+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как работает электрогенератор

Электрогенератор – один из составляющих элементов автономной электростанции, а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии. Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток. Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях, так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

< Предыдущая   Следующая >

Генератор переменного тока. Устройство и принцип действия

Видео: Принцип работы генератора переменного тока. Как работает генератор простыми словами? Что такое переменный ток?

Генератор переменного тока — это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока путем вращения проволочной катушки в магнитном поле. Большинство генераторов переменного тока используют вращающееся магнитное поле.

В последнее время широкое распространение получили генераторы переменного тока, выгодно отличающиеся от генераторов постоянного тока своими габаритными размерами и способностью вырабатывать ток заряда при меньшей частоте вращения коленчатого вала двигателя. Они имеют повышенную надежность.ustrojstvo-generatora-toka

Генераторы переменного тока используют на гусеничных и колесных машинах (например, на КамАЗ-4310 и КЗКТ-7428). По своей конструкции генераторы переменного тока отличаются от коллекторных генераторов постоянного тока. У них почти вдвое меньше масса и втрое — расход меди. Благодаря более раннему началу отдачи зарядного тока (с момента приведения во вращение вала двигателя на режиме холостого хода) такие генераторы имеют существенно лучшие зарядные свойства по сравнению с генераторами постоянного тока.

Генератор переменного тока представляет собой трехфазную синхронную электромашину с электромагнитным возбуждением и выпрямителем. Генератор работает совместно с регулятором напряжения, обеспечивающим поддержание в электросети машины (с определенным допуском) требуемого постоянного напряжения.

Генератор переменного тока

Рис. Схема генератора переменного тока:
1 — ротор; 2 — статор; 3, 9 — шарикоподшипники; 4 — шкив привода; 5 — вентилятор; 6, 10 — крышки; 7 — выпрямитель; 8 — контактные кольца; 11 — щеткодержатель; 12 — обмотка возбуждения; 13 — винты крепления фазовых обмоток статора к выпрямителю; 14 — винт «массы»

Принцип действия генератора переменного тока

Конструкции электрических генераторов переменного тока различны, но принцип их действия одинаков. Рассмотрим один из таких генераторов.

Статор 2 генератора с трехфазной обмоткой выполнен в виде отдельных катушек, в витках которых при вращении ротора 1 индуцируется переменное напряжение. В каждой фазе имеется по шесть катушек, соединенных последовательно. Обмотка возбуждения 12 выполнена в виде катушки и помещена на стальной втулке клювообразных полюсов ротора, обмотки которого питаются постоянным током от аккумуляторной батареи или выпрямителя 7, устанавливаемого на выходе генератора. В крышке 10 имеются вентиляционные окна, через которые циркулирует охлаждающий поток воздуха. Моноблок-радиатор способствует охлаждению выпрямителя, собранного из кремниевых вентилей (диодов) с допустимой температурой нагрева 150 °С.

Интересным компоновочным решением конструкции генератора переменного тока является генераторная установка магистральных автопоездов МАЗ. Она состоит из генератора и интегрального регулятора напряжения (ИРН). Номинальное вырабатываемое напряжение установки 28 В, номинальная мощность 800 Вт. Регулятор вмонтирован в основание щеткодержателя генератора. В крышку генератора также вмонтирован выпрямительный блок БПВ 4-45. Регулятор состоит из резисторов, конденсаторов, стабилитронов, транзисторов и других элементов. Он снабжен переключателем сезонной регулировки («летняя» и «зимняя»). Элементы ИРН смонтированы на малогабаритной керамической плате, закрытой специальной крышкой и залитой герметиком, что делает конструкцию неразборной и неремонтируемой.

Принцип работы бензогенератора

Бензиновый генератор: принцип работы, классификация, как выбрать

В некоторых ситуациях невозможно обойтись без автономного источника электроэнергии. Для частного дома или дачи наиболее приемлемый вариант хороший бензогенератор. При достаточной мощности последнего от него может быть запитан даже котел отопления. Не менее актуально наличие бензинового генератора на строительных площадках для питания сварочного инвертора или другого оборудования. Собранная нами информация поможет подобрать наиболее оптимальное устройство для этих целей.

Принцип работы и конструктивные особенности

Принцип действия бензиновых и дизельных электростанций построен на преобразовании механической энергии в электрическую. Соответственно, в конструкции таких устройств имеется ДВС (двигатель внутреннего сгорания), вращающий электромашину, вырабатывающую электричество. Об устройстве и принципе действия последней, можно найти информацию на нашем сайте. Основные узлы автономного генератора представлены на рисунке ниже.

Устройство бензогенератора

Обозначения:

  • А – Электронный блок, отвечающий за управление генератором и стабилизацию напряжения.
  • В – Генератор электроэнергии, в этом качестве используется синхронная или асинхронна электро машина.
  • С – Контрольные приборы электронного блока.
  • D – Крепежная рама, которая также играет роль защитного каркаса.
  • E – Горловина топливного бака.
  • F –Топливный бак.
  • G – двух- или четырехтактный карбюраторный или инжекторный ДВС.

Принцип работы генератора

В основе работы бензинового генератора для вырабатывания электричества положены явления электромагнитной индукции. Суть заключается в том, что через электромагнитное облако проходит проводник и получает импульс, который впоследствии перерабатывается в ток постоянного характера. 

  1. Одним из составляющих генератора является двигатель. Его задача — вырабатывание электроэнергии посредством сжигания топлива, чаще всего бензина или дизтоплива.
  2. Сжигаемое топливо вырабатывает продукты горения, то есть газ, под давлением которого начинает вращаться коленвал.
  3. Назначение коленчатого вала — передача импульса ведомому валу, который на выходе предоставляет некоторое количество электроэнергии.

Генераторы существуют разной мощности. Потребление топливных ресурсов также отличается. Но, независимо от перечисленных параметров, основополагающими являются две составляющие: ротор и статор. Якорь используется для создания электромагнитных полей, именно поэтому состоит из магнитов, равноудалённых от сердечника. Назначение статора — приведение в движение ротора и регулировка состояния электромагнитных полей.

В зависимости от того, как совершает вращение ротор, генераторы бывают синхронного и асинхронного типа. Синхронные более восприимчивы к изменениям напряжения и отличаются сложностью конструкции.

Порядок работы

  1. Бензин заливается в резервуар для топлива.
  2. Производится запуск установки.
  3. Топливо попадает по бензопроводу в двигатель.
  4. Происходят очистка от механических примесей и фильтрование.
  5. Топливный насос начинает закачивать бензин в карбюратор.
  6. Далее нужный объем размешивается, и получается однородная субстанция.
  7. После подачи очищенного кислорода достигается необходимый уровень горючести.
  8. Топливо начинает поступать в цилиндры двигателя.
  9. Производится запуск системы. Для старта двигателя в устройстве бензогенератора предусмотрена подача свечой зажигания искры для воспламенения топливной смеси.
  10. Появившийся при сгорании газ двигает коленчатый вал и систему поршней.
  11. Благодаря вращательному моменту механическая энергия передается ротору, который преобразует ее в электрическую.
  12. Таким же образом создаются колебания магнитов для появления электромагнитного поля.

Классификация по назначению

Бытовые варианты данных устройств чаще всего являются переносными и не предназначены для длительного непрерывного использования.Он подойдет для питания частного дома или при длительном выезде на природу с палатками. Подобные модели могут применяться для обеспечения работы маленького цеха или склада, но работать они должны не более 4 часов. По истечении некоторого времени для охлаждения комплектующих возможен повторный запуск.

Профессиональные устройства обладают более высокой мощностью, продолжительным временем беспрерывной работы. Используется дизельного топлива благодаря его экономичности, а у двигателя увеличивается рабочий ресурс. Устройство имеет трехфазную систему питания, рассчитанную на 380 В выходного напряжения. 

Другие критерии для классификации

  • двухтактный или четырехтактный двигатель в основе;
  • однофазная или трехфазная система выработки тока;
  • стационарность или возможность транспортировки;
  • вырабатываемая мощность тока — до 4 кВт, до 15 кВт, до 30 кВт.

Производители бензогенераторов предпочитают устанавливать двухтактные двигатели на маломощные устройства для бытового использования. Их мощность в основном не превышает значения в 1 кВт. Для всех остальных существуют более производительные четырехтактные модели двигателей.

Посмотрите видео как выбрать бензиновый генератор

 

Применение бензогенераторов

  • в ремонтных и строительных работах;
  • в мастерских и производственных цехах;
  • могут служить источником электрической энергии для сетей освещения и сигнализаций;
  • бензогенератор применим в качестве источника бесперебойного электропитания для персональных компьютеров, что даёт возможность не бояться за сохранность информации при отключении электросети;
  • на дачных участках, чтобы запитать водяной насос, болгарку, перфоратор и другие инструменты;
  • для обустройства комфортного времяпрепровождения на природе;
  • в качестве аварийного электроснабжения в больнице.

Правила эксплуатации

— использовать только качественный чистый бензин;

— следить за уровнем и состоянием масла;

— вовремя чистить воздушный фильтр двигателя;

— подключать домашнюю сеть или приборы только спустя пару минут после запуска;

— загружать бензогенератор не выше 80% мощности.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 3 из 5.

Устройство генератора переменного тока — принцип работы и общее назначение

Генератор переменного тока

Конструктивно, электрогенератор состоит из:

  1. Токопроводящей рамки.
  2. Магнитов.

Работает он следующим образом:

  1. Токопроводящая рамка помещается в магнитное поле, созданное между полюсами магнитов. Ее концы снабжают контактными кольцами, которые также способны вращаться.
  2. С помощью упругих токопроводящих пластинок (щеток), кольца соединяют с электрической лампочкой.
  3. Рамка, вращаясь в магнитном поле, постоянно пересекает своими сторонами магнитные силовые линии.
  4. Пересечение рамкой магнитных силовых линий вызывает возникновение ЭДС и получение индукционного тока.
  5. Под действием полученного индукционного тока, лампочка начинает светиться. Свечение лампочки продолжается до тех пор, пока вращается рамка.

Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).

Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.

В современной энергетике используются индукционные генераторы переменного тока различного типа. При этом, принцип их действия одинаков и базируется на принципе электромагнитной индукции.

В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.

Устройство и принцип работы

Генератор переменного тока

Устройство

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Принцип работы и устройство синхронного генератора

Область применения

Кэмпинг в лесуПовседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Классификация

Синхронный и асинхронный двигатели

В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.

Так, генераторы переменного тока различают по:

  1. Виду.
  2. Конструкции.
  3. Способу возбуждения.
  4. Количеству фаз.
  5. Соединению фазных обмоток.

Электрогенераторы переменного тока бывают:

  1. Асинхронными. Изделия, в которых на вращающемся валу имеются пазы, предназначенные для размещения обмоток. Они генерируют электрический ток с небольшими искажениями, величина которого не превышает номинального значения. Изделия этого типа используются для электропитания бытовой техники.
  2. Синхронными. Изделия, в которых катушки индуктивности размещены непосредственно на роторе. Они способны выдавать ток, который обладает высокой пусковой мощностью.
Синхронный и асинхронный двигатели

Генератор с неподвижным ротором

Конструктивно различают генераторы:

  1. С неподвижным ротором.
  2. С неподвижным статором

Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.

По способу возбуждения электрогенераторы бывают:

  1. С независимым возбуждением (питающее напряжение подается на обмотку возбуждения от отдельного источника постоянного тока).
  2. С самовозбуждением (обмотки возбуждения питаются выпрямленным (постоянным) током, получаемым от самого генератора).
  3. С обмотками возбуждения, питание которых осуществляется от стороннего генератора постоянного тока малой мощности, “сидящего” на одном валу с ним.
  4. С возбуждением от постоянного магнита.

По количеству фаз различают электрогенераторы:

  1. Однофазные.
  2. Двухфазные.
  3. Трехфазные.

Наибольшее распространение получили трехфазные генераторы.

Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:

  1. Вращающегося кругового магнитного поля, что способствует экономичности их изготовления.
  2. Уравновешенной системы, что существенно повышает срок службы энергоустановок.
  3. Одновременно двух рабочих напряжений (фазного и линейного) в одной системе.
  4. Высоких экономических показателей – значительно уменьшается материалоемкость силовых кабелей и трансформаторов, а также упрощается процесс передачи электроэнергии на большие расстояния.

Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.

Бывает, что фазные обмотки соединяются:

  1. “Звездой”.
  2. “Треугольником”.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Схема "звезда без нулевого провода" .

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Схема соединения треугольником

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.

Практическое применение

Генератор переменного токаИндукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Генератор переменного тока

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Принцип работы и устройство автомобильного генератора

Автор Павел Александрович Белоусов На чтение 7 мин. Просмотров 151

Генератор  входит в электрическую систему любого автомобиля. Его задача – преобразование механической работы в электроэнергию, необходимую для питания всех электрических систем. Автомобильный генератор должен отвечать следующим условиям:

  1. Его характеристики должны быть подобраны так, чтобы при любом режиме движения они позволяли превышать прогрессивную разрядку аккумулятора.
  2. Выдаваемое напряжение должно оставаться стабильным в широком диапазоне частоты вращения генератора, чтобы не повредить устройства бортовой сети автомобиля.

генератор
Принцип работы генератора и его конструктивные узлы одинаковы на всех автомобилях, эти устройства различаются только выходными параметрами, размерами и надежностью, которая зависит от качества изготовления.

Теоретические основы

Работа генератора переменного тока основана на явлении электромагнитной индукции. Если взять катушку с проводом и присоединить к ней гальванометр (чувствительный амперметр для фиксации малых значений силы тока), замкнув проводник, и поднести к ней магнит, в ней возникнет электрический ток, что и покажет гальванометр.   

катушка, магнит и гальванометр

При этом учитывайте, что ток возникает в тех случаях, когда магнит движется, причем, при его приближении ток идет в одну сторону, а при удалении – в другую, что и фиксирует стрелка гальванометра. Из этого можно сделать выводы об условиях, необходимых для возникновения электрического тока:

  • требуется замкнутый проводник с большим количеством витков;
  • он должен попасть в переменное магнитное поле, которое нарастает при приближении магнита и уменьшается при его удалении;
  • ток, возникший при увеличении магнитного поля, будет противоположен току, возникающему при его уменьшении.

Чтобы обеспечить постоянное изменение магнитного поля, пронизывающего катушку с проводником, его можно просто вращать, добившись изменения направления тока, равного частоте вращения магнита, поскольку к ней будут поочередно приближаться то южный, то северный полюс магнита. Эта принципиальная система и лежит в основе устройства генератора переменного тока.

Конструкция и принципы функционирования  

Устройство генератора автомобиля намного сложнее, чем принципиальная схема, воспроизводящая суть явления электромагнитной индукции. Из специальных стальных пластин набирается конструкция с пазами, в которые укладываются катушки с проводниками, соединяемые в единую электрическую цепь. Это называется обмоткой статора, если внутри нее начать вращения магнита, на контактах его цепи появится напряжение. Величина этого напряжения будет напрямую зависеть от силы магнита и скорости его вращения.

статор автогенератора с обмоткой

Устройство ротора

Чтобы избавиться от этого негативного эффекта, ведь автомобильный генератор переменного тока должен выдавать напряжения в строго определенных параметрах, вместо постоянного магнита в статор устанавливают электромагнит. Он представляет собой стальной сердечник с намотанным медным проводом, через который пропускается электрический ток. В этом случае сердечник превращается в магнит, сила которого зависит от величины тока, пропускаемого через провод. Обмотка подключается к аккумулятору через медные кольца и графитовые щетки, один контакт через замок зажигания присоединяется к плюсовой клемме, а второй – через массу к минусовой. Для придания магнитному полю нужного направления обмотка помещается в шестиполюсные сердечники. Этот элемент называется ротор и помещается вовнутрь сердечника.

ротор со щетками

При замыкании цепи через ключ зажигания через обмотку проходит электрический ток, сердечник намагничивается, создавая достаточно мощное магнитное поле. Но, поскольку работа генератора основана на явлении электромагнитной индукции, ротор должна вращать сторонняя сила. Для этого он присоединяется к коленчатому валу двигателя. Ось ротора устанавливается на  подшипники на передней и задней крышках генератора, чтобы он мог свободно вращаться.

В заднюю крышку монтируется узел со щетками и реле регулятора напряжения генератора, а также диодный мост, к которому подключена обмотка статора. Диодный мост в генераторе нужен, чтобы преобразовать переменный ток, получаемого на статоре в постоянный.

автомобильный генератор в сборе с выводом на диодный мост

Принцип работы диодного моста состоит в том, что группа диодов, находящихся в нем, пропускает ток только в одном направлении, выравнивая его характеристики, в результате на выходе получается постоянный ток с напряжением 12 В, который подается на выводной контакт. Щетки поджимаются мягкими пружинками к кольцам ротора для поддержания постоянного контакта. 

Интегральный регулятор напряжения, который устанавливается сверху на щеткодержатель, снижает ток от замка зажигания, что приводит к снижению напряжения в обмотке статора при увеличение оборотов двигателя и частоты вращения ротора.

Получение электрического тока

Назначение генератора – в обеспечении всех электрических систем автомобиля энергией. Чтобы в обмотке статора появился электрический ток, ротор должен создавать переменное магнитное поле, вращаясь внутри статора. Для этого используется энергия вращения коленчатого вала двигателя.

подключение генератора

На вал ротора устанавливают клинообразный шкив, надежно закрепленный гайкой. Он соединяется с подобным шкивом на коленвале ременной передачей. Ранее для этого использовался вспомогательный ролик, теперь же используется только два шкива с поликлиновым ремнем. Ротор, вращаясь вместе с валом двигателя, создает магнитное поле, на статоре возбуждается напряжение, питающее все элементы системы автомобиля.

На современных автомобилях в шкиве ротора появилась обгонная муфта генератора. Она позволяет существенно продлить срок службы этого устройства и его приводного ремня. При разгоне и торможении, на холостом  ходу, двигатель работает под различными нагрузками, поэтому частота вращения коленчатого вала будет отличаться. Если он резко замедляется, то вал генератора будет по инерции пытаться вращаться с прежней скоростью, что приведет к рывку на ремне и негативно скажется на механическом состоянии всей системы. При постоянном повторении такой ситуации ремень очень скоро, как правило, через 20 тыс. км, просто разорвется.

Обгонная муфта в шкиве генератора состоит и внутренней и внешней обоймы. Внешняя присоединена через ремень к коленвалу, а внутренняя – к валу ротора. В момент резкого замедления вала она проскальзывает и ротор продолжает вращаться по инерции, в то же время подклинивающие элементы не дают ей проскальзывать, когда частота вращения вала увеличивается. В этом устройство и принцип действия генератора постоянного тока на автомобиле схожи с обычным велосипедом, когда при вращении педалей заднее колесо раскручивается, а при их остановке продолжает вращаться по инерции. Теперь ремни генераторов ходят по 100 тыс. км и более.

Реле регулятора напряжения

Интегральный регулятор напряжения необходим, чтобы в бортовую сеть подавалось напряжение, соответствующее ее номинальным параметрам. Устройство простейшего генератора таково, что при увеличении частоты вращения скорость изменения магнитного потока ротора пропорционально увеличивается, как и выходное напряжение. Если этим процессом не управлять, то напряжение достигнет той величины, при которой все бортовые системы выйдут из строя.

Принцип работы реле регулятора генератора состоит в том, что при увеличении частоты вращения статора, оно через специальный датчик, присоединенный к цепи статора, отслеживает опасное увеличение напряжения. При помощи механической или электронной системы управления контактами, реле уменьшает ток, подаваемый на обмотку ротора, в результате чего увеличение частоты компенсируется снижением силы магнитного поля, и значение напряжения остается в норме.

Видео: Как работает генератор простыми словами

Заключение

Устройство и принцип работы автомобильного генератора практически не отличается от других установок подобного типа, кроме наличия диодного моста, выравнивающего переменное напряжение. Кроме того, на крупных установках требуется дополнительное устройство, которое называется возбудитель генератора.

Среди распространенных поломок этого устройства – обрыв ремня, о чем просигнализирует индикатор разрядки аккумулятора, который будет гореть при движении. Чтобы избежать этой проблемы, требуется периодически проверять его натяжку, для чего нужно просто нажать на ремень и посмотреть в инструкции по эксплуатации, на сколько миллиметров он должен вжиматься.

Иногда из строя выходят щетки или реле регулятора, которые меняются единым узлом. Если при работающем моторе отключить клемму аккумулятора, высок риск выхода из строя (пробой) диодного моста, который тоже нужно будет заменить.

Мгд генератор принцип работы

МГД-генератор

Это устройство для преобразования тепловой энергии в электрическую.

Как работает устройство

В основе находится эффект электромагнитной индукции, а значит, возникает ток в проводнике. Это происходит за счет того, что последний пересекает силовые линии магнитного поля внутри устройства.

В основе действия находятся заряженные частицы, на которые действует сила Лоренца. Движение рабочего тела происходит поперек магнитного поля. Благодаря этому возникают потоки носителей зарядов с ровно противоположными направлениями. На этапе становления в МГД-генераторах применялись преимущественно электропроводные жидкости или электролиты. Именно они и являлись тем самым рабочим телом. Современные вариации перешли на плазму. Носителя зарядов для новых машин стали положительные ионы и свободные электроны.

Конструкция МГД-генераторов

Первый узел устройства называется каналом, по которому движется рабочее тело. В настоящее время в магнитогидродинамических генераторах в качестве основной среды применяется по большей части плазма. Следующий узел представляет из себя систему магнитов, которые отвечают за создание магнитного поля и электродов для отведения той энергии, которая будет получена в ходе рабочего процесса. При этом источники могут быть различными. В системе можно применять как электромагниты, так и постоянные магниты.

Далее газ проводит электрический ток и нагревается до температуры термической ионизации, которая составляет приблизительно 10 тысяч Кельвинов. После данный показатель непременно нужно снизить. Планка температуры падает до 2,2-2,7 тысячи Кельвинов за счет того, что в рабочую среду добавляются специальные присадки со щелочными металлами. В ином случае плазма не является в достаточной степени эффективной, потому как величина ее электропроводности становится значительно меньшей, чем у той же воды.

Типичный цикл работы устройства

Другие узлы, составляющие конструкцию магнитогидродинамического генератора, лучше всего перечислить вместе с описанием функциональных процессов в той последовательности, в которой они происходят.

  1. Камера сгорания принимает загружаемое в нее топливо. Также добавляются окислители и различные присадки.
  2. Топливо начинает гореть, что позволяет образоваться газу в качестве продукта сгорания.
  3. Далее задействуется сопло генератора. Через него газы проходят, после чего они расширяются, а их скорость возрастает до скорости звука.
  4. Действие доходит до камеры, пропускающей через себя магнитное поле. На ее стенках находятся специальные электроды. Именно сюда поступают газы на данном этапе цикла.
  5. Затем рабочее тело под влиянием заряженных частиц отклоняется от своей первичной траектории. Новое направление находится в точности там, где располагаются электроды.
  6. Завершающий этап. Происходит образование электрического тока между электродами. На это цикл заканчивается.

Применение МГД-генераторов

  1. Термоядерные электростанции. В них применяется безнейтронный цикл с МГД-генератором. В качестве топлива принято использовать плазму на высоких температурах.
  2. Тепловые электростанции. Используется открытый тип цикла, а сами установки по конструктивным особенностям являются достаточно простыми. Именно этот вариант все еще имеет перспективы к развитию.
  3. Атомные электростанции. Рабочее тело в данном случае — инертный газ. Он нагревается в ядерном реакторе по закрытому циклу. Также имеет перспективы к развитию. Однако возможность применения зависит от появления ядерных реакторов с температурой рабочего тела выше 2 тысяч Кельвинов.

Магнитогидродинамические генераторы

Принцип действия магнитогидродинамического генератора (МГД – генератора) заключается в том, что при движении ионизированного газа (низкотемпературной плазмы) через сильное магнитное поле в нем индуцируется электрический ток. Низкотемпературная плазма возникает при нагревании газа до температуры 2300 – 3000 К, когда от его молекул или атомов отрываются внешние электроны, вследствие чего газ ионизируется и становится проводником электрического тока.

Электроэнергия (постоянный ток) отбирается из плазмы керамическими электродами и выдается в цепь и далее в инверторы, где преобразуется в переменный ток, поступающий в сеть. Для увеличения электропроводности газа в него дополнительно вводят легкоионизируемые вещества – щелочные металлы: калий, натрий и др.

В МГД – генераторах отсутствуют громоздкие вращающиеся части, отпадает необходимость применения турбомашин для привода генератора.

МГД – генераторы разрабатываются двух типов: открытого цикла, в которых рабочим телом являются продукты сгорания органического топлива, и закрытого цикла, в которых непрерывный поток инертных газов (аргона, водорода) нагревается в теплообменниках продуктами сгорания.

На рис.3.7 представлена схема магнитогидродинамической установки. Атмосферный воздух сжимается в компрессоре 1 и после предварительного нагрева в регенераторе 2 поступает в камеру сгорания 3. Туда же подается топливо и присадки. Нагретые до температуры2500 – 3000 К. продукты сгорания поступают в сопло 4, где расширяются, а затем в канал 5,где генерируют электрический ток, пересекая магнитное поле. Для создания сильного магнитного поля снаружи канала 5 размещена обмотка 6, к которой подведен переменный электрический ток от блока питания 7. В канале МГД – генератора размещены керамические электроды для отвода электроэнергии.

Рис. 3.7-Схема магнитогидродинамической установки

1 – компрессор; 2 – регенератор; 3 – камера сгорания; 4 – сопла; 5 – канал МГДГ; 6 – обмотка электромагнитов; 7 – блок питания магнитов; 8 – электроды; 9 – парогенератор; 10 – турбина; 11 – конденсатор; 12 – насос.

Отработанные газы с температурой до 2300 К. поступают в регенератор 2, где частично отдают тепло поступающему воздуху и далее направляются в парогенератор 9, где вырабатывают водяной пар. Охлажденные до температуры 1500 С отработанные газы выбрасываются в атмосферу. Полученный водяной пар поступает в турбину 10, затем конденсируется в конденсаторе 11 и насосом 12 вновь закачивается в парогенератор.

МГД-генератор позволяет значительно повысить начальную температуру рабочего тела, и, следовательно, КПД электростанции.

МГД-генератор в комплексе с обычным турбогенератором в качестве второй ступени дает возможность повысить общий КПД такой энергетической установки до 50 – 60%.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Принцип работы синхронного генератора

Синхронный генератор. Устройство генератора и принцип действия

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию.

К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах).

Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции.

Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС).

ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.

Результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии.

Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов.

В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Принцип действия синхронного трёхфазного генератора

Универсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество.

Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов.

На практике использование этих устройств определяется исключительно техническими характеристиками.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Электрогенератор

класса 10 — принцип работы, схема

Последнее обновление: 1 мая 2020 г., Teachoo

Что такое электрогенератор?

Электрический генератор — это устройство, преобразующее механическую энергию в электрическую.

Это выглядит как

electric-generator-example.jpg

Принцип электрического генератора

Электрогенератор работает по принципу:

когда прямой проводник перемещается в магнитном поле,

тогда в проводнике индуцируется ток.

Типы генераторов

Генератор используется для выработки электрического тока.

Электрический ток может быть — переменным или постоянным.

Таким образом, электрические генераторы бывают двух типов.

Заметка : Всякий раз, когда упоминается электрический генератор, мы будем предполагать, что это генератор переменного тока.

Строительство электрогенератора переменного тока

electric-generator---teachoo.jpg

Электрогенератор переменного тока состоит из

  • Прямоугольная катушка провода ABCD
  • сильный подковообразный магнит (или 2 разных магнита) — Если взять 2 магнита, северный полюс первого магнита обращен к южному полюсу другого магнита, как показано на рисунке…
  • катушка размещена перпендикулярно магниту как показано на рисунке
  • Концы катушки подключены к два кольца — R 1 и R 2
  • Внешние токопроводящие кромки колец R 1 и R 2 связаны с двумя стационарные щетки — Б 1 & B 2 соответственно
  • Внутренняя сторона колец изолирован и прикреплен к оси
    ось механически вращается вращать катушку
  • Эти кисти прикреплены к гальванометр чтобы показать протекание тока в цепи

Работа электрического генератора переменного тока

Давайте посмотрим на работу электрического генератора переменного тока.

  • Предположим, что ось вращается по часовой стрелке, поэтому катушка также вращается по часовой стрелке,
    Сторона AB катушки движется вверх, а боковая CD движется вниз
    Применение Правило правой руки Флеминга на стороне AB,
    сила направлена ​​вверх, магнитное поле слева направо,
    Итак, текущие потоки в статью i.е. из От А до Б
  • И применяя Правило правой руки Флеминга на стороне CD,
    сила направлена ​​вниз, магнитное поле слева направо,
    Итак, текущие потоки из бумаги, т.е. из С к D
  • Следовательно, ток течет в щетку B 2 , движется по гальванометру и, наконец, входит в B 1
    Следовательно, мы говорим, что ток течет из В 2 в B 1 во внешней цепи.
  • После пол-оборота,
    Боковой компакт-диск с левой стороны, AB с правой стороны
  • Теперь с левой стороны опускается компакт-диск,
    Применение Правило правой руки Флеминга на стороне CD,
    сила направлена ​​вниз, магнитное поле слева направо,
    Итак, текущие потоки из бумаги, т.е. из От D до C
  • А справа появляется AB,
    Применение Правило правой руки Флеминга на стороне AB,
    сила направлена ​​вверх, магнитное поле слева направо,
    Итак, текущие потоки в статью i.е. из От А до Б
  • Следовательно, наша схема теперь DCBA,
    и текущие движения в противоположное направление
    electric-generator---direction-reverses---teachoo.jpg
  • Следовательно, мы говорим, что ток течет из В 1 в B 2 во внешней цепи.
  • Таким образом, после каждого полуоборота направление тока меняется.
    Следовательно, создается переменный ток.

Теперь давайте посмотрим на генератор постоянного тока — ток в одном направлении.

Примечание: чтобы преобразовать генератор переменного тока в генератор постоянного тока, мы используем коммутатор с разрезными кольцами (Разделить, а не спустить).Так же, как мы делаем в электродвигателе

Строительство генератора постоянного тока

dc-electric-generator---teachoo.jpg

Электрогенератор постоянного тока состоит из

  • Прямоугольная катушка провода ABCD
  • сильный подковообразный магнит (или 2 разных магнита) — Если взять 2 магнита, северный полюс первого магнита обращен к южному полюсу другого магнита, как показано на рисунке …
  • катушка размещена перпендикулярно магниту как показано на рисунке
  • Концы катушки подключены к разъему кольцевого коммутатора — P и Q
  • Внешние токопроводящие кромки колец P и Q соединены с двумя стационарные щетки — X и Y соответственно
  • Внутренняя сторона колец изолирован и прикреплен к оси
    ось механически вращается вращать катушку
  • Эти кисти прикреплены к гальванометр чтобы показать протекание тока в цепи

Работа электрического генератора постоянного тока

Давайте посмотрим на работу электрического генератора постоянного тока.

  • Предположим, что ось вращается по часовой стрелке, поэтому катушка также вращается по часовой стрелке,
    Сторона AB катушки движется вверх, а боковая CD движется вниз
    Применение Правило правой руки Флеминга на стороне AB,
    сила направлена ​​вверх, магнитное поле слева направо,
    Итак, текущие потоки в статью i.е. из От А до Б
  • И применяя Правило правой руки Флеминга на стороне CD,
    сила направлена ​​вниз, магнитное поле слева направо,
    Итак, текущие потоки из бумаги, т.е. из С к D
  • Следовательно, ток течет в щетку Y, движется по гальванометру и, наконец, попадает в X
    Следовательно, мы говорим, что ток течет из Y к X во внешней цепи.
  • После пол-оборота,
    Боковой компакт-диск с левой стороны, AB с правой стороны
  • И Разъемное кольцо P подключено к катушке CD. и разрезное кольцо Q подключено к катушке AB.
    Который сохраняет направление тока в цепи одинаковым.
  • Следовательно, ток течет от щетки Y, движется по гальванометру и, наконец, попадает в X
    Следовательно, мы говорим, что ток течет из Y к X во внешней цепи.
  • Таким образом, направление тока после каждого полуоборота, направление тока меняется.
    Следовательно, создается переменный ток.

Как электростанции увеличивают производимый ток и напряжение?

Они увеличивают ток и напряжение, производимые

  • Использование электромагнита вместо постоянного магнита
  • Большое количество витков проводящего провода (чем больше витков провода, тем больше магнитное поле)
  • Мягкое железо Сердечник, на который намотана катушка
  • Катушка вращается быстрее

Вопросы

NCERT Вопрос 4 — Существенное различие между генератором переменного тока и генератором постоянного тока состоит в том, что

  1. Генератор переменного тока имеет электромагнит, а генератор постоянного тока — постоянный магнит.
  2. Генератор постоянного тока будет генерировать более высокое напряжение.
  3. Генератор переменного тока будет генерировать более высокое напряжение.
  4. Генератор переменного тока имеет контактные кольца, а генератор постоянного тока имеет коммутатор.

Посмотреть ответ

Вопрос 6 (b) NCERT Укажите, верны ли следующие утверждения или нет.

Электрогенератор работает по принципу электромагнитной индукции.

Посмотреть ответ

NCERT Вопрос 16 — Существенное различие между генератором переменного тока и генератором постоянного тока состоит в том, что

Посмотреть ответ

Вопрос 1 Страница 237 — Изложите принцип работы электрогенератора.

Посмотреть ответ

Вопрос 4 Страница 237 — Прямоугольная катушка из медной проволоки вращается в магнитном поле.Направление индуцированного тока меняется один раз в каждом

(а) два оборота (б) один оборот

(c) половина оборота (d) одна четвертая оборота

Посмотреть ответ

Подпишитесь на наш канал Youtube — https://you.tube/teachoo

,Принцип работы

и объяснение генераторов переменного и постоянного тока

Генератор

— это машина, преобразующая механическую энергию в электрическую. Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей. Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем.Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле

Работа генераторов:

Генераторы в основном представляют собой катушки электрических проводников, обычно медных проводов, которые плотно намотаны на металл. сердечника и установлены для поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать в нем поток электрического тока.


Working of Generators Working of Generators Источник изображения — лучшие альтернативные источники

Катушка проводника и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по сравнению с магнитное поле.

Generators Generators Источник изображения — tpub

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь вращается, он начинает повышать напряжение.Часть этого напряжения подается на обмотки возбуждения через регулятор генератора. Это приложенное напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля. Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Типы генераторов:

Генераторы подразделяются на типы.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока:

Они также называются генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку сейчас все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный и синхронный.Индукционный генератор не требует отдельного возбуждения постоянного тока, регуляторов, частотного регулятора или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, возбуждая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока, даже если нагрузка недоступна.

PCBWay PCBWay

Синхронные генераторы — это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающегося якоря. У вращающегося якоря якорь находится у ротора, а поле у ​​статора.Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генераторы переменного тока с вращающимся полем широко используются из-за высокой мощности выработки и отсутствия контактных колец и щеток.

Это могут быть трехфазные или двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения. Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение совершенно независимо от другого.Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что напряжение, индуцированное в одной фазе, смещается на 120º относительно двух других. Они могут быть соединены треугольником или звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква «Дельта» (Δ). При соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений. Соединение Wye обозначается буквой Y.

Эти генераторы комплектуются двигателем или турбиной для использования в качестве мотор-генераторной установки и используются в таких приложениях, как военно-морской флот, добыча нефти и газа, горнодобывающая техника, ветряные электростанции и т. Д.

Преимущества генератора переменного тока:
  • Эти Генераторы, как правило, не требуют обслуживания из-за отсутствия щеток.
  • Легко повышать и понижать через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше, чем выключатели постоянного тока

Генераторы постоянного тока:

Генератор постоянного тока обычно используется в автономных приложениях.Эти генераторы обеспечивают бесперебойную подачу питания непосредственно в устройства хранения электроэнергии и электрические сети постоянного тока без использования нового оборудования. Накопленная мощность передается нагрузке через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как аккумуляторы, как правило, стимулируют восстановление значительно большего количества топлива.

Классификация генераторов постоянного тока

Генераторы постоянного тока классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

  • Генераторы постоянного тока с постоянным магнитом
  • Генераторы постоянного тока с раздельным возбуждением и
  • Генераторы постоянного тока с самовозбуждением.

Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания потока. Они используются для маломощных приложений, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность. Они используются для гальваники и электроочистки. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле, они запускаются.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Эти самовозбуждающиеся генераторы постоянного тока снова подразделяются на шунтовые, последовательные и составные генераторы.

Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычные осветительные приборы и т. Д.

Преимущества генератора постоянного тока:
  • В основном машины постоянного тока имеют широкий спектр рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмотки возбуждения.
  • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшим колебаниям, что желательно для некоторых приложений в установившемся режиме.
  • Нет необходимости в защите от излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.

Теперь у вас есть четкое представление о работе и типах генераторов. Если у вас возникнут какие-либо вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.

.

Принцип работы электрогенератора

Когда проводник ударяется в магнитном поле, по всему проводнику возникает ЭДС. Это единственный фундамент, на котором работает каждый вращающийся электрогенератор. Давайте поговорим о счетчике немного мелким шрифтом, чтобы мы могли без проблем понять, как точно работает электрический генератор.

Согласно правилам Фарадея об электромагнитной индукции, когда проводник соединяется с изменяющимся потоком, он будет иметь вызванную ЭДС повсюду.Стоимость вызванной ЭДС в проводнике зависит от платы за изменение магнитной связи с проводником. Путь вызванной ЭДС в проводнике можно определить с помощью правила правой руки Флеминга.

Этот принцип гласит, что если вы положите большой палец на правую руку, первый и второй пальцы будут множественными, и если вы выпрямите большой палец правой руки. по пути действия проводника в магнитном поле и сначала пальцем по пути магнитного поля, затем вторым пальцем подсказывает направление ЭДС в проводнике.
Теперь мы покажем вам, как вырабатывается электричество, когда мы вращаем одиночный контур проводника в магнитном поле.

Во время вращения, когда одна сторона петли оказывается перед северным магнитным полюсом, мгновенное движение проводника будет направлено вверх, впоследствии в соответствии с Правым КПД Флеминга в принципе руки будет иметь внутреннее направление.
В то же время, любой другой аспект петли находится перед южным магнитным полюсом, точечное движение проводника будет направлено вниз, поэтому, согласно правилу правой руки Флеминга, срабатывающая ЭДС будет иметь направление наружу.

Во время вращения каждая грань петли попеременно проходит под северным и южным полюсами магнитного поля. Снова на рисунках, когда любая из сторон катушки (проводники) проходит под северным полюсом, движение проводника будет вверх, а когда оно опускается ниже южного полюса, движение проводника будет вниз. Следовательно, ЭДС, возникающая в контуре, непрерывно меняет свое направление.

Это самый фундаментальный концептуальный манекен генератора с электрическим приводом.Мы дополнительно называем его одноконтурным электрогенератором. Мы можем собрать вызванную ЭДС в петле двумя исключительными способами.

Свяжитесь с нами контактное кольцо с обоими концами петли. Мы можем соединить петлей с подставкой для кисти, как показано. В этом случае переменная электрическая энергия, производимая в контуре, поступает на нагрузку. Это электрогенератор переменного тока.

Мы можем дополнительно получать электроэнергию, производимую во вращающемся контуре, через коммутатор и щетку, как показано на анимированной картинке ниже.В этом случае электричество, производимое в контуре (здесь вращающийся контур одноконтурного генератора также может называться якорем), выпрямляется через коммутатор, а нагрузка получает мощность постоянного тока. Это самый простой концептуальный манекен генератора постоянного тока.

,

Electric Generator: Основное введение в принцип работы генераторов, их особенности и применение

Как работают электрические генераторы?
Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться непосредственно в дома, магазины, офисы и т. Д. Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа.Катушка проводника вместе с ее сердечником известна как якорь. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или с помощью возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д. Когда змеевик вращается, он разрезает магнитное поле, которое лежит между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: В наличии имеются электрогенераторы с широким диапазоном выходной мощности. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
  • Топливо: Для электрических генераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный газ и т. Д.
  • Мобильность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов имеют технологию шумоподавления, которая позволяет хранить их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов
  • Электрические генераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с отключениями электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное питание устройств.
  • В удаленных районах, где нет доступа к электричеству из основной сети, электрические генераторы действуют как основной источник питания.
  • При работе на проектных площадках, где нет доступа к электричеству из сети, можно использовать электрические генераторы для питания машин или инструментов.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки
,
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *