+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

electrikblog.ru

Проверка обмоток электродвигателя. Неисправности и методы

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:

  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора. Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

• Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
• Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
• Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
• Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки. Чтобы определить маркировку, применяют некоторые способы:

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Похожие темы:

electrosam.ru

Как прозвонить электродвигатель мультиметром — полезные советы

При поломке бытового электроприбора приходится проверять по отдельности все его компоненты.

И если тестирование датчиков затруднений не вызывает — обычно достаточно проверить сопротивление, то с двигателем все не так просто.

Этот узел устроен куда сложнее, и чтобы выявить его неисправность, требуется знать методику проверки. Далее расскажем о том, как прозвонить электродвигатель мультиметром.

Какие электромоторы можно проверить мультиметром

Если в двигателе нет механических повреждений, что обычно определяется визуально, то его неисправность в большинстве случаев обусловлена следующим:

  • произошел обрыв внутренней цепи;
  • случилось замыкание, то есть появился контакт там, где его не должно быть.

Оба дефекта выявляются мультиметром. Сложности возникают только при проверке двигателей постоянного тока: у большинства из них обмотка имеет почти нулевое сопротивление и его приходится замерять косвенным методом, для чего понадобится собрать несложную схему.

Из двигателей переменного тока наиболее востребованы:
  1. Трехфазные асинхронные двигатели работают и при однофазном питании.
  2. Асинхронные одно- и двухфазные с короткозамкнутым ротором конденсаторные. К этому типу относится большинство двигателей бытовых приборов.
  3. Асинхронные с фазным ротором. Такой ротор имеет трехфазную обмотку. Двигатели с фазным ротором применяются там, где требуется регулировка частоты вращения и понижение пускового тока: в крановом оборудовании, станках и пр.
  4. Коллекторные. Применяются в ручном электроинструменте.
  5. Асинхронные трехфазные с короткозамкнутым ротором.

Популярность моторов последнего типа объясняется рядом достоинств:

  • простота конструкции;
  • прочность;
  • надежность;
  • низкая стоимость;
  • неприхотливость (не требует ухода).
Все электродвигатели состоят из двух частей: неподвижной и вращающейся. Первая у моторов переменного тока называется статором, у постоянного — индуктором; вторая – соответственно ротором и якорем.

Ремонт асинхронных двигателей

Из асинхронных моторов наиболее распространены двух- и трехфазные. Тестируются они по-разному. Рассмотрим каждую разновидность подробно.

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм. Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).
Низкое сопротивление между обмоткой и корпусом говорит о замыкании, требуется перемотка статора.

Далее проверяют:

  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Двухфазный электрический двигатель

В статоре имеются две обмотки:

  1. рабочая;
  2. пусковая.

Замеряют мультиметром сопротивление каждой и сравнивают: в норме сопротивление пусковой вдвое выше, чем у рабочей.

Также двигатель проверяется на предмет замыкания между токоведущими частями и корпусом — по той же схеме, что и трехфазный.

Проверка коллекторных электромоторов

В месте прилегания щеток у коллекторных двигателей имеются секции или ламели.

Порядок проверки:

  1. Мультиметром определяют сопротивление между соседними ламелями. В норме значения для каждой пары одинаковы. При обрыве (бесконечно высокое сопротивление) или коротком замыкании (мизерное сопротивление) меняют таходатчик двигателя.
  2. Замеряется сопротивление между коллектором и корпусом ротора: в норме оно бесконечно высокое.
  3. Прозванивают обмотки статора на целостность.
  4. Проверяют сопротивление между корпусом статора и токоведущими частями: в норме — бесконечно высокое.

Далее определяют сопротивление катушки ротора. Оно крайне мало, потому замерить напрямую мультиметром нельзя — велика погрешность. Применяют косвенный метод:

  1. Последовательно с катушкой соединяют высокоточный резистор малого номинала (около 20 Ом). Высокоточными называют резисторы с допуском не более 0,05%. В цветовой маркировке у них присутствует серая полоса (не путать с серебряной).
  2. Цепь «катушка — резистор» подключается к источнику постоянного тока напряжением 12 В или выше. Чем больше напряжение, тем точнее измерения. В качестве источника на 12 В применяют автомобильный аккумулятор или компьютерный блок питания.
  3. Снимают мультиметром падение напряжения на катушке. Здесь важно соблюдать полярность: щуп, включенный в порт COM (отрицательный потенциал), коротят со стороны «минуса» или массы; второй (подсоединяется в разъем «V/Ω») — со стороны «плюса».

Напряжение, мультиметр измеряет намного точнее сопротивления — с верностью до 0,1 мВ. На этом и основан косвенный метод.

Затем рассчитывают сопротивление катушки по формуле: Rкат = Uкат * Rрез / (12 – Uкат), где

  • Rкат — сопротивление катушки, Ом;
  • Uкат — падение напряжения на катушке, В;
  • Rрез — сопротивление резистора, Ом;
  • 12 — напряжение источника питания, В.

Проверка двигателей постоянного тока

Порядок тестирования:

  1. Проверка сопротивления обмоток: у таких моторов они имеют низкое сопротивление, потому его также определяют косвенно — по напряжению и силе тока. Потребуется два мультиметра: один используется как вольтметр, другой одновременно — как амперметр. На обмотку подается питание от батареи напряжением 4 – 6 В.  Сопротивление рассчитывают по формуле: R = U / I.
  2. Замер сопротивления обмоток якоря и между пластинами коллектора. В норме мультиметр отображает равные значения.

Для сопротивления между пластинами коллектора максимально допустимая разница составляет 10%, при наличии уравнительной обмотки — 30%.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

Чаще всего применяются:
  1. Термопредохранители:
    отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Запитывается датчик через два крайних вывода. Если коснуться их щупами мультиметра в режиме омметра, в норме он отобразит мизерное сопротивление.

Проверка третьего вывода возможна только в рабочем режиме, когда присутствует магнитное поле. Попытка прозвонить датчик на ходу, то есть при включенной стиральной машине, может привести к травме. Рабочий режим безопаснее сымитировать, демонтировав двигатель и запитав датчик отдельно. Импульсы на выходе датчика формируют путем поворота ротора.

Мультиметр позволяет выявить пусть не все, но многие поломки электродвигателя. В основном при помощи прозвонки выявляются обрывы и короткие замыкания. Полную диагностику проводят на специальных стендах, для измерения сопротивления изоляции требуется мегомметр.

proprovoda.ru

Как прозвонить обмотки электродвигателя: все способы | ENARGYS.RU

Многие приборы, с которыми имеет дело человек, в своей конструкции предусматривают наличие электрического двигателя. В процессе работы, в нем могут возникать неисправности по различным причинам, которые придется выявлять и устранять.

Пошаговая инструкция. Рекомендации

Электрический двигатель занимается преобразованием электрической энергии в механическую, с целью приведения в движение различных механизмов и машин. Преобладающее большинство электрических двигателей являются двигателями вращательного движения.

Конструкция мотора

По своей механической конструкции любой электродвигатель складывается из двух элементов:

  • статора – неподвижной части мотора (индуктор). Включает в себя станину и магнитные полюса. В своей комплектации может включать постоянные магниты, электромагниты с обмотками, короткозамкнутые обмотки. Его назначение – создать в системе магнитный поток;
  • ротор – начинает вращение после подачи напряжения к обмоткам двигателя (якорь). Он представляет собой катушки с токопроводящими обмотками. Они способствуют устранению неравномерности крутящего момента и снижению коммутируемого тока, что приводит к нормальному взаимодействию магнитных полей индуктора и ротора.

Также имеется щеточно-коллекторный узел, который выступает между ротором и статором связующим звеном. В нем сконцентрированы все выводы роторных катушек. Этот участок является переключателем тока со скользящими контактами. Дополнительно выполняет функцию датчика углового положения ротора.

Существуют несколько вариантов обмотки катушки медной проволокой:

  • катушки только на роторе;
  • только на статоре;
  • обмотка на подвижной и неподвижной частях.

Катушка – это несколько витков, уложенных соответствующими сторонами в два паза и соединенные между собой последовательно. А обмоткой называют несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.

У большинства электродвигателей ротор размещен внутри статора.

Щетки являются неподвижным контактом, который подводит ток к ротору. Задачей щеточно-коллекторного узла является обеспечение вращения ротора в одном и том же направлении.

Важно! Самостоятельный ремонт электродвигателя неквалифицированными работниками, может закончиться трагически.

Трудности диагностирования

Целью любой диагностики является обнаружение и профилактика неисправностей. Что касается диагностики обмотки двигателя, то самой сложной задачей является добраться непосредственно до предмета диагностирования. Чтобы это произошло, понадобится не только демонтировать двигатель, но и разобрать его.

Учитывая то, что ротор находится внутри станины, то в процессе снимается и ротор, и подшипники. А в случае выявления сгоревшей обмотки статора, ремонт будет не только объемным, но и очень дорогим, так как не каждый специалист возьмется за перемотку двигателя.

Коммутирующая аппаратура

Такая аппаратура служит для управления агрегатами электрооборудования. В зависимости от способа управления они подразделяются на:

  • прямое – для коммутации цепей с током не больше 35 А. К ним относятся выключатели, переключатели и кнопки;
  • дистанционное – состоит из контактной группы, электромагнита и рычажнопружинного механизма;
  • автоматическое;
  • программное – происходит автоматическое включение, выключение и переключение.

По принципу своей работы выключатели и переключатели могут быть:

  • перекидными – имеют фиксированное положение контактов и рукояти управления, чтобы вернуть в исходное положение, понадобиться приложить усилие;
  • нажимными – процесс обеспечивается кинематической схемой самовозврата.

В зависимости от токовой нагрузки в цепи, коммутирующие устройства подразделяются на:

  • реле – нагрузка не больше 10 А;
  • контакторы – до 600 А.

Подробности диагностики электрической части

Чтобы найти поврежденный участок изоляции обмотки понадобится, разъединить фазные обмотки и измерить сопротивление на каждой обмотке. Проверку нужно начинать от магнитопровода, в результате чего выявляется участок с покоробленной изоляцией. Чтобы обнаружить такие места, можно применить несколько подходов:

  • измерить напряжение между концов обмотки и магнитопровода;
  • определить направление тока в частях обмотки;
  • делить обмотку на части;
  • способ «прожигания».

Первый способ предусматривает подачу пониженного напряжения (переменного либо постоянного) на фазную обмотку мотора с покоробленной изоляцией. Затем выполняют замеры напряжения между концами магнитопровода и обмотки. Соотношение полученных значений даст понимание о нахождении места повреждения.

При втором способе на концы фазной обмотки и магнитопровод подают постоянное напряжение. Подключают реостат, для того чтобы регулировать ток. Направления токов в обоих концах обмотки будут обратными. К концам каждой катушечной группы дотрагиваются двумя проводами милливольтметра. Стрелка прибора будет постоянно отклоняться в одну сторону до тех пор, пока не прикоснется концами к группе с покоробленной изоляцией. После этого участка стрелка прибора будет отклоняться в противоположную сторону.

Третий метод подразумевает разделение фазовой обмотки соединенной с магнитопроводом путем распайки междукатушечных соединений. Затем занимаются поиском покоробленной изоляции с помощью мегомметра или контрольной лампочки. Такие разделения делают до тех пор, пока не найдется неисправная катушка.

А вот если фазную обмотку с нарушенной изоляцией и магнитопровод присоединить к источнику пониженного напряжения (сварочному генератору или трансформатору), то постепенно нагреваясь в проблемном месте начнется дымление, а временами искрение (изоляция «прожигается»).

Диагностика асинхронных моторов

Для того что двигатель работал долго, следует обращать внимание на шум подшипников во время работы. Избегать свистящих, хрустящих или царапающих звуков. Они говорят о том, что смазки недостаточно и требуется ее восполнить. Повреждение обоймы, шариков, сепараторов отражаются глухими ударами.

Если наблюдается перегрев или нетипичный шум в работе подшипников, то следует обязательно их разобрать и осмотреть. Со всех деталей удаляется старая смазка и происходит их промывание бензином.

Перед тем как установить новые подшипники, их прогревают в масле, для того чтобы новая смазка заполнила их рабочую часть на треть.

Следует систематически проверять контактные кольца. Если обнаружены появления ржавчины, то поверхность зачищается мягкой наждачной бумагой, с последующим протиранием керосином.

При моторе постоянного тока

Чтобы выполнить проверку такого двигателя, делают замеры сопротивления его обмоток. Полученные результаты дадут возможность судить о техсостоянии контактных соединений обмоток.

С этой целью используются такие методы:

  • амперметра-вольтметра – применяется двухконтактный щуп с пружинами в изоляционной рукоятке. Этим способом замеряют сопротивления последовательной обмотки возбуждения;
  • одинарного или двойного моста и микроомметром;

Проверка прочности изоляции и измерение ее сопротивления выполняются также, как и у асинхронного двигателя.

Проверка мотора прямого привода

Существует два варианта проверки:

  • подать напряжение на стартерную и роторную обмотку двигателя, предварительно подсоединив поочередно эти элементы. Недостаток метода в том, что даже если он начнет вращаться, то это не говорит о его исправном функционировании;
  • требуется взять специальное оборудование – автотрансформатор мощностью от 500 ватт. Этот способ более безопасен, потому что дает возможность регулировать скорость оборотов.

Последовательность диагностики

При осуществлении диагностики совершаются такие операции:

  • электрическая машина отсоединяется от сети;
  • щетками производится очищение от пыли и грязи;
  • сжатым воздухом из компрессора обдуваются все элементы;
  • осматривается щеточно-коллекторный механизм на поломки щеткодержателя и сколов на щетках, износ щеток, царапины и выбоины на поверхности коллектора;
  • для обнаружения поломок в электрической части понадобиться прозвонить обмотку электродвигателя мультиметром. Возможны обрывы электрической цепи, замыкание отдельных цепей между собой, витковые замыкания;
  • замена неисправных участков обмотки;
  • осмотр подшипников и в случае необходимости заменить на новые;
  • сборка двигателя;
  • обследование вращающих узлов на наличие ровной нагрузки на двигатель;
  • испытание на холостом ходу и под нагрузкой.

Если выбивает защиту?

Чтобы защитить обмотки электродвигателя от перегрева и токовых перегрузок, подключается электротепловое реле. Мотор подсоединяется к выходным контактам реле. Данное реле внутри состоит из трех биметаллических пластин. Эти пластины взаимодействуют с механизмом подвижной системы, которая принимает участие в схеме защиты мотора через дополнительные контакты.

Под действием проходящего по пластине тока, она постепенно нагревается и выгибается, чем больший ток пройдет через нее, тем быстрее сработает защита и отключит нагрузку.

Рекомендации электрика

Если при работе электродвигателя отчетливо слышится визг или скрипение, которые отсутствовали на небольших оборотах, то причина очевидно в недостаточном количестве смазки в подшипниках, либо же их сильное загрязнение.

Также на изношенный подшипник указывает мощная вибрация вала, который вращается по инерции. Возможно, это говорит о дисбалансе колеса вентилятора. Допускается вариант, что у него отломилась одна из лопастей.

Важно! В случае обнаружения нарушений изоляции обмотки, ремонт двигателя лучше производить в специальных сервисных центрах.

Если ситуация требует проведения диагностики обмотки электродвигателя, то не имея общих понятий электротехники, желательно доверить эту работу настоящим профессионалам. Этот трудоемкий процесс требует не только навыков в работе, но также использования специальной техники, которая позволит провести качественный ремонт.

enargys.ru

Как проверить электродвигатель мультиметром: полезне советы

В настоящее время используется множество бытовой техники, работа которой связана с электрическим двигателем. Его неисправность причиняет беспокойство и лишает привычного комфорта. Мультиметр — универсальный измерительный прибор, который позволяет самостоятельно провести первичную диагностику агрегата.

Какие инструменты нужны

В первую очередь потребуется непосредственно само устройство. Но перед тем как прозвонить электродвигатель мультиметром, нужно знать принципы работы этого прибора.

Основные функции стандартного измерителя позволяют измерить с достаточной точностью:

  • величину активного сопротивления цепи электрическому току;
  • постоянное напряжение;
  • напряжение переменного тока.

Некоторые модели дополнительно дают проверить:

  • целостность электрической цепи прозвонкой;
  • величину емкости конденсатора.

Для вскрытия корпусов техники и моторов нужны отвертки, гаечные ключи, пассатижи, молоток. Благодаря этому набору, а также минимальным знаниям в электротехнике вопрос, как проверить электродвигатель мультиметром, легко выявить неисправности, которые устраняются самостоятельно.

Сложные повреждения ликвидируются сервисными мастерскими, где есть точное оборудование.

Какие электромоторы можно проверить мультиметром?

Электрические машины используют принцип вращения подвижной части относительно статичной за счет магнитной индукции, возникающей в катушках, по которым протекает электрический ток. В зависимости от типа питания они делятся на следующие:

Конструктивный элементПитающий ток
ПеременныйПостоянный
НеподвижныйСтаторИндуктор
ПодвижныйРоторЯкорь

 

Электромоторы бывают с питанием от тока:

  • Постоянного, со схемными решениями упрощения регулировки мощности, оборотов.
  • Переменного, одно или трехфазного. Они разделены:
    • синхронные, у них обороты ротора совпадает с частотой изменения индукции статора;
    • асинхронные. Количество оборотов не зависит от сети. Роторы таких двигателей различаются схемой соединения обмоток, могут быть:
      • короткозамкнутые, где роль обмоток выполняют алюминиевые или медные стержни, залитые в поверхность под углом к оси вращения, соединенные на торцах ротора кольцами;
      • фазные: концы уложенной в пазы сердечника катушки соединены «звездой» или «треугольником» с контактными ламелями на валу ротора.

Фазный ротор более сложен, его пусковые характеристики лучше, регулировки шире. Но чаще используют короткозамкнутый ротор из-за простоты конструкции, высокой надежности, меньшей цены.

Проверка электродвигателя внешним осмотром

До того как проверить обмотку электродвигателя мультиметром, нужно исследовать отключенный от сети мотор вместе со шнуром питания для поиска механических повреждений, следов пробоя изоляции или перегрева. Ось двигателя должна вращаться в подшипниках легко, без заеданий или заклиниваний. Не должно быть запаха горелой изоляции, растеканий масла, наплывов.

Отсутствие видимых повреждений может потребовать разборки двигателя для осмотра графитовых щеток, контактных ламелей, состояния катушек, их выводов. Замыкание электрической цепи вызывает нагрев, что проявляется в хорошо видимых изменениях цвета вблизи пробоя изоляции.

Как найти обрыв или межвитковое замыкание

Если следов повреждения не видно, тогда пора приступать к измерениям при помощи цифрового тестера. Для этого нужно сделать следующее:

  1. Вставить измерительные щупы в гнезда на лицевой панели.
  2. Переключателем режима выбрать прозвонку, соединить оголенные концы щупов, измеритель запищит. Разрыв прекратит звук. Так проверяется наличие, исправность элемента питания, измерительных шнуров, гнезд. Этот режим позволяет прозвонить цепь не глядя на индикатор, на слух.
  3. Если прибор без пищалки, включается режим измерения сопротивления на самом нижнем пределе, обычно это «200» Ом. Совмещение наконечников шнура отразится на индикаторе мультиметра цифрами, обозначающими сопротивление провода щупов в пределах 0,6÷1,5 Ом.

Обрыв ищется прозвонкой или измерением сопротивления проводов, шнуров, всех катушек, предварительно разобрав соединение их концов. Ротор проверяется измерением каждой пары выводов.

Межвитковое замыкание обмоток, сделанных из относительно толстой проволоки с маленьким сопротивлением, мультиметром не определишь. Замыкание нескольких витков уменьшит общее сопротивление на доли ома, не отражаемые дисплеем.

Проверка изоляции обмоток относительно корпуса

Используя мультиметр в режиме измерения максимального сопротивления, можно убедиться, что нет плохой изоляции, замыканий на массу. Это опасно для жизни.

Все проверяется на отключенном от сети моторе. Один щуп прибора соединяется с корпусом, вторым касаются по всех выводов обмоток. Индикатор должен показывать обрыв, или большое, сотни мегаом, сопротивление во всех случаях.

Затем нужно проверить отсутствие пробоя изоляции между обмотками,  для чего щупы попарно подключают к выводам разных катушек. Индикатор не должен показывать сопротивление.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

Трехфазный двигатель мультиметром проверяется быстро. Разобрав концы, мультиметром измеряют сопротивление каждого из них. Разница в величинах должна быть меньше 10%. Попутно нужно убедиться, что нет пробоя на корпус между катушками.

Точно место межвиткового замыкания покажет приспособление, сделанное из понижающего трехфазного трансформатора, к выводам подключается статор разобранного двигателя. Подается питание, внутрь помещается металлический шарик, который при исправных обмотках катается по внутренней поверхности. Если есть короткое замыкание витков – шарик прилипнет в этом месте.
Мастера, занимающиеся ремонтом, используют токовые клещи. Каждая фазная катушка одинакового сопротивления пропускает равный ток, если нет перекоса напряжения фаз. Если в одной ток больше – вероятнее всего там межвитковая неисправность.

Проверка конденсаторных двигателей

Асинхронный двигатель, где последовательно с одной из катушек которого включена емкость для создания сдвига фазы тока, является конденсаторным. Тест такого электромотора, кроме прозвонки, включает в себя проверку емкости, которая подбирается для создания сдвига фаз между катушками равным 90 градусов, чтобы вращающий момент ротора был максимальным.

Емкость рабочего конденсатора относительно мала, проверить ее можно, если мультиметр может мерять емкость, подсоединив к выводам детали, отключенной от схемы двигателя, предварительно кратковременно закоротив ее выводы.

Проверка моторов с фазным ротором

Тестирование мотора с фазным ротором похоже на проверку обычного асинхронного двигателя, дополнительно измеряют обмотки ротора. Их схема соединения выполняется «звездой» для питающей трехфазной сети напряжением 380 вольт либо для сети 220 используется «треугольник».

Измерения мультиметром проводятся по той же методике, что для статора.

Проверка пускового конденсатора

Уверенный запуск электродвигателя происходит, когда в момент включения питания параллельно рабочей емкости кратковременно подключается пусковой конденсатор. Он служит для создания на старте кругового магнитного поля, после начала вращения ротора отключается. Пусковой конденсатор легко проверить мультиметром, даже если в нем нет режима измерения емкости:

  1. Конденсатор, предварительно разрядив замыканием выводов, отсоединяют от схемы электродвигателя, тщательно осматривают. Если есть трещины, вздутие корпуса, другие видимые повреждения — емкость можно менять на новую без проверки.
  2. Выставить на тестере режим измерения сопротивления на пределе 2000 килоом, проверить работоспособность кратковременным соединением измерительных щупов.
  3. Щупы соединить с выводами конденсатора. Разряженный, он начнет быстро заряжаться от щупов прибора. Емкость его относительно велика, много больше, чем у рабочего конденсатора. Индикатор мультиметра сначала покажет маленькое сопротивление, которое по мере заряжания емкости будет увеличиваться, потому что зарядный ток постепенно уменьшается. По окончании процесса мультиметр покажет бесконечно большое сопротивление, обрыв.
  4. Перевернуть полярность подключения щупов к конденсатору, увидеть рост сопротивление, с индикацией обрыва в конце измерения. Этим подтвердится, что конденсатор исправен.
  5. Проверить пробой пластин на корпус конденсатора, если он металлический, измеряя сопротивление между корпусом детали и каждым из выводов поочередно.

Индикатор тестера должен показать обрыв. Другие значения, это признак неисправности.

Ремонт асинхронных двигателей

Выявленные повреждения нужно устранять. Некоторые из них легко сделать дома, «на коленке», проверить электродвигатель мультиметром на 220 вольт достаточно просто. Другие потребуют обращения в ремонтную электротехническую мастерскую, где смогут устранить как механические повреждения, так и заменить или перемотать катушки.

Нельзя начинать сложный ремонт без условий, базы опыта и знаний.

Испытание изоляции обмоток

Эксплуатационная надежность электродвигателя обусловлена состоянием изоляции. Вибрация работающего двигателя, тепловые, химические процессы ухудшают электроизолирующие свойства. Поэтому при диагностике после ремонта нужно испытать в электротехнической лаборатории изоляцию.

Есть испытательный трансформатор, вторичное повышенное напряжение которого подается между одной из обмоток и остальными катушками, соединенными с корпусом электромотора. Величины испытательных напряжений:

Мощность электродвигателя, кВтИспытательное напряжение, В
До 1500+2Uноминальное
От 1, для номинального напряжения <100 вольт1000+2Uн
От 1, для номинального напряжения >100 вольт1000+2Uн, но не менее 1,5 кВ

Если ремонт выполнялся своими руками и нельзя проверить стендом, нужно испытать изоляцию мотора мегомметром. Он подает высокое напряжение, какого нет в мультиметре.

Проверяя электродвигатель мультиметром на 380 вольт, нужно учесть, что работы проводятся при отключенной сети. Работа с электричеством требует собранности, внимания, чтобы не получить удара током. Соблюдая меры безопасности, проверить исправность агрегата достаточно просто.

pauk.top

Как проверить электродвигатель: прозвонка мультиметром, анализ исправности

Большое число электроприборов на 220 В, которыми пользуется каждый, содержит электрические движки. Это и различные виды электроинструмента, и электроприборы, используемые на кухне и в квартире — стиральные и посудомоечные машины, пылесосы и т. д. и т. п. Все эти моторы выполняют механическую работу и этим существенно облегчают нашу жизнь. Поэтому их неисправности, что называется, как гром среди ясного неба.

Внезапно становится понятной значимость электромотора и его исправность. Чтобы не допустить подобную неприятность, движки бытовых электроприборов и электроинструмента рекомендуется периодически проверять. Причем проверки должны соответствовать эксплуатационной нагрузке — чем продолжительнее электроприбор используется, тем более частые проверки необходимы. В связи с этим расскажем далее нашим читателям, как проверить электродвигатель самостоятельно.    

Что необходимо помнить при проверке

Не рекомендуем нашим читателям самостоятельно проверять электрические движки, да и любые другие электроприборы без определенного, пусть даже небольшого объема знаний в электрике. Хотя такая проверка и не требует детальных технических описаний и знания большого числа формул, всегда есть риск поражения электрическим током. По этой причине лучше всего поручать проверки и ремонты электрооборудования подготовленным кадрам. А без определенных знаний одно неверное прикосновение отверткой не там где надо может испортить либо движок, либо что-то еще.

Напомним нашим читателям, что работа каждого электродвигателя основана на взаимодействии статора и ротора.

  • Статор, который статичен, т.е. неподвижен, является частью корпуса закрепленного или опирающегося на несущее основание.
  • Ротор вращается и поэтому созвучен с английским словом rotate, что означает «вращать». В основном ротор располагается внутри статора. Но есть такие конструкции электродвигателей, в которых статор в значительной мере охвачен ротором. Такие движки применялись, например, в электропроигрывателях граммофонных пластинок. Их также можно встретить в некоторых моделях стиральных машин, вентиляторах и не только в них.
Пример конструкции движка с внешним ротором, примененного в центробежном вентиляторе

Проверяем подшипники

Перемещение ротора относительно статора возможно благодаря подшипникам. Они могут быть конструктивно выполнены на одном из принципов:

  • скольжения,
  • качения.

Легкость вращения вала и ротора электродвигателя — это первый пункт проверки любого движка. Чтобы его реализовать на практике, необходимо:

  • отключить проверяемый двигатель от источника питания или электросети;
  • взявшись рукой за вал, покачать туда-сюда или провернуть ротор.
Оцениваем состояние подшипников

Но поскольку часто движки являются частью электропривода с редуктором, необходимо точно знать то, что вал, за который берешься, — это часть ротора, а не редуктора. Некоторые шестеренчатые редукторы с определенным усилием все же позволяют провернуть свой вал, и таким образом можно сделать оценку состояния подшипников. Но многие глобоидные и червячные — нет. В таком случае надо попытаться получить доступ к валу двигателя внутри редуктора. А еще лучше — отсоединить по возможности редуктор от движка.

Если вращение затруднено, значит, подшипник неисправен по следующим причинам:

  • его срок службы истек из-за износа рабочих элементов;
  • смазки либо слишком мало, либо ее нет вовсе. Но может быть и так, что применена смазка, не соответствующая условиям эксплуатации. Например, некоторые ее разновидности при температурах ниже нуля становятся настолько густыми, что тормозят вращение. В таком случае подшипники промывают бензином и заменяют смазку другой, пригодной для этих условий.
  • Зазоры между трущимися элементами подшипника забиты грязью. Возможно и попадание посторонних мелких предметов.
Поломанный шариковый подшипник

Проверяем двигатели визуально

Если подшипники в хорошем состоянии, взявшись рукой за вал и покачав его из стороны в сторону, не ощущаешь люфт. При этом в работающем движке не слышен шум, идущий от подшипника. И, наоборот, в изношенном подшипнике заметен и люфт, и значительный шум, особенно если это подшипник качения. Для асинхронного двигателя, независимо от того, трехфазный он или однофазный, отсутствие нормальной работоспособности чаще всего связано именно с подшипниками.

В таких движках это единственные детали, которые со временем механически изнашиваются. Исключение составляют асинхронные движки с кольцами. Их содержат также и синхронные электродвигатели. Кольца и скользящие по ним щетки подвержены износу и наряду с подшипниками осматриваются для проверки их нормальной работоспособности. Поверхности колец, пребывающих в хорошем и исправном состоянии, гладкие и без царапин. Щетки должны быть притерты к поверхности колец и надежно прижаты к ним.

Щетки: слева изношенные, справа новые Трёхфазный асинхронный двигатель с фазным ротором Электродвигатели с контактными кольцами

Но для большинства читателей наиболее частыми будут проблемы, связанные с коллекторными движками. Они являются основными во всех электроприборах и электроинструментах. И в них также изнашивающимися деталями являются подшипники и щетки. Но скольжение щеток происходит не по кольцам, а по коллектору. Его поверхность неоднородна, что существенно ускоряет износ щеток, которые при этом превращаются в графитовую пыль.

Она оседает на всех поверхностях движка и корпуса электроприбора, создавая условия для появления электрических цепей. Поэтому при проверке таких электроприборов важно своевременно выявить критический уровень загрязнения графитовой пылью и выполнить качественную очистку от нее как самого двигателя, так и всех остальных поверхностей.

Коллекторный движок

Как прозвонить электродвигатель мультиметром

Но осмотр рисковых элементов электродвигателей обычно недостаточен. Тем более что таким способом невозможно выявить неисправность в обмотках. Поэтому надо знать, как прозвонить электродвигатель мультиметром или тестером. Такая прозвонка обмоток электродвигателя трехфазного, однофазного и постоянного тока позволит разобраться в некоторых неисправностях и выявить необходимость перемотки поврежденной обмотки.

Измерять сопротивление обмотки обычно не имеет смысла, поскольку сопротивление обмоток большинства движков весьма мало по своей величине. Причем омическое сопротивление тем меньше, чем больше мощность и, соответственно ей, сечение обмоточных проводов. Кстати, это же характерно и для трансформаторов. Поэтому проверка обмоток при появлении характерных неисправностей в электродвигателях сводится к тому, чтобы прозванивать их тестером.

К сожалению, таким способом прозвонить обмотку с целью предотвращения неисправности не получится. Так можно только разобраться с уже возникшими неисправностями. А они в движках влияют на правильность вращения ротора. При этом скорость вращения уменьшается, корпус заметно сильнее нагревается, звук работающего двигателя ощутимо изменяется. Особенно это заметно на слух в коллекторных двигателях. Они работают с характерным жужжанием, которое связано с магнитострикционным эффектом.

Если обрывается соединение одной или нескольких обмоток, они не создают звуковых колебаний, и тональность звука понижается. Чтобы найти повреждение, нужен тестер, настроенный на измерение сопротивления в омах. На коллекторе расположены пары пластин одна напротив другой. Поэтому надо одним щупом прикоснуться к любой пластине коллектора и с диаметрально противоположной стороны другим щупом найти парную пластину.

На ней прибор покажет некоторое значение сопротивления. Оно должно быть по величине небольшим, причем, его величина уменьшается по мере увеличения мощности моторов. Если искомая пластина либо не находится, либо расположена  в стороне от диаметральной линии, проходящей через первую пластину, и такое расположение больше не повторяется для других пластин, подобных первой, значит

  • либо обрыв в цепи пластина – обмотка – пластина;
  • либо внутри обмотки нарушена изоляция и появилась электрическая цепь через ее повреждение.
Коллектор, поврежденный в ходе длительной эксплуатации

Потребуется ремонт ротора. В ходе проверки на обследованные пластины, например, лаком для ногтей наносится метка-точка. Но сначала надо протестировать лак. После высыхания и затвердевания он должен легко отделиться от поверхности. В коллекторных движках, работающих от сети 220 В, задействована обмотка статора. Проверить ее тестером сложнее, поскольку для сравнения измеряемых величин сопротивлений нужен еще один такой же двигатель. Но поскольку для двигателя должно быть указано значение тока холостого хода, его можно замерить тестером.

  • Соблюдая технику безопасности, надо присоединить электрическую цепь к обесточенной розетке (например, сделав отключение на щитке). Движок при этом должен быть надежно закреплен для противодействия силе пуска. Затем подается напряжение, и на табло прибора смотрится сила тока и сравнивается с паспортными данными. При замыкании в обмотке статора сила тока будет больше указанной в техническом паспорте.

Похожие проблемы со статором бывают и в асинхронных движках. При замыканиях между витками или на корпус скорость вращения ротора всегда уменьшается. В таких случаях надо взять тестер и прозвонить асинхронный электродвигатель, используя таблицу сопротивлений изоляции (если она приведена в технической документации). В исправном двигателе каждая обмотка надежно изолирована как от других обмоток, так и от корпуса, что и покажет прибор при проверке.

Другие неисправности

Но кроме уже упомянутых проблем, которые в основном бывают при эксплуатации движков, встречаются и экзотические неисправности.

  • Например, повреждения «беличьей клетки» в асинхронных моделях. При этой неисправности со статором получается полный порядок, но движок все равно не выдает полную мощность. Поскольку повреждение внутреннее, проще всего заменить ротор исправным.
Ротор типа «беличья клетка»
  • Намотанные обмотки применяются только при наличии колец в роторе. Если он вращается при разомкнутой цепи колец, значит, в нем появилось замыкание между витками. А движок «несанкционированно» превратился в асинхронную модель с короткозамкнутым ротором.
  • Нехарактерные шумы. Причинами могут быть нарушения в структуре пластин сердечников. Также, если ротор задевает статор, это будет не только слышно, но возможен нагрев и задымление. Это всегда следствие износа или внезапной поломки подшипников.

Соблюдение рекомендуемых условий эксплуатации и плановых осмотров позволит максимально долго и без проблем использовать оборудование с двигателями. Следуйте инструкциям и получайте от своих электроприборов максимум пользы.

Похожие статьи:

domelectrik.ru

Как прозвонить электродвигатель на целостность ?

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

  • Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;
  • Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
  • Коллекторный двигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
  • Коллекторный двигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
  • Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.

Испытание изоляции обмоток

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.

мегомметр для измерения сопротивления изоляции

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.

паспорт асинхронного двигателя

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Проверка обмоток на обрыв и междувитковое замыкание

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Цифровой мультиметр Mastech MY61 58954

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.

ротор двигателя

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

или «треугольник».

Прозвонку можно сделать, даже не снимая перемычки –

достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

Проверка конденсаторных двигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Проверка моторов с фазным ротором

Асинхронный двигатель с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки,

соединённые по типу «звезда»,

которые подключаются при помощи контактных колец на вале.

Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются механической системой отключения роторных обмоток при наборе оборотов, поэтому отсутствие контакта может быть из-за поломки в данном механизме.

Статорные обмотки проверяются как у обычного трёхфазного двигателя.

Фотографии позаимствованы с сайта http://zametkielectrika.ru

infoelectrik.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *