+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Простой стабилизатор тока на 12В для светодиодов в авто

Важнейшим параметром питания любого светодиода является ток. При подключении светодиода в авто, необходимый ток можно задать с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14,5В). Отрицательной стороной данного подключения является свечение светодиода не на полную яркость при напряжении в бортовой сети автомобиля ниже максимального значения.

Более правильным способом является подключение светодиода через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором, стабилизатор тока обладает более высоким КПД и способен обеспечить светодиод необходимым током как при максимальном, так и при пониженном напряжении в бортовой сети автомобиля. Наиболее надежными и простыми в сборке являются стабилизаторы на базе специализированных интегральных микросхем (ИМ).

Стабилизатор на LM317

Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор.

Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти в данной статье.

Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.

К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток , не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Стоит подчеркнуть важность наличия конденсатора на входе, без которого ИМ PT4115 при первом же включении выйдет из строя.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Стабилизаторы для светодиодов в авто


Nissan Qashqai Племенной › Бортжурнал › Стабилизатор напряжения 12В для светодиодов своими руками

Всем читателям ПРИВЕТ! В одной из своих записей я рассказал, что поставил на автомобиль ДХО. Однако, не успел поставить стабилизатор напряжения. Для чего нужен он, да все просто.
Итак, в бортовой сети автомобиля рабочее питание составляет от 12,8 до 14,7 Вольт (на разных машинах по своему), а вот светодиоды рассчитаны на 12 вольт. Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля. Физику светодиодов можно почитать в интернете, информации полно!

Можно было заказать с АлиЭкспресс, но я решил делать сам. Опыт был уже.
Для изготовления стабилизатора мною были приобретены следующие компоненты:

1. Стабилизатор 2шт.
2. Конденсатор 100 мкФ 16V 2 шт.
3. Конденсатор 330 мкФ 16V 2 шт.
Итог: 70₽
Провода: взял от компьютера, так как они на концах уже изолированы и идеально подходят для купленных стабилизаторов.

Выбрал схему подключения (рисунок 1). Однако, в выбранной схеме исключил диод, так как он нужен грубо говоря, когда на выходе стабилизатора напряжение будет больше, чем на входе! Но такое бывает очень редко, можно сказать никогда!

Рисунок 1 — схема стабилизатора

Полный размер

Компоненты

Полный размер

Провода-доноры

Далее пошёл процесс пайки. Оговорюсь сразу, что я не профессионал в этом деле, а любитель. Поэтому многие могут сказать, что неаккуратно сделал. Уж извиняйте))) после того, как все спаял решил засунуть в какой-нибудь корпус. И тут меня осенило, что корпус для стабилизаторов можно сделать из киндер сюрприза, благо у сына этого добра хватает))) Сделал отверстия с каждой стороны пластикового яйца и просунул провода. Выглядит все это довольно приемлемо!

Утром на стоянке проверил мультиметром входное и выходное напряжение! Все ОК.

P.S. Уважаемые читатели, не судите строго за дизайн корпуса и пайку. Главное, чтобы ВЫ поняли, для того, чтобы светодиоды на ваших машинах работали долго, надо ставить стабилизаторы. Сделать их не сложно и недолго, цена — копейки!
В будущем хочу сделать стабилизатор в виде микросхемы!

Полный размер

Думаю, вы поймёте, почему выбрал провода от компьютера

Заизолировал контакты

Сделал общий минус

Итог пайки

Итог пайки — 2

Стабилизатор в корпусе

Полный размер

Готовые стабилизаторы

Проверка — входное напряжение на стабилизатор

Полный размер

Проверил работоспособность стабилизатора на старой светодиодной ленте — ОК

www.drive2.ru

Стабилизатор напряжения на 12 В для диодных ламп — KIA Ceed, 1.6 л., 2012 года на DRIVE2

Долго решался на какой остановиться схеме, очень много вариантов и у драйвоводов, и в инете. В итоге принял следующее:
Нам понадобится:
Стабилизатор, в народе «крен» L7812сv

Крен


Конденсатор 100 микрофарад 25 В (на вход)
Конденсатор 100 микрофарад 25 В (на выход)

Необходимо 2 шт


Диод 1N4007

Обязательно соблюдать полярность


Теперь собираем схему:
Необходимо спаять две минусовые ножки конденсаторов между собой

Спаяные конденсаторы


Припаять минусы конденсаторов к минусу стабилизатора

Припаять плюсы конденсаторов к плюсам стабилизатора

Припаять катод диода к плюсу стабилизатора (на вход)

В диоде обязательно соблюдать полярность


По скольку минус у стабилизатора общий необходимо спаять два провода между собой

Припаять два минусовых провода к минусу стабилизатора (средняя ножка крена)

Для удобства припаял с обратной стороны


Припаять плюсовой провод на плюс выхода стабилизатора

Припаять второй плюсовой провод на анод диода. Одеть на диод кембрик

Да, именно плюсовой провод на минусовую ножку диода


Изолируем ножки стабилизатора (крена)

Одеть разрезанный кембрик


Одеть термоусадочную трубку на всю схему

Все стабилизатор готов, идем проверять к машине.
При заглушенном двигателе напряжение в сети 12,75 В

Заводимся, напряжение в сети 14,83 В

Напряжение в сети через стабилизатор 12,11 В

Давал нагрузку включая и выключая разные потребители, напряжение остается стабильным без скачков (которых и боятся диодные лампы).
В верхнее отверстие стабилизатора можно прикрутить алюминиевую пластину, которая будет являться дополнительным радиатором для отвода тепла.
Такой стабилизатор напряжения нужен на каждую диодную лампочку.
Ссылки:
xn—-7sbbil6bsrpx.xn--p1…B8%D0%BE%D0%B4%D0%BD.html
www.drive2.ru/l/1897660/
www.drive2.ru/l/4899916394579178551/
Цена вопроса:
— стабилизатор (крен) 4 грн;
— конденсатор 100 мкф 0,35 грн х 2 шт=0,70 грн;
— диод 0,20 грн;
— провода 1 м на «+» и 1 м на «-«. По 1,50 грн/м=3 грн.
Итого: 7,90 грн.
Всем удачи.

www.drive2.ru

Стабилизатор для светодиодов и ДХО

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Чем это объясняется?


Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов


Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:

Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора



Схема взята из даташита на микросхему L7805.

Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов


Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.


В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.

На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.

Смотрите видео сборки


sdelaysam-svoimirukami.ru

Hyundai Solaris Hatchback Tenebris › Бортжурнал › Решение проблемы перегорающих светодиодов. Стабилизация напряжения бортовой сети

Увы, бортовая сеть автомобилей B-класса редко подготовлена должным образом для светодиодного освещения. Изложенное ниже является еще одной возможной вариацией решения проблемы сгорающих светодиодных ламп.

Наверняка каждый автовладелец Hyundai Solaris если и не из личного опыта, то со слов других знаком с проблемой постоянно перегорающих светодиодных ламп. К сожалению, штатно нашему автомобилю не полагаются диодные лампы, а значит и бортовая сеть на них не рассчитана. Я лично столкнулся с этой проблемой после установки диодной подсветки заднего номера.

Суть проблемы
На рынке автоэлектрики уже довольно давно изобилуют светодиодные лампы самых разных мощностей под разные цоколи и цели, ассортимент постоянно расширяется, но, увы, это не сильно влияет на качество самих ламп и их адаптацию под автомобили с повышенным напряжением бортовой сети.

Выгоревшие и выгорающие светодиоды в лампе с цоколем T10 (габариты, задний ход, подсветка номера)

Основных причин, по которым светодиодные лампы сначала начинают мерцать, а потом и вовсе сгорают, три:
1. Некачественная пропайка контактов, что приводит к перегреву и выгоранию. Решить эту проблему можно самому подручными средствами (хотя зачастую перепаивание контактов оказывается лишь временной мерой) или просто искать более качественную продукцию от европейских производителей. Всё чаще на рынке встречаются светодиодные лампы с микроконтроллерами, стабилизирующими напряжение. Такие, например, я ставил себе в задний ход.
2. Повышенная температура окружающей среды. Высокая температура может быть вызвана особенностью расположение ламп в осветительном приборе и непосредственной близостью к источнику большого тепла, такого как, например, галогеновая лампа головного света или двигатель. Например, в нелинзованной фаре Hyundai Solaris габаритная лампа близко соседствует с бигалогеновой лампой головного света. При этом температура внутри фары вблизи лампы достигает 90 градусов, что губительно для диодов. Решением такой проблемы может стать только использование термостойких сравнительно дорогих COB-диодов или же термоизоляция от лампы головного света, что крайне сложно реализовать.
3. Повышенное напряжение бортовой сети. Как известно, чем свежее (новее) аккумулятор, тем выше на нём напряжение. На моём годовалом аккумуляторе напряжение 12,75 В, а при запущенном двигате

www.drive2.ru

Простой стабилизатор для светодиодов в авто – Поделки для авто

Светодиоды не любят колебания напряжения, это факт. Не любят они это по причине того, что светодиоды ведут себя не так как лампы или другие линейные приборы. Их ток меняется в зависимости от напряжения нелинейно, поэтому например двухкратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза. Из за чего они перегреваются, быстро деградируют и выходят из строя.

Большинство диодов, применяемых в автомобиле, имеют встроенное сопротивление, которое рассчитано на напряжение 12 вольт. Но напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), плюс ко всему оно далеко не такое стабильное, как хотелось бы. Если использовать недорогие китайские диодные приборы в автомобиле без предварительной их стабилизации то они достаточно быстро начнут мигать а затем и вовсе перестанут светить.

Вот и я столкнулся с такой проблемой — светодиоды в габаритах начали мигать, так как я когда-то поленился их стабилизировать.

Существует множество готовых схем-стабилизаторов для 12-вольтовых приборов. Чаще всего на прилавках можно найти микросхему КР142ЕН8Б или подобные ей. Данная микросхема расчитана на ток до 1.5А, но для большего эффекта нужно включение с применением входных и выходных конденсаторов.

Стандартная схема предполагает применение 0.33 и 0.033мкФ конденсаторов (если память не изменяет). Но лично я решил сделать включение с применением 4-х конденсаторов: 470мкФ и 0.47мкФ на вход и соответственно в 10 раз меньшая емкость на выход. Я уже не помню, но где-то на форумах я встречал именно такое включение, решил его применить.

Чтобы все это можно было легко внедрить в авто, я решил напаять все элементы непосредственно на микросхему.

Микросхема с элементами

Микросхема с элементами

К микросхеме припаяны, помимо конденсаторов, два провода, соответственно вход и выход. Масса будет приходить через крепление микросхемы. Средняя нога микросхемы задействована только под ножки конденсаторов. Выводить провод от нее я не стал, так как она объединена с корпусом схемы.
Для прочности всей конструкции я решил залить все это клеем, затем завернуть в термоусадку.

Микросхемы

Микросхема и термоусадка

Готовые стабилизаторы

В автомобиле можно крепить через саморез к кузову.

Прикрепленный стабилизатор

Пост не претендует на что-то супер-мега технологичное, но мало ли кому может пригодиться 🙂

Схема включения

Вместо КР142ЕН8Б можно использовать L7812CV, схема включения аналогичная. Если взглянуть на стандартную схему и сравнить с моей то возникают вопросы “зачем именно такие емкости?”.

Поясняю: штатная схема включения подразумевает только стабилизацию напряжения, но никак не спасает от просадки (кратковременной) напряжения, поэтому в схему были введены электролиты достаточно большой емкости для сглаживания таких просадок.

По идее конечно АКБ в машине должен выполнить роль фильтра просадок напряжения, но иногда случаются просадки, которые АКБ просто не успевает уловить. Например при подаче искры на свечу зажигания через катушку проходит нехилый ток, который отлично просаживает напряжение в бортсети.

Автор; Максим Ярошенко

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Стабилизатор НАПРЯЖЕНИЯ для светодиодов — DRIVE2

Светодиод это полупроводниковый прибор достаточно нежный: при выходе за пределы номинальных значений практически любого из его параметров сокращается его жизнь или он выходит из строя. Основной и самый важный параметр светодиода это его номинальной рабочий ток. Если он ниже, то светодиод просто теряет в яркости до порога запирания, а вот если он больше номинального — то светодиод может выйти из строя.

В самом простом варианте для ограничения тока используют токоограничительные сопротивления — резисторы, но при работе от нестабильной по напряжению бортовой сети автомобиля добиться номинального тока через светодиод сложно. Если используется один или несколько светодиодов, то проблема решается просто подбором сопротивления под самое большое напряжение бортовой сети, а вот если их много… Для стабилизации в таких случаях многие применяют линейные стабилизаторы напряжения. Это один из вариантов стабилизации, помимо применение стабилизатора тока. И многие здесь делают ошибки.

У трехножечного стабилизатора есть основные условия нормальной работы: это падение напряжение между входом и выходом и ток. Если подключить 12-ти вольтовый стабилизатор, то нормально он работать не будет, ибо минимальное входное напряжение у него 14.5 Вольта. Получится только ограничитель напряжения при скачках напряжения на входе. Если например гена не заряжает аккум, то напряжение на выходе будет далеко не 12 Вольт.

Оптимальный здесь будет применения стабилизатора на 8 Вольт. У него минимальное напряжение на входе 10.5 Вольта, что перекрывает весь рабочий диапазон напряжений борт. сети.

Если применять стабилизаторы на меньшее напряжение, то пропорционально уменьшению напряжения стабилизации на выходе увеличивается количество выделяемого тепла стабилизатором, что накладывает ограничение по току нагрузки. Короче говоря чем больше разница между входом и выходом стабилизатора, тем он больше греется при одном и том же токе нагрузки.

Лучше всего подходят для стабилизации напряжения ШИМ — DC-DC преобразователи напряжения, которые имеют высокий КПД и выделяют очень мало тепла, соответсвенно позволяют подключать намного большие токи нагрузки, чем простые стабилизаторы. Примеры таких стабилизаторов есть у krasherа

Ещё лучше использовать не стабилизатор напряжения а стабилизатор тока. Хотя я считаю, что стабилизатор тока актуален только при подключении единичных мощных светодиодов — без него никуда, а для стабилизации гирлянд мелких светодиодов стабилизатор напряжения ни чем не уступает стабилизатору тока.

Неправильная схема. Применять стабилизаторы тока или ещё хуже напряжения так нельзя! Любое отклонение падение напряжения одного из светодиодов приведет в нарушению токов во всех цепях. Например, если напряжение падения у светодиода LED2 уменьшится, то это вызовет большой протекающий ток через LED1,LED2,LED3, светодиоды этой цепи перегорят, что вызовет больший протекающий ток через остальные светодиоды.

Неправильная схема. Применять одно токоограничивающее сопротивление не рекомендуется. Будет перекос тока среди линий светодиодов, да и на резисторе будет выделяться много тепла. Схема на практике работать будет, но срок службы сократится однозначно.

Правильная схема. Токоограничительные сопр

www.drive2.ru

ЗАЗ 1103 Славуталёт › Бортжурнал › Стабилизаторы напряжения 12В в автомобиль для светодиодов, ДХО.

Решил я сделать стабилизаторы напряжения 12В для светодиодов, диодных лент, габаритов, ДХО(Дневных ходовых огней) в автомобиль.

Так они вглядят


Светодиоды не любят колебания напряжения. Их ток меняется в зависимости от напряжения нелинейно, двукратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза, из за чего они быстро выходят из строя.

ДХО

Большинство диодов, в автомобиле, имеют встроенное сопротивление, рассчитанное на 12 вольт. Напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), оно далеко не такое стабильное, как хотелось бы. Если использовать китайские диодные приборы без предварительной стабилизации, то они быстро начнут мигать а затем перегорят.

Габариты

С данным стабилизатором напряжение в сети не будет подниматься выше 12В, что обеспечит долговечность китайских ходовых огней на светодиодах, китайских диодных лент, светодиодов габаритных, и обычных светодиодов. На данный момент я поставил на передние габариты и на подсветку под капотом один стабилизатор, один стабилизатор на освещение в салоне и один на освещение в багажном отделении!

Светодиодные ленты в салон и внешнее освещение авто.

Подключать много потребителей на один стабилизатор было бы не правильно! Чем больше потребителей и больше напряжение, тем больше он греется, далее я написал подробнее про установку и использование.
Кто не желает играться с пайкой или нет возможности достать детали для пайки и спаять по схемам из интернета, тот может заказать их просто у меня по цене 40 грн за штуку. Отправка УкрПочтой +10грн, НовойПочтой +25 грн.
Укр почтой конечно же будет дешевле, но доставка чуть дольше, чем Новой почтой, номер посылки отправляю, её можно отслеживать по Украине без проблем! При большом заказе цена на доставку понятное дело может немного возрасти. Делаю под заказ!
Установка:
устанавливать стабилизатор необходимо после предохранителей, жёлтым цветом на входящий плюс, красным(с уже стабилизированным напряжением не выше 12В) на провод идущий к диодам, и чёрным на массу автомобиля (минус аккумулятора.). В процессе работы стабилизатор может нагреваться до 65 градусов. Его можно крепить на корпус автомобиля, причём тело крепления является массой(минусом) как и чёрный провод выходящий из стабилизатора! Не стоит крепить на легкоплавкие предметы, а так же в местах подверженных заливанию водой.
Характеристики:
Данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А.
Доставка осуществляется любыми транспортными компаниями по Украине. Перед покупкой уточните наличие товара. Цена указана за 1 штуку. Внешний вид товара может незначительно отличаться от того что на фото, по цвету термоусадок, цвету кабеля и т д. на работоспособность и выполнение обязанностей стабилизатора это не влияет.

www.drive2.ru

Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов — Автоблоги

Всем привет!

Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.

Часть 1. Предисловие

Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.

Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.

По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.

Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.

Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:

1. Дешевые автомобильные светодиодные лампы на 12 В.

Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания.Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.

Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы напряжения, которые защитят лампы от скачков напряжения в бортовой сети автомобиля и подадут на лампы стабильные 12В. Однако, такой способ имеет ряд существенных недостатков:

Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.

Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.

Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.

Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.

Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.

Часть 2. Немного теории

Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.

Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):

2. Типовая схема светодиодной лампы без стабилизатора, на 9 светодиодов

Обозначение элементов на схеме, слева направо:

R0: Резистор-обманка для систем контроля исправности ламп. О нем я, возможно, сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет. I0 — ток через резистор R0.

VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.

R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.

HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.

I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.

Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:

3. Упрощенная схема светодиодной лампы с одним токоограничивающим резистором

От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.

Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока

Для доработки ламп понадобятся:

1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.

Пример 1: Цилиндрические лампы типа C5W или C10W

Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):

4. Отпаиваем контактные колпачки

На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).

5. Элементы светодиодной лампы

Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:

6. Внизу лампа с тремя токоограничивающими резисторами, вверху — с одним

На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:

7. Лампа с COB-матрицей

Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.

Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:

Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.

Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.

Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.

Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.

На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):

8. Впаиваем резистор с увеличенным сопротивлением.

Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:

9. Для ламп подсветки номера, сопротивление штатного резистора увеличено в 7 раз

Пример 2. Бесцокольные лампы T10 W5W

Отгибаем контактные усики и разбираем лампу (фото 10):

10. Светодиодная лампа T10 W5W с несколькими светодиодами SMD

Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):

11. Примитивная конструкция с одним резистором

Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):

12. Лампа T10 W5W с одним мощным светодиодом

Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):

13. Для меньшего нагрева, использовано два резистора вместо одного

Пример 3. Малогабаритные лампы T5 для приборной панели

Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):

14. Лампы для приборной панели

15. Один светодиод и один резистор

Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.

Часть 4. Некоторые практические советы

Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):

16. Запаять деталь другого размера не всегда возможно

Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):

17. При работе феном, прикрывайте соседние детали от горячего воздуха

Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.

18. Для более надежной пайки колпачков, можно добавить припой на контактные пятачки

Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):

19. Рекомендую удалить декоративные стекла с матриц COB

И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):

20. И в Китае есть свои Коли 🙂

Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.

Источник

auto.mirtesen.ru

Линейный стабилизатор для светодиодных ламп на авто

Итак, почему же так быстро перегорают габаритные, светодиодные лампочки или другие светодиодные лампочки, которые стоят в автомобиле, потому что в них используется в качестве драйвера обычный токоограничивающий резистор.

Как правило, светодиодные световые приборы, мощностью от 10 Вт и выше используют уже качественный импульсный стабилизатор — драйвер и такой болезнью не страдают в отличие от габаритных, дешевых светодиодных ламп.

Сначала эти лампочки начинают мерцать, то есть это уже первые признаки деградация кристалла, ну и потом они попросту перегорают. В среднем простой, светодиодной лампочки продолжительность жизни составляет один год, где-то меньше, где-то чуть больше.

Почему же так происходит?

А происходит это потому, что данный токоограничивающий резистор рассчитывается по специализированной формуле, (таких калькуляторов онлайн много в интернете) и подключается на соответствующие напряжение.

И вот тут производитель очень хитро делает, на некоторых цоколях написано 12 вольт,то есть токоограничивающий резистор для данной лампочки заточен под 12 вольт. А в автомобильной цепи, как мы знаем напряжение бывает не только 12 вольт, а доходит и до 14.5 вольт. То есть из этого делаем вывод, что светодиодная лампочка при 12 вольтах уже работает на максимальной мощности, а уже более 12 вольт идёт сильный износ кристалла светодиода, одним словом сильный перегруз.

Так, как же сделать так, чтобы они у нас не перегорали, я тоже в своё время замучился их менять, поэтому и решил этот вопрос изучить досконально и сделать преобразователь при котором светодиодная лампочка становилась практически вечной.

Есть конечно на али экспрессе такие преобразователи, которые уже рассчитаны для этих целей, но есть одно НО…. они выдают высокочастотные импульсные помехи, но это присуще всем импульсным источникам питания. Это даёт большие наводки, например, при использовании FM модуляторов, особенно при прослушивании радио, да даже просто наводки в акустическую систему, с этой точки зрения нужно стараться, как можно меньше наполнять свой автомобиль импульсными источниками питания.

Поэтому мы будем с вами делать линейный стабилизатор с фиксированным напряжением, который имеет большие преимущества. Первое достоинство — он стоит сущие копейки по сравнению с импульсными. Второе, то что стабилизатор линейный и не даёт вообще никаких помех и высокочастотных наводок.

Для этого нам понадобится, сам стабилизатор L7812cv,он у нас будет рассчитан на 1.5 Ампера и пара конденсаторов на 100 n.

Сама схема довольно простая, я даже сказал бы очень простая и собрать ее сможет любой автолюбитель.Левая нога — это плюсовой вход (от 12 до 30 вольт), а правая уже стабильный плюсовой 12-ти вольтовый выход. Минус общий. То есть стабилизатор можно подключать в разрыв плюсового провода, который идёт к лампочке или ДХО.

Два конденсатора, которые стоят в схеме, это своеобразный фильтр, если вы никогда этим не занимались, то ими можно пренебречь, то есть попросту не ставить.

Вот готовый вариант как это сделал я.Запаял всё на плате и засунул в термоусадку, чтобы ничего нигде не замыкало, получилась практически вечная конструкция.

Были у меня остатки заготовок от печатных плат, из этих отходов и собрал.

Да.., сам стабилизатор закрепил через термоскотч на плату,если у вас нет термоскотча, советую стабилизатор поставить на радиатор, чтобы он не перегревался, так надёжней.
Вот такой я использовал термоскотч, очень хорошая и полезная вещь, чтобы не заморачиваться со всякими термопастами и так далее. Для тех, кто захочет приобрести вот ссылка http://ali.pub/27tn5c.

—Также даю ссылку на сам стабилизатор http://ali.pub/27tmdj
—И контактные колодки http://ali.pub/27tnev.

Вы соответственно монтаж сделаете как вам будет угодно, на макетной плате или навесным монтажом, от этого качество стабилизатора не пострадает.

Сделали один раз, поставили и не будет у вас теперь проблем с перегоревшими или мигающими светодиодными лампами. Всего вам доброго.

xn--100—j4dau4ec0ao.xn--p1ai

Простой стабилизатор тока на 12В для светодиодов в авто

Важнейшим параметром питания любого светодиода является ток. При подключении светодиода в авто, необходимый ток можно задать с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14,5В). Отрицательной стороной данного подключения является свечение светодиода не на полную яркость при напряжении в бортовой сети автомобиля ниже максимального значения.

Более правильным способом является подключение светодиода через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором, стабилизатор тока обладает более высоким КПД и способен обеспечить светодиод необходимым током как при максимальном, так и при пониженном напряжении в бортовой сети автомобиля. Наиболее надежными и простыми в сборке являются стабилизаторы на базе специализированных интегральных микросхем (ИМ).

Стабилизатор на LM317

Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор. Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти в данной статье.

Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.

К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток , не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Стоит подчеркнуть важность наличия конденсатора на входе, без которого ИМ PT4115 при первом же включении выйдет из строя.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

ledjournal.info

Стабилизатор напряжения для светодиодов в авто своими руками

Задумался я о том, чтобы установить на задние фары светодиоды. И решил сделать стабилизатор для светодиодов. Но главное – хотел «габарит» и «стоп-сигнал» совместить в один рабочий модуль. Тогда при работе габаритов он горел бы в половинную силу, а в режиме «стоп» – светился со всей яркостью.

Оптимальным вариантом для своей задумки посчитал создание схемы на базе простого стабилизатора напряжения, с микросхемой LM 2596.

Ниже на фото видите стабилизатор и его схему.

Как сделать стабилизатор двухрежимным:

— доработать схему стабилизатора, как показано на картинке. — Разработать печатку. — Изготовить плату. Для этого использовать метод лут. — Сделать распечатку на листе бумаги, а затем перевести на фольгированный текстолит. — Протравить, напаять все необходимые детали. — Получили стабилизатор, работающий в двух режимах.

Осталось его настроить. Для этого следует включить стабилизатор в положение «габарит» и, используя резистор R1, отрегулировать яркость свечения.

Переключить во второе положение – «стоп», и повторить предыдущие действия, но при этом необходимо задействовать резистор R2.

Вот, как это выглядит.

Печатка; скачать…

Автор; Олег Шарин,   г.Пермь

xn--100—j4dau4ec0ao.xn--p1ai

Стабилизатор тока для светодиодов своими руками

Автор: Виктор

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Содержание

Открытьполное содержание

[ Скрыть]

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

1. Прибор на КРЕНке
2. На двух транзисторах
3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

 Загрузка …

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Импульсный стабилизатор 12В

Для чего в автомобиле нужен стабилизатор напряжения? Не все знают, что многие светодиодные осветительные приборы, не имеющие встроенного стабилизатора, рассчитаны на напряжение питания 12В +-10%. Однако при заведенном двигателе в бортовой сети автомобиля напряжение должно находиться в районе 14В, чтобы генератор мог зарядить аккумулятор. Яркий пример — светодиодные ленты.

В это трудно поверить, но при превышении напряжения питания всего на 2 Вольта, ток через диоды увеличивается в 2 раза. Такие особенности схемы включения трех диодов через резистор. Чтобы предотвратить выход из строя светодиодов ленты, их желательно запитывать через стабилизатор напряжения.

Популярна схема на интегральном стабилизаторе 7812. Но опять не все знают, что разница напряжения между входом и выходом у него составляет 2-2,5В. То есть, как стабилизатор он работает при напряжении питания выше 14-14,5В, а при напряжении ниже этих значений лишь понижает входное напряжение на 2В. Так как это линейный стабилизатор, то при больших токах он сильно греется и требует радиатор. Его максимальный ток 1-1,5А.

Импульсные стабилизаторы могут выдавать значительный ток без нагрева. Им не нужен радиатор.
Данный стабилизатор имеет падение напряжения всего 0,5В при токе нагрузки до 2А.

Стабилизатор напряжения:
Входное напряжение 12,5…20 В.
Выходное напряжение 12+-1% (можно перенастроить при заказе).
Выходной максимальный ток 2 А.
Падение напряжения 0,5 В.
Габариты 50х15х17 мм.
На плате мощный дроссель с низким сопротивлением, диод Шоттки, входные и выходные керамические конденсаторы большой емкости.
Защита от перегрева и ограничение тока на уровне 4 А.
Гарантия 2 года.

‘), prdu = «/other/stabilizatory/impulsnyy-stabilizator-12v/»; $(‘.reviews-tab’).append(loading) .load(prdu + ‘reviews/ .reviews’, { random: «1» }, function(){ $(this).prepend(‘

схема регулятора напряжения для светодиодной лампы > Свет и светильники

Гудит лампа светодиодная: почему шумит светильник

Узнайте, отчего иногда появляется ощутимый гул при работе светодиодных ламп. Читайте, какие причины его вызывают, как их обнаружить и устранить. Запомните наиболее распространенные источники, чтобы при необходимости не тратить время на бесполезные поиски….

03 06 2021 23:35:22

Светодиодная подсветка: как сделать освещение из led ленты своими руками

Читайте здесь, что такое светодиодная подсветка из светодиодной ленты и какими главными параметрами она хаpaктеризуется. Как сделать светодиодную подсветку своими руками. Основные правила и схемы подключения для одноцветных и RGB-лент. В каких случаях нужен радиатор и что использовать в качестве его основы….

27 05 2021 22:37:19

и светодиодные для внутреннего освещения: настенные, накладные и специальные

Наиболее экономичным и эффективным способом реализации внутреннего освещения считаются светодиодные светильники. Они превосходят все альтернативные виды, демонстрируют высокую работоспособность, позволяют подбирать оптимальные режимы подсветки для помещений в соответствии с их назначением….

25 05 2021 23:21:44

Устройство светодиодной ленты 12 вольт: принцип работы и как устроена

Читайте, какие светодиодные ленты доступны на рынке, чем они отличаются друг от друга. Узнайте устройство светодиодной ленты на 12 вольт, Критерии выбора и способы подключения к сети. Как рассчитать мощность блока питания, когда требуется включение в схему контроллера и усилителей….

18 05 2021 18:11:21

Лампа ближнего света Лансер: какой цоколь подходит и как поменять

Узнайте, какие лампы используются для ближнего света в фарах Мицубиси Лансер 10. Сохраните для себя списки популярных и эффективных моделей подобных светильников. Читайте, как производится замена ближнего света на Лансере 10, какие пpeдoxpaнители отвечают за эти лампы, и где их можно найти….

29 04 2021 2:38:32

Схема энергосберегающей лампы: принцип работы и устройство

Читайте здесь, как устроена и работает схема энергосберегающей лампы, какие виды таких приборов освещения существуют, какие у них главные эксплуатационные хаpaктеристики, каковы принципы и устройство их работы, какие компоненты составляют их схему и как происходит зажигание….

21 04 2021 20:54:19

COB LED: что это такое, хаpaктеристики и параметры светодиодной лампы

Читайте, что такое COB LED, чем отличается от светодиодов SMD. Узнайте, как эти модули производятся, какими преимуществами обладают. Какие у СОВ-модулей технические и оптические хаpaктеристики, что необходимо учесть при работе с ними. На какие критерии следует обратить внимание при покупке….

17 04 2021 5:19:33

Схемы включения светодиодов

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Светодиод является прибором токовым, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. – напряжение питания, Uпад. – падение напряжение на светодиоде, R – сопротивление ограничивающего резистора, I – ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство – деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах – двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от стабилизированного источника постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 — Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок 14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Ранее ЭлектроВести писали, что в городе Эссен (Германия) возле городской филармонии и театра Аалто установили 15 интеллектуальных уличных фонарей, которые позволят подзарядить автомобиль, а также предоставлять данные о качестве окружающего воздуха и доступ в Интернет.

По материалам: electrik.info.

Драйвер для 10Вт светодиода 900мА 9-11В стабилизатор тока

  • Код Товара: DR 900мА 10W
  • Наличие: В наличии
Источник питания (драйвер) для 10 ваттного  светодиода используется для подключения 10Вт светодиода (рассчитанного на ток 900мА)  к аккумулятору или автомобилю, а также к любому другому источнику питания постоянного (12-24В) или переменного (9-17В) напряжения. Такие светодиоды отлично подходят для замены ламп автомобиля, например поворотов или стоп сигнала, а также освещения салона и т.п. Очень часто такой комплект из данного драйвера и 10Вт светодиода используют для аварийного освещения от аккумулятора.
К данному драйверу можно также подключать параллельно 3группы по 1-3шт 1Вт светодиодов, которые также есть среди моих лотов.

Технические характеристики от производителя: 
Напряжение питания:  9-17В переменного или 12-24В постоянного напряжения.
Номинальный выходной стабилизированный ток: 900мА 
Выходное напряжение: 3-11В (устанавливается автоматически для поддержания номинального тока 900мА)
Защита от обрыва цепи нагрузки: есть
Защита от короткого замыканив в цепи нагрузки:   есть
Рабочая температура:    -20…50°С
Габаритные размеры :
Длина:   25мм
Ширина:   17мм
Высота:   10мм
Характеристики
Входное напряжение 12-24В
Выходное напряжение 3…11В регулируемое
Максимальный ток нагрузки 900мА
Рабочая температура — 40 до + 85
Размеры корпуса ДхШхВ 25х17х10

Теги: драйвера, DC-DC преобразователи

Купить стабилизатор 12 в — суперскидки на стабилизатор 12 в на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для стабилизатора 12В. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший стабилизатор на 12 В вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели стабилизатор 12 В на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете значительно сэкономить.

Если вы все еще не уверены в стабилизаторе 12 В и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 12v стабилизатор по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Светодиодный стабилизатор

12v — купить светодиодный стабилизатор 12v с бесплатной доставкой на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для светодиодного стабилизатора 12 В.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот светодиодный стабилизатор на 12 В должен стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели 12-вольтовый светодиодный стабилизатор на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете значительно сэкономить.

Если вы все еще не уверены в светодиодном стабилизаторе 12 В и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 12v led стабилизатор по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Стабилизатор напряжения

, ШИМ-диммер, блоки питания 12 В

PS1, мощность от 25 Вт до 150 Вт Расходные материалы:
Промышленные серии ПС1. регулируемые 12-вольтовые блоки питания предназначен для прямого подключения к проводка 120 В переменного тока за стеной.Каждый действует как центр силы для кластер из 12-вольтовой техники. Они есть рекомендуется, если вы хотите установить светодиод освещение в жилом доме.

Все блоки питания PS1-xx соответствуют требованиям UL одобренный.

При установке необходимо соблюдать осторожность. соответствующую проводку на 12 В между блок питания и 12 вольт бытовая техника.Провод динамика часто бывает достаточно, но следите за калибром AWG провод, который вы используете.

Чем выше номер калибра AWG проволока, тем она меньше и тем меньше усилители он может нести без перегрева. В таблице ниже показаны результаты каждый источник питания и максимальное AWG провод с номером калибра для использования, если ВСЕ по этому проводу проходит ток, и предполагая, что длина провода меньше 10 ноги.Переходите к меньшему номеру датчика, когда сомневаюсь, просто чтобы убедиться.

В таблице также указаны физические размеры блоков питания.

Вт

Ампер

макс
awg

л

Вт

D

25

2.1

24

3,9

3,3

1.4

40

3,3

24

5.2

3,9

1,6

60

5.0

22

6,4

3,9

1.6

100

8,3

20

8.0

3,9

1,6

150

12.5

18

8,0

3,9

2.0


Источник постоянного питания 12 В для светодиодных цепей (Часть 4/13)

В предыдущих проектах были разработаны регулируемые цепи питания. Иногда напряжение для управления конкретной схемой уже известно, и необходимо спроектировать схему источника питания для вывода постоянного напряжения. В этом проекте разработана схема постоянного питания 12 В для питания цепей светодиодов.Схема должна быть спроектирована таким образом, чтобы в ней не было никаких колебаний или ряби. Схема будет получать питание от основных источников переменного тока и преобразует его в источник постоянного тока 12 В без пульсаций. Схема сможет потреблять максимальный ток 1А.

В схемах светодиодов избыточный ток через светодиоды, превышающий их номинальный прямой ток, может привести к чрезмерному повышению их температуры, что приведет к их постоянному или временному повреждению. Следовательно, в таких случаях очень важно иметь постоянное напряжение.К выходу схемы, разработанной в этом проекте, можно подключить один светодиод или комбинацию светодиодов, для которых требуется сетевой вход 12 В.

В силовой цепи, разработанной в этом проекте, используется стабилизатор напряжения 7812 IC и стандартные шаги проектирования силовой цепи, такие как понижение напряжения переменного тока, преобразование напряжения переменного тока в напряжение постоянного тока и сглаживание напряжения постоянного тока для получения прямого ввода от сети переменного тока.

Необходимые компоненты —

Рис.1: Список компонентов, необходимых для постоянного источника питания 12 В для светодиодных цепей

Блок-схема —

Фиг.2: Блок-схема постоянного источника питания 12 В для светодиодных цепей

Схема соединений —

Схема собирается поэтапно, каждая ступень служит определенной цели. Для понижения 230 В переменного тока используется трансформатор 18 — 0 — 18 В. Вторичная обмотка трансформатора соединена с мостовым выпрямителем. Полный мостовой выпрямитель создается путем соединения друг с другом четырех диодов 1N4007, обозначенных на схемах как D1, D2, D3 и D4.Катод D1 и анод D2 соединены с одной из вторичной катушки, а катод D4, а анод D3 соединен с центральной лентой вторичной катушки. Катоды D2 и D3 подключены, из которых одна клемма снята с выхода выпрямителя, а аноды D1 и D4 подключены, из которых другая клемма снята с выхода двухполупериодного выпрямителя. Провод протягивается от центральной ленты трансформатора, который служит землей для положительного и отрицательного выходов постоянного тока.

Предохранитель на 1 А последовательно подключен к выходу двухполупериодного выпрямителя для защиты от источников переменного тока. Конденсатор емкостью 470 мкФ (обозначенный на схеме как C1) подключен между выходными клеммами двухполупериодного выпрямителя для сглаживания. Для регулирования напряжения микросхема LM-7812 подключена параллельно сглаживающему конденсатору. Выходной сигнал поступает с клеммы выхода напряжения на микросхеме 7812 IC.

Как работает схема —

Силовая цепь работает по четко определенным стадиям, каждая из которых служит определенной цели.Схема работает в следующих этапах —

1. Преобразование переменного тока в переменный

2. Преобразование переменного тока в постоянный — полноволновое выпрямление

3. Сглаживание

4. Регулирование напряжения

Преобразование переменного тока в переменный

Напряжение основных источников питания (электричество, подаваемое через промежуточный трансформатор после понижения линейного напряжения от генерирующей станции) составляет приблизительно 220–230 В переменного тока, которое необходимо дополнительно снизить до уровня 12 В.Для понижения напряжения 220 В переменного тока до 12 В переменного тока используется понижающий трансформатор с центральной обмоткой. Использование трансформатора с центральным ответвлением позволяет генерировать как положительное, так и отрицательное напряжение на входе, однако с трансформатора будет поступать только положительное напряжение. В схеме наблюдается некоторое падение выходного напряжения из-за резистивных потерь. Поэтому необходимо использовать трансформатор с высоким номинальным напряжением, превышающим требуемые 12 В. Трансформатор должен обеспечивать на выходе ток 1А. Наиболее подходящий понижающий трансформатор, отвечающий указанным требованиям по напряжению и току, — 18–0–18 В / 2 А.Эта ступень трансформатора снижает сетевое напряжение до +/- 18 В переменного тока, как показано на рисунке ниже.

Рис.3: Принципиальная электрическая схема трансформатора 18-0-18 В

Преобразование переменного тока в постоянный — полноволновое выпрямление

Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока путем выпрямления. Выпрямление — это процесс преобразования переменного напряжения в постоянное. Есть два способа преобразовать сигнал переменного тока в сигнал постоянного тока. Один — это полуволновое выпрямление, а другое — полноволновое выпрямление.В этой схеме двухполупериодный мостовой выпрямитель используется для преобразования 36 В переменного тока в 36 В постоянного тока. Двухполупериодное выпрямление более эффективно, чем полуволновое выпрямление, поскольку оно обеспечивает полное использование как отрицательной, так и положительной стороны сигнала переменного тока. В конфигурации двухполупериодного мостового выпрямителя четыре диода соединены таким образом, что ток течет через них только в одном направлении, что приводит к возникновению сигнала постоянного тока на выходе. Во время двухполупериодного выпрямления одновременно два диода становятся смещенными в прямом направлении, а еще два диода смещаются в обратном направлении.

Рис. 4: Принципиальная схема полноволнового выпрямителя

Во время положительного полупериода питания диоды D2 и D4 проходят последовательно, в то время как диоды D1 и D3 смещены в обратном направлении, и ток протекает через выходной контакт, проходя через D2, выходной контакт и D4. Во время отрицательного полупериода питания диоды D1 и D3 проходят последовательно, но диоды D1 и D2 смещены в обратном направлении, и ток протекает через D3, выходную клемму и D1. Направление тока в обоих направлениях через выходную клемму в обоих условиях остается неизменным.

Рис. 5: Принципиальная схема, показывающая положительный цикл полнополупериодного выпрямителя

Рис. 6: Принципиальная схема, показывающая отрицательный цикл полнополупериодного выпрямителя

Диоды 1N4007 выбраны для построения двухполупериодного выпрямителя, поскольку они имеют максимальный (средний) номинальный прямой ток 1 А и в состоянии обратного смещения они могут выдерживать пиковое обратное напряжение до 1000 В. Поэтому в этом проекте для двухполупериодного выпрямления используются диоды 1N4007.

Сглаживание

Сглаживание — это процесс сглаживания или фильтрации сигнала постоянного тока с помощью конденсатора. Выход двухполупериодного выпрямителя не является постоянным напряжением постоянного тока. Выходной сигнал выпрямителя в два раза превышает частоту основного источника питания, но имеет пульсации. Следовательно, его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя. Конденсатор заряжается и разряжается в течение цикла, давая на выходе стабильное постоянное напряжение.Итак, конденсатор (обозначенный на схеме как C1) большой емкости подключен к выходу схемы выпрямителя. Поскольку постоянный ток, который должен быть выпрямлен схемой выпрямителя, имеет много всплесков переменного тока и нежелательных пульсаций, для уменьшения этих выбросов используется конденсатор. Этот конденсатор действует как фильтрующий конденсатор, который пропускает через него весь переменный ток на землю. На выходе среднее оставшееся постоянное напряжение более плавное и без пульсаций.

Рис.7: Принципиальная схема сглаживающего конденсатора

Регулировка напряжения

Для обеспечения на выходе стабилизированного 12В используется микросхема LM7812.Эта ИС способна обеспечивать ток до 1А. Он будет обеспечивать регулируемое и стабилизированное напряжение на выходе независимо от изменений входного напряжения и тока нагрузки. Микросхема LM7812 может иметь входное напряжение от 14,8 В до 27 В и обеспечивает постоянное выходное напряжение от 11,5 до 12,5 В. Микросхема способна обеспечивать на выходе максимальный ток 1А.

LM7812 имеет следующую допустимую внутреннюю рассеиваемую мощность:

Pout = (Максимальная рабочая температура IC) / (Тепловое сопротивление, переход от окружающей среды + тепловое сопротивление, переход от корпуса к корпусу)

Pout = (125) / (65 + 5) (значения согласно даташиту)

Pout = 1.78 Вт

Таким образом, внутренняя часть LM7812 может выдерживать рассеиваемую мощность до 1,78 Вт. При мощности выше 1,78 Вт микросхема не переносит выделяемое количество тепла и начинает гореть. Это также может вызвать серьезную опасность возгорания. Поэтому радиатор необходим для отвода чрезмерного тепла от ИС.

Рис. 8: Принципиальная схема регулятора напряжения для источника постоянного напряжения 12 В

Тестирование и меры предосторожности —

При сборке схемы следует соблюдать следующие меры предосторожности —

• Номинальный ток понижающего трансформатора, мостовых диодов и ИС регулятора напряжения должен быть больше или равен требуемому току на выходе.В противном случае он не сможет подавать требуемый ток на выходе.

• Номинальное напряжение понижающего трансформатора должно быть больше максимального требуемого выходного напряжения. Это связано с тем, что микросхема 7812 принимает падение напряжения от 2 до 3 В. Таким образом, входное напряжение должно быть на 2–3 В выше максимального выходного напряжения и должно находиться в пределах входного напряжения (14,5–27 В. ) Из LM7812.

• Конденсаторы, используемые в цепи, должны иметь более высокое номинальное напряжение, чем входное напряжение.В противном случае конденсаторы начнут пропускать ток из-за превышения напряжения на их пластинах и вырвутся наружу.

• На выходе выпрямителя следует использовать конденсатор, чтобы он мог справляться с нежелательными сетевыми шумами. Аналогичным образом рекомендуется использовать конденсатор на выходе регулятора для обработки быстрых переходных процессов и шума на выходе. Величина выходного конденсатора зависит от отклонения напряжения, колебаний тока и переходного времени отклика конденсатора.

• Для работы с высокой нагрузкой на выходе необходимо установить радиатор в отверстия регулятора. Это предотвратит сдувание микросхемы из-за рассеивания тепла.

• Поскольку ИС регулятора может потреблять ток только до 1А, необходимо подключить предохранитель на 1А. Этот предохранитель ограничит ток в регуляторе до 1А. При токе выше 1 А предохранитель сгорит, и это отключит входное питание от цепи. Это защитит микросхему схемы и регулятора от тока более 1 А.

После сборки схемы ее можно проверить с помощью мультиметра. Измерьте выходное напряжение на выводах 7812 IC и начните тестирование с последовательными цепями светодиодов.

Давайте сначала протестируем схему со светодиодами 1,8 В. Максимум 6 светодиодов этого номинала могут быть подключены последовательно к выходу с ограничивающим резистором 68 Ом. Каждому светодиоду требуется примерно 1,8 В для смещения вперед и начала свечения. Напряжение на входе в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 6 светодиодах будет 10.8 В,

В = 1,8 * 6 = 10,8 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12 — 10,8) / 68

I = 17,6 мА

Для светодиода с напряжением 1,8 В требуется приблизительно 20 мА прямого тока для правильного освещения без нарушения его предельного значения прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 68 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

Pвых = (12-10,8) * (0,0176)

Pout = 21,12 мВт

Рис.9: Принципиальная схема светодиодов серии

Тестирование схемы с помощью светодиодов 2.2V привело к следующим результатам. На выходе можно последовательно подключить не более 5 светодиодов этого номинала с ограничивающим резистором 47 Ом. Каждому светодиоду нужно примерно 2.2 В, чтобы сместиться вперед и начать светиться. Напряжение на входе в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 5 светодиодах будет 11 В,

В = 2,2 * 5 = 11 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12–11) / 47

I = 21,2 мА

Для светодиода с напряжением 2,2 В требуется приблизительно 25 мА прямого тока для правильного освещения без нарушения его предельного значения прямого тока.Только для этой цели используется последовательное сопротивление (в данном случае 47 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

P вых = (12-11) * (0,0212)

P вых = 21,2 мВт

Рис.10: Принципиальная схема светодиодов серии

Тестирование схемы с помощью светодиодов 3,3 В привело к следующим результатам. Максимум 3 светодиода этого номинала могут быть подключены последовательно к выходу с ограничивающим резистором 6 или 7 Ом.Каждому светодиоду требуется примерно 3,3 В для прямого смещения и начала свечения. Входное напряжение в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 3 светодиодах составит 10 В,

В = 3,3 * 3 = 9,9 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12 — 9,9) / 6

I = 350 мА

Для светодиода 3.3 В, для правильного освещения без нарушения ограничения прямого тока требуется примерно 300–350 мА прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 6 или 7 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

P вых = (12-9,9) * (0,350)

P вых = 735 мВт

Рис.11: Принципиальная электрическая схема светодиодов серии

Другие комбинации светодиодов также могут быть протестированы при условии использования правильного токоограничивающего резистора и с учетом того, что входной ток, необходимый для схемы (комбинация светодиодов), не должен превышать 1 А.Из приведенных выше тестов видно, что рассеиваемая мощность всегда меньше 1,78 Вт (внутренний допустимый предел 7812). Тем не менее, рекомендуется использовать радиатор для охлаждения ИС и увеличения срока ее службы.

Схема блока питания, разработанная в этом проекте, может использоваться для питания светодиодных лент и тросов. Его также можно использовать для питания светодиодных плат. Как правило, с помощью этого блока питания можно запитать любую схему, которая требует постоянного источника питания 12 В с ограничением по току 1 А.

Схема


Регулятор напряжения

DIY — Ghozt Lighting

Заявление об ограничении ответственности: я не несу ответственности за ущерб, причиненный отдельным лицам или компонентам в результате этой установки или неправильного использования этой информации. Если вы прочитали следующее руководство и вам все еще неудобно завершить установку, СВЯЖИТЕСЬ СО МНОЙ, и я помогу ответить на ваши вопросы или попытаюсь направить вас к опытному установщику, который сможет вам помочь.

Об этом руководстве: Автомобильная среда очень суровая, в частности, основной источник питания +12 В для большинства автомобилей на самом деле не соответствует +12 В.Оно может значительно колебаться при колебаниях оборотов двигателя и потребляемой мощности других систем. Это создает проблему, когда некоторые светодиоды и сами секвенсоры Ghozt могут быть повреждены чрезмерным напряжением.

Это руководство покажет вам, как построить очень простую схему регулятора, которая будет поддерживать стабильное напряжение питания, которое будет поддерживать ваши светодиоды и другие компоненты в хорошем состоянии и в безопасности. Этот усилитель сможет подавать до 3 ампер при напряжении +12 В на секвенсор Ghozt и любые подключенные светодиоды.

Сложность: Продвинутый
Пользователи руководства должны быть уверены в своих навыках пайки. Пользователи должны иметь возможность определять, какой ток требуется их светодиодам. Пользователи должны иметь возможность собрать схему, чтобы предотвратить сбои после установки. Пользователи должны знать, как управлять нагревом в своих электронных сборках, чтобы предотвратить перегрев и / или возгорание транспортных средств. Пользователи должны иметь опыт использования секвенсоров Ghozt в более простых сборках. Пользователи демонстрируют возможность определить, нужен ли стабилизатор напряжения для их светодиодов.Это руководство рекомендуется лицам, имеющим опыт создания пользовательских светодиодных матриц для задних фонарей.

Необходимые инструменты:

  • Паяльник
  • Кусачки
  • Тепловая пушка (для термоусадочной трубки)

Необходимые материалы:

  • Припой (по необходимости)
  • Электропроводка (при необходимости)
  • Термоусадочная трубка (при необходимости)
  • Компоненты для вашей нестандартной светодиодной схемы (указывается пользователем)
  • Макетная плата для электроники (при необходимости)
  • Регулятор с малым падением напряжения
  • Microchip Technology MIC29300-12WT (1 шт.)
  • Конденсаторы 15 мкФ (x2), рассчитанные на 25 В или более.Пример: Nichicon UB2D150MPL1TD.
  • Резистор 1000 Ом (x1), 1/4 Вт.
  • Радиатор для компонентов TO-220 (дополнительно, рекомендуется), например: Aavid Thermalloy 6398BG

Шаг 1 — Идентификация контактов регулятора: На приведенной ниже диаграмме показана пакетная диаграмма регулятора Microchip, который вы будете использовать. Обратите внимание на расположение трех контактов на обеих схемах и убедитесь, что вы можете идентифицировать контакты на самой детали. Для справки эти контакты имеют следующие названия:

.
  1. Вин
  2. Земля
  3. Vout

Шаг 2 — Принципиальная схема: Ниже представлена ​​схема контура, который вы будете строить.Имейте в виду, что конденсаторы будут полярными, то есть у них есть положительный вывод и отрицательный вывод. Убедитесь, что отрицательные штыри подходят к штырю заземления регулятора. Вход регулятора должен поступать на питание +12 В автомобиля через блок предохранителей. Вы можете подключить к выходу нагрузку до 3 ампер. Если вы используете более 1 ампер, рекомендуется использовать теплообменник.

Шаг 3 — Построение: Этот шаг зависит от вас, если вы построите схему, показанную выше.Вместо того, чтобы давать подробные инструкции, я предлагаю список предложений, которые следует учитывать при использовании такого усилителя:

  • Держите ваши металлические соединения очень короткими и прочными, чтобы избежать короткого замыкания или разъединения, когда что-то смещается во время транспортировки и в автомобиле. Я бы порекомендовал собрать его на макетной плате для электроники, чтобы все было на месте
  • По возможности заизолируйте металлические соединения. Если что-то изменится, вы не хотите, чтобы это вызвало короткое замыкание.Это может привести к возгоранию, повреждению цепи или неправильной работе.
  • Знайте, сколько тепла будет выделяться в вашей сборке, и убедитесь, что вы знаете, как с этим справиться. При такой мощности некоторые компоненты будут нагреваться, включая регулятор и светодиоды. Помните об общем количестве тепла и любых горячих точках. Убедитесь, что есть место для циркуляции воздуха за счет конвекции, чтобы все компоненты получали необходимое охлаждение. Используйте стяжки и другие способы укладки проводов, чтобы держать провода подальше от горячих компонентов, которые могут расплавить изоляцию.Используйте только огнестойкие материалы.
  • Рассмотрите возможность заливки этой части сборки. Это поможет со всеми тремя из вышеперечисленных предложений и, при необходимости, обеспечит водонепроницаемость.
  • Используйте проволоку большего сечения, чем обычно. Обычно мы рекомендуем везде использовать многожильный провод №22 или более толстый. При сборке мощной сборки мы рекомендуем рассмотреть возможность использования еще более толстых соединений +12 и заземления, а также любых внутренних соединений, которые будут пропускать большой ток.

Когда закончите, проверьте все соединения и внимательно проверьте их перед установкой.Наслаждаться!

Применение светодиодной ленты

в автомобильной промышленности — повод для беспокойства

При использовании светодиодных лент в автомобилях или на лодках могут возникнуть опасения по поводу перенапряжения и резких скачков напряжения. Это быстрые кратковременные электрические переходные процессы напряжения, которые происходят везде, где есть генератор переменного тока для зарядки аккумулятора и других компонентов, таких как вентиляторы, соленоиды и реле. В приложении с полосой 12 В перенапряжение и пики могут подавать слишком большую мощность на светодиоды.Это со временем снизит их выходную мощность и в некоторых случаях приведет к тепловому разгоне, который плохо кончается. Учитывая огромное количество забавных автомобильных светодиодных лент (например, автомобили, мотоциклы, квадроциклы и лодки), у нас есть несколько простых решений для вас, так что вы можете расслабиться и быть уверены, что ваше напряжение останется на уровне 12 В и будет поддерживать эти светодиоды. полосы бегают хорошо.

Устранение перенапряжения


Самый простой вариант — использовать один резистор на 120 Ом (на фото выше), но это не наш первый выбор.Это наименее затратное и трудоемкое исправление, которое фактически решает самую большую проблему (96% проблем), поэтому мы считаем его допустимым вариантом. Для этого просто подключите один резистор на 120 Ом перед цепочкой светодиодов. Значение 120 Ом относится только к типу гибких светодиодных лент 12 В, которые мы несем, и будет поддерживать работу светодиодов на 100%. Однако это исправление не решает полностью проблему, поскольку все еще существует вероятность кратковременных скачков напряжения; эти пики могут варьироваться от 24 до 50 В и, как упоминалось ранее, приводят к разрушению ваших светодиодов.

Устранение скачков короткого напряжения

Для учета скачков напряжения в схеме необходим регулятор напряжения. Мы рекомендуем LM317, разработанный Робертом С. Добкиным в 1976 году. Этот блок будет контролировать скачки напряжения, а также регулировать перенапряжение. Поскольку он решает обе проблемы, мы рассматриваем его как очевидный выбор. Дайте нам знать, если вам нужны пояснения в комментариях, и спасибо за чтение!

Как подключить светодиодные ленты в автомобиле

Доступность и простота современного освещения позволяет установить его на автомобиль.Помимо внутреннего тюнинга и замены софита обычных ламп на светодиодные, в автомобиле используются светодиодные ленты для улучшения освещения в местах, где никогда не было света.

Как подключить светодиодные ленты к прикуривателю

Сеть бортового электромобиля официально рассчитана на 12 вольт. Но реальная мощность может достигать 14,5 В. Светодиодная лента рассчитана ровно на 12 В, а 14,5 Вольт отрицательно скажутся на работе светодиодов.

Прямое подключение к прикуривателю рекомендую только в одном случае, если включить немного на заниженную мощность. Для занижения необходимо использовать силовой резистор, который рассчитывается исходя из энергопотребления диодной ленты. Проще говоря, штатный режим диода должен быть при повышенных напряжениях. По расчету, резистор 14,5В — 12В = 2,5В должен снизить мощность до 2,5 вольт, подключить подходящее сопротивление и измерить его падение вольт.

Самый лучший и более сложный вариант — подключить светодиодные ленты в автомате через стабилизатор.Схема несложная сделать самостоятельно, через нее можно запитать все дополнительные диодные источники.

Только не путайте драйвер и блок питания, источник тока блока драйвера. Источник напряжения светодиодной ленты для автомобиля подключает его к блоку. Поэтому брать питание от микросхемы светодиодных ламп для автомобилей не рекомендуется.

Зарядить

можно не только от прикуривателя, если он уже занят, но и от любого места освещения салона автомобиля.

Видео как подключить светодиодные ленты в автомобиле

Видео об установке и подключении трехцветной RGB-подсветки в двери автомобиля на Kia Ceed

Схема простого стабилизатора

Схема выполнена на микросхеме типа РОЛЛ 7812 фактически устарела.Единственный недостаток — горячий. Сейчас набирают популярность современные импульсные, они не требуют мощного и мощного радиатора. Для лучшей стабилизации подключите конденсаторы по 100 мкФ на входе и выходе. Соблюдайте технику безопасности, очень желательно использовать предохранитель при подключении в автомобиле.

Простой диодный драйвер

Сила тока рассчитывается по приведенной формуле и резистору.

Стабилизатор готов

Не каждый может или хочет паять самому, так что можно купить на авто.

Характеристики:

  • входная мощность до 30В;
  • ток 1-5 Ампер, радиатор 20 квадратных сантиметров на Ампер;
  • ток 1 ампер — можно подключить 2-х метровую обычную ленту SMD5050 60 led;
  • допустимое параллельное включение для увеличения выходной мощности;
  • можно использовать для дневных ходовых огней (ДХО), проработают намного дольше.
Стабилизат

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *