+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

%d0%ba%d0%b8%d0%bb%d0%be%d0%b2%d0%be%d0%bb%d1%8c%d1%82 — с русского на все языки

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

 

Все языкиАнглийскийНемецкийНорвежскийКитайскийИвритФранцузскийУкраинскийИтальянскийПортугальскийВенгерскийТурецкийПольскийДатскийЛатинскийИспанскийСловенскийГреческийЛатышскийФинскийПерсидскийНидерландскийШведскийЯпонскийЭстонскийТаджикскийАрабскийКазахскийТатарскийЧеченскийКарачаевскийСловацкийБелорусскийЧешскийАрмянскийАзербайджанскийУзбекскийШорскийРусскийЭсперантоКрымскотатарскийСуахилиЛитовскийТайскийОсетинскийАдыгейскийЯкутскийАйнский языкЦерковнославянский (Старославянский)ИсландскийИндонезийскийАварскийМонгольскийИдишИнгушскийЭрзянскийКорейскийИжорскийМарийскийМокшанскийУдмурдскийВодскийВепсскийАлтайскийЧувашскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийБашкирскийБаскский

Утилиты: Калькуляторы для расчета ср.

кв. значения / дБм / дБн / дБВ | Ресурсы

Инструкция | Информация по теме


Инструкция

Этот калькулятор выполняет преобразование величин между дБм, дБн, дБВ, UПИК и UСР.КВ. (согласно ANSI T1.523-2001). дБм представляет собой опорную мощность относительно 1 мВт. дБн и дБВ – это опорные напряжения относительно 0,775 В и 1 В соответственно.

Чтобы использовать этот калькулятор, введите исходные данные своего приложения в соответствующем разделе, а затем введите количество величины, которое вы хотите преобразовать, в соответствующий элемент формы. Если вы перейдете на другое поле, нажмите «Ввод» (Enter) или «Рассчитать» (Calculate), чтобы пересчитать все эквивалентные значения.

Пожалуйста, имейте в виду пределы точности этого калькулятора. В целях отображения результаты расчетов округляются до ближайших 4 десятичных знаков, что должно превышать точность большинства измерений.


Ресурсы для усилителей

Analog Dialogue
Мини-руководства
  • MT-003: Понимание отношения сигнал/шум и коэффициента искажения (SINAD), эффективной разрядности (ENOB), отношения сигнал/шум (SNR), коэффициента нелинейных искажений (THD), коэффициента нелинейных искажений с учётом шума (THD + N) и динамического диапазона, свободного от паразитных составляющих (SFDR) для того, чтобы не запутаться в уровнях шума (pdf)
  • MT-053: Искажения операционного усилителя: искажение высшими гармониками (HD), коэффициент нелинейных искажений (THD), коэффициент нелинейных искажений с учётом шума (THD + N), интермодуляционные искажения (IMD), динамический диапазон, свободный от паразитных составляющих (SFDR) и коэффициент мощности многочастотного сигнала (MTPR) (pdf)
  • MT-078: Высокочастотные логарифмические усилители (pdf)

Ресурсы для высокочастотных микросхем

Статьи по применению
Примечания к схемам
Руководства по выбору

Вольт-амперы в киловатты — перевод 50 вольт-ампер в киловатты на калькуляторе онлайн в 2021

Как перевести вольт-амперы в киловатты на калькуляторе? Воспользуйтесь нашим онлайн конвертером перевода единиц мощности, и вы сможете конвертировать 50 вольт-ампер в киловатты и обратно

Сколько киловатт в одном ампере?

1 В-А = 0,001 кВт

1 ампер: сколько ватт?

1 В-А = 1 Вт

Как перевести вольт-амперы в киловатты на калькуляторе онлайн?

Для быстрого перевода из вольт-ампер в киловатт, воспользуйтесь онлайн калькулятором единиц мощности от Prostobank. ua. Пользоваться конвертером очень легко —  достаточно указать число, которое нужно конвертировать из В-А в кВт и нажать кнопку «Рассчитать». С помощью наших расчетов, вы узнаете, сколько лошадиных сил в указанной вами мощности в киловаттах. Таким образом, вам не нужно искать формулу соотношения разных величин мощности, калькулятор сделает все расчеты самостоятельно, а вы сэкономите свое драгоценное время на поиск информации и вычисления.

В результатах расчетов вы увидите конвертацию вольт-ампер) во все единицы измерения мощности: ватты (Вт), мегаватты (МВт), вольт-амперы (В-А), лошадиные силы (ЛС), гигакалорий в час (гКал/час), килокалорий в час (кКал/час), калорий в час (кал/час), джоули в секунду (дж/сек).

Популярные конвертации мощности

— 55 квт в лс

— 75 квт в лс

— 5 киловатт в амперах

— сколько мегаватт в 2500 квт

— 500 ватт сколько киловатт

— 1500 ватт сколько киловатт

— 2000 ватт сколько киловатт

— 1200 ватт сколько киловатт

— 16 ампер сколько киловатт

— 25 ампер в киловаттах

— 40 ампер в киловатты

— 6 ампер в киловаттах

— 50 ампер в киловатты

— 102 лошадиных силы в киловатты


Перевести киловольты в вольты — Перевод единиц измерения

›› Перевести киловольты в вольты

Пожалуйста, включите Javascript для использования конвертер величин.


Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько киловольт в 1 вольте? Ответ — 0,001.
Мы предполагаем, что вы конвертируете между киловольт и вольт .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
киловольт или вольт
Производная единица системы СИ для напряжения — вольт.
1 киловольт равен 1000 вольт.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.

Используйте эту страницу, чтобы узнать, как преобразовать киловольт в вольт.
Введите свои числа в форму для преобразования единиц!


›› Таблица быстрой конвертации киловольт в вольты

1 киловольт в вольт = 1000 вольт

2 киловольта в вольт = 2000 вольт

3 киловольта в вольт = 3000 вольт

4 киловольта в вольт = 4000 вольт

5 киловольт в вольт = 5000 вольт

6 киловольт в вольт = 6000 вольт

7 киловольт в вольт = 7000 вольт

8 киловольт в вольт = 8000 вольт

9 киловольт в вольт = 9000 вольт

10 киловольт в вольт = 10000 вольт



›› Хотите другие юниты?

Вы можете произвести обратное преобразование единиц измерения из вольт в киловольты, или введите любые две единицы ниже:

›› Обычные преобразователи напряжения

киловольт на зептовольт
киловольт на экзавольт
киловольт на зеттавольт
киловольт на гигавольт
киловольт на микровольт
киловольт на милливольт
киловольт на йоттавольт от
вольт до
вольт от
вольт до
вольт от
вольт от
вольт до
вольт вольт

›› Определение:

киловольт

Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

Итак, 1 киловольт = 10 3 вольт.

Определение вольта следующее:

Вольт (обозначение: В) — производная единица измерения разности электрических потенциалов или электродвижущей силы в системе СИ, широко известная как напряжение. Он назван в честь ломбардского физика Алессандро Вольта (1745–1827), который изобрел гальваническую батарею, первую химическую батарею.

Вольт определяется как разность потенциалов на проводнике, когда ток в один ампер рассеивает один ватт мощности.[3] Следовательно, это базовое представление СИ: m 2 · кг · с -3 · A -1 , которое может быть равно одному джоулю энергии на кулон заряда, Дж / Кл.


›› Определение: Вольт

Вольт (обозначение: В) — производная единица измерения разности электрических потенциалов или электродвижущей силы в системе СИ, широко известная как напряжение. Он назван в честь ломбардского физика Алессандро Вольта (1745–1827), который изобрел гальваническую батарею, первую химическую батарею.

Вольт определяется как разность потенциалов в проводнике, когда ток в один ампер рассеивает один ватт мощности. [3] Следовательно, это базовое представление СИ: m 2 · кг · с -3 · A

-1 , которое может быть равно одному джоулю энергии на кулон заряда, Дж / Кл.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения.Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Преобразовать 25 кв в

В

Итак, вы хотите преобразовать 25 киловольт в вольты? Если вы спешите и вам просто нужен ответ, калькулятор ниже — это все, что вам нужно. Ответ 25000 вольт .

Как перевести киловольты в вольты

Все мы каждый день используем разные единицы измерения. Независимо от того, находитесь ли вы в другой стране и вам нужно преобразовать местные имперские единицы в метрические единицы, или вы печете торт и вам нужно преобразовать в единицы, с которыми вы более знакомы.

К счастью, преобразовать большинство единиц очень и очень просто. В этом случае все, что вам нужно знать, это то, что 1 кв равен 1000 В.

Как только вы узнаете, что такое 1 кв в вольтах, вы можете просто умножить 1000 на общее количество киловольт, которое вы хотите вычислить.

Итак, в нашем примере у нас 25 киловольт. Итак, все, что мы делаем, это умножаем 25 на 1000:

.

25 х 1000 = 25000

Какой самый лучший преобразователь на 25 кв?

В качестве дополнительного небольшого бонуса для вас мы также можем рассчитать лучшую единицу измерения для 25 кв.

Какая единица измерения «лучшая»? Для простоты предположим, что лучшая единица измерения — это наименьшая возможная единица измерения, не опускающаяся ниже 1. Причина этого в том, что наименьшее число обычно облегчает понимание измерения.

Для 25 кв лучшая единица измерения — киловольты, а величина — 25 кв.

Цитируйте, ссылайтесь или ссылайтесь на эту страницу

Если вы нашли этот контент полезным в своем исследовании, пожалуйста, сделайте нам большое одолжение и используйте приведенный ниже инструмент, чтобы убедиться, что вы правильно ссылаетесь на нас, где бы вы его ни использовали. Мы очень ценим вашу поддержку!

  • Преобразовать 25 кВ в вольт

  • «Преобразовать 25 кв в вольт». VisualFractions.com . По состоянию на 1 ноября 2021 г. https://visualfractions.com/unit-converter/convert-25-kv-to-v/.

  • «Преобразовать 25 кв в вольт». VisualFractions.com , https://visualfractions.com/unit-converter/convert-25-kv-to-v/. По состоянию на 1 ноября 2021 г.

  • Преобразование 25 кв в v. VisualFractions.com. Получено с https://visualfractions.com/unit-converter/convert-25-kv-to-v/.

Больше единиц преобразования

Надеюсь, это помогло вам узнать, как преобразовать 25 кВ в В.Если вы хотите рассчитать больше преобразований единиц, вернитесь к нашему основному конвертеру единиц и поэкспериментируйте с различными преобразованиями.

Преобразование вольт [В] в киловольт [кВ] • Конвертер электрического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстоянияМассовый преобразовательПреобразователь сухого объема и общих измерений при приготовлении пищиПреобразователь площадиПреобразователь объема и общих измерений при приготовлении пищиПреобразователь температуры Конвертер модулейПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютКонвертер женской одежды и размеров обувиКонвертер мужской одежды и размеров обувиКонвертер угловой скорости и удельной скорости вращенияКонвертер угловой скорости и удельной скорости вращения Преобразователь момента инерции преобразователь момента силы преобразователь крутящего момента преобразователь удельной энергии, теплоты сгорания (на массу) преобразователя удельной энергии, теплоты сгорания Конвертер температур сгорания (на объем) Конвертер температурного интервалаКонвертер температурного расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициента теплопередачиКонвертер абсолютного коэффициента теплопередачи Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптический Powe Преобразователь r (диоптрия) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельной проводимости Конвертер манометровПреобразование уровней в дБм, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности полной дозы ионизирующего излученияРадиоактивность. Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображений Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

Плазменный шар

Обзор

Когда мы поднимаемся на холм, мы работаем, чтобы противостоять силе тяжести

Мы живем в эпоху электричество а про электрика напряжением знаю с детства. Многие из нас исследовали окружающую среду и буквально испытали шок, когда мы тайком коснулись электрических розеток, пока родители не наблюдали за нами.Что ж, раз вы читаете эту статью, с вами ничего плохого не случилось, даже если вы изучали электричество в детстве. Почти невозможно жить в эпоху электричества и не быть с ним близко знакомым. Что касается электрического потенциала , это несколько более сложный вопрос.

Поскольку это математическая абстракция, самый простой способ понять электрический потенциал — рассматривать его как аналогию с гравитацией. Формулы для обоих аналогичны. Разница в отрицательных значениях.У нас может быть отрицательный электрический потенциал из-за наличия как отрицательных, так и положительных зарядов, которые либо притягивают, либо отталкивают друг друга. С другой стороны, гравитационные силы могут вызывать притяжение только между двумя объектами. Мы не до конца поняли отрицательную массу. Как только мы овладеем им, это позволит нам понять антигравитацию.

Но как только мы оттолкнемся …

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством.Мы можем определить понятие электрического потенциала как понятие, описывающее взаимодействия электрически заряженных частиц или групп заряженных частиц, которые имеют одинаковые или противоположные заряды.

Из школьных уроков физики и из повседневного опыта мы знаем, что когда мы поднимаемся на холм, мы преодолеваем силу тяжести и выполняем для этого работу. Силы гравитации, которые нам предстоит преодолеть, действуют в потенциальном гравитационном поле Земли. Когда Земля взаимодействует с нами, она пытается уменьшить наш гравитационный потенциал, потому что у нас есть определенная масса.В рамках этого взаимодействия Земля тянет нас вниз, и мы позволяем ей спускаться по горному склону на лыжах или сноуборде. Точно так же электрическое потенциальное поле, которое действует на заряженные частицы, стремится сблизить частицы с противоположным зарядом и раздвинуть частицы с одинаковым зарядом.

Из вышесказанного можно сделать вывод, что электрически заряженное тело пытается уменьшить свой электрический потенциал. Для этого он пытается подобраться как можно ближе к мощному источнику электрического поля с противоположным зарядом, пока другие силы не мешают ему сделать это.Если электрический заряд объектов одинаков, каждый из электрически заряженных объектов пытается уменьшить свой электрический потенциал, удаляясь как можно дальше от одинаково заряженного источника мощного электрического поля. Опять же, это только в том случае, если никакие другие силы не препятствуют этому. Если есть силы, которые препятствуют этому, электрический потенциал не изменяется. По аналогии с гравитацией, когда вы стоите на вершине горы, сила тяжести компенсируется силой реакции земли, и ничто не тянет вас вниз и с этой горы.Лыжи толкает только ваш вес. Однако как только вы оттолкнетесь… вы спуститесь с холма!

Точно так же электрическое поле, создаваемое заряженной частицей или группой частиц, действует на другие заряженные частицы. Он создает электрический потенциал для перемещения этих заряженных частиц друг к другу или от друг друга, в зависимости от того, является ли заряд между этими двумя взаимодействующими частицами или объектами одинаковым или противоположным.

Сизиф Тициана, Музей Прадо, Мадрид, Испания

Электрический потенциал

Когда заряженная частица попадает в электрическое поле, она имеет определенное количество энергии, которое может быть использовано для выполнения работы.Электрический потенциал — это термин, который описывает эту энергию, запасенную в каждой точке электрического поля. Электрический потенциал электрического поля в данной точке равен работе, которую силы этого поля могут совершить, когда единица положительного заряда перемещается за пределы поля.

Снова глядя на аналогию с гравитационным полем, мы можем заключить, что понятие электрического потенциала аналогично явлению уровня различных точек на поверхности Земли. Как мы обсудим ниже, работа по поднятию тела над землей зависит от того, насколько высоко нам нужно поднять это тело, и аналогично работа по перемещению одного заряда от другого зависит от того, насколько далеко эти заряды находятся.

Представим себе Сизифа, одного из героев мифов Древней Греции. Он был обречен богами выполнять бессмысленную работу в загробной жизни, перекатывая огромный камень на вершину горы в наказание за грехи, которые он совершил при жизни. Чтобы поднять камень на полпути к горе, он должен выполнить половину работы, которую ему нужно выполнить, чтобы подвести камень до самой вершины. Как только он довел камень до упора, боги столкнули его с горы. Чтобы добраться до дна, сам камень тоже проделал некоторую работу.Камень, поднятый на гору высотой Н , может выполнять больший объем работы, чем камень, поднятый только наполовину, на высоту Н /2. Обычно мы считаем высоту от уровня моря, который считается нулевой высотой.

Используя эту аналогию, мы можем сказать, что электрический потенциал поверхности Земли является нулевым потенциалом, то есть

ϕ Земля = 0

где ϕ Земля — электрический потенциал, скалярная переменная. .Здесь ϕ — буква греческого алфавита, произносимая как «фи».

Это значение количественно определяет способность электрического поля выполнять работу (Вт) по перемещению заряда (q) из одной заданной точки в другую:

ϕ = Вт / q

В СИ электрический потенциал измеряется в вольт (В).

Посетители Канадского музея науки и техники могут генерировать для него электрическую энергию, вращая большое колесо человеческого хомяка. Это колесо вращает генератор, который питает эту катушку Тесла (справа).Катушка генерирует высокое напряжение в десятки тысяч вольт. Этого достаточно, чтобы загорелся разряд электричества.

Напряжение

Электрическое напряжение (В) можно определить как разность электрических потенциалов, как в формуле:

В = ϕ1 — ϕ2

Понятие напряжения ввел Георг Ом , немец. физик. В своей статье, опубликованной в 1827 году, он предложил использовать гидродинамическую модель электрического тока для объяснения эмпирического закона Ома, открытого им в 1826 году.Этот закон можно записать по следующей формуле:

Катушка Тесла в Канадском музее науки и техники.

V = I × R,

где V — разность потенциалов, I — электрический ток, а R — сопротивление.

Альтернативное определение электрического напряжения описывает его как отношение работы, которую электрическое поле выполняет, чтобы переместить электрический заряд, к величине этого заряда.

Это определение может быть выражено с помощью следующей формулы:

В = A / q

Подобно электрическому потенциалу, напряжение также измеряется в вольт (В), а также в десятичных кратных и дробных единицах — единицах, производных от вольта. , например, микровольт (одна миллионная вольт, мкВ), милливольт (одна тысячная вольт, мВ), киловольт (тысяча вольт, кВ) и мегавольт (один миллион вольт, МВ).

Напряжение в один вольт эквивалентно напряжению электрического поля, которое выполняет работу в один джоуль по перемещению заряда в 1 кулон. Мы можем определить вольт, используя другие единицы СИ следующим образом:

В = кг · м² / (А · с³)

Напряжение может генерироваться различными источниками, такими как биологические системы и объекты, электронные и механические устройства, и даже различные процессы в атмосфере.

Боковая линия акулы

Элементарным элементом любой биологической системы является клетка, которую можно рассматривать как небольшой электрохимический генератор. Некоторые органы живых организмов, такие как сердце, образованные множеством клеток, производят более высокое напряжение. Интересно отметить, что разные виды акул, которые являются идеальными хищниками океанов и морей, имеют очень чувствительные датчики напряжения. Эти датчики известны как боковая линия , и они позволяют акулам обнаруживать свою добычу по сердцебиению. Этот механизм очень надежен. Говоря о напряжении в животном мире, мы должны также упомянуть электрических скатов и угрей, которые разработали метод нападения на свою добычу и борьбы с хищниками, генерируя в процессе эволюции напряжение более 1000 В.

Люди могли генерировать электричество и создавать разницу потенциалов, протирая кусок янтаря шерстью или мехом в течение длительного времени, но гальванический элемент считается первым устройством, вырабатывающим электричество. Он был создан итальянским ученым и врачом Луиджи Гальвани , который обнаружил, что разница потенциалов возникает, когда разные металлы и электролиты контактируют друг с другом. Другой итальянский физик, Алессандро Вольта , продолжил и развил это исследование.Вольта был первым человеком в мире, который погрузил листы цинка и меди в кислоту, чтобы получить постоянный электрический ток. Таким образом, он создал первый химический источник электрического тока. Он соединил несколько из этих источников последовательно, чтобы создать первую химическую батарею. Он стал известен как гальваническая батарея и позволяла людям вырабатывать электричество с помощью химических реакций.

Вольтовая свая — копия, сделанная в 1999 году Гелсайдом Гваттерини, электриком из музея Вольта в Комо, Италия.Канадский музей науки и технологий

Единица измерения напряжения, вольт, а также сам термин «напряжение» названы так, чтобы ознаменовать вклад Вольта в исследования электрохимических и электрических явлений. Благодаря ему у нас появились надежные электрохимические источники энергии.

Говоря об исследователях, которые работали над созданием устройств для выработки электроэнергии, мы не должны забывать голландского физика Ван де Граафф . Он создал генератор высокого напряжения, известный сейчас как генератор Ван де Граафа .При производстве электроэнергии используется тот же принцип разделения зарядов, который мы используем, когда натираем янтарь шерстью или мехом.

Можно сказать, что два выдающихся американских ученых Томас Эдисон и Никола Тесла были отцами современных электрогенераторов. Тесла работал на компанию Эдисона, но два исследователя разошлись во взглядах на то, как генерировать электрическую энергию, и пошли разными путями. Последовала патентная война, и человечество извлекло из нее выгоду благодаря работе этих двух ученых.Реверсивные машины Эдисона можно использовать в качестве генераторов и двигателей постоянного тока. Сегодня производятся миллиарды устройств, в которых используется механизм этих реверсивных машин. Мы можем найти их под капотом нашей машины, в стеклоподъемнике, блендере и других устройствах. С другой стороны, именно Тесла открыл способы генерации переменного тока и принцип его преобразования. Эти открытия используются такими устройствами, как электрические трансформаторы, линии электропередач, транспортирующие электричество на большие расстояния, и другие.Также существует множество этих устройств, и они включают в себя множество бытовой электроники, часто используемой нами в повседневной жизни, например вентиляторы, холодильники, кондиционеры, пылесосы и многие другие устройства, которые мы не можем здесь описать из-за объема этого. статья.

Этот двигатель-генератор постоянного тока, изготовленный Westinghouse в 1904 году, использовался для обеспечения постоянной мощности для генерации магнитного поля в возбудителе на гидроэлектростанции Ниагара-Фолс (Нью-Йорк), построенной Никола Тесла и Джорджем Вестингаузом.

В конце концов, ученые открыли другие электрические генераторы, использующие другие принципы, в том числе те, которые используют энергию ядерного деления. Некоторые из этих генераторов предназначены для использования в качестве источников энергии во время длительных путешествий в космос.

Если не рассматривать некоторые из генераторов, созданных для научных исследований, можно сказать, что самыми мощными источниками электрической энергии на Земле по-прежнему являются атмосферные процессы.

Более 2000 вспышек молний происходит каждую секунду вблизи поверхности Земли.Это означает, что десятки тысяч генераторов Ван де Граафа в природе генерируют токи в десятки килоампер одновременно в форме молнии. Тем не менее, мы не можем даже начать сравнивать созданные человеком генераторы на Земле с электрическими бурями, которые происходят на сестре планеты Земля, Венере, и мы даже не будем пытаться сравнивать их со штормами на более крупных планетах, таких как Юпитер и Сатурн.

Характеристики напряжения

Напряжение можно охарактеризовать по его величине и форме волны.В зависимости от его поведения во времени мы можем определить постоянное напряжение, которое не меняется со временем, апериодическое напряжение, которое изменяется со временем, и переменное напряжение, которое изменяется со временем по определенному закону и обычно повторяется через определенные промежутки времени. Иногда для достижения поставленной цели может потребоваться как постоянное, так и переменное напряжение. В данном случае речь идет о переменном напряжении с постоянной составляющей.

Этот вольтметр использовался для измерения напряжения в начале двадцатого века.Канадский музей науки и техники в Оттаве

Генераторы постоянного тока, также известные как динамо-машины или динамо-электрические машины, используются в электротехнике для обеспечения высокой мощности при относительно стабильном напряжении. Прецизионные электронные устройства используются для подачи электроэнергии и поддержания постоянного уровня напряжения. Они работают с использованием электрических компонентов и также известны как регуляторы напряжения .

Измерение напряжения

Многие отрасли науки и техники, включая фундаментальную физику и химию, прикладную электротехнику и электрохимию, а также медицину, широко используют измерения напряжения.Трудно представить себе дисциплину, в которой измерение напряжения не использовалось бы для управления различными процессами. Эти измерения выполняются различными типами датчиков, которые фактически являются преобразователями измерений различных свойств в напряжение. Некоторыми исключениями из этого правила являются или, скорее, были некоторые творческие области человеческой деятельности, такие как архитектура, музыка или изобразительное искусство. В наши дни даже музыканты и артисты используют электронные устройства, которые зависят от напряжения. Например, художники и дизайнеры могут использовать электронные планшеты со стилусом.В этих планшетах напряжение измеряется, когда стилус перемещается над поверхностью планшета. Затем он преобразуется в цифровые сигналы и отправляется в компьютер для обработки. Архитекторы также используют планшеты и программное обеспечение, такое как ArchiCAD, на компьютерах. Музыканты и композиторы часто работают с электронными музыкальными инструментами. Напряжение измеряется датчиками клавиш, чтобы определить интенсивность нажатия клавиши.

Температура мяса измеряется электронным термометром слева путем измерения напряжения на резистивном датчике температуры. Это осуществляется путем подачи небольшого электрического тока через этот датчик. С другой стороны, мультиметр справа определяет температуру путем измерения напряжения, создаваемого термопарой, без подачи тока от внешнего источника питания.

Единицы напряжения могут изменяться в широком диапазоне: от долей микровольта при исследовании биологических процессов до сотен вольт в бытовой электронике и промышленном оборудовании и десятков миллионов вольт в мощных ускорителях частиц.Измерение напряжения позволяет нам отслеживать и контролировать некоторые функции определенных внутренних органов человека. Например, чтобы отобразить работу мозга, мы записываем электроэнцефалограмму . Чтобы понять, как работает сердце, мы записываем электрокардиограмму или эхокардиограмму сердечной мышцы. С помощью различных промышленных датчиков мы можем успешно и, что более важно, безопасно контролировать различные процессы, происходящие в химическом производстве.Некоторые из этих процессов происходят при экстремальных давлениях и температурах, и из-за этого безопасность является серьезной проблемой. Измеряя напряжение, мы даже можем отслеживать процессы на атомных электростанциях, которые происходят во время ядерных реакций. Инженеры также поддерживают мосты и конструкции в хорошем состоянии, измеряя напряжение, и могут даже предотвратить или уменьшить разрушительные последствия землетрясения.

Пульсоксиметр, как и вольтметр, измеряет напряжение усиленного сигнала с фотодиода.Однако, по сравнению с вольтметром, это устройство отображает процент насыщения гемоглобина кислородом, 97% в этом примере, а не напряжение, измеренное в вольтах.

Блестящая идея связать разные значения напряжения с логическими уровнями сигналов привела к созданию современных цифровых технологий. Например, в информационных технологиях низкое напряжение представляет собой низкий логический уровень (0), а высокое напряжение представляет собой высокий логический уровень (1).

Можно сказать, что все современные устройства в вычислительной технике и электротехнике каким-то образом измеряют напряжение, а затем преобразуют свои входные логические состояния с помощью определенных алгоритмов для получения выходных сигналов в требуемом формате.

Кроме того, точные измерения напряжения являются основой многих современных стандартов безопасности. Соблюдение этих стандартов в соответствии с предписаниями обеспечивает безопасность во время использования устройства.

Карта памяти, которая используется в персональных компьютерах, содержит десятки тысяч логических вентилей.

Приборы для измерения напряжения

На протяжении всей истории, когда мы все больше узнавали об окружающем нас мире, наши методы измерения напряжения эволюционировали от примитивных органолептических методов .Примером таких методов является работа русского ученого Петрова, который срезал часть эпителия на пальцах, чтобы повысить его чувствительность к электрическому току. Эти методы эволюционировали до простых детекторов и индикаторов напряжения, а затем и до современных устройств с различными режимами работы, в которых используются электродинамические и электрические свойства материалов и веществ.

Вкус электричества: давным-давно, когда вольтметры не были столь широко доступны и недороги, мы использовали для определения напряжения по вкусу

Интересно отметить, что в прошлом, когда современные измерительные приборы, такие как мультиметры, были не легко доступны для широкая публика, энтузиасты радиоэлектроники могли сказать рабочий 4.Аккумулятор для фонаря на 5 вольт от разряжавшегося. Они сделали это, просто облизывая электроды. Произошедшие при этом электрохимические процессы вызывали легкое ощущение жжения и придавали батарее определенный привкус. Некоторые люди даже пытались определить, подходят ли 9-вольтовые батареи, но это потребовало немало мужества, потому что ощущение было очень неприятным.

Рассмотрим пример простого индикатора или измерителя напряжения — обычную лампу накаливания с напряжением не ниже напряжения сети.В наши дни вы также можете купить простые тестеры напряжения, основанные на неоновых лампах и светодиодах и потребляющие малые токи. При работе с электричеством всегда нужно проявлять осторожность, потому что любые ошибки, особенно при использовании устройств DIY, могут быть опасными для жизни!

Следует отметить, что вольтметры, являющиеся приборами для измерения напряжения, могут значительно отличаться друг от друга, наиболее заметное различие заключается в типе измеряемого напряжения. Например, аналоговые вольтметры могут измерять напряжение постоянного или переменного тока.Свойства измеряемого напряжения очень важны в процессе измерения. Это может быть функция времени и другого типа, например, прямой, гармонический, негармонический, импульсный и т. Д.

Наиболее распространены следующие типы напряжения:

  • мгновенное напряжение,
  • размах напряжения,
  • среднее напряжение, также известное как среднее напряжение,
  • среднеквадратичное напряжение.

Мгновенное напряжение U i (на рисунке) — это величина напряжения в данный момент времени.Мы можем отслеживать напряжение во времени на экране осциллографа и определять напряжение в данный момент времени, исследуя кривую.

Пиковое или амплитудное значение напряжения U a — это максимальное мгновенное значение напряжения за данный период. Размах амплитуды U p-p — это разность между максимальной положительной и максимальной отрицательной амплитудами сигнала.

Среднеквадратичное значение напряжения U рассчитывается как квадратный корень из среднего арифметического квадратов мгновенных напряжений в течение заданного периода времени.

Все цифровые и аналоговые вольтметры обычно калибруются для считывания среднеквадратичных значений.

Среднее значение напряжения (составляющая постоянного тока) — это среднее арифметическое всех его мгновенных значений за период, в течение которого происходит измерение.

Среднее напряжение полупериода рассчитывается как среднее арифметическое абсолютных мгновенных значений для выборок напряжения за данный период времени.

Разница между максимальным и минимальным значениями напряжения называется размахом сигнала.

В наши дни напряжение часто измеряют с помощью многоцелевых цифровых устройств, таких как осциллографы. Их экран может отображать различные важные характеристики сигнала, а не только форму волны напряжения. Эти характеристики включают частоту измеряемых периодических сигналов. Стоит отметить, что ограничение частоты — очень важная характеристика любого устройства измерения напряжения.

Измерение напряжения с помощью осциллографа.

Мы можем проиллюстрировать приведенное выше обсуждение несколькими экспериментами по измерению напряжения.Мы будем использовать генератор функциональных сигналов, источник питания постоянного тока, осциллограф и многофункциональное цифровое измерительное устройство (мультиметр).

Эксперимент 1

Ниже представлена ​​схема эксперимента 1:

Генератор сигналов подключен к резистору с сопротивлением R, равным 1 кОм. Щупы осциллографа и мультиметра подключены параллельно резистору. При проведении этого эксперимента мы должны помнить, что полоса пропускания осциллографа намного превышает пропускную способность мультиметра.Сначала мы попробуем Эксперимент 1.

Тест 1: Давайте подадим синусоидальный сигнал с частотой 60 Гц и амплитудой 4 В от генератора на нагрузочный резистор. На экране осциллографа появится кривая, как на фотографии ниже. Следует отметить, что значение каждого вертикального деления на экране осциллографа составляет 2 В. И осциллограф, и мультиметр покажут среднеквадратичное значение 1,36 В.

Тест 2: Давайте удвоим амплитуду сигнала генератора. .Амплитуда на осциллографе и на мультиметре увеличится вдвое:

Test 3: Теперь увеличим частоту генератора в 100 раз (до 6 кГц). Частота на осциллографе изменится, но амплитуда и среднеквадратичное значение останутся прежними. Среднеквадратичное значение, которое мультиметр будет неверным, вызвано ограничением полосы пропускания мультиметра всего в 0–400 Гц.

Тест 4: Давайте попробуем исходную частоту 60 Гц и напряжение 4 В для генератора сигналов, но изменим форму напряжения сигнала с синуса на треугольник.Шкала на осциллографе останется прежней, но значение, отображаемое на мультиметре, уменьшится по сравнению со значением напряжения, которое он показал в тесте 1. Это произошло из-за изменения среднеквадратичного значения сигнала.

Эксперимент 2

Мы будем использовать ту же установку для эксперимента 2, что и для эксперимента 1.

Давайте повернем ручку смещения генератора сигналов, чтобы добавить смещение 1 В постоянного тока к нашему синусоидальному сигналу 4 В pp . Мы установим синусоидальное напряжение на генераторе сигналов равным 4 В с частотой 60 Гц, как в эксперименте 1.Сигнал на осциллографе будет сдвинут на половину деления вверх. Мультиметр отобразит среднеквадратичное значение 1,33 В, что почти такое же, как в тесте 1 эксперимента 1, потому что в режиме измерения переменного тока он имеет вход, связанный по переменному току, и не может измерять составляющую постоянного тока. Кривая на осциллографе со связью по постоянному току будет аналогична кривой в тесте 1 эксперимента 1, но будет сдвинута вверх на одно деление. Среднеквадратичное значение, измеренное осциллографом, будет выше, чем в тесте 1 эксперимента 1, потому что среднеквадратичное значение суммы напряжений постоянного и переменного тока выше, чем среднеквадратичное значение для сигнала без компонента постоянного тока:

Указания по безопасности при измерениях Напряжение

В зависимости от мер безопасности, установленных в помещении или в здании, даже низкое напряжение 12–36 вольт может быть смертельным.Поэтому при работе с электричеством в целом и при измерении напряжения, в частности, крайне важно соблюдать следующие правила техники безопасности:

  1. Если у вас нет специальной подготовки по работе с высоким напряжением, не измеряйте напряжение, превышающее 1000 В.
  2. Не измеряйте напряжение в труднодоступных или высоких местах.
  3. Используйте специальные средства защиты, такие как резиновые перчатки, коврики и обувь, при измерении сетевого напряжения.
  4. Используйте правильно работающие измерительные приборы и избегайте поломок.
  5. При работе с многофункциональными устройствами, такими как мультиметры, убедитесь, что функция и диапазон установлены правильно.
  6. Не используйте измерительные приборы с поврежденными датчиками.
  7. Следуйте инструкциям производителя для измерительного устройства.

Список литературы

Эту статью написал Сергей Акишкин

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Преобразовать киловольты в вольты (кВ в В)

Вы переводите единицы разности электрических потенциалов из киловольт в вольты

1 Киловольт (кВ)

=

1000 Вольт (В)

Результаты в вольтах (В):

1 (кВ) = 1000 (В)

Конвертировать

Вы хотите перевести вольт в киловольты?

Как преобразовать киловольты в вольты

Чтобы преобразовать киловольты в вольты, умножьте разность электрических потенциалов на коэффициент преобразования.Один киловольт равен 1000 вольт, поэтому используйте эту простую формулу для преобразования:

киловольт = вольт × 1000

Например, вот как преобразовать 5 киловольт в вольты, используя формулу выше.

5 кВ = (5 × 1000) = 5000 В

1 киловольт равно сколько Вольт?

1 киловольт равен 1000 вольт: 1 кВ = 1000 В

В 1 киловольте 1000 вольт. Чтобы преобразовать киловольты в вольты, умножьте полученное значение на 1000 (или разделите на 0,001).

1 Вольт равно сколько Киловольт?

1 Вольт равен 0.001 киловольт: 1 В = 0,001 кВ

В 1 вольте 0,001 киловольта. Чтобы преобразовать из вольт в киловольт, умножьте полученное значение на 0,001 (или разделите на 1000).

Популярные преобразователи разности электрических потенциалов:

микровольты в вольты, киловольты в вольты, микровольты в вольты, милливольты в микровольты, вольты в мегавольты, мегавольты в микровольты, вольты в милливольты, микровольты в киловольты, мегавольты в вольты, вольты в киловольты4,

вольт4 Вольт

4 V 25 25 905 4 В 905 7000 В 905 25 1025 905 905 905 905 10 В26 9025 905 905 16 V
Киловольт Вольт Вольт Киловольт
1 кВ 1000 В 1 В 0.001 кВ
2 кВ 2000 V 2 V 0,002 кВ
3 кВ 3000 V 3 V 0,003 кВ
0,004 кВ
5 кВ 5000 В 5 В 0,005 кВ
6 кВ 6000 В 6 В 0,006 905 кВ 7 В 0.007 кВ
8 кВ 8000 В 8 В 0,008 кВ
9 кВ 9000 В 9 В 0,009 кВ 9 В 0,009 кВ 0,01 кВ
11 кВ 11000 В 11 В 0,011 кВ
12 кВ 12000 V 12 V 9025 0,012 кВ 13 13000 В 13 В 0.013 кВ
14 кВ 14000 В 14 В 0,014 кВ
15 кВ 15000 В 15 В 0,015 кВ 15 В 0,015 кВ
0,016 кВ
17 кВ 17000 V 17 V 0,017 кВ
18 кВ 18000 V 18 V 9025 0,018521 19000 В 19 В 0.019 кВ
20 кВ 20000 В 20 В 0,02 кВ

Преобразовать вольт в кв.

Разместите свои комментарии?

Преобразование из вольт в киловольты (кВ) RapidTables.com

9 часов назад кВ Преобразование из в вольт Калькулятор Как преобразовать вольт из в киловольт. 1 В = 10-3 кВ = 0,001 кВ . или. 1 кВ = 10 3 В = 1000 В. Вольт в киловольт по формуле. Напряжение В в киловольтах ( кВ, ) равно напряжению В в вольтах (В), деленному на 1000 :. V ( кВ ) = V (В) / 1000. Пример. Преобразовать 3 вольт в киловольты:

Веб-сайт: Rapidtables.com