+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Расчет теплопотерь здания. Онлайн расчет теплопотерь помещения

Материал стен:Не выбраноСиликатный кирпич, 1,5 кирпичаСиликатный кирпич, 2 кирпичаСиликатный кирпич, 2,5 кирпичаСиликатный кирпич, 3 кирпичаКирпич глиняный рядовый, 1,5 кирпичаКирпич глиняный рядовый, 2 кирпичаКирпич глиняный рядовый, 2,5 кирпичаКирпич глиняный рядовый, 3 кирпичаКерамический пустотный, 1,5 кирпичаКерамический пустотный, 2 кирпичаКерамический пустотный, 2,5 кирпичаКерамический пустотный, 3 кирпичаГазопенобетон, 400ммГазопенобетон, газосиликат 1000кг/м. куб, 600ммГазопенобетон, газосиликат 1000кг/м. куб, 800ммПенобетон D400, 400ммПенобетон D400, 600ммПенобетон D400, 800ммПенобетон D500, 400ммПенобетон D500, 600ммПенобетон D500, 800ммОцилиндрованное бревно (ель, сосна), 160 ммОцилиндрованное бревно (ель, сосна), 180 ммОцилиндрованное бревно (ель, сосна), 200 ммОцилиндрованное бревно (ель, сосна), 220 ммОцилиндрованное бревно (ель, сосна), 240 ммОцилиндрованное бревно (ель, сосна), 260 ммОцилиндрованное бревно (ель, сосна), 280 ммОцилиндрованное бревно (ель, сосна), 300 ммОцилиндрованное бревно (ель, сосна), 320 ммОцилиндрованное бревно (ель, сосна), 340 ммОцилиндрованное бревно (ель, сосна), 360 ммОцилиндрованное бревно (ель, сосна), 380 ммОцилиндрованное бревно (ель, сосна), 400 ммОцилиндрованное бревно (дуб), 160 ммОцилиндрованное бревно (дуб), 180 ммОцилиндрованное бревно (дуб), 200 ммОцилиндрованное бревно (дуб), 220 ммОцилиндрованное бревно (дуб), 240 ммОцилиндрованное бревно (дуб), 260 ммОцилиндрованное бревно (дуб), 280 ммОцилиндрованное бревно (дуб), 300 ммОцилиндрованное бревно (дуб), 320 ммОцилиндрованное бревно (дуб), 340 ммОцилиндрованное бревно (дуб), 360 ммОцилиндрованное бревно (дуб), 380 ммОцилиндрованное бревно (дуб), 400 ммБрус, толщина 200 ммБрус, толщина 100 ммТермоблок, 25 смСупертермо 38СТСупертермо 38ТСупертермо 51Супертермо 38Супертермо 25Поризованный керамический блок Porotherm 8Поризованный керамический блок Porotherm 38Поризованный керамический блок Porotherm 44Поризованный керамический блок Porotherm 51Воротынский камень поризованный 2,1НФПоризованный керамический блок Braer 10,7 NF M-100Поризованный керамический блок Braer 12,4 NF М-100Поризованный керамический блок Braer 14,3 NFСИП панели толщиной 124мм (толщина ППС 100мм)СИП панели толщиной 174мм (толщина ППС 150мм)СИП панели толщиной 224мм (толщина ППС 200мм)

Расчет теплопотерь дома | Тепло и энергия для Вас

Коэффициенты(К)

 

= ватт/м2 х м2 х К1 х К2 х К3 х К4 х К5 х К6 х К7 = ватт

Где:

– теплопотери дома. , ватт/м2 – удельная величина тепловых потерь (65-80 ватт/м2), которая состоит из теплового потока через материалы окон, стен и потолка, вентиляция и т.п., м2 – площадь помещения., К – коэффициенты.

Пример расчета теплопотерь дома (общей площадью 100 м2).

 

К1 – двойной стеклопакет К1=1,0

К2 – материал стен (ж/бетон,кирпич,утеплитель) К2=1,0

К3 – отношение площади окон к площади пола 20% К3=1,0

К4 – температура на улице -20°С К4=1,0

К5 – число наружных стен К5=1,33

К6 – помещение над расчетным (холодный чердак) К6=1,0

К7 – высота комнат 2,5м К7=1,0

=72,5 х 100 х 1,0 х 1,0 х 1,0 х 1,0 х1,33 х 1,0 х 1,0 = 9642 ватт

Теплопотери дома — лишь составная часть его теплового баланса. Не поленитесь прочесть дальше о тепловом балансе дома.

ТЕПЛОВОЙ БАЛАНС ДОМА

Выше Вы ознакомились с приближенными расчетами теплопотерь дома.

Но этот расчет является лишь составной частью общего теплового баланса дома, где учитываются и другие факторы тепловых потерь, а также и иные источники поступления тепла.

Дополнительные потери тепла

1. Большое значение имеет влажностной режим помещения, непосредственно связанный с тепловым. Оптимальная относительная влажность жилого помещения 50-60%. Источниками влаги в помещении являются: приготовление пищи, стирка и глажение белья, душ, ванная, влажная уборка, растения, потоотделение человека. Средняя семья может вносить до 15л в сутки в атмосферу своего жилища. Влага содержится в воздухе в виде водяных паров, и максимальная величина влагосодержания зависит от температуры воздуха:

Например, если у Вас при температуре внутри помещения 20oC содержится 10,7г/м3 влаги, то тогда температура снизится до 12oC, влажность воздуха будет уже 100%, и дальнейшее понижение температуры приведет к конденсации влаги с ее выпадением преимущественно на быстро остывающие конструкции здания. Поэтому, если в холодный период года Вы приезжаете в загородный дом иногда, или наоборот, проживаете в нем постоянно, но иногда выезжаете на некоторое продолжительное время, обязательно следует тщательно проветривать помещение перед тем, как уехать. Это позволит Вам сохранить ограждающие конструкции здания от конденсации на них влаги и уберечь их от гниения, плеснеобразования и намокания. Повышенное влагонасыщение ограждающих конструкций приводит к увеличению теплопотерь, что проиллюстрировано на рис.2

2. Поскольку компания профессионально занимается не только выпуском электроотопительного оборудования, но и отопительными системами, у нас существует многолетняя база данных по европейской части Российской Федерации о максимальных из средних (по румбам) скоростей ветра и максимальных (из средних) температурных характеристиках наиболее холодного месяца — января.

Средняя температура на европейской части РФ в январе -3,6oC, направление ветра (среднее, по румбам) юго-запад.

Дополнительные поступления тепла

1. Тепло в помещение может поступать при работе электронагревательных приборов, радио-телевизионной аппаратуры, холодильника, стиральной машины, утюга, фена и другого электрооборудования. Значительное количество теплоты выделяется при приготовлении пищи. Оглянитесь у себя в доме — зная, например, количество включенных электролампочек и их суммарную мощность, а также мощность другого включенного электрооборудования, можно приблизительно подсчитать количество дополнительного тепла, поступающего в Ваш дом. Для приведенного в предыдущем разделе сайта примера дома площадью 100 м

2 эти цифры составят 2-3 кВт в час.

2. Выделяют тепловую энергию также люди и домашние животные, например: при выполнении легкой, средней и тяжелой работы человек выделяет, в среднем, соответственно до 172 Вт; 172-193 Вт; более 193 Вт.

Считайте сами.

3. Есть и в природе положительный фактор — плюсовая часть теплового баланса. Это инсоляция (солнечная радиация).

Температурные показатели в таблице выведены на основании статистических данных об интенсивности воздействия солнечной радиации на поверхность стен и окон (вт/м2) и ее продолжительности (час), географическая широта 60o (Ленинградская область).

4. Мы редко задумываемся, что такое комфорт, когда нам хорошо и уютно, зато состояние теплового дискомфорта, когда мерзнут ноги, дует в спину, сыреют стены, быстро выводит из равновесия и не дает полноценно жить, работать, отдыхать. Все комфортные условия жилища и рабочего места имеют свои определенные физические параметры, а, следовательно, поддаются контролю и регулированию.

В качестве расчетной температуры в зимний период для определения теплопотери и подбора теплогенератора принимается (согласно рекомендаций нормативной литературы) 18oC.

Нормативный температурный перепад между температурой воздуха внутри жилого помещения, наружной стеной, чердачным перекрытием и полом первого этажа не более 6,4 и 2oC соответственно. Запомните это и не вешайте термометр на внешнюю стену помещения — обязательно обманет. Полезно, с точки зрения гигиенистов, снижать температуру на 2-3oC ночью в спальне, что связано с изменением интенсивности обмена веществ.

Вы ознакомились с основами теплового баланса здания. Основываясь на этих знаниях, Вы можете самостоятельно подобрать необходимое оборудование для отопления конкретного помещения или поручить это дело профессионалам.



Поделиться ссылкой на страницу:

Узнаем как рассчитать теплопотери дома: особенности, рекомендации и программа

Безусловно, основные очаги теплопотери в доме – двери и окна, но при просмотре картины через экран тепловизора легко увидеть, что это не единственные источники утечки. Тепло теряется и через неграмотно монтированную кровлю, холодный пол, не утепленные стены. Теплопотери дома сегодня рассчитываются при помощи специального калькулятора. Это позволяет подобрать оптимальный вариант отопления и провести дополнительные работы по утеплению строения. Интересно, что для каждого типа строений (из бруса, бревен, силикатного или керамического кирпича) уровень теплопотерь будет разным. Поговорим об этом подробнее.

Основы расчета теплопотерь

Контроль над теплопотерями систематично проводится только для помещений, отапливающихся в соответствии с сезоном. Помещения, не предназначенные для сезонного проживания, не подпадают под категорию зданий, поддающихся тепловому анализу. Программа теплопотери дома в этом случае не будет иметь практического значения.

Чтобы провести полный анализ, рассчитать теплоизоляционные материалы и подобрать систему отопления с оптимальной мощностью, необходимо обладать знаниями о реальной теплопотере жилища. Стены, крыша, окна и пол — не единственные очаги утечки энергии из дома. Большая часть тепла уходит из помещения через неправильно монтированные вентиляционные системы.

Факторы, влияющие на теплопотери

Основными факторами, влияющими на уровень теплопотерь, являются:

  • Высокий уровень перепада температур между внутренним микроклиматом помещения и температурой на улице.
  • Характер теплоизоляционных свойств ограждающих конструкций, к которым относятся стены, перекрытия, окна и др.

Величины измерения теплопотери

Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м2. Итак, разберемся с тем, как рассчитать теплопотери дома.

К основным величинам, необходимым для вычисления теплопотери дома, относятся:

  • q – величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м2 барьерной конструкции. Измеряется в Вт/м2.
  • ∆T – разница между температурой в доме и на улице. Измеряется в градусах (оС).
  • R – сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
  • S – площадь здания или поверхности (используется по необходимости).

Формула расчета теплопотери

Программа теплопотери дома рассчитывается по специальной формуле:

R=∆T/q

Проводя расчет, помните, что для конструкций, состоящих из нескольких слоев, суммируется сопротивление каждого слоя. Итак, как рассчитать теплопотери каркасного дома, обложенного кирпичом снаружи? Сопротивление потере тепла будет равно сумме сопротивления кирпича и дерева с учетом воздушной прослойкой между слоями.

Важно! Обратите внимание, что расчет сопротивления проводится для самого холодного времени года, когда разница температур достигает своего пика. В справочниках и пособиях всегда указывается именно это опорное значение, использующееся для дальнейших расчетов.

Особенности расчета теплопотерь деревянного дома

Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:

  • Определяют через стены.
  • Рассчитывают через оконные конструкции.
  • Через дверные проемы.
  • Производят расчет через перекрытия.
  • Вычисляют теплопотери деревянного дома через напольное покрытие.
  • Складывают полученные ранее значения.
  • Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.

Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).

Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79.

Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.

Необходимость расчета теплопотерь

Обустройство комфортного жилища требует строгого контроля процесса на каждом из этапов выполнения работ. Поэтому организацию системы отопления, которой предшествует выбор самого метода обогрева помещения, нельзя упускать из виду. Работая над возведением дома, немало времени придется уделить не только проектной документации, но и расчету теплопотери дома. Если в дальнейшем вы собираетесь работать в области проектирования, то инженерные навыки расчета теплопотерь вам точно пригодятся. Так почему бы не потренироваться выполнять эту работу на опыте и сделать подробный расчет теплопотерь для собственного дома.

Важно! Выбор способа и мощности системы отопления напрямую зависит от проведенных вами расчетов. Вычислив показатель теплопотери неверно, вы рискуете мерзнуть в холодное время или изнемогать от жары из-за чрезмерного обогрева помещения. Необходимо не только правильно выбрать прибор, но и определить количество батарей или радиаторов, способное обогреть одну комнату.

Оценка теплопотери на расчетном примере

Если у вас нет необходимости изучать расчет теплопотери дома подробно, остановимся на оценочном разборе и определении потери тепла. Иногда в процессе расчетов возникают погрешности, поэтому лучше прибавлять минимальное значение к предполагаемой мощности отопительной системы. Для того чтобы приступить к расчетам, необходимо знать показатель сопротивления стен. Он отличается в зависимости от типа материала, из которого изготовлена постройка.

Сопротивление (R) для домов из керамического кирпича (при толщине кладки в два кирпича – 51 см) равно 0,73 °С·м²/Вт. Минимальный показатель толщины при таком значении должен составлять 138 см. При использовании в качестве базового материала керамзитбетона (при толщине стены 30 см) R составляет 0,58 °С·м²/Вт при минимальной толщине в 102 см. В деревянном доме или постройке из бруса с толщиной стен в 15 см и уровнем сопротивления 0,83 °С·м²/Вт требуется минимальная толщина в 36 см.

Стройматериалы и их сопротивление теплопередаче

Опираясь на эти параметры, можно с легкостью проводить расчеты. Найти значения сопротивлений вы можете в справочнике. В строительстве чаще всего используются кирпич, сруб из бруса или бревен, пенобетон, деревянный пол, потолочные перекрытия.

Значения сопротивления теплопередаче для:

  • кирпичной стены (толщ. 2 кирпича) – 0,4;
  • сруба из бруса (толщ. 200 мм) – 0,81;
  • сруба из бревна (диаметром 200 мм) – 0,45;
  • пенобетона (толщ. 300 мм) – 0,71;
  • деревянного пола – 1,86;
  • перекрытия потолка – 1,44.

Исходя из поданной выше информации, можно сделать вывод, что для правильного расчета теплопотерь потребуется всего две величины: показатель перепада температур и уровень сопротивления теплопередаче. Например, дом сделан из дерева (бревна) толщиной 200 мм. Тогда сопротивление равно 0,45 °С·м²/ Вт. Зная эти данные, можно вычислить процент теплопотери. Для этого проводят операцию деления: 50/0,45=111,11 Вт/м².

Расчет теплопотери по площади выполняется так: теплопотери умножаются на 100 (111,11*100=11111 Вт). С учетом расшифровки величины (1 Вт=3600) полученное число умножаем на 3600 Дж/час: 11111*3600=39,999 МДж/час. Проведя такие простые математические операции, любой хозяин может узнать о теплопотерях своего дома за час.

Расчет теплопотери помещения в онлайн-режиме

В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат – цифру, которая и будет означать количество выхода тепла из жилого помещения.

Жилое помещение – это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.

Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине. Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным. А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.

Как посчитать теплопотери дома: сбор данных | Илья Александров

Для того, чтобы рассчитать систему отопления, нам нужно знать теплопотери дома.

Желательно считать теплопотери покомнатно. Для этого можно использовать специальные программы в которых считаем по каждому помещению и потом, на основе полученных данных, подбираем отопительное оборудование и насосы в той же программе.

Для чего нужно знать теплопотери каждого помещения.
Например, решили использовать только теплый пол, но в зале из-за обилия окон только теплого пола будет недостаточно, поэтому придется ставить радиаторы.

Но на начальном этапе считаю лишним так сильно углубляться в проектирование системы отопления. Иногда нам нужно просто понять сколько примерно будут затраты на отопление и чем лучше топить.

В первую очередь, нам нужно узнать все данные, а именно:

— Площадь стен, перекрытий и окон с дверьми

— Сопротивление теплопередаче. Для этого нужно определиться из каких материалов эти конструкции будут сделаны.

Буду показывать на примере своего дома, далее сравним с фактическим расходом.

Дом у меня из газобетонных блоков Д400 400мм, утепление пола 200мм ЭППС, чердачное перекрытие пока 200мм минваты, окна — 70й профиль.

За нужными цифрами сопротивления теплопередачи идем в теплотехнический калькулятор, ссылка будет ниже.

Выбираем свой регион и ближайший город.

Выбираем свой регион и ближайший город.

Далее идем во вкладку «слои конструкции», где выбираем материалы конструкции.

Я специально не беру слой штукатурки, т.к. считаю «ловлей блох».

Цифрами обозначена последовательность действий, в прямоугольнике нужные нам цифры.

1 — выбираем материал.

2 — выбираем тип слоя.

3 — задаем толщину материала.

Сопротивление теплопередачи стены.

Сопротивление теплопередачи стены.

1. Выбираем материал.

1. Выбираем материал.

Выбираем тип слоя.

Выбираем тип слоя.

По умолчанию стоит однородный. Если ничего не менять, то будет большая погрешность.

Вот смотрите сами как влияет «однородность» слоя на примере чердачного перекрытия.

Разница в 1 единицу. Для примера — у самых теплых и дорогих окон R чуть больше 1.

Разница в 1 единицу. Для примера — у самых теплых и дорогих окон R чуть больше 1.

Многие думают, что 200мм минваты – очень тепло, но не все учитывают, что нужно считать всю конструкцию, которая состоит еще из досок. Или стена — не только блок, но еще и швы.
Так будет правильнее. Шаг каркаса нужен 580мм чтобы утеплитель шириной 600мм плотно вставал между досок.

Так будет правильнее. Шаг каркаса нужен 580мм чтобы утеплитель шириной 600мм плотно вставал между досок.

Можно включать и отключать слои.

Можно включать и отключать слои.

Для двери и окон средние значения R=0,6-0,8.

Так же, помимо теплопотерь через ограждающие конструкции, важно знать сколько тратим на вентиляцию и ГВС, для этого определяемся сколько человек будет проживать.

Подытожу.

В моем доме(пока) будет проживать 4 чел.

Площади ограждающих конструкций и сопротивление теплопередачи получили такими:

Стены – 132м2, R=3,41

Перекрытие – 156м2, R=3,81

Пол – 156м2, R=5,87

Окна – 18м2, R=0,8

Дверь – 2м2, R=0,8

Данные собрали, в следующей статье будем считать теплопотери и сравнивать с фактическим потреблением.

Ссылка на теплотехнический калькулятор.

Надеюсь, осилили. Будут вопросы, задавайте в комментариях.

Читайте также:

Отопление без газа и без другой халявы реально. Полный алгоритм с личными примерами и статистикой

Ставьте 👍🏻 , подписывайтесь!

Расчет теплопотери деревянного дома

Важно знать и учитывать, что деревянный дом теряет тепло через стены, крышу, окна, часть тепла уходит в землю и систему вентиляции. Наиболее значительны потери через стены дома. Тепловые потери тем выше, чем выше разница температур в доме и на улице. Кроме того, они зависят от теплозащитных свойств стен, окон, покрытий, перекрытий.

Если есть необходимость рассчитать теплопотери деревянного дома, здесь используется такой термин, как сопротивление теплопередачи — это величина, оценивающая теплозащитные свойства ограждающих конструкций, которые сопротивляются утечкам тепла.

Сопротивление теплопередачи показывает, какое количество тепла уйдет при известном перепаде температур через квадратный метр ограждающей конструкции. Сказанное можно выразить такой формулой:

Q = S * ΔT/ R

где Q — это теплопотери (единица измерения — Вт).

R — это сопротивление теплопередачи (единица измерения -°С·м. кв./ Вт или °С/ Вт/м. кв.).

S — площадь конструкции (единица измерения — м. кв.)

ΔT — это разница между температурой в доме и на улице (единица измерения — °С).

Давайте рассмотрим на конкретном примере. Допустим, температура в доме — 20°С, а на улице –30°С.

Обозначим это так: Тнар.= –30 °С, Твнутр.= 20°С. Следовательно, разница температур ΔT=50°С.

Обычно при расчете теплопотери берут самый неблагоприятный период (ветреный и морозный день).

Теплосопротивление R можно определить по формуле:

R = B/K

где R — теплосопротивление

B — толщина однородного слоя (м)

К — коэффициент теплопроводности материала (Вт/м•°С).

Обычно значение коэффициента теплопроводности K можно найти в строительных справочниках — «Строительные нормы и правила» (СНиП II-3-79) — для сухой зоны влажности и нормальной влажной зоны. Допустим, коэффициент теплопроводности сосны и ели поперек волокон для сухой зоны влажности равен 0.14 Вт/м•°С, для нормальной влажной зоны — 0,18 Вт/м•°С. Коэффициент теплопроводности сосны и и ели вдоль волокон соответственно равен о,29 Вт/м•°С и 0,35 Вт/м•°С.

Если конструкция многослойна, расчет теплосопротивления R производят для каждого слоя отдельно и затем суммируют.

R = R1+ R2 + …

Расчет теплопотерь дома — считаем сами правильно! Расчет теплопотерь дома онлайн Расчет теплопотерь таблица.

Безусловно, основные очаги теплопотери в доме — двери и окна, но при просмотре картины через экран тепловизора легко увидеть, что это не единственные источники утечки. Тепло теряется и через неграмотно монтированную кровлю, холодный пол, не утепленные стены. Теплопотери дома сегодня рассчитываются при помощи специального калькулятора. Это позволяет подобрать оптимальный вариант отопления и провести дополнительные работы по утеплению строения. Интересно, что для каждого типа строений (из бруса, бревен, уровень теплопотерь будет разным. Поговорим об этом подробнее.

Основы расчета теплопотерь

Контроль над теплопотерями систематично проводится только для помещений, отапливающихся в соответствии с сезоном. Помещения, не предназначенные для сезонного проживания, не подпадают под категорию зданий, поддающихся тепловому анализу. Программа теплопотери дома в этом случае не будет иметь практического значения.

Чтобы провести полный анализ, рассчитать теплоизоляционные материалы и подобрать систему отопления с оптимальной мощностью, необходимо обладать знаниями о реальной теплопотере жилища. Стены, крыша, окна и пол — не единственные очаги утечки энергии из дома. Большая часть тепла уходит из помещения через неправильно монтированные вентиляционные системы.

Факторы, влияющие на теплопотери

Основными факторами, влияющими на уровень теплопотерь, являются:

  • Высокий уровень перепада температур между внутренним микроклиматом помещения и температурой на улице.
  • Характер теплоизоляционных свойств ограждающих конструкций, к которым относятся стены, перекрытия, окна и др.

Величины измерения теплопотери

Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м 2. Итак, разберемся с тем, как рассчитать теплопотери дома.

К основным величинам, необходимым для вычисления теплопотери дома, относятся:

  • q — величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м 2 барьерной конструкции. Измеряется в Вт/м 2 .
  • ∆T — разница между температурой в доме и на улице. Измеряется в градусах (о С).
  • R — сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
  • S — площадь здания или поверхности (используется по необходимости).

Формула расчета теплопотери

Программа теплопотери дома рассчитывается по специальной формуле:

Проводя расчет, помните, что для конструкций, состоящих из нескольких слоев, суммируется сопротивление каждого слоя. Итак, как рассчитать теплопотери каркасного дома, обложенного кирпичом снаружи? Сопротивление потере тепла будет равно сумме сопротивления кирпича и дерева с учетом воздушной прослойкой между слоями.

Важно! Обратите внимание, что расчет сопротивления проводится для самого холодного времени года, когда разница температур достигает своего пика. В справочниках и пособиях всегда указывается именно это опорное значение, использующееся для дальнейших расчетов.

Особенности расчета теплопотерь деревянного дома

Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:

  • Определяют через стены.
  • Рассчитывают через оконные конструкции.
  • Через дверные проемы.
  • Производят расчет через перекрытия.
  • Вычисляют теплопотери деревянного дома через напольное покрытие.
  • Складывают полученные ранее значения.
  • Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.

Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).

Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79.

Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.

Необходимость расчета теплопотерь

Обустройство комфортного жилища требует строгого контроля процесса на каждом из этапов выполнения работ. Поэтому организацию системы отопления, которой предшествует выбор самого метода обогрева помещения, нельзя упускать из виду. Работая над возведением дома, немало времени придется уделить не только проектной документации, но и расчету теплопотери дома. Если в дальнейшем вы собираетесь работать в области проектирования, то инженерные навыки расчета теплопотерь вам точно пригодятся. Так почему бы не потренироваться выполнять эту работу на опыте и сделать подробный расчет теплопотерь для собственного дома.

Важно! Выбор способа и мощности системы отопления напрямую зависит от проведенных вами расчетов. Вычислив показатель теплопотери неверно, вы рискуете мерзнуть в холодное время или изнемогать от жары из-за чрезмерного обогрева помещения. Необходимо не только правильно выбрать прибор, но и определить количество батарей или радиаторов, способное обогреть одну комнату.

Оценка теплопотери на расчетном примере

Если у вас нет необходимости изучать расчет теплопотери дома подробно, остановимся на оценочном разборе и определении потери тепла. Иногда в процессе расчетов возникают погрешности, поэтому лучше прибавлять минимальное значение к предполагаемой мощности отопительной системы. Для того чтобы приступить к расчетам, необходимо знать показатель сопротивления стен. Он отличается в зависимости от типа материала, из которого изготовлена постройка.

Сопротивление (R) для домов из керамического кирпича (при толщине кладки в два кирпича — 51 см) равно 0,73 °С·м²/Вт. Минимальный показатель толщины при таком значении должен составлять 138 см. При использовании в качестве базового материала керамзитбетона (при толщине стены 30 см) R составляет 0,58 °С·м²/Вт при минимальной толщине в 102 см. В деревянном доме или постройке из бруса с толщиной стен в 15 см и уровнем сопротивления 0,83 °С·м²/Вт требуется минимальная толщина в 36 см.

Стройматериалы и их сопротивление теплопередаче

Опираясь на эти параметры, можно с легкостью проводить расчеты. Найти значения сопротивлений вы можете в справочнике. В строительстве чаще всего используются кирпич, сруб из бруса или бревен, пенобетон, деревянный пол, потолочные перекрытия.

Значения сопротивления теплопередаче для:

  • кирпичной стены (толщ. 2 кирпича) — 0,4;
  • сруба из бруса (толщ. 200 мм) — 0,81;
  • сруба из бревна (диаметром 200 мм) — 0,45;
  • пенобетона (толщ. 300 мм) — 0,71;
  • деревянного пола — 1,86;
  • перекрытия потолка — 1,44.

Исходя из поданной выше информации, можно сделать вывод, что для правильного расчета теплопотерь потребуется всего две величины: показатель перепада температур и уровень сопротивления теплопередаче. Например, дом сделан из дерева (бревна) толщиной 200 мм. Тогда сопротивление равно 0,45 °С·м²/ Вт. Зная эти данные, можно вычислить процент теплопотери. Для этого проводят операцию деления: 50/0,45=111,11 Вт/м².

Расчет теплопотери по площади выполняется так: теплопотери умножаются на 100 (111,11*100=11111 Вт). С учетом расшифровки величины (1 Вт=3600) полученное число умножаем на 3600 Дж/час: 11111*3600=39,999 МДж/час. Проведя такие простые математические операции, любой хозяин может узнать о теплопотерях своего дома за час.

Расчет теплопотери помещения в онлайн-режиме

В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат — цифру, которая и будет означать количество выхода тепла из жилого помещения.

Жилое помещение — это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.

Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине. Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным. А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.

Точный расчет теплопотерь дома — занятие кропотливое и небыстрое. Для его производства необходимы исходные данные, включая размеры всех ограждающих конструкций дома (стен, дверей, окон, перекрытий, полов).

Для однослойных и/или многослойных стен, а также перекрытий коэффициент теплопередачи несложно вычислить путем деления коэффициента теплопроводности материала на толщину его слоя в метрах. Для многослойной конструкции общий коэффициент теплопередачи будет равен величине, обратной сумме теплосопротивлений всех слоев. Для окон можно воспользоваться таблицей теплотехнических характеристик окон.

Стены и полы, лежащие на грунте, рассчитываются по зонам, поэтому в таблице необходимо создавать отдельные строки для каждой из них и указывать соответствующий коэффициент теплопередачи. Разделение по зонам и значения коэффициентов указаны в правилах обмера помещений .

Графа 11. Основные теплопотери. Здесь производится авторасчет основных теплопотерь на основе введенных данных в предыдущих ячейках строки. В частности, используются Разность температур, Площадь, Коэффициент теплопередачи и Коэффициент положения. Формула в ячейке:

Графа 12. Добавка на ориентацию. В этой графе производится авторасчет добавки на ориентацию. В зависимости от содержимого ячейки Ориентация вставляется соответствующий коэффициент. Формула расчета ячейки выглядит так:

ЕСЛИ(H9=»В»;0,1;ЕСЛИ(H9=»ЮВ»;0,05;ЕСЛИ(H9=»Ю»;0;ЕСЛИ(H9=»ЮЗ»;0;ЕСЛИ(H9=»З»;0,05;ЕСЛИ(H9=»СЗ»;0,1;ЕСЛИ(H9=»С»;0,1;ЕСЛИ(H9=»СВ»;0,1;0))))))))

Эта формула вставляет в ячейку коэффициент по следующей схеме:

  • Восток — 0.1
  • Юго-восток — 0.05
  • Юг — 0
  • Юго-запад — 0
  • Запад — 0.05
  • Северо-запад — 0.1
  • Север — 0.1
  • Северо-восток — 0.1

Графа 13. Добавка прочая. Здесь вводится коэффициент добавки при расчете пола или дверей в соответствии с условиями в таблице:

Графа 14. Теплопотери. Здесь окончательный расчет теплопотерь ограждения по данным строки. Формула ячейки:

По мере расчетов можно создавать ячейки с формулами суммирования теплопотерь по помещениям и выведение суммы теплопотерь всех ограждений дома.

Существуют еще теплопотери на инфильтрацию воздуха. Ими можно пренебречь, поскольку они в какой-то степени компенсируются бытовыми тепловыделениями и теплопоступлениями от солнечной радиации. Для более полного, исчерпывающего расчета теплопотерь можно использовать методику, описанную в справочном пособии .

В итоге для расчета мощности системы отопления полученную сумму теплопотерь всех ограждений дома увеличиваем на 15 — 30%.

Другие, более простые способы расчета теплопотерь:

  • быстрый расчет в уме приблизительный способ расчета ;
  • несколько более сложный расчет с применением коэффициентов ;
  • самый точный способ расчета теплопотерь в режиме реального времени;

Принято считать, что для средней полосы России мощность отопительных систем должна рассчитываться исходя из соотношения 1 кВт на 10 м 2 отапливаемой площади. Что говорится в СНиП и каковы реальные расчетные теплопотери домов, построенных из различных материалов?

СНиП указывает на то, какой дом можно считать, скажем так, правильным. Из него мы позаимствуем строительные нормы для Московского региона и сравним их с типичными домами, построенными из бруса, бревна, пенобетона, газобетона, кирпича и по каркасным технологиям.

Как должно быть по правилам (СНиП)

Однако взятые нами значения в 5400 градусо-суток для московского региона являются пограничными к значению 6000, по которому в соответствии со СНиПом сопротивление теплопередаче стен и кровли должно составлять 3,5 и 4,6 м 2 ·°С/Вт соответственно, что эквивалентно 130 и 170 мм минеральной ваты с коэффициентом теплопроводности λА=0,038 Вт/(м·°К).

Как в реальности

Зачастую люди строят «каркасники», бревенчатые, брусовые и каменные дома исходя из доступных материалов и технологий. Например, чтобы соответствовать СНиП, диаметр бревен сруба должен быть больше 70 см, но это абсурд! Потому чаще всего строят так, как удобнее или как больше нравится.

Для сравнительных расчетов мы воспользуемся удобным калькулятором теплопотерь, который расположен на сайте его автора. Для упрощения расчетов возьмем одноэтажное прямоугольное помещение со сторонами 10 х 10 метров. Одна стена глухая, на остальных по два небольших окна с двухкамерными стеклопакетами, плюс одна утепленная дверь. Крыша и потолок утеплены 150 мм каменной ваты, как наиболее типичный вариант.

Кроме теплопотерь через стены есть еще понятие инфильтрации – проникновения воздуха через стены, а также понятие бытового тепловыделения (от кухни, приборов и т.п.), которое по СНиП приравнивается к 21 Вт на м 2 . Но мы это учитывать сейчас не будем. Равно как и потери на вентиляцию, потому как это требует и вовсе отдельного разговора. Разница температур принята за 26 градусов (22 в помещении и -4 снаружи – как усредненное за отопительный сезон в московском регионе).

Итак, вот итоговая диаграмма сравнения теплопотерь домов из различных материалов :

Пиковые теплопотери рассчитаны для наружной температуры -25°С. Они показывают, какой максимальной мощности должна быть система отопления. «Дом по СНиП (3,5, 4,6, 0,6)» – это расчет исходя из более строгих требований СНиП к тепловому сопротивлению стен, кровли и пола, который применим к домам в чуть более северных регионах, нежели чем Московская область. Хотя, зачастую, могут применяться и к ней.

Главный вывод – если при строительстве вы руководствуетесь СНиП, то мощность отопления следует закладывать не 1 кВт на 10 м 2 , как принято считать, а на 25-30% меньше. И это еще без учета бытового тепловыделения. Однако соблюсти нормы не всегда получается, а детальный расчет отопительной системы лучше доверить квалифицированным инженерам.

Также вам может быть интересно :


Каждое здание, независимо от конструктивных особенностей, пропускает тепловую энергию через ограждения. Потери тепла в окружающую среду необходимо восстанавливать с помощью системы отопления. Сумма теплопотерь с нормируемым запасом – это и есть требуемая мощность источника тепла, которым обогревается дом. Чтобы создать в жилище комфортные условия, расчет теплопотерь производят с учетом различных факторов: устройства здания и планировки помещений, ориентации по сторонам света, направления ветров и средней мягкости климата в холодный период, физических качеств строительных и теплоизоляционных материалов.

По итогам теплотехнического расчета выбирают отопительный котел, уточняют количество секций батареи, считают мощность и длину труб теплого пола, подбирают теплогенератор в помещение – в общем, любой агрегат, компенсирующий потери тепла. По большому счету, определять потери тепла нужно для того, чтобы отапливать дом экономно – без лишнего запаса мощности системы отопления. Вычисления выполняют ручным способом либо выбирают подходящую компьютерную программу, в которую подставляют данные.

Как выполнить расчет?

Сначала стоит разобраться с ручной методикой – для понимания сути процесса. Чтобы узнать, сколько тепла теряет дом, определяют потери через каждую ограждающую конструкцию по отдельности, а затем складывают их. Расчет выполняют поэтапно.

1. Формируют базу исходных данных под каждое помещение, лучше в виде таблицы. В первом столбце записывают предварительно вычисленную площадь дверных и оконных блоков, наружных стен, перекрытий, пола. Во второй столбец заносят толщину конструкции (это проектные данные или результаты замеров). В третий – коэффициенты теплопроводности соответствующих материалов. В таблице 1 собраны нормативные значения, которые понадобятся в дальнейшем расчете:

Чем выше λ, тем больше тепла уходит сквозь метровую толщину данной поверхности.

2. Определяют теплосопротивление каждой прослойки: R = v/ λ, где v – толщина строительного или теплоизоляционного материала.

3. Делают расчет теплопотерь каждого конструктивного элемента по формуле: Q = S*(Т в -Т н)/R, где:

  • Т н – температура на улице, °C;
  • Т в – температура внутри помещения,°C;
  • S – площадь, м2.

Разумеется, на протяжении отопительного периода погода бывает разной (к примеру, температура колеблется от 0 до -25°C), а дом обогревается до нужного уровня комфорта (допустим, до +20°C). Тогда разность (Т в -Т н) варьируется от 25 до 45.

Чтобы сделать расчет, нужна средняя разница температур за весь отопительный сезон. Для этого в СНиП 23-01-99 «Строительная климатология и геофизика» (таблица 1) находят среднюю температуру отопительного периода для конкретного города. Например, для Москвы этот показатель равен -26°. В этом случае средняя разница составляет 46°C. Для определения расхода тепла через каждую конструкцию складывают теплопотери всех ее слоев. Так, для стен учитывают штукатурку, кладочный материал, внешнюю теплоизоляцию, облицовку.

4. Считают итоговые потери тепла, определяя их как сумму Q внешних стен, пола, дверей, окон, перекрытий.

5. Вентиляция. К результату сложения добавляется от 10 до 40 % потерь на инфильтрацию (вентиляцию). Если установить в дом качественные стеклопакеты, а проветриванием не злоупотреблять, коэффициент инфильтрации можно принять за 0,1. В отдельных источниках указывается, что здание при этом вообще не теряет тепло, поскольку утечки компенсируются за счет солнечной радиации и бытовых тепловыделений.

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

2. Потери тепла через пол.

Общая площадь: S = 8*10 = 80 м2.

Вычисляется теплосопротивление трехслойного пола.

  • R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
  • R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
  • R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
  • R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.

Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.

3. Потери тепла через потолок.

Площадь потолочной поверхности равна площади пола S = 80 м2.

Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот. = R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.

Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.

4. Теплопотери через окна.

Площадь остекления: S = 4*1,2*1 = 4,8 м2.

Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:

  • R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
  • На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.

Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.

Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.

Чтобы безошибочно посчитать, сколько тепла теряет здание, используют онлайн калькулятор теплопотерь. Это компьютерная программа, в которую вводятся не только перечисленные выше данные, но и различные дополнительные факторы, влияющие на результат. Преимуществом калькулятора является не только точность расчетов, но и обширная база справочных данных.

Прикинул потери перекрытия (полы по грунту без утеплителя) чёт СИЛЬНО много получается
при теплопроводности бетона 1,8 получается 61491кВт*ч сезон
Думаю среднюю разницу температур нужно принять не 4033*24 т. к. земля всё таки теплее атмосферного воздуха

Для полов разница температур будет меньше, воздух на улице -20 градуса а земля под полами может быть +10 градусов. То есть при температуре в доме 22 градуса для расчета потерь тепла в стенах разница температур будет 42 градуса, а для полов будет в это же время всего 12 градусов.

Я для себя тоже сделал такой расчет еще в прошлом году чтоб выбрать толщину утепления экономически обоснованой. Но сделал более сложный расчет. Нашел в инете для своего города статистику по температурам за предыдущий год причем с шагом каждые четыре часа. тоесть считаю что в течениие четырех часов температура постоянная. Для каждой температуры определил сколько часов в год на эту температуру пришлось и посчитал потери для каждой температуры за сезон, разбил разумеется по статьям, стены, чердак, пол, окна, вентиляция. Для пола принял разницу температур неизменной 15 градусов вроде (у меня подвал). Оформил это все таблицей в екселе. Задаю толщину утеплителя и сразу вижу результат.

Стены у меня силикатный кирпич 38 см. Дом двухэтажный плюс подвал, площадь с подвалом 200 кв. м. Результаты следующие:
Пенопласт 5 см. Экономия за сезон составит 25919 руб, простой срок окупаемости (без инфляции) 12,8 лет.
Пенопласт 10 см. Экономия за сезон составит 30017 руб, простой срок окупаемости (без инфляции) 12,1 лет.
Пенопласт 15 см. Экономия за сезон составит 31690 руб, простой срок окупаемости (без инфляции) 12,5 лет.

Теперь немного другую цифру прикидываем. сравним 10 см и окупаемость к ним дополнительных 5 см (до 15)
Так вот, дополнительная экономия при +5 см составляет около 1700 руб в сезон. а доп затраты на утепление примерно 31 500 руб тоесть эти доп. 5 см утеплителя окупятся только через 19 лет. Оно того не стоит, хотя до расчетов я твердо намерен был делать 15 см чтоб снизить эксплуатационные затраты на газ, но теперь вижу, что шкурка овчинных выделок не стоит, доп. экономия 1700 руб в год, это не серьезно

Еще для сравнения, к первым пяти см, дополнительно добавляем еще 5 см, то доп. экономия составит 4100 в год, доп. затраты 31500, окупаемость 7.7 года, это уже нормально. Буду делать 10 см. тоньше все же не хочу, не серьезно как то.

Да по своим расчетам получил следующие результаты
стена кирпич 38 см плюс 10 см пенопласт.
окна энергосберегающие.
Потолок 20 см. мин вата (доски не считал, плюс две пленки и воздушный зазор 5 см. и еще меж перекрытием и чистовым потолком получится воздушная прослойка, потери значит еще меньше будут но пока это не беру в рсчет), пол пеноплат или что там ещ 10 см. плюс вентиляция.

Итого потери за год составляют 41 245 кВт. ч , это примерно 4 700 куб м. газа в год или примерно 17500 руб /год (1460 руб/мес.) Мне кажется нормально получилось . Хочу еще рекуператор на вентиляцию самодельный сделать, а то прикинул 30-33% всех потерь тепла, это потери на вентиляцию , с этим надо что то решать., нехочется в закупоренной коробочке сидеть.

Теплопотери дома, расчет теплопотерь частного дома

Главная > Теплопотери дома, проверка дома на теплопотери >

Сбережение энергоресурсов — актуальная тема на сегодняшний день. Для владельцев загородных домов практичный вариант сохранения тепла в доме — использование теплоизоляционных материалов. Выбор правильного варианта отделки помещений и подходящей теплоизоляции может быть сложной задачей.

Подбирая для своего дома необходимую систему отопления (газовые напольные котлы, настенные котлы, дизельные котлы, котлы на твердом топливе) или другую систему отопления, необходимо в первую очередь сделать расчет реальных теплопотерь.

Дом теряет тепло через крышу, стены, большое количество тепла уходит через окна, также значительные потери приходятся на вентиляцию.


Тепловые потери в основном зависят от:

• разницы температур на улице и в доме (чем разница больше, тем теплопотери выше)

• теплозащитных свойств ограждающих конструкций ( стен, окон, перекрытий, покрытий)

Наша организация оказывает полный комплекс услуг по тепловизионному обследованию зданий и сооружений (коттеджей, загородных домов), как на этапе строительства дома, так и в уже построенных домах.

С помощью тепловизионного обследования (тепловизора) можно наглядно увидеть, где находится тот участок, который теряет больше всего тепла, и оборудовать его дополнительной изоляцией. Сложив все теплопотери дома, вы определите необходимую мощность источника отопления (котлов отопления), которая понадобится для обогрева дома в ветреные и холодные дни.

Выполнив тепловизионное обследование дома можно рассчитать его реальные теплопотери устранение которых позволит значительно сократить затраты на отопление.

Расчет тепловых потерь дома (Скачать Exel)

 

* Указанные на сайте цены носят справочный характер и не являются публичной офертой. Уточнить стоимость оборудования и его наличие Вы можете по телефону (812) 309-23-57. Также Вы можете отправить Ваш запрос по факсу (812) 309-23-58 или на электронную почту [email protected]. Наши специалисты свяжутся с Вами в ближайшее время.

См. также:

» Как подготовиться к тепловизионному обследованию дома (Памятка Заказчика)

» Тепловизионное обследование зданий и сооружений (Стоимость)

 

Расчет потерь тепла в стене | EGEE 102: Энергосбережение и защита окружающей среды

Потери тепла с поверхности стены можно рассчитать, используя любую из трех формул, которые мы рассмотрели в части A этого урока.

Потери тепла через стены, окна, крышу и пол следует рассчитывать отдельно из-за различных значений R для каждой из этих поверхностей. Если R-значение стен и крыши одинаково, сумма площадей стен и крыши может использоваться с одним R-значением.

Пример

Дом в Денвере, штат Колорадо, имеет 580 футов 2 окон (R = 1), 1920 футов 2 стен и 2750 футов 2 крыши (R = 22). Стены состоят из деревянного сайдинга (R = 0,81), фанеры 0,75 дюйма, теплоизоляции из стекловолокна 3,5 дюйма, полиуретановой плиты 1,0 дюйма и гипсокартона 0,5 дюйма. Рассчитайте потребность дома в отоплении на отопительный сезон, учитывая, что HDD для Денвера составляет 6 100 единиц.

Решение:

Потребность в отоплении дома = Потери тепла из дома в течение всего года.Чтобы рассчитать теплопотери всего дома, нам нужно отдельно рассчитать теплопотери от стен, окон и крыши и сложить все тепловые потери.

Потери тепла от стен:

Площадь стен = 1 920 футов 2 , HDD = 6 100, и необходимо рассчитать составное R-значение стены.

Материалы и их R-ценность
Материал R-значение
Деревянный сайдинг 0.81
Фанера 3/4 дюйма 0,94
3,5 дюйма из стекловолокна 3,5 дюйма x 3,7 / дюйм 12,95
1,0 дюйм полиуретановой плиты = 1,0 дюйм x 5,25 / дюйм 5,25
1/2 дюйма Гипсокартон 0,45
Общая R-стоимость стен 20,40
Потери тепла от стен = 1 920 футов 2 × 6 100 ° F − дней × 24 часа 20.4ft2 ° FhBtu = 13,78 млн БТЕ Потери тепла от окон = 580 кв. Футов × 6 100 ° F — дни × 24 часа 1 фут 2 ° F hBtu = 84,91 MMBtu Потери тепла от крыши = 2750 футов2 × 6100 ° F — дни × 24 часа22 футов2 ° F hBtu = 18,30 MMBtu

Общие тепловые потери от дома = 13,78 + 84,91 + 18,30 = 116,99 MMBTU в год или потребность в отоплении составляет 116,99 млн BTU в год .

Как измерить потери тепла из вашего дома | Руководства по дому

Поддержание постоянной температуры в доме зимой может оказаться проигрышной битвой, учитывая вероятные потери тепла через стены, окна и двери, когда температура снаружи ниже, чем внутри вашего дома.Вы можете легко рассчитать, сколько тепла теряет ваш дом — что измеряется в британских тепловых единицах или БТЕ в час — с помощью уравнения и калькулятора.

Измерьте внутреннюю и внешнюю температуру поверхности, например стены. Поскольку горячий и холодный воздух будет смешиваться и создавать постоянную температуру, чем больше разница в температуре внутри и снаружи вашего дома, тем больше потеря тепла. Нагретый воздух внутри вашего дома будет пытаться уйти, в то время как холодный наружный воздух будет проникать внутрь вашего дома любым способом, например, через щели и щели между окнами и косяками.

Запишите длину и высоту той же стены, на которой вы измеряли температуру. Умножьте эти два числа, чтобы получить общую площадь стены. Например, если размер стены 15 футов на 40 футов, то общая площадь стены составляет 600 квадратных футов.

Воспользуйтесь тем же уравнением, чтобы вычислить квадратные метры любых окон или дверей на той же стене и вычесть эти квадратные метры из общей площади стены.

Вычтите температуру снаружи дома из температуры внутри дома, а затем умножьте это число на площадь стены.Например, если температура внутри вашего дома составляет 70 градусов по Фаренгейту, а температура снаружи вашего дома составляет 40 градусов по Фаренгейту, вычтите 40 из 70, чтобы получить 30, а затем умножьте 30 на площадь стены, которая в нашем примере составляет 600 квадратных футов.

Умножьте полученные 18 000 на коэффициент теплопроводности стены, который является постоянным числом, связанным с конкретными строительными материалами. Например, коэффициент теплопередачи для деревянной каркасной стены размером 2 на 4, имеющей 3,5-дюймовую изоляцию из стекловолокна, составляет 0,07. Умножив 18000 на 0.07 дает 1260 единиц, то есть количество БТЕ, теряемых через поверхность стены каждый час. БТЕ — это количество тепла, необходимое для повышения температуры 1 фунта воды на один градус по Фаренгейту. Калифорнийская энергетическая комиссия размещает на своем веб-сайте energy.ca.gov руководство по расчету U-значений или U-факторов строительных материалов, а также U-значений обычных строительных материалов.

Повторите эти шаги, чтобы выяснить, сколько БТЕ теряется через любые окна или двери на этой стене, а также на потолке.Добавление отдельных результатов для стены, потолка и любых окон и дверей даст вам полную потерю тепла стеной.

Используйте те же уравнения для других комнат, чтобы вычислить потери тепла в этих комнатах. Сложив эти числа вместе, вы узнаете, сколько тепла ваш дом теряет каждый час, и вы можете использовать это число, чтобы выяснить, насколько усердно ваша система отопления должна работать, чтобы поддерживать постоянную температуру в вашем доме.

Справочная информация

Советы

  • Дважды проверьте расчеты перед использованием для измерения теплопотерь.
  • Умножение итоговых потерь БТЕ в час на 24 может дать вам приблизительную оценку того, сколько тепла теряется каждый день.

Writer Bio

Уильям Хендерсон пишет для газет, журналов и журналов более 15 лет. Он служил редактором «New England Blade» и является бывшим сотрудником «The Advocate». Его работы также появлялись в The Good Men Project, Life By Me и The Huffington Post.

Правильный способ расчета потерь тепла в доме

Если вы пытаетесь определить теплопотери в доме, вы должны иметь базовые знания об измерениях и единицах измерения тепла, а также об изоляции и способах передачи тепла.Количество теплопотерь может иметь значение, когда вы рассматриваете новую изоляцию, воздухонепроницаемые окна или другие улучшения в доме, призванные сделать ваш дом более энергоэффективным.

Вы можете сами произвести расчеты теплопередачи или воспользоваться автоматическими калькуляторами.

Какие единицы измеряют тепловые потери?

Потери тепла обычно измеряются в старых британских и американских единицах. Чтобы понять жаргонный жаргон и иметь возможность сравнивать вычисления, вам необходимо использовать одни и те же единицы измерения.Наиболее важными являются БТЕ или британские тепловые единицы.

Одна БТЕ — это количество тепла, необходимое для поднятия 1 фунта воды на 1 градус по Фаренгейту. Это устройство, которое измеряет тепловую или охлаждающую энергию и количество тепловых потерь.

Другой термин, который необходимо знать, — это R-фактор. Это число указывает количество теплового сопротивления, которое имеет вещество, и обычно используется для измерения эффективности изоляции. Однако другие строительные материалы, такие как стеновая плита, черепица и сайдинг, также имеют R-значения.

Что способствует тепловым потерям?

Есть несколько причин, по которым дом теряет тепловую энергию. Это важно при попытке определить, сколько тепла зимой или прохладного воздуха летом теряет дом и насколько он энергоэффективен.

Основные причины потери тепла в доме:

  • Утечка воздуха вокруг дверей и окон (35 процентов)
  • Двери и окна (20 процентов)
  • Перекрытие или подвал (от 15 до 18 процентов)
  • Этажи (от 15 до 18 процентов)
  • Стены (от 12 до 15 процентов)
  • Потолки (10 процентов)
Расчеты

Чтобы рассчитать потери тепла в доме, вы получите число, которое вычисляет потерю энергии, выраженную в БТЕ в час.

Формула:

Q over t

Q = (площадь стены, потолка и т. Д.) X (внутренняя температура — наружная температура)

t = тепловое сопротивление стены, который рассчитывается как (квадратные футы стены) x (температура в градусах Фаренгейта) / БТЕ в час

Выполните отдельный расчет для каждой стены, потолка и пола и внесите корректировки для дверей и окон в стенах.

Для расчета потерь тепла при различных температурах, потерь тепла в градусах в день и годовых потерь тепла используйте формулы по адресу:

http: // hyperphysics.phy-astr.gsu.edu/Hbase/thermo/heatloss.html

Калькуляторы потерь тепла в доме

Если расчеты пугающие, другой способ определить потери тепла в доме — использовать онлайн-калькулятор потерь тепла. манипуляции для вас. Хотя вам все равно нужно будет измерить площадь в квадратных футах, а также температуру внутри и снаружи, калькуляторы точно скажут вам, какие числа вам нужно добавить и что измерить.

5-ступенчатый расчет тепловых потерь

Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, поскольку разные типы систем лучистого отопления имеют разные значения мощности в BTU.
Типичный расчет тепловой нагрузки состоит из расчета поверхностных тепловых потерь и тепловых потерь из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому неплохо начать с плана этажа с размерами всех стен, полов, потолка, а также дверей и окон.

Ниже приведен пример 5-шагового руководства по расчету поверхностных тепловых потерь:

Шаг 1 — Расчет дельты T (расчетная температура):

Дельта T — это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), при этом расчетная температура в помещении обычно составляет 68-72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона.Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равно 72F, а T2 равно –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F


Шаг 2 — Расчет площади поверхности:

Если расчет выполняется для внешней стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.

Площадь стены = Высота x Ширина — Поверхность двери — Площадь окна
Площадь стены = 8 футов x 22 фута - 24 квадратных фута - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов

Шаг 3 — Рассчитайте значение U:

Используйте руководство «Типичные значения R и U» для получения значения R стены.

Значение U = 1 / значение R
Значение U = 1 / 14,3 = 0,07

Шаг 4 — Расчет теплопотерь поверхности стены:

Потери тепла с поверхности можно рассчитать по следующей формуле:

Поверхностные тепловые потери = U-значение x Площадь стены x Дельта T
Поверхностные тепловые потери = 0,07 x 138 квадратных футов x 77F = 744 BTUH
(U-значение основано на предположении, что деревянная каркасная стена 2×4 со стекловолокном 3,5 дюйма изоляция)

Шаг 5 — Рассчитайте общую потерю тепла стеной:

Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка.
Теплопотери двери = 0,49 x 24 кв. Фута x 77F = 906 BTUH
(значение U основано на предположении, что дверь из цельного дерева)
Тепловые потери окна = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0,05 x 352 кв. Фута x 77F = 1355 BTUH
(Значение U основано на предположении, что изоляция из стекловолокна 6 дюймов. 22 футов x 16 футов)

Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери стены + Потери окна + Потери двери + Потери потолка
Общие тепловые потери стены = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH


Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:

Потери тепла из-за инфильтрации воздуха = Объем помещения x Дельта T x Количество воздуха в час x 0,018
Где объем помещения = длина x ширина x высота

изменения воздуха в час учитывают утечку воздуха в комнату.
Например: Потери тепла при инфильтрации воздуха = (22 фута x 16 футов x 8 футов) x 77F x 1,2 x 0,018 = 4683 BTUH

Для фактических расчетов обратитесь к своему подрядчику или разработчику системы.


Пример расчета теплопотерь из помещения

Простой пример, примененный к двухквартирному дому

Предпосылки для расчета теплопотерь от собственности описаны на отдельной странице этого сайта. Прежде чем рассматривать этот пример, Взгляните на страницу о калибровке, чтобы понять основные принципы.

Для этого примера, помимо размеров, указанных на вышеприведенных чертежах, также необходимо знать:

  1. Высота всех номеров составляет 8 футов.
  2. Все внешние стены представляют собой полости размером 11 дюймов без изоляции.
  3. Партийная стена из полнотелого кирпича 9 дюймов.
  4. Внутренние стены полностью оштукатурены, кирпич 4,5 дюйма, штукатурка.
  5. Пол подвесной брус.
  6. Все остекление UVPC с двойным остеклением.
  7. Наружная расчетная температура до 30 ° F.
  8. Температура в соседнем участке неизвестна, поэтому предположим, что разница температур составляет 5 ° F.
  9. Расчетная температура для комнаты — смотрите на этой странице.
  10. Большие окна имеют размер 10 футов x 4 фута, меньшие окна — 4 фута x 4 фута.
  11. Кровля — фетр с утеплителем 100 мм.
  12. План не в масштабе !!

В этом примере мы подробно рассмотрим одноместный номер (холл).

  1. Рассмотрим по очереди 4 стены и вычислим площадь каждого типа ткани:
    • Передняя стенка:
      1. Общая стена 14 футов x 8 футов = 112 квадратных футов
      2. Окно 10 футов x 4 фута = 40 квадратных футов
      3. Стена пустотелая So — 112-40 = 72 кв. Фута
    • Стена для вечеринок:
      1. Общая площадь стен 15 футов x 8 футов = 120 квадратных футов
    • Стена в столовую:
      1. На этой стене нет разницы температур, поэтому нет потока тепловой энергии, поэтому нет необходимости рассчитывать площадь.
    • Стена в зал:
      1. Общая стена 15 футов x 8 футов = 120 квадратных футов
      2. Дверь обрабатывается как стенная
    • Зоны потолка и пола:
      1. 15 футов x 14 футов = 210 квадратных футов:
  2. Используя приведенные выше цифры, значения U (см. Эту страницу) и температура разность по каждой стене / потолку / полу можно рассчитать теплопотери (площадь x значение U x разница температур).

    площадь
    (футы)

    Значение U

    темп.
    разница

    всего

    Передняя стенка: полость

    72

    0.18

    40

    518,4

    Окно

    40

    0,51

    40

    816

    Стена для вечеринок

    120

    0,38

    5

    228

    Стенка столовой

    0.39

    0

    0

    Стенка зала

    120

    0,39

    10

    468

    Потолок

    210

    0,29

    5

    304,5

    Этаж

    210

    0.12

    40

    1008

    Полная потеря ткани =

    3342,9

    Таким образом, общая потеря тепла через ткань здания составляет 3345 БТЕ

  3. Теперь рассчитаем потери тепла из-за воздухообмена.
    • объем помещения = 14 x 15 x 8 = 1,680 кубических футов
      воздухообмен = 1 в час (в зависимости от комнаты — см. Эту страницу)
      , поэтому потеря тепла из-за воздухообмена составляет
      1,680 х 1 х 0.02 x 40 = 1344 БТЕ
  4. Складываем результаты 2 и 3 вместе, получаем общую потерю тепла за час:
    • 3345 + 1344 = 4689 БТЕ / час

Это расчеты для салона, теперь необходимо провести расчеты для всех остальных комнат в доме. Обратите внимание, что если тепловые «потери» происходят через внутренние стены или пол / потолок, одна комната будет теряет тепло, в то время как другая комната получает его. В расчетах набирающее тепло помещение покажет отрицательные теплопотери. именно для этой части строительной ткани.

потеря ткани

Потери при замене воздуха

всего (БТЕ / час)

Столовая

3391

3046

6437

Гостиная

3343

1344

4687

Кухня

1714

941

2655

Прихожая

1501

1250

2751

Спальня 1

1162

666

1828

Спальня 2

1678

588

2266

Спальня 3

1009

134

1143

Ванная

2192

1129

3321

Всего на дом = 25 088

Результаты расчетов для всех комнат в примере дома показаны на Правильно.Это указывает количество тепла, которое необходимо произвести в каждой комнате для поддержания расчетной температуры. Нет только это необходимо для определения подходящего размера радиаторов, это также необходимо для определения размеров труб для водоснабжения. центральное отопление.

Когда все значения сложены, последняя цифра указывает на размер котла, необходимый для отопления дома (примечание: не учитывается дополнительное отопление, необходимое для горячего водная система).

Подробные расчеты для полного дома показаны на другом страница на этом сайте.


Эти упрощенные расчеты не принимают во внимание тепло, производимое жителями или их жителями. деятельность (например, приготовление пищи, стирка и т. д.). Его можно изменить, улучшив (т.е. уменьшив) количество воздухообмена за счет увеличения исключение сквозняков, улучшенная изоляция ткани или принятие более низкой расчетной температуры в любой из комнат.

Вообще нет смысла пытаться слишком точно рассчитать показатели теплопотерь, его основная цель указывает размер требуемых радиаторов и бойлера.Знание этих значений теплопотерь должно гарантировать, что выбранный радиаторы и бойлер не должны быть ни занижены, ни завышены; некоторое завышение рейтинга будет неизбежным, поскольку окончательный расчет Цифра не будет полностью соответствовать номинальной мощности любого радиатора или бойлера.

Энергия для отопления дома

Передача тепла от вашего дома может происходить за счет теплопроводности, конвекции и излучения. Обычно это моделируется с точки зрения теплопроводности, хотя проникновение через стены и вокруг окон может привести к значительным дополнительным потерям, если они плохо герметизированы.Потери излучения можно минимизировать, используя изоляцию с фольгой в качестве радиационного барьера.

Промышленность США по отоплению и кондиционированию воздуха почти полностью использует для своих расчетов старые британские и американские единицы. Для совместимости с обычно встречающимися величинами этот пример будет выражен в этих единицах.

I. Рассчитайте скорость потери стенки в БТЕ в час.

Для комнаты размером 10 на 10 футов с потолком 8 футов, со всеми поверхностями, изолированными до R19, как рекомендовано U.S. Министерство энергетики, с внутренней температурой 68 ° F и наружной температурой 28 ° F:

II. Рассчитайте потери за день при этих температурах.

Потери тепла в день = (674 БТЕ / час) (24 часа) = 16168 БТЕ

Обратите внимание, что это просто потеря через стены. Потери через пол и потолок рассчитываются отдельно и обычно включают разные значения R.

III. Рассчитайте потерю за «градусный день».

Это потеря за день с разницей в один градус между внутренней и внешней температурой.

Если бы условия случая II преобладали в течение всего дня, вам потребовалось бы 40 градусо-дней отопления, и, следовательно, потребовалось бы 40 градусо-дней x 404 БТЕ / градус дня = 16168 БТЕ для поддержания постоянной внутренней температуры.

IV. Рассчитайте теплопотери за весь отопительный сезон.

Типичная потребность в отоплении для отопительного сезона в Атланте, с сентября по май, составляет 2980 градусо-дней (долгосрочное среднее значение).

Типичное количество градусо-дней нагрева или охлаждения для данного географического местоположения обычно можно получить в службе погоды.

V. Рассчитайте потери тепла за отопительный сезон для типичного неизолированного южного дома в Атланте.

Диапазон уровней потерь, указанный Министерством энергетики для неизолированных типовых жилищ, составляет от 15 000 до 30 000 БТЕ / градус в день. Выбор 25000 БТЕ / градус в день:

VI. Рассчитайте годовую стоимость отопления.

Предположим, что стоимость природного газа составляет 12 долларов за миллион БТЕ в печи, работающей с КПД 70%.

Предположим, что электрический резистивный нагрев с КПД 100% *, 9 / кВтч.

Предположим, электрический тепловой насос с КПД = 3

* 100% -ная эффективность использования электричества в вашем доме для производства тепла — распространенный маркетинговый ход электроэнергетических компаний. Это заблуждение, потому что вам нужно сжечь около 3 единиц первичного топлива, чтобы доставить 1 единицу электроэнергии в дом из-за теплового узкого места в производстве электроэнергии. Таким образом, 100% эффективное использование в вашем доме составляет около 33% эффективности использования основного топлива.

Когда вы отапливаете природным газом, вы используете основное топливо в своем доме, и это явно предпочтительнее, чем использование электрического резистивного отопления, которое является расточительным по сравнению с высококачественной поставляемой электрической энергией. Используя электрический тепловой насос, по крайней мере, на юге США, вы можете получить коэффициент полезного действия около 3. То есть вы закачиваете в дом три единицы тепла, затрачивая всего одну единицу высококачественной электрической энергии. энергия. Это почти компенсирует потери 3: 1 в процессе выработки электроэнергии, о которых говорилось выше.В приведенном выше примере расчетная стоимость электрического теплового насоса значительно дешевле, чем стоимость нагрева природного газа, но это может быть связано с тем, что текущая стоимость природного газа в то время была необычно высокой. За последние 25 лет или около того, отопление с использованием природного газа и электрического теплового насоса оставалось сопоставимым по стоимости.

Этот термальный дом | Сделай математику

[ Параллельное рассмотрение некоторых из этих материалов появляется в главе 6 учебника «Энергия и человеческие амбиции на конечной планете» (бесплатный).]

Если вы хотите, чтобы ваш дом более эффективно отражал неприятности на открытом воздухе (как в жару, так и в холод), что вам следует сделать в первую очередь? Утеплить стены? Утеплить потолок? Крыша? Лучше окна? Устранение тяги? Что имеет наибольший эффект? Хотя у меня, к сожалению, мало практического опыта по ремонту дома (это в моем списке дел), я по крайней мере до понимаю теплопередачу с точки зрения физики / инженерии и могу выполнить некоторые проницательные вычисления.Итак, давайте построим фантастический дом и оценим температурные компромиссы на Теоретическом переулке, 1234.

Тепловой перенос

Тепло может перемещаться только тремя способами: теплопроводностью , конвекцией и излучением . Других вариантов нет.

Проводимость

Мощность (энергия в единицу времени), протекающая через материал посредством проводимости, существенно зависит от свойств материала (теплопроводность, κ ), толщины материала, t , площади, A , участвующей в проводимости (между холодной и горячей средой), а разница температур — ΔT .Не задумываясь, вы можете построить правильное соотношение для мощности, передаваемой проводимостью, выяснив, как она должна масштабироваться при изменении той или иной переменной: P cond = κAΔT / t , где κ — теплопроводность материала, принимаемая в метрической системе единиц Вт / м / ° C. Для многих строительных материалов значение κ находится в диапазоне 0,1–1 Вт / м / ° C. Лист фанеры в нижней части диапазона ( κ ≈ 0.12, размером 4 × 8 футов или 3 м²; t = 0,019 м (толщина 0,75 дюйма) будет проводить около 19 Вт на градус Цельсия, проходящий через него.

R-ценность

Строительная промышленность характеризует материалы по их R-значению, которое в США выражается в неудачных единицах фут² · ° F · ч / британских тепловых единиц. Эквивалент СИ — чуть более аккуратный м² · ° C / Вт. Значение R включает толщину, t , в меру, так что тот же материал с удвоенной толщиной получит удвоенное значение R.

Что касается внутренних свойств материала, κ и t , R US = 5,7 × т / κ в США или, проще говоря, R SI = т / κ за рубежом. Наша прежняя фанера будет характеризоваться как R = 0,9 в США или 0,16 в международном масштабе. Обратите внимание, что значение R не зависит от площади. Чтобы получить поток мощности через поверхность в ваттах, мы заменяем отношение на два абзаца назад на P cond = 5,7 × AΔT / R US или P cond = AΔT / Р СИ .

Конвекция

Конвекция по своей сути просто перенос в движущуюся жидкость, которая затем уносит тепло, просто перемещая его. К любой поверхности в потоке текучей среды примыкает пограничный слой текучей среды, который прилипает к поверхности, так что тепловой поток контролируется проводимостью через пограничный слой. Для воздуха κ ≈ 0,02 Вт / м / ° C, а толщина пограничного слоя часто составляет порядка нескольких миллиметров, поэтому эффективное значение R (US) находится в районе 1.

Если не считать пограничных слоев, мощность конвекции должна быть пропорциональна открытой площади и разнице температур между кожей и окружающим воздухом. Константа пропорциональности, h , определяет, насколько сильна связь, и эффективно отражает физику пограничного слоя (которая зависит от скорости потока, деталей поверхности и т. Д.). В любом случае получаем соотношение P conv = hAΔT . Типичные ситуации: ч, ≈ 2 Вт / м² / ° C для внутренних поверхностей («неподвижный» воздух), h ≈ 5 Вт / м² / ° C для легкого воздуха на открытом воздухе и, возможно, 10 или 20 в ветреную погоду.Если наш кусок фанеры площадью 3 м² имеет комнатную температуру (20 ° C) и помещен на морозный ветер со значением 5 h , каждая поверхность будет терять энергию со скоростью 300 Вт.

Обратите внимание, что мы можем связать h со значением R в общем уравнении, которое выглядит так же, как соотношение проводимости: P = hAΔT = 5,7 × AΔT / R US , и в этом случае мы можем идентифицировать h = 5,7 / R US = 1 / R SI . В этом случае легкий воздух на открытом воздухе ( h = 5) может быть связан с R US ≈ 1.

Радиация

Каждый объект излучает электромагнитное излучение. При знакомых температурах все это проявляется в средней инфракрасной области, достигая максимума на длине волны 10 микрон и полностью исчезая на 2 микрона (в то время как человеческое зрение составляет 0,4–0,7 микрон). Чистый поток, естественно, от горячего к холодному и подчиняется соотношению: P рад = ( ε h T 4 h ε c T 4 c ), где σ = 5.67 × 10 −8 Вт / м² / К 4 . Коэффициенты ε представляют собой значения коэффициента излучения в диапазоне от 0,0 (блестящий) до 1,0 (тусклый). Температура должна быть выражена в Кельвинах, поскольку количество излучения зависит от абсолютной температуры объекта . Индексы обозначают горячие и холодные предметы. Мы не будем обращать внимания на осложнения из-за неоднородной среды.

Итак, наш кусок фанеры при комнатной температуре (293 K) в радиационном контакте с окружающим миром при 0 ° C (273 K) будет видеть около 300 Вт, выходящих с каждой поверхности, если коэффициент излучения предполагается равным почти 1.0. Очень похоже на конвекцию (хорошее практическое правило).

Несколько слов об излучательной способности. У большинства вещей очень высокий коэффициент излучения. Все органическое (дерево, кожа, пластик, краска любого цвета), вероятно, будет иметь коэффициент излучения около 0,95. Ровное стекло с полублестящей (частично отражающей) поверхностью — 0,87. Низко опускаются только блестящие металлы, поэтому в воздуховодах, некоторых изоляционных материалах и термосах используются блестящие поверхности: чтобы выбить канал радиационных потерь тепла.

К сожалению, излучение не просто пропорционально ΔT , а пропорционально разнице между четвертой степенью температур.Однако для небольших температурных перепадов в абсолютном масштабе (к счастью, обычное дело) мы можем линеаризовать соотношение (здесь предполагая единичную излучательную способность) до P рад 4AσT ³ ΔT , где T в кубической термин представляет собой репрезентативную температуру, возможно, между горячим и холодным. Обратите внимание, что форма теперь выглядит так же, как конвекция, с 4 σT ³ вместо h . Для предыдущих примеров, если мы выберем T = 283 K, мы найдем эквивалентное h -значение 4 σT ³ ≈ 5.1. Опять же, это иллюстрирует схожую величину излучения и конвекции в обычных обстоятельствах. В этом примере линеаризованное приближение находится в пределах процента от правильного ответа, когда средняя точка выбрана в качестве «эталонной» температуры, с отклонением на ~ 10%, если вместо этого используется одна из конечных точек. Поскольку излучение может быть линеаризовано таким образом и выражено как значение h , оно также может быть выражено в терминах эквивалентного значения R.

Вся Энчилада

В реальной ситуации обычно приходится иметь дело со всеми тремя тепловыми путями одновременно.Итак, давайте рассмотрим стену, расположенную между жарким интерьером и холодным свежим фасадом. Судя по опыту, стена будет немного прохладной на ощупь, поэтому у нас есть тепловой поток из комнаты в стену через конвекцию и излучение. Сама стена проводит тепло к внешней поверхности. Тогда конвекция и излучение уносят оттуда тепло. В равновесии (и поскольку тепловая энергия не создается и не разрушается в стене), у нас есть такой баланс уравнений, что P усл, в + P рад, в = P cond = P усл, выход + P рад, выход .

Если мы не будем анализировать температуру поверхности стены внутри и снаружи, мы можем объединить все трубопроводы в единое целое. Можно подумать о каждом пути с точки зрения сопротивления тепловому потоку (что само по себе сродни току в цепи). Это, в первую очередь, происхождение термина «R-ценность». Конвекция и излучение действуют как два резистора, включенных параллельно, последовательно с проводящим элементом.

R-значения для конвекции, излучения и проводимости объединяются как резисторы в цепи, показанной здесь для проводящей стенки, соединяющейся с внутренней и внешней частью посредством конвекции и излучения.Сумма двух входных мощностей равна проводимой мощности, которая равна сумме выходных мощностей.

Обратите внимание, что когда два процесса работают параллельно, разделяя одну и ту же область и ΔT , эффективное значение R определяется как P tot = AΔT / R eff = P 1 + P 2 = AΔT (1 / R 1 + 1 / R 2 ), так что 1 / R eff = (1 / R 1 + 1 / R 2 ) .И наоборот, когда два процесса идут последовательно, разделяя один и тот же поток мощности и одну и ту же площадь, но кусочно разные значения ΔT , мы получаем, что P = AΔT 1 / R 1 = AΔT 2 / R 2 , так что общий ΔT = ΔT 1 + ΔT 2 работает на P (R 1 + R 2 ) / A или P = AΔT / (R 1 + R 2 ), так что R eff = (R 1 + R 2 ).Другими словами, значения R просто складываются последовательно, а их обратные значения складываются при параллельном подключении — точно так же, как резисторы в электрической цепи. Обратите внимание, что для наглядности я отказался от раздражающего коэффициента преобразования 5,7 в приведенных выше отношениях, который при желании можно добавить обратно.

Для наглядного примера того, как все это работает, давайте построим стену из цельного листа фанеры ( κ = 0,12 Вт / м / ° C; t = 0,019 м; поэтому R US = 0,9.У нас будет внутренняя среда с ч, = 2 Вт / м² / ° C, T = 20 ° C, и предположим, что температура внутренней стены близка к той же, так что я могу использовать T = 293 K в термине радиационного приближения. В этом случае я вычисляю значения R (US), равные 2,85 и 1 для конвекции и излучения соответственно (для неподвижного воздуха внутри радиация является здесь более важным каналом). Параллельно они добавляют к эффективному R-значению 0,74. Если внешняя часть нашей «стены» близка к температуре окружающей среды, скажем, 273 K, и небольшой ветер дает нам ч = 10 Вт / м² / ° C, мы имеем R-значение 0.57 и 1.2 для конвекции и излучения (обратите внимание на изменение роли в более активном воздухе, так что конвекция преобладает). Внешнее сочетание R = 0,39.

Таким образом, наша общая передача тепла через стену имеет три последовательных значения R: 0,74 для передачи тепла в стену, 0,9 для передачи тепла через стену и 0,39 для отвода тепла от внешней поверхности. Суммируя это, мы получаем R US ≈ 2,03. Для внутреннего-внешнего ΔT = 20 ° C каждый квадратный метр этой стены будет проводить 5.7 × 20 / 2,03 ≈ 56 Вт.

Реальный

Теперь, когда у нас есть некоторое представление о том, как обращаться с проводимостью, конвекцией и излучением в контексте R-значения, мы можем найти и использовать соответствующие R-значения для обычных строительных материалов. Большую часть информации я получаю с этого очень полезного сайта, многие значения также доступны на сайте Википедии.

Чтобы вычислить эффективное значение R для композитной поверхности, такой как стена со стойками внутри, нужно просто комбинировать параллельные пути, взвешенные по дробной площади каждой.Например, стена со стойками имеет 15% площади, покрытой стойками, с общим сквозным значением R (включая конвекцию / излучение, называемое «воздушной пленкой») 7,1. Остальные 85% — это изолированный отсек со значением R 15,7. Эффективное значение R равно 1 / R = (0,15 / R , шпилька + 0,85 / R , отсек ), при вычислении R = 13,3. Если бы я не использовал изоляцию, я бы заменил ватин из стекловолокна R = 13 двумя слоями «воздушной пленки» со значением 0,68 (очень похоже на наше значение 0,74, указанное выше).В этом случае 1 / R = (0,15 / 7,1 + 0,85 / 4,1) или R = 4,3. Обратите внимание, что для неизолированных стен стойки имеют большую изоляцию, чем воздушное пространство между ними.

Давайте теперь составим таблицу значений для соответствующих строительных блоков. Разделите R US на 5,7, чтобы получить R SI .

Структура % Обрамление Элементы R США
Неизолированная стена 15% воздух; гипсокартон; шпилька / гнезда; фанера; сайдинг; воздух 4.1
Изолированная стена 15% заменить отсек изоляцией 13,3
Неизолированный потолок 8% воздух; гипсокартон; стропильный / открытый; воздух 1,65
Утепленный потолок 8% заменить открытый на изоляцию 13,0
Неизолированный пол 15% воздух; плитка; фанера; балки / открытые; воздух 2.5
Утепленный пол 15% заменить открытый на изоляцию 12,7
Неизолированная крыша 8% воздух; обрамление / открытое; фанера; опоясывающий лишай; воздух 1,85
Изолированная крыша 8% заменить открытый на изоляцию 13,2
Окно с одинарным стеклом без покрытий 0,9
Двухкамерное окно полудюймовый воздушный зазор 2.0
Лучшее окно пленка подвесная низкая E 4,0
Дверь дерево, твердая сердцевина 3,0

Наш скучный завод

Для простоты построим одноэтажный дом квадратной формы. У нас будет скатная крыша с чердаком, и мы рассмотрим фальш-фундамент с ползунком под ним, а также фундамент из плит.Мы украсим дом с каждой стороны двумя окнами среднего размера, а также входной и задней дверью. Что касается размера, мы возьмем что-то близкое к среднему по США 2700 футов² и воспользуемся возможностью перейти на метрические системы, сделав наш дом 15 м со стороной, в результате чего площадь составит 225 м² или 2422 футов². Стены будут иметь высоту 2,5 м (8 футов). Для окон мы сделаем каждое по 1,5 м² (что эквивалентно 16 фут² или 4 × 4 фута). Наши двери будут занимать 2 м² каждая.

Красивый дом для теоретика.

Таким образом, общая площадь стен составляет 134 м², пола и потолка по 225 м², окон 12 м² и дверей 4 м².

Мы вычислим тепловую устойчивость дома в единицах Вт / ° C и назовем это теплопроводностью. Каждый компонент добавляет некоторый бит теплопроводности в соответствии с Q = P / ΔT = 5,7 × A / R US . Затем их можно добавить для каждого компонента дома.

Используя неизолированные значения для всего и одинарных окон, я получаю значения Q в Вт / ° C для стен из 186; потолок (при условии достаточной вентиляции чердака, доводит его до температуры окружающей среды): 777; фальшпол: 513; однослойные окна: 75; двери: 8.Итого 1560 Вт / ° C.

Давайте сделаем паузу, чтобы оценить это число в перспективе. Для поддержания температуры в помещении, когда на улице холодно, потребуется 31 кВт мощности или 20 обогревателей. Печь мощностью 75 000 британских тепловых единиц в час эквивалентна 22 кВт и не сможет справиться с этой задачей. А мы еще даже не рассматривали проекты.

Теперь посмотрим на другую крайность и поместим изоляцию R-13 в стены, потолок, под пол и будем использовать лучшие окна, которые только можно купить. Мы снова дадим чердак полностью проветривать и поддерживать температуру наружного воздуха.Теперь получаем стены: 57; потолок: 99; этаж: 103; окна: 17, двери по-прежнему на 4. Суммарная мощность составляет 280 Вт / ° C, что составляет примерно пятую часть от того, что было раньше. Стоимость нагрева / охлаждения также улучшится как минимум в пять раз (в более мягких условиях это будет не так часто). В нашем случае 53% улучшений произошло за счет теплоизоляции потолка, 32% — пола, 10% — стен и 5% — окон. Это предполагает порядок приоритета. Конечно, можно получить еще больший выигрыш при большем количестве изоляции — до тех пор, пока не будут преобладать другие факторы.

Потери пола здесь немного преувеличены, так как простые числа предполагают, что в подлете так же холодно, как и снаружи. В той степени, в которой это не так, цифры немного смягчаются пропорционально относительному повышению температуры. Также бывает, что воздух у пола, вероятно, будет холоднее, чем воздух у потолка, если только внутренний воздух не будет хорошо перемешан. Это также снижает потери тепла через пол в том случае, если на улице холоднее, чем внутри. Тем не менее, вполне вероятно, что изоляция пола принесет заметное улучшение.

Характеристики крыши

Возможно, предположение о полностью вентилируемом чердаке вызвало ужас. Если бы я предположил герметичный чердак (другая крайность), потолок и крыша действовали бы последовательно, чтобы получить значение R 3,5 в неизолированном корпусе или 26,2 в изолированном корпусе. Значения теплопроводности тогда составят 366 Вт / ° C и 49 Вт / ° C соответственно. Наши итоговые значения увеличились бы с 1150 Вт / ° C до 232 Вт / ° C. Самый большой выигрыш в этом случае будет связан с изоляцией пола. Но на самом деле чердак, как правило, ближе к окружающей среде, чем к внутреннему, поэтому изоляция потолка, вероятно, останется самым важным шагом.

Предполагая, что чердак вентилируется, большая часть разницы температур внутри и снаружи будет приходиться на потолок, делая изоляционные свойства крыши второстепенными. Но это не учитывает солнечную нагрузку на крышу. Любой, кто испытал жаркий чердак, знает, что вентиляция чердака недостаточна, чтобы крыша не обогревала пространство. Поэтому изоляция крыши может стать важным шагом в средах, где охлаждение является большим потребителем энергии. Для мест, где отопление важнее охлаждения, может быть лучше оставить изоляцию крыши отключенной, чтобы зимнее солнце немного обогревало чердак.

Плиточные перекрытия

Для плитных полов оценка несколько сложнее, чем для фальшполов. Шестидюймовая бетонная плита сама по себе имеет R-значение около 0,5. Но под плитой грязь. Собирая информацию из нескольких источников (здесь и здесь), я пришел к выводу, что сухая почва имеет теплопроводность около 0,8 Вт / м / ° C и эффективную тепловую толщину (шкала длины, по которой существует температурный градиент) около 0,2 м. Это дало бы R-значение около 1,4 для комбинированного R-значения 1.9 или 2,6 с учетом радиационной / проводящей связи. Но все это может не иметь значения, потому что температура грунта довольно стабильна в течение всего года и может достигать приблизительного равновесия с температурой вашего дома — по крайней мере, вдали от края плиты. Чтобы устранить утечку по сторонам плиты (воздух и земля), сайт в штате Вашингтон предполагает коэффициент потерь 1,2 Вт / ° C на метр периметра, или 72 Вт / ° C для нашего прекрасного дома, что не слишком отличается из того, что мы рассчитали для утепленного фальшпола.

Я чувствую сквозняк

Некоторое время назад я оценил тепловые характеристики своего дома (который представляет собой плиточный дом примерно на две трети размера, который мы рассматриваем в этом посте) в контексте отопления, и при этом вычислил, что моему дому требуется 610 Вт. / ° C для нагрева. Чуть позже я посмотрел на характеристики охлаждения и в процессе обнаружил недостаток в моем предыдущем методе анализа. Более полный метод предложил 1465 Вт / ° C. Большая разница! Но не только это, похоже, что мой дом на хуже , чем дом в нашем примере — несмотря на то, что он меньше, имеет изоляцию в стенах, разную степень изоляции на потолке (некоторые очень старые и тонкие) и двойное остекление. окна практически везде.В моем случае неутешительные тепловые характеристики не приводят к потере энергии, поскольку я обычно не обогреваю и не охлаждаю дом. Но более уютный дом был бы удобнее. Так в чем же дело?

Подозреваю сквозняки. У нас есть вентиляторы в нескольких комнатах с минимальной герметизацией, может быть освещение по всему потолку, возможно, протекающие дверные рамы и заслонка в неиспользуемом камине, который я только что проверил и обнаружил открытым — вероятно, так было с тех пор, как мы купили дом. несколько лет назад!

Насколько важны черновики? Воздух имеет теплоемкость около 1000 Дж / кг / ° C.Каждый кубический метр воздуха (1000 л) имеет массу около 1,25 кг и, следовательно, содержит 1250 Дж энергии на градус разницы температур. Таким образом, если воздух будет поступать с разницей температур 10 ° C со скоростью 0,1 м3 / с (210 кубических футов в минуту), соответствующая скорость переноса тепла будет 1250 Вт.

Рекомендуемая скорость потока требует примерно 4 воздухообмена в час. В нашем воображаемом доме это означает 225 × 2,5 × 4 = 2250 м³ за 3600 секунд, или 0,625 м³ / с, что соответствует примерно 0.8 кг / с или 780 Вт / ° C. Это много! Другой источник рекомендует минимальный расход 1 куб. Фут / мин в минуту на 100 кв. Футов площади, плюс еще 7,5 куб. Футов в минуту, умноженное на количество спален плюс одна. Для нашего модельного дома, предполагающего три спальни, мы получаем минимальную потребность в 54 кубических футов в минуту, что составляет всего 0,026 м³ / с, или одну полную замену каждые шесть часов. Теперь у нас 32 Вт / ° C, и мы можем конкурировать с нашими изолированными стенами и т. Д. Я считаю, что последний источник более вероятен.

Мне очень пригодилась следующая информация с этого сайта:

В среднем по стране скорость воздухообмена в существующих домах составляет от одного до двух в час и снижается в связи с ужесточением строительных норм и более строгими строительными нормами.Стандартные дома, построенные сегодня, обычно имеют коэффициент воздухообмена от 0,5 до 1,0. Чрезвычайно плотная новая конструкция может обеспечить коэффициент воздухообмена 0,35 или меньше. В большинстве домов с такой низкой интенсивностью воздухообмена есть какая-либо форма механической вентиляции для подачи свежего наружного воздуха и обмена теплом между двумя воздушными потоками.

Чтобы получить представление о том, какой может быть уровень воздухообмена в вашем доме, примите во внимание, что плотный, хорошо герметизированный недавно построенный дом обычно достигает 0,6 воздухообмена в час или меньше.Достаточно плотный, хорошо построенный старый дом обычно имеет скорость воздухообмена около 1 в час. Немного рыхлый старый дом без штормовых окон и местами с отсутствующим герметиком имеет коэффициент воздухообмена около 2. В довольно свободном, продуваемом сквозняком доме без герметика или уплотнителей и используемых входов коэффициент воздухообмена может достигать 4, а коэффициент воздухообмена в ветхом доме со сквозняками скорость воздухообмена может достигать 8.

Уклонение от проекта

Я хочу сделать тест на вентиляционную дверь, чтобы проверить сквозняк в моем доме.Идея состоит в том, чтобы герметизировать дом, установить на входной двери большой вентилятор, который вытягивает воздух из дома, и измерить разницу давления в зависимости от скорости выпуска воздуха. Кроме того, когда дом находится под отрицательным давлением, утечки можно обнаружить, прислушиваясь к свистам или шипению, используя источник дыма, и разделить их, поочередно закрывая / герметизируя части дома, чтобы изолировать самые большие проблемы. Как это , а не может быть забавным ?!

Еще один прием, о котором стоит упомянуть, заключается в том, что после ремонта дома все еще можно обеспечить адекватную вентиляцию без полного теплового удара с помощью вентилятора с рекуперацией тепла.Идея состоит в том, чтобы пропустить входящий воздух мимо выходящего воздуха в теплообменнике (например, воздух разделяется тонкой металлической мембраной). К тому времени, когда воздух выходит с обеих сторон, входящий воздух приобретает температуру окружающего воздуха в доме, в то время как отработанный воздух становится очень похожим на наружный воздух перед выходом. При таком подходе тепловые потери, связанные с воздухообменом, можно сократить в четыре и более раз. Это снизит ранее рассчитанные 32 Вт / ° C до менее 10 и сравняется с оценкой высокопроизводительных окон.

Извлеченные уроки

Тепловые характеристики дома не , что трудно понять , учитывая небольшую предысторию и некоторые соответствующие цифры. Инструменты, разработанные здесь, позволяют исследовать относительные достоинства новых окон, проектов изоляции, управления вентиляцией и т. Д. Первостепенное значение имеет возможность объединить все три тепловых пути в структуру R-значения, чтобы можно было оценивать и сравнивать композитные конструкции.

Дом

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *