDO, который поставляется в корпусе HRP5.

    Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают FPD, телевизоры, DSP и многое другое. Эта микросхема стоит 0,57 доллара за за единицу и падает до 0 долларов.38 для всего барабана 3000.

    Название детали: BA3258HFP

    Лист данных: BA3258HFP Лист данных

    HMC1060LP3E от Analog Devices

    HMC1060LP3E также является отраслевым стандартом, однокристальным, многовыводным, сильноточным LDO (стабилизатором с малым падением напряжения), который имеет входное напряжение 5,6 В и предлагает четыре выходных канала. Четыре канала выходного напряжения являются программируемыми и называются VR1 — VR4.VR1 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 100 мА, VR2 и VR3 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 50 мА, а VR4 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 300 мА

    Это, безусловно, самый дорогой чип во всем этом списке, он обладает удивительными функциями , такими как выходное напряжение, пропорциональное температуре (PTAT), и сверхнизкими шумовыми характеристиками. В таблице данных указано, что масштабирует напряжение питания в зависимости от температуры, чтобы максимизировать фазовый шум и характеристики выходной мощности .

    Он имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания и работает при температуре от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают в себя подачу ВЧ и смешанных сигналов, генерацию сверхмалых шумов (ФАПЧ, ГУН, ФАПЧ со встроенными ГУН) и многое другое. Этот чип стоит 9,435682 доллара за единицу и упадет до 7 долларов.388182 на всю катушку из 3000 штук.

    Название детали: HMC1060LP3E

    Лист данных: HMC1060LP3E Лист данных

    Примечание: Обратите внимание на производителя, некоторые параметры устройства могут сильно отличаться в зависимости от производителя.

    Надеюсь, вам понравилась эта статья и вы узнали из нее что-то новое. Если у вас есть сомнения, вы можете задать вопрос в комментариях ниже.

    Основная часть линейного и импульсного регулятора напряжения 1

    % PDF-1.4 % 1 0 obj> поток application / pdf Основная часть 1 линейного и импульсного регулятора напряжения

  • Примечания по применению
  • Texas Instruments, Incorporated [SNVA558,0]
  • iText 2.1.7 by 1T3XTSNVA5582011-12-07T21: 56: 09.000Z2011-12-07T21: 56: 09.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    ТОП-10 линейных регуляторов напряжения

    В электронике для стабилизации напряжения обычно используются линейные регуляторы напряжения.Независимо от входного напряжения или условий нагрузки они будут обеспечивать фиксированное выходное напряжение, тем самым защищая устройства от колебаний выходных сигналов, которые могут привести к неэффективной работе или даже к повреждению.

    При разработке источника питания для приложения, в котором требуется небольшая разница между входным и выходным напряжениями, разработчикам оборудования следует учитывать линейные регуляторы напряжения.

    Простота и стоимость — основные преимущества использования линейных регуляторов перед импульсными регуляторами напряжения.Кроме того, отсутствие шума переключения делает линейные регуляторы особенно полезными для аудио- и видеосвязи, медицинских устройств и других чувствительных к шуму приложений.

    С другой стороны, линейные регуляторы напряжения выделяют тепло, и их КПД довольно низок и колеблется от 30% до 60%. Вот почему они используются в основном для маломощных устройств и небольших различий между входным и выходным напряжениями.

    По сравнению с линейными регуляторами импульсные регуляторы напряжения (также известные как импульсные регуляторы) превосходят по эффективности и выделяют гораздо меньше тепла, но также являются более дорогими и сложными.

    При выборе между различными регуляторами напряжения для вашего приложения вы должны учитывать несколько факторов, включая их максимальное входное напряжение, разницу между входным и выходным напряжениями, номинальные токи, номинальные температуры и выходной шум.

    Большинство линейных регуляторов напряжения в нашем списке 10 имеют максимальную токовую защиту и тепловую защиту. Большинство из них также имеют максимальное входное напряжение от 5,5 до 40 В и выходное напряжение от 3,3 до 15 В. Самыми популярными поставщиками стабилизаторов напряжения для SnapEDA являются Diodes Inc, Richtek USA Inc, Microchip, STMicroelectronics и Texas Instruments.

    Давайте теперь взглянем на 10 лучших линейных регуляторов напряжения на SnapEDA!

    # 10 — LP2985-33DBVR от Texas Instruments

    Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 16 В, выходное напряжение 3,3 В, выходной ток 150 мА, напряжение отключения 280 мВ и диапазон температур перехода от -40 ° C до 125 ° C.
    Средняя цена у дистрибьюторов: $ 0,60

    Загрузить Symbol & Footprint

    # 9 — L7805ACD2T от STMicroelectronics

    Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

    Средняя цена по дистрибьюторам: N / A

    Загрузить Symbol & Footprint

    # 8 — L7805CV-DG от STMicroelectronics

    Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, выходной ток 1,5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

    Средняя цена у дистрибьюторов: $ 0.52

    Загрузить Symbol & Footprint

    # 7 — REG1117 от Texas Instruments

    Этот положительный стабилизатор с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 1,8 В, выходной ток 800 мА и диапазон температур перехода от -40 ° C до 125 ° C.

    Средняя цена у дистрибьюторов: $ 2,02

    Скачать Symbol & Footprint

    # 6 — L7805CV от STMicroelectronics

    Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Максимальный выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

    Средняя цена у дистрибьюторов: $ 0,41

    Загрузить Symbol & Footprint

    # 5 — LD1117S33CTR от STMicroelectronics

    Этот регулятор напряжения с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 3,3 В, максимальный выходной ток 950 мА, падение напряжения 1 В и диапазон температур перехода от -40 ° C до 125 ° C.

    Средняя цена у дистрибьюторов: $ 0.36

    Загрузить Symbol & Footprint

    # 4 — AP2112K-3.3TRG1 от Diodes Inc.

    Этот положительный стабилизатор имеет максимальное входное напряжение 6 В, выходное напряжение 3,3 В, максимальный выходной ток 600 мА, напряжение падения 0,4 В и диапазон температур перехода от -40 ° C до 85 ° C.

    Средняя цена у дистрибьюторов: $ 0,24

    Загрузить Symbol & Footprint

    # 3 — RT9193-33GB от Richtek USA Inc.

    Этот регулятор с низким падением напряжения имеет 5.Максимальное входное напряжение 5 В, выходное напряжение 3,3 В, максимальный выходной ток 300 мА, падение напряжения 0,3 В и диапазон температур перехода от -40 ° C до 125 ° C.

    Средняя цена у дистрибьюторов: 0,50 доллара США

    Загрузить Symbol & Footprint

    # 2 — MIC29302WU от Microchip

    Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 26 В, выходное напряжение 3,3 В, выходной ток 3 А, максимальное падение напряжения 0,6 В и диапазон температур перехода от -40 ° C до 125 ° C.

    Средняя цена по дистрибьюторам: N / A

    Скачать Symbol & Footprint

    А верхний линейный регулятор напряжения на SnapEDA — это…

    # 1- LM1117MP-3.
Стабилизат

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *