Контур заземления: нормы и правила заземления (ПУЭ) | ENARGYS.RU
В современном мире практически невозможно представить жизнь без техники, работающие с помощью электричества. Можно сказать, что она довольно прочно вошла в жизнь многих и без нее трудно представить «нормальную» жизнь. Но бывает такое что любимое и такое нужно оборудование может внезапно превратиться в источник опасности для жизни. Именно, чтобы избежать таких ситуаций и нужно использовать контур заземления.(рис.1)
Рис. 1. Пример устройства контур заземления
Почти все современные дома оснащены всевозможной электротехникой, которая является частью нашей повседневной жизни. Но в случае нарушения изоляции она может превратиться из незаменимого помощника в оборудование, представляющее реальную угрозу для жизни. Чтобы она не возникала, в домах устраивают контур заземления.
Для чего нужен контур заземления?
Заземление – это устройство специальной конструкции, которое будет соединяться с землей (грунтом).
Все дело заключается в следующем – ток всегда стремиться туда, где находиться наименьшее сопротивление. Так при нарушении в оборудование происходит выход тока на корпус изделия. Техника начинает работать с перебоями и постепенно приходить в негодность. Но намного страшнее другое – при прикосновении к такой поверхности, человек получает такой разряд, что просто погибает.
Но при использовании – контура заземления будет происходить следующие. Напряжение будет распределяться между существующим контуром и человеком. Вот только контур заземления в данном случае будет обладать меньшим сопротивлением. И это значит, что человек хоть и почувствует неудобство, но все же весь основной ток уйдет через контур в грунт.
Важно! При устройстве контура заземления важным будет помнить, и соблюдать все необходимое для устройства его с минимальным сопротивлением.
Контур заземления – виды и его устройство
В основном для заземления используются металлические стрежни, которые играют роль электродов. Они соединяются между собой и углубляются на достаточное расстояние в землю. Такая конструкция соединяется с щитом, установленным в доме. Для этого используется полоса из металла нужной толщины. (рис.2)
Рис 2. Контур заземления
Само расстояние, на которое погружают электрод, напрямую зависит от высоты расположения грунтовых вод. Чем их залегание выше, тем и выше система заземления. Но при всем этом удаление ее от нужного объекта составляет от одного метра до десяти метров. Это расстояние является важным условием и должно строго соблюдаться.
Расположение электродов зачастую носить форму геометрической фигуры. Зачастую – это треугольник, линия или квадрат.
Важно! Система заземления в обязательном порядке располагается ниже уровня промерзания грунта, которое существует в конкретном месте.
Основные типы контуров заземления
Так существуют два основных типа технологических решений. Это контуры заземления – глубинный и традиционный.
Так при традиционном способе расположение электродов следующие – одни располагается горизонтально, а остальные вертикально. Первым электродом является стальная полоса, а вторыми являются соответственно стрежни из металла. Все они должны иметь допустимые значения по своему размеру.
Необходимо учитывать, что место для устройства конура необходимо подбирать из того, что он должно быть мало людным. Наилучшим для этого будет подходить теневая сторона с постоянной влажностью почвы.
Но у данного контура заземления существуют и свои минусы:
- довольно трудное и физически тяжелое его устройство;
- металлические изделия, из которой состоит контур подвержено коррозии, что не только его разрушает, но им ожжет служить причиной ухудшения проводимости;
- так как он расположен в верхней части земли, то очень сильно зависит от параметров окружающей среды, которые могут изменить его проводимые характеристики.
Глубинный способ намного эффективнее традиционного. Его изготавливают специализированные производства. И он обладает рядом достоинств:
- соответствует всем установленным нормам;
- срок службы значительно продолжительный;
- не зависит от окружающей среды, благодаря глубине залегания;
- монтаж довольно прост.
Необходимо учитывать, что после устройства любого из типов контура заземления, необходимо проверить его соответствие на все требования и надежность. Для этого необходимо пригласить специализированных экспертов. У них должна быть лицензия на проведения такой деятельности. После проверки выдается соответствующие заключение. На контур заземления необходимо завести паспорт к нему приложить протокол об проводимых испытаниях и разрешение на использование.(рис. 3)
Рис. 3. Проверка контура заземления
Важно! Нельзя экономить на материалах при устройстве контура заземления (рис. 4). Иначе его работа будет полностью сведена к нулю.
Рис. 4. Устройство контура заземления
Контур наружного заземления
Контур заземления должен обладать сопротивление в 40 м, не как не больше, а земля максимально – 1000 м/м. В настоящее время согласно правилам можно увеличить значения, но не более чем в десять раз для грунта. Из этого можно сделать вывод, что для достижения значения в 40 м нужно произвести вертикальную установку восьми электродов по пять метровых. Они должны быть изготовлены из круга при его диаметре 16 мм. Или можно использовать десять трех метровых, при использовании уголка из стали 50*50 мм.
Наружный контур отводиться от края здания больше чем на метр. Элементы располагающиеся горизонтально закапываются в траншею на расстояние 700 мм от уровня поверхности почвы. Полоску располагают ребром.
Таким образом понятно, что следует четко руководствоваться существующими нормами. Так контур заземления ПУЭ отражен в главе 1.7. Н так же необходимо следить за всеми изменениями в требованиях, которые могут случаться довольно часто.
Защитное заземление в ТП, РП МКС. Нормы и правила выполнения.
Справочник мастера ОАО «МОЭСК» > Раздел 1. Основное электротехническое оборудование
> Глава 8.
<предыдущая | следующая>
Заземление выполняется с целью обеспечения безопасности людей при замыкании токоведущих частей электроустановки на землю (защитное заземление) или для обеспечения нормальных режимов работы установки (рабочее заземление). Правила выполнения заземления приведены в ПУЭ, глава 1.7. «Заземление и защитные меры электробезопасности» и в «Инструкции по устройству сетей заземления и молниеотводов».
Электроустановки в отношении мер электробезопасности разделяются на:
- электроустановки напряжением выше 1000 В в сетях с глухозаземленной нейтралью (сети 110 кВ и выше)
- электроустановки напряжением выше 1000 В в сетях с изолированной или заземленной через дугогасящий реактор нейтралью (сети 6-35 кВ в эксплуатации МКС)
- электроустановки напряжением до 1000 В в сетях с глухозаземленной нейтралью (сети 380/220 В в эксплуатации МКС)
Защитное заземление
Защитное заземление является основной мерой обеспечения электробезопасности (защитой) при косвенном прикосновении людей к открытым проводящим частям (металлическим корпусам электрооборудования) оказавшимся под напряжением при повреждении изоляции токоведущих частей электрооборудования.
Защитой от прямого прикосновения людей к неизолированным токоведущим частям, находящимся под напряжением, может быть только предотвращение такого прикосновения путём ограждения токоведущих частей и устройства блокировок, препятствующих доступу людей к токоведущим частям без их отключения и заземления.
Заземление осуществляется с помощью заземляющих устройств, состоящих из заземлителя, непосредственно соприкасающегося с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.
Защитное заземление должно обеспечивать:
- в установках с изолированной нейтралью (6-35 кВ) — ограничение до безопасного значения величины тока, протекающего через тело человека при прикосновении его к металлическому корпусу электрооборудования, оказавшемуся под напряжение при пробое изоляции
- в установках с глухозаземленной нейтралью (0,4 кВ) — надежное автоматическое отключение поврежденного участка, для чего обязательна металлическая связь корпусов электрооборудования с заземленной нейтралью трансформатора
Защитному заземлению подлежат все металлические части (корпуса) электрооборудования, которые могут оказаться под напряжением при повреждении изоляции.
Естественные и искусственные заземлители
В качестве естественных заземлителей используются металлические и ж/б части конструкции зданий, находящиеся в земле, трубы водопровода, свинцовые оболочки кабелей (алюминиевые оболочки нельзя использовать в качестве естественных заземлителей).
Для отдельно стоящих ТП, РП в МКС используют искусственные заземлители.
По периметру здания ТП, РП, на расстоянии не менее 1 м от фундамента забивают вертикальные электроды, из угловой стали 50x50x5 мм длиной 2,5-3 м (количество электродов определяется в проекте). Верхние концы электродов (должны быть от поверхности земли на глубине 0,5-0,6 м) соединяются с помощью сварки стальной полосой 40×4 мм, образуя внешний контур заземления, который соединяется полосой 40×4 с внутренним контуром в 2-х местах.
Внутренний контур заземления выполняется также из стальной полосы 40×4 мм с приваренными к ней в нужных местах шпильками (клеммами) с гайками для подсоединения защитных заземляющих проводников от корпусов установленного электрооборудования и рабочего заземляющего проводника от нейтрали трансформатора.
Защитные заземляющие проводники оборудования выполняются медным проводом (МГ) сечением 25 мм2.
Защитное заземление корпуса трансформатора и рабочее заземление нейтрали трансформатора выполняется проводом МГ сечением 50мм2 (или 2×25 мм2).
Выполненное таким образом заземляющее устройство считается удовлетворяющим требованиям обеспечения электробезопасности, если его сопротивление
R где:
I (в сетях с компенсацией емкостных токов) ток замыкания на землю при отключении наиболее мощного из компенсирующих аппаратов (равный 400 А для условий МКС).Таким образом:
R
Если замеренное сопротивление R окажется больше рекомендуемой величины, то выполняется заземляющее устройство с глубинными электродами заземления (согласно проекту).
<предыдущая | следующая>
Заземления в устройствах автоматики, телемеханики и связи
Заземлением называют электрическое соединение оборудования или аппаратуры с заземляющим устройством, а заземляющим устройством — совокупность заземлителя и заземляющих проводников. Заземления служат для защиты устройств автоматики, телемеханики и связи, а также обслуживающего персонала от действия опасных напряжений, возникающих при воздействиях грозовых разрядов, влияющих линий электропередачи и контактных сетей электрифицированных железных дорог.
Заземлитель представляет собой металлический проводник любой формы (стержень, труба, уголок, проволока и т. п.), находящийся в непосредственном соприкосновении с землей (грунтом).
Заземляющими проводниками, или заземляющей магистралью, называют металлические проводники, соединяющие заземляемое оборудование или аппаратуру устройств связи с заземлителями.
В зависимости от функций, которые выполняют заземляющие устройства в установках связи, различают рабочее, рабоче-защитное, линейно-защитное и измерительное заземляющие устройства.
Рабочее заземляющее устройство служит для соединения с землей аппаратуры проводной связи и радиотехнических устройств с целью использования земли в качестве одного из проводов электрической цепи.
Защитное заземляющее устройство предназначено для соединения с землей проводов нейтрали обмоток силовых трансформаторных подстанций, молниеотводов, разрядников, экранов аппаратуры и прово дов внутристанционного монтажа, металлических оболочек броне-покровов кабеля, металлических термокамер НУП, а также металлических частей силового оборудования, электропитающих установок и другого оборудования, которые нормально не находятся под напряжением, но могут оказаться под ним при повреждении изоляции токоведущих проводов.
Защитные заземляющие устройства предназначены для выравнивания потенциала металлических частей оборудования с потенциалом земли, т. е. защищают обслуживающий персонал и аппаратуру от возникновения на них опасной разности потенциалов по отношению к земле.
Рабоче-защитное заземляющее устройство служит одновременно рабочим и защитным заземляющим устройством. Сопротивление рабоче-защитного заземляющего устройства должно быть не более наименьшего значения, предусмотренного для рабочего и защитного заземляющих устройств.
Линейно-защитное заземляющее устройство предназначено для заземления металлических оболочек кабеля и бронепокровов по трассе кабеля и на станциях (НУП), куда подходят кабельные линии, а на воздушных линиях — для заземления молниеотводов, тросов и металлических оболочек и брони кабеля. В некоторых случаях защитное и линейно-защитное устройства объединяют. Такое заземляющее устройство называют объединенным защитным.
Измерительным заземляющим устройством называют вспомогательное устройство, предназначенное для контрольных измерений сопротивлений рабочего, защитного и рабоче-защитного заземляющих устройств.
Сопротивление заземляющих устройств на воздушных и кабельных линиях измеряют непосредственно на линии, используя временные вспомогательные измерительные земли. Сопротивление рабочего и защитного заземляющих устройств следует измерять со щитка заземления на станции.
Рис. 41. Вертикальный (а), горизонтальный (б) и кольцевой (в) заземлнтели
Рис. 42. Заземлитель из уголковой стали
Примечание. 6“ удельное сопротивление грунта, Ом-м;
Р — длина заземлителя, м; ё0 — диаметр заземлителя, м;
О — диаметр горизонтального кольцевого заземлителя, м.
Типы заземлителей. Для заземления устройств автоматики, телемеханики и связи используют вертикальные, горизонтальные, кольцевые заземлители (рис. 41).
Вертикальные заземлители находят наибольшее применение. Они представляют собой оцинкованные или омедненные стальные трубы длиной 2-3 м, диаметром 25-60 мм и толщиной стенки не менее 3,5 мм. Взамен труб используют также стальные стержни диаметром 12 мм, длиной 2-10 м, уголковую сталь размером 50 X 50 X 4 или 60 X 60 X 4 мм. К верхнему концу заземлителя из уголковой стали 3 (рис. 42) приваривают одну или свитые в жгут две-три стальные оцинкованные проволоки 1 диаметром 4-5 мм, или стальную полосу для соединения заземлителя с заземляемым устройством. Выше этого места на заземлитель устанавливают и приваривают хомут 2 из стальной проволоки.
Горизонтальные полосовые заземлители в виде лучей, колец или контуров используют как самостоятельные заземлители или как элементы сложного заземлителя, состоящего из горизонтальных и вертикальных заземлителей. Для горизонтальных заземлителей применяют полосовую сталь толщиной не менее 4 мм и круглую сталь диаметром не менее 10 мм.
Сопротивление заземления. Расчетные приближенные формулы для определения сопротивления одиночного заземлителя в зависимости от его типа (см. рис. 41) приведены в табл. 3.
В однородном грунте глубина заложения вертикальных заземлителей к = 0,5х-1 м мало влияет на снижение их сопротивления, и поэтому сопротивление заземлителя подсчитывают без учета глубины заложения, т. е. при И, — 0.
При подсчете сопротивления заземлителя из уголковой стали его диаметр принимают равным (10 ж Ь, где Ь — ширина стороны уголка.
Для горизонтального заземлителя из полосовой стали прямоугольного сечения приведены формулы, соответствующие укладке полосы плашмя, когда (1а = Ы2, где Ъ — ширина полосы.
Сопротивление заземления зависит от конструкции заземлителей, их числа, расположения, глубины закопки в грунт, от удельного сопротивления прилегающих к заземлителям слоев грунта и мало зависит от его диаметра, поэтому диаметр заземлителей выбирают, как правило, из условий коррозии.
Удельным сопротивлением грунта р называют электрическое сопротивление, оказываемое грунтом объемом 1 м3 при прохождении тока от одной грани куба грунта к противоположной грани, и зависит оно от структуры грунта, его температуры и степени влажности.
Удельное сопротивление различных грунтов имеет самые различные значения. Так, у чернозема оно равно 50 Ом • м, песчаника — 1000 Ом м, кварца — 15 000 Ом • м.
Если сопротивление заземления, состоящего из одного стержня, превышает нормативное значение, то устраивают контур заземления из нескольких стержней (рис. 43). Стержни следует забивать друг от друга на расстоянии, равном или большем удвоенной длины стержня. Проволоку, идущую от стержней, свивают в жгут, обмазывают асфальтовым лаком и укладывают в траншее, которую затем засыпают. Стержневые заземлителя соединяют между собой полосовой сталью сечением 30 X 4 мм и обязательно приваривают к каждому заземли-телю.
При стекании тока со сложного заземлителя происходит наложение электрических полей отдельных его электродов и их взаимное экранирование. В результате сопротивление сложного заземлителя возрастает по сравнению с суммой сопротивления каждого его электрода. Сопротивление контура заземлителя из нескольких стержней где Я — сопротивление одного заземлителя, Ом, рассчитанное по формулам табл. 3;
п -• число заземлителей в контуре.
Выбор того или иного заземлителя для контура прежде всего связан с определением удельного сопротивления грунта. Если удельное сопротивление грунта неизвестно, то вначале устраивают заземлитель из одного стержня и с помощью приборов измеряют его электрическое сопротивление Я. Если оно больше требуемого (нормативного) сопротивления Ян, то число стержней (электродов), необходимых для устройства контура заземления,/« — /?/0,8/?„. /
Чтобы удешевить работы’ -по устройству заземлителей, удельное сопротивление грунта снижают искусственно. В котловане радиусом 1,5-2 м малопроводящий грунт заменяют насыпным с более низким (в 5-10 раз) удельным сопротивлением (рис. 44, а), в качестве которого используют чернозем, глину, шлак, торф.
Удельное сопротивление грунта можно снизить при обработке его раствором поваренной соли (рис. 44, б). Для каждого заземлителя расходуется 50 кг поваренной соли. Так как со временем соль вымывается, то грунт обрабатывают раствором поваренной соли через каждые 2-4 года. Такая обработка снижает удельное сопротивление грунта в 2-8 раз.
В районах, где грунтовые воды или хорошо проводящие слои грунта залегают на большой глубине, целесообразно устраивать углубленные вертикальные заземлители с размещением их на уровне грунтовых вод или хорошо проводящих слоев грунта.
Если вблизи заземления имеются районы с более низким удельным сопротивлением грунта, то устраивают выносные заземлители. Наибольшее расстояние от выносного заземлителя до заземляемых установок должно быть не более 2,5 км.
Рис, 44. Способы искусственного снижения удельного сопротивления грунта и устройство заземления в нем
Если в конструкции заземлителей используют различные инженерные сооружения, которые были построены раньше, то их называют естественными заземлителями. К естественным заземлителям относятся металлические трубопроводы, проложенные под землей (за исключением трубопроводов горючих жидкостей и горючих или взрывчатых газов), обсадные трубы, металлические оболочки кабелей, металлические конструкции зданий и сооружений, имеющие соединения с землей.
Таблица 4
Заземление | Сопротивление заземления. Ом, при удельном сопротивлении грунта, Ом-м | |||
до 100 | 101 -250 | 251 — 500 | | свыше 500 | |
Защитное для: | 30 | 45 | 55 | 75 |
линейных молниеотводов на опорах воздушной линии связи | ||||
промежуточных пунктов избирательной связи | -15 | 25 | 35 | 45 |
«^искровых разрядников каскадной защиты | 20 | 30 | зь | 45 |
Линейно-защитное для оболочек кабелей при защите кабеля от ударов молнии Защитное: | 10 | 20 | 20, | 30 |
для шкафов типа ШМС | — | 5 | 5 | — |
на междугородных телефонных станциях и распределительных станциях избирательной связи, рабочее на узлах связи | 10 | 30 | ||
иа телефонный станциях и АТС | 10 | 15 | 20 | 35 |
Измерительное (стационарное или оборудуемое временно) Защитное: | 100 | 100 | ||
для опор на высоковольтно-сигнальных линиях автоблокировки в сети высокого напряжения в сети низкого напряжения при числе сигнальных проводов: | 10 | 15 | 20 | 30 |
до 10 | 30 | 40 | 50 | 70 |
от 11 до 20 | 15 | 20 | 30 | 40 |
для линейных цепей диспетчерской централизации и диспетчерского контроля, полуавтоматической блокировки | 30 | 40 | 50 | 70 |
. для сигнальных приборов, размещенных в служебных помещениях ДСП | 10 | 10 | 10 | 20 |
постов ЭЦ и ГАЦ (при наличии ДГА или ТП) | 4 | 4р/100 | 10 | 20 |
На железнодорожном транспорте большое значение имеет использование рельсовой колеи в качестве заземлителей установок СЦБ и связи. Однако применять рельсовую колею в качестве заземлителя следует осторожно, исключая случаи нарушения нормальной работы устройств автоматики, телемеханики и связи.
На автоматических телефонных станциях, междугородных АТС, в домах связи, в оконечных и промежуточных усилительных пунктах оборудуют три обособленных заземляющих устройства, соединяемых затем параллельно на выводах заземляющего щитка. Наличие трех обособленных заземляющих устройств позволяет легко контролировать их электрическое сопротивление два раза в год — зимой, в период наибольшего промерзания грунта, и летом при его максимальном просыхании.
Нормы сопротивлений заземлений. Для районов умеренного климата нормы сопротивления заземлений различного назначения. в зависимости от удельного сопротивления грунта приведены в табл. 4.
Нормы сопротивлений заземлений установлены в зависимости от назначения заземлений, а также от удельного сопротивления грунта в месте устройства заземления. Последнее объясняется тем, что чем больше удельное сопротивление земли, тем труднее выполнить заземление с малым сопротивлением и тем дороже стоит оборудование.
⇐Устройство удлиненных пролетов, пересечений и переходов | Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта | Типы и конструкции заземляющих устройств⇒
Заземление электроустановок и оборудования — правила и требования
Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса.
Классификация заземляющих устройств
Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:
- Виду нейтрали. По наличию соединения с заземляющим устройством:
- заземленная;
- изолированная.
- Способу прокладывания от понижающей подстанции до электроустановки.
- Способ подключения нагрузки к нейтрали.
Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:
T – заземление;
N – нейтраль;
I – изолированное;
C – общая;
S – раздельная.
Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.
При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:
- TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
- TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
- TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.
Реже встречаются следующие системы:
- TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
- IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.
Технические требования к организации заземления электроустановок
УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым защитное заземление электроустановки следует выполнять при следующих параметрах:
- при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
- при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.
Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.
Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.
Выбор естественных заземлителей
Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:
- каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
- защитные кожухи кабелей, проложенных под землей;
- металлические трубы, за исключением газо- и нефтепроводов;
- железнодорожные рельсы.
Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.
Нельзя выбирать в качестве естественных заземлителей следующие объекты:
- трубопроводы горючих и взрывчатых газов и жидкостей;
- трубы, покрытые антикоррозийной изоляцией;
- канализационные трубопроводы;
- трубы централизованного отопления.
Сопротивление стеканию тока
Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.
Значения сопротивления заземления для сетей различного назначения:
Назначение сети | Максимальное значение сопротивления, Ом |
Частные дома 220, 380 Вольт | 30 |
Промышленное оборудование | 4 |
Источник тока при напряжении 660, 380 и 220 Вольт | 2, 4, 8 |
Частный дом при подключении газопровода | 10 |
Устройства защиты линий связи | 2 (реже 4) |
Телекоммуникационное оборудование | 2 или 4 |
Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:
- Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
- Обеспечить качественный контакт между элементами устройства и соединительными шинами.
- Усилить проводимости почвы увлажнением или повышением ее солености.
Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.
Работа УЗ при нарушении защитной изоляции электрооборудования
Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:
- Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
- Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
- Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
- Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.
Заземление цехового оборудования
Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:
- Для типового станочного оборудования.
- Для электродвигателей и сварочных аппаратов.
- Для передвижных установок и эксплуатируемых электроприборов.
Заземление типового станочного оборудования
Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).
Система уравнивания потенциалов – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.
Важно уделить внимание следующим техническим вопросам:
- Определить расположение контура СУП в рабочей зоне.
- Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
- Определить место наложения стационарного заземления.
- Выяснить какие устройства используются для защиты опасных частей оборудования.
Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.
Заземление электродвигателей
Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.
Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.
Заземление сварочных аппаратов
Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.
Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.
Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.
Защита передвижных установок
Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.
Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.
Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.
Защита электроприборов
При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:
- Защитить открытые токоведущие части.
- Нарастить защитную изоляцию.
- Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
- Если позволяет конструкция, можно как меру использовать понижение напряжения.
Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:
- Наличие системы заземления.
- Система уравнивания потенциалов.
- Усиление изоляции токоведущих частей.
- В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.
Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.
Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.
Защита с помощью заземления и зануления
Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.
При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.
При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.
Контроль состояния защитных устройств
Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.
Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.
Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.
Заземление. Что это такое и как его сделать (часть 1) / Хабр
Мой рассказ будет состоять из трёх частей.
1 часть. Заземление
(общая информация, термины и определения)
2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)
3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)
В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.
Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.
Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.
Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.
Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.
1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземлениеБ2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2. 3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.
Заземление
— преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.
Заземляющее устройство
— совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.На рисунке оно показано толстыми красными линиями:
Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.На рисунке он показан толстыми красными линиями:
Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).
Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571. 21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.На рисунке они показаны толстыми красными линиями:
Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.
Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:
Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).
Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.
Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1. 7.29).
Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.
Подробнее защитное назначение заземления можно рассмотреть на двух примерах:
- в составе внешней молниезащитной системы в виде заземленного молниеприёмника
- в составе системы защиты от импульсного перенапряжения
- в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.
Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).
Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.
Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.
Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.
Классический УЗИП представляет собой газовый разрядник (
wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.
При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).
Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.
Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.
Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.
Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.
Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.
В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
- площадь ( S ) электрического контакта заземлителя с грунтом
- электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт).
(Пример оказался неграмотным. Спасибо
SVlad— комментарий:
habrahabr.ru/post/144464/#comment_4854521)
Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.
В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.
Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.
(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).
Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.
Для ориентирования приведу следующие значения:
- для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
- при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
- для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
- у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1. 7.101)
- у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
- для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
- при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
- при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.
Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.
Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:
Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.
В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.
Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т. п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.
Подробнее о строительстве — в следующих частях.
Продолжение:
Алексей Рожанков, специалист технического центра «
ZANDZ.ru«
При подготовке данной части использовались следующие материалы:
- Публикации на сайте “Заземление на ZANDZ.ru”
- Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
- ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить) - Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
- Собственный опыт и знания
Заземление: Понимание основ построения фундамента электрической системы здания | NFPA
Заземление — это термин, который электрик, инженер-электрик или руководитель предприятия очень хорошо знает и часто использует, но что он означает? Первоначальная мысль заключается в том, что это просто подключение заземляющего проводника к земле. Проще говоря, это правильно, но это нечто большее. Во-первых, мы должны понять, что такое заземление, чтобы можно было установить надлежащую систему заземления.
Заземленный или заземленный, как определено в NFPA 70® издания 2020 г., Национальных электротехнических правилах ® (NEC®), ст. 100, подключается к земле или к проводящему телу, который расширяет заземление. Итак, я уверен, что многие из вас думают, просто воткните провод в землю и назовите это хорошим, не так ли? Не совсем. Сначала должен быть создан эффективный путь тока замыкания на землю, чтобы гарантировать безопасную электрическую систему. По сути, это создание электропроводящего пути с низким импедансом, который облегчает работу устройства защиты от перегрузки по току.Этот путь должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю. Сама земля не считается эффективной цепью тока замыкания на землю, поэтому просто воткнуть провод в землю недостаточно.
Заземление — это фундамент электрической системы здания или сооружения. В соответствии с 250.20 (B) NEC 2020 системы переменного тока (AC) напряжением от 50 до 1000 вольт должны быть заземлены, что означает связь с землей.Это достигается за счет правильно установленной системы заземляющих электродов. Наличие надежной системы заземляющих электродов стабилизирует напряжение и помогает устранять замыкания на землю. В разделе 250.50 NEC 2020 приводится схема системы заземляющих электродов, а в разделе 250.52 перечислены утвержденные заземляющие электроды. Вот несколько наиболее эффективных заземляющих электродов для зданий и сооружений:
- Металлическая труба для подземного водоснабжения
- Металлические опорные конструкции в земле
- Электрод в бетонном корпусе (также известный как «нижний колонтитул» или «Ufer-заземление»).
- Кольцо заземления
Система заземляющих электродов — это соединение с землей через заземляющие электроды, требуемые согласно нормам. Затем заземляющие электроды снова подключаются к электросети здания через провод заземляющего электрода (GEC). GEC, обслуживающий здание или сооружение, оканчивается на нейтральной шине внутри электрооборудования рядом с заземленным (нейтральным) проводником. Нейтральная шина соединена (подключена) к корпусу сервисного оборудования через главную перемычку, которая, в свою очередь, создает эффективный путь тока замыкания на землю для электрической системы.
Но что тогда, когда эффективный путь тока замыкания на землю был установлен на землю? Как будет заземлено электрическое оборудование в зданиях и сооружениях? Он проходит через заземляющий проводник оборудования параллельной цепи (EGC). EGC бывают разных размеров, типов и материалов, как указано в NEC 2020, раздел 250.118. Вот некоторые из них:
- Медные, алюминиевые или плакированные медью алюминиевые жилы
- Жесткий металлический кабелепровод (RMC)
- Промежуточный металлический трубопровод (IMC)
- Электрометаллические трубки (EMT)
Часто EGC представляют собой систему дорожек качения, RMC, IMC или EMT.Эти типы EGC соединяются вместе и с корпусом оборудования с помощью ряда перечисленных установочных винтов или компрессионных муфт и соединителей. В большинстве разъемов используются стопорные гайки или соединительные втулки для подключения к электрическому оборудованию или корпусам. Если используются соединительные втулки, для них требуется дополнительный провод, называемый перемычкой для подключения оборудования, который необходим для завершения соединения с корпусом, нейтральной шиной или шиной EGC. Это помогает завершить эффективный путь тока замыкания на землю.Использование соединительной втулки с соединительными перемычками оборудования может быть более подвержено ошибкам человека или механическим сбоям, поэтому эффективный путь тока замыкания на землю может быть не таким надежным. EGC, которые представляют собой электрические проводники, такие как медные, алюминиевые или покрытые медью алюминиевые проводники, могут быть более эффективными из-за прямого подключения к электрическому оборудованию, корпусу, нейтральной шине или шине EGC. Вероятность отказа у этого типа EGC меньше из-за меньшего количества точек подключения.
Как правило, при установке EGC одобренный EGC должен находиться в том же кабельном канале, желобе, кабеле или шнуре от электрической службы или подпанели, что и проводники фидера или ответвительной цепи, которые обеспечивают питание электрооборудования.С точки зрения электробезопасности и глядя на NFPA 70E®, стандарт по электробезопасности на рабочем месте ® , раздел 120.5 (8), где существует вероятность индуцированного напряжения, все проводники цепи и части цепи должны быть заземлены перед касаясь их. Это один из возможных шагов для создания электрически безопасных условий работы (ESWC), поэтому слабый или нефункционирующий EGC затруднит или сделает невозможным создание ESWC, когда возникает необходимость в замене или обслуживании электрического оборудования.
Чтобы узнать больше о правильном склеивании, более подробно изучите Art. 250 NEC 2020 года. Наш новейший информационный бюллетень по заземлению и соединению также будет полезным ресурсом. Загрузите его здесь.
Неспособность установить эффективный путь тока замыкания на землю посредством надлежащего заземления может помешать нормальной работе устройств защиты от сверхтоков и, следовательно, неэффективному устранению замыкания на землю, что может привести к поражению электрическим током, электрошоку или вспышке дуги. Создав эффективный путь тока замыкания на землю, вы не только будете правильно выполнять свою работу, но и обезопасите себя и других при загрузке.
NFPA 70 Национальный электротехнический кодекс® (NEC®) теперь доступен в NFPA LiNK ™ , платформе доставки информации ассоциации с кодами и стандартами NFPA, дополнительным контентом и наглядными пособиями по безопасности зданий, электричества и жизни. профессионалы и практики. Узнайте больше на nfpa.org/LiNK .
% PDF-1.4 % 452 0 obj> эндобдж xref 452 79 0000000016 00000 н. 0000002685 00000 н. 0000001876 00000 н. 0000002876 00000 н. 0000002902 00000 н. 0000002948 00000 н. 0000002983 00000 н. 0000003184 00000 п. 0000003262 00000 н. 0000003338 00000 н. 0000003416 00000 н. 0000003494 00000 н. 0000003572 00000 н. 0000003650 00000 н. 0000003728 00000 н. 0000003805 00000 н. 0000003882 00000 н. 0000003959 00000 н. 0000004036 00000 н. 0000004113 00000 п. 0000004190 00000 п. 0000004267 00000 н. 0000004344 00000 п. 0000004421 00000 н. 0000004498 00000 н. 0000004575 00000 н. 0000004652 00000 п. 0000004729 00000 н. 0000004806 00000 п. 0000004883 00000 н. 0000004960 00000 н. 0000005037 00000 н. 0000005114 00000 п. 0000005191 00000 п. 0000005268 00000 н. 0000005345 00000 н. 0000005422 00000 н. 0000005499 00000 н. 0000005575 00000 н. 0000005651 00000 п. 0000005775 00000 н. 0000006399 00000 н. 0000006911 00000 п. 0000006947 00000 н. 0000007132 00000 н. 0000007209 00000 н. 0000007399 00000 н. 0000008046 00000 н. 0000008724 00000 н. 0000009416 00000 н. 0000010102 00000 п. 0000010871 00000 п. 0000011469 00000 п. 0000012145 00000 п. 0000012316 00000 п. 0000014986 00000 п. 0000015043 00000 п. 0000015146 00000 п. 0000015238 00000 п. 0000015323 00000 п. 0000015418 00000 п. 0000015519 00000 п. 0000015651 00000 п. 0000015740 00000 п. 0000015832 00000 п. 0000015993 00000 п. 0000016154 00000 п. 0000016281 00000 п. 0000016449 00000 п. 0000016554 00000 п. 0000016685 00000 п. 0000016795 00000 п. 0000016902 00000 п. 0000016999 00000 н. 0000017107 00000 п. 0000017198 00000 п. 0000017287 00000 п. 0000017401 00000 п. 0000017515 00000 п. трейлер ] >> startxref 0 %% EOF 454 0 obj> поток xb«f`f` cg`a8Ġ! `
Типы заземления в соответствии с различными национальными стандартами
Панельный приточный патрубок SCHUKO®
16 АIP 68
Розетка с заземлением на панели
16 АIP 44
Розетка с заземлением на панели
16 АIP 44
Розетка с заземлением на панели
16 АIP 20
Розетка с заземлением на панели
16 АIP 54
Розетка с заземлением на панели
10 АIP 54
Розетка с заземлением на панели
16 АIP 54
Розетка с заземлением на панели
10 АIP 54
Розетка с заземлением на панели
13 АIP 44
Розетка с заземлением на панели
13 АIP 44
Розетка с заземлением на панели
15 АIP 44
Розетка с защелкой для заземления
16 АIP 20
Настенная розетка с заземлением
16 АIP 44
Розетка с заземлением на панели
16 АIP 68
Розетка с заземлением на панели
16 АIP 68
Розетка с заземлением на панели
16 АIP 68
Розетка для скрытого монтажа Cepex с заземлением
16 АIP 44
Панельная розетка с заземлением Cepex
16 АIP 44
Панельная розетка Cepex с заземлением
16 АIP 44
Дуплексная розетка Cepex для поверхностного монтажа
16 АIP 44
Почему заземление, зачем тестировать? | Fluke
Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.
Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже об ошибках приборов, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей. Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.
OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборное общество Америки) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »
Хорошее заземление — это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования.Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за разряда молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.
Зачем тестировать наземные системы?
Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.
Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.
Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть исправлена путем замены или добавления заземляющих стержней в систему заземления.
Что такое земля и для чего она нужна?
NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как «соединенное (соединяющееся) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.
- Заземление: намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.
- Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.
Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, статических разрядов, сигналов EMI и RFI и помех.
Что такое хорошее значение сопротивления заземления?
Существует большая путаница относительно того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.
Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.
Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.
В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения.