+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Способы проверки симистора, как прозванивать симисторы мультиметром

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Как проверить симистор мультиметром на исправность? 2 простых способа

В электрических приборах присутствует огромное количество полупроводниковых устройств, имеющих самый различный функционал и назначение. В большинстве схем роль электронного ключа выполняет симистор, который можно устанавливать в открытое или закрытое положение. В случае поломки какого-либо блока или прибора проверке подлежат все детали, поэтому далее мы рассмотрим, как проверить симистор мультиметром, не привлекая на помощь профессионалов.

Способы проверки

На практике симисторы могут быть представлены как силовыми агрегатами в распределительных устройствах или высоковольтных линиях, так и слаботочными элементами плат. Существует несколько способов проверки работоспособности, среди которых наиболее популярными являются:

  • при помощи мультиметра;
  • установив на специальный стенд;
  • посредством батарейки и лампочки;
  • транзистор-тестером.

Чаще всего используется первый метод, поскольку практически у каждого дома имеется мультиметр, тестер или цешка. Да и собирать целый испытательный стенд ради нескольких проверок смысла не имеет, в равной мере, как и конструировать контрольку с блоком питания.

Перед рассмотрением процедуры следует разобраться в конструктивных особенностях симистора.

В электрическом смысле это полупроводниковый элемент, который как и тиристор может открываться и закрываться для протекания тока, но, в отличии от тиристора, симистор пропускает ток в двух направлениях. Поэтому его конструкция содержит два встречно направленных кристалла, которые открываются и закрываются управляющим электродом, за счет такой особенности его иногда считают разновидностью тиристора.

Рис. 1. Принципиальная схема симистора

Посмотрите на рисунок 1, в работе устройства может произойти либо обрыв линии с нарушением целостности цепи, либо пробой p-n перехода, характеризующийся коротким замыканием. Чтобы проверить симистор  мультиметром, применяются два метода – с выпаиванием полупроводникового прибора и на плате. Второй вариант является более удобным, так как проверить можно без лишних манипуляций с радиодеталями, однако на измерения будет влиять и общая  работоспособность схемы.

Поэтому для повышения точности симистор выпаивают с платы и проверяют, иначе короткое замыкание в параллельно включенной ветке будет показывать  неисправность на мультиметре при фактически годном испытуемом объекте.

Если выпаять симистор

Рассмотрим вариант с полным отделением симистора от платы, в результате вы должны получить абсолютно обособленную независимую деталь.

Рис. 2. Выпаять симистор

Основной вопрос, с которым вы должны определиться – расположение выводов или цоколевка ножек детали. Ниже приведены несколько типовых моделей, но следует отметить, что на практике может встречаться и другой порядок чередования, поэтому место нахождения управляющего контакта по отношению к двум рабочим вы должны определить заранее по модели или паспорту симистора.

Рис. 3. Расположение выводов симистора

Как видите на рисунке 3, в любой модели будут присутствовать три вывода – два силовые, которые имеют маркировку A1 и A2, в некоторых вариантах они обозначают тиристоры и маркируются как T1 и T2. Третья ножка – это управляющий вывод, он маркируется как G, от английского gate – ворота. После того, как разберетесь с конструкцией конкретного симистора и распиновкой выводов, переходите к настройке измерительного прибора. Большинство цифровых мультиметров имеют отдельное положение для «прозвонки», на панели его обозначают как полупроводниковый диод.

Рис. 4. Выбрать режим прозвонки

Однако это не единственный вариант, некоторые варианты цифрового тестера имеют совмещенную функцию, которая на панели выражается одной отметкой, совмещающей и прозвонку и функцию омметра:

Рис. 5. Совмещенный омметр с прозвонкой

После переключения установите щупы мультиметра в соответствующие гнезда, как правило, чтобы проверить симистор, вам понадобится разъем COM – это общий вывод и разъем для измерения сопротивления или со значком прозвонки. В таком режиме между щупами возникнет разность потенциалов, поскольку на них искусственно подается испытательное напряжение, соответственно, через симистор будет протекать какой-то ток.

 Подготовив мультиметр и разобравшись с устройством симистора, можете переходить к самой проверке на исправность.

Процедура будет включать в себя несколько этапов:

  • Чтобы проверить, не пробит ли переход, сначала нужно приложить щупы тестера к силовым выводам. Во время процедуры на табло может появиться значение 0 или 1, где 0 – обозначает пробитый полупроводник, а единица полностью исправный. В некоторых моделях измерительных приборов вместо единицы может отображаться значение OL, и то и другое свидетельствует о большом сопротивлении.
Рис. 6. Прозвоните силовые контакты
  • Затем переместите один из выводов на управляющий контакт, это приведет к замеру сопротивления между ними. Как правило,  значение падения напряжения между A1 и  G будет колебаться от 100 до 200, но могут быть и некоторые отличия, в зависимости от модели. Переместите щуп с одного силового вывода симистора на другой, значение в исправном состоянии должно быть равным 1.
  • Чтобы проверить, открывается ли переход симистора, кратковременно коснитесь управляющего электрода при подаче напряжения на силовые контакты. Показания на табло тут же изменятся, что и укажет на исправность прибора. Однако работа в открытом состоянии, скорее всего, продлиться недолго, поскольку приложенного напряжения будет недостаточно для получения тока удержания. Для подключения вывода щупа сразу на две ножки можно воспользоваться как дополнительным проводом, так и коснуться их самим щупом по диагонали.

Если выпаянный симистор показал исправные результаты во всех положениях, то проблема заключается в другом элементе или узле схемы.

Не выпаивая

Несмотря не преимущества предыдущего варианта проверки, далеко не всегда предоставляется возможность впаять деталь из общего блока или платы. Иногда это обусловлено конструкционным расположением ближайших элементов, иногда вся плата залита, а в некоторых ситуациях под рукой попросту может не оказаться паяльника. В этом случае максимально удалите все возможные подключения, которые так или иначе могли бы повлиять на результаты проверки симистора.

В первую очередь, обратите внимание на саму нагрузку, так как симистор – это ключ, возможно контакты к отключаемой нагрузке представлены клеммами или другими разъемными соединениями. Далее изучите схему, возможно, кроме симистора, в цепи присутствуют какие-либо коммутаторы или предохранители, которые смогут обеспечить разрыв  в цепи.

Так как ранее мы рассматривали вариант прозвонки, теперь произведем замер сопротивление в режиме омметра. Для этого переместите ручку переключателя мультиметра в соответствующее положение и подключите выводы щупов. Заметьте, из-за установки на плате далеко не всегда представляется возможным рассмотреть маркировку симистора или цоколевку его ножек, поэтому нередко приходится руководствоваться схемой или опираться на данные измерений. Если вы столкнулись именно с такой ситуацией, то следует опираться на данные замеров сопротивления между контактами попарно.

Результаты проверки омметром

Некоторые показатели сопротивления могут свидетельствовать о следующих состояниях симистора:

  • 0 Ом – говорит о том, что переход пробит или возникло короткое замыкание;
  • от 50 до 200 Ом – свидетельствует, что переход нормально открыт;
  • от 1 до 10 кОм – указывает на появление тока утечки без управляющего тока, скорее всего, что кристалл неисправен;
  • от 1 МОм и более – говорит о нормально запертом переходе или об обрыве в электрической цепи.

Измерение сопротивления является не единственным методом, которым можно проверить исправность симистора. Вы можете прозвонить его мультиметром, как было описано в предыдущем методе.

Видео инструкции

Прибор для проверки тиристоров и симисторов

Приветствую, радиолюбители-самоделкины!

Тиристоры и симисторы — не такие уж и часто используемые в радиолюбительстве элементы, по крайней мере, когда речь идёт о низковольтных схемах. Однако они бывают незаменимы для коммутации мощных электроприборов в сети 220В, а также для создания различных регуляторов мощности. Их использование в радиолюбительских схемах обуславливает необходимость проверять эти элементы на работоспособность, особенно это касается б.у. элементов. Но в последнее время и свежекупленные в магазинах полупроводниковые приборы приходится проверять, ведь с целью получения дополнительной прибыли многие магазины пытаются продавать «левак», перемаркированные или вовсе нерабочие детали. К сожалению, мультиметром полноценно проверить тиристор или симистор не получится — максимум возможно прозвонить выводы на замыкание и определить лишь полностью выгоревший элемент. Поэтому имеет смысл собрать своими руками достаточно простой прибор, который позволит эффективно тестировать эти детали, актуален об будет для тех, кто часто использует тиристоры или симисторы. Схема тестера показана ниже:




В начале схемы можно увидеть трансформатор на 12В, именно от него схема будет брать питание. Использовать здесь большой и мощный трансформатор не обязательно, достаточно будет небольшого с максимальным током от 200 мА, выходное напряжение может варьироваться от 9 до 20В. Обратите внимание, что схема должна питаться именно от трансформатора, так как он выдаёт на выходе переменное напряжение — этот аспект важен для работы прибора, поэтому питать схему от различных сетевых адаптером и импульсных блоков питания нельзя. В качестве индикаторов в приборе выступают два светодиода — D3 и D4, они включены с различными полярностями, таким образом, если тестируемый элемент пропускает оба полупериода — гореть будут оба светодиода, если только положительный полупериод — один светодиод, если отрицательный — другой светодиод. Если же при проверки не загорится ни один светодиод, значит тестируемый тиристор или симистор не открывается вообще. Резисторы R3, R4 ограничивают ток через светодиоды, то есть задают их яркость. Резистор R5 является нагрузочным, создавая ток через тиристор около 0,1А.

Обратите внимание, что его мощность должна быть как минимум 1Вт, иначе резистор перегреется. Собрать 1Вт можно из нескольких маломощных резисторов, так, чтобы их суммарное сопротивление оказалось около 100 Ом. Также вместо этого резистора можно взять маломощную лампочку на 12В, её свечение будет дополнительным индикатором работоспособности тиристора/симистора, вместе со светодиодами. Кнопки SW2, SW3 позволяют управлять тестируемым тиристором/симистором, при нажатии на SW2 на управляющий электрод будет поступать отрицательный полупериод, при SW3 — положительный. Диоды можно брать практически любые, кроме указанных подойдут 1N4148, 1N4007. В правой нижней части схемы показано подключение испытываемых тиристора или симистора, важно правильно подключать тестируемый образец, если перепутать выводы схема, само собой, покажет, что элемент неработоспособен и появляется риск перебраковки. Однако, если тестер показал нормальную работу элемента, значит можно практически на 100% утверждать, что он исправен. На фотографии ниже показаны все элементы, необходимые для сборки прибора.



Для того, чтобы тестером было удобно пользоваться, необходимо поместить всю схему в корпусе, внутри корпуса же будет располагаться трансформатор, как видно по картинке ниже. Схема довольно проста, поэтому распаять всё можно даже навесным монтажом — резисторы и диоды закрепить на выводах кнопок, сами же кнопки с помощью гаек установить а лицевую панель корпуса. Светодиоды закрепить на корпусе с помощью специальных держателей, на их выводы припаять резисторы. В корпусе также нужно найти место для установки разъёма 220В для подключения трансформатора к сети, при этом в разрыв первичной обмотки можно установить выключатель. Но можно обойтись и без него, в этом случае прибор будет готов к работе сразу после втыкания вилки в розетку.



Ещё один немаловажный элемент на корпусе — контактная площадка для подключения тестируемого тиристора/симистора. Как правило, в корпусах ТО220 эти элементы имеют всегда одну и ту же маркировку, независимо от модели, поэтому имеет место быть «штатная» контактная площадка на корпусе, например, сделанная из штырькового разъёма. Однако не лишним будет и вывести три проводка с крокодилами для возможности подключения элементов в различных других корпусах. Таким образом, получился функциональный и надёжный прибор, выполненный в симпатичном корпусе. Удачной сборки!


Источник (Source)

Простой испытатель (тестер) тиристоров и симисторов

LCR-T LCD ESR SCR Meter Transistor Tester

LCR-T4 12864LCD ESR SCR Meter Transistor Tester Цифровой тестер LCR-T4 используется для проверки и определения параметров различных электронных элементов, таких как элементы питания, резисторы, конденсаторы,

Подробнее

УЗЧ на регуляторе громкости

УЗЧ на регуляторе громкости Этот усилитель имеет минимум навесных элементов, небольшие габариты, поэтому есть возможность размещения его прямо на переменном резисторе регуляторе громкости. Конденсатор

Подробнее

ПРОЕКТ 14. СОЗДАНИЕ ДАТЧИКА ПРИКОСНОВЕНИЯ

ПРОЕКТ 14. СОЗДАНИЕ ДАТЧИКА ПРИКОСНОВЕНИЯ Знаете ли вы, что ваш палец может играть роль резистора? Он имеет сопротивление в несколько мегаом (МОм), и этого более чем достаточно. Однако значение этого сопротивления

Подробнее

Питание реле пониженным напряжением

Питание реле пониженным напряжением Часто радиолюбителям попадают под руку реле на напряжение 24 В, которые срабатывают, обычно, лишь при приложении к их катушкам напряжения более 13,5 В. Соответственно,

Подробнее

RU (11) (51) МПК H03K 17/00 ( )

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК H03K 17/00 (2006.01) 167 664 (13) U1 R U 1 6 7 6 6 4 U 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22)

Подробнее

Оглавление. Список иллюстраций.

Оглавление. Документ предоставлен сайтом http://note-s.narod.ru 1.1 Назначение устройства… 2 1.2 Описание и принцип работы… 2 1.2.1 Блок питания и индикации…. 3 1.2.2 Измерительная часть… 3 1.3

Подробнее

Мощный бестрансформаторный блок питания

1 od 5 Мощный бестрансформаторный блок питания Заманчивая идея избавиться от крупногабаритного и очень тяжелого силового трансформатора в блоке питания усилителя мощности передатчика, давно озадачивает

Подробнее

Конструктор TLM-07 Ver 1.0

1. Назначение Конструктор TLM-07 предназначен для самостоятельного изготовления транзисторного усилителя для наушников. Предназначен для радиолюбителей имеющих опыт монтажа радиоэлементов на печатных платах,

Подробнее

Машина для езды по линии, версия 2

Машина для езды по линии, версия 2 Инструкция: Все права защищены: Перепечатывание этой инструкции без нашего разрешения запрещено Технические детали, форму, содержимое товара можно изменять без уведомления.

Подробнее

Тестер модулей зажигания ТМЗ-2М

Тестер модулей зажигания ТМЗ-2М ПАСПОРТ КДНР. 467846.013 ПС САМАРА 2008 TZDB01PS0108-A4 1 СОДЕРЖАНИЕ 1. Назначение…3 2. Основные технические данные и характеристики…3 3. Комплект поставки…4 4. Устройство

Подробнее

Элементы электрических цепей

Элементы электрических цепей Элементы цепи Соединительные элементы (провода) Сопротивление (резистор) Реостат (переменный резистор) Конденсатор Соединительные элементы, показывают на схеме точки, потенциалы

Подробнее

Инвертор реактивной мощности

Инвертор реактивной мощности Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 квт. Устройство может использоваться с любыми

Подробнее

Модель: MS8910. Введение

Руководство пользователя. Измеритель SMD компонентов Модель: MS8910 Введение Карманный тестер — очень удобный небольшой инструмент, который специально используется для измерения SMD (устройства поверхностного

Подробнее

Конструирование карманной колонки

Конструирование карманной колонки В этой статье мы рассмотрим, как сконструировать небольшую карманную колонку, которую можно подключать к мобильному телефону, мп3-прееру, к обычному радио и т.д. В авторском

Подробнее

ИЗВЕЩАТЕЛЬ ПОЖАРНЫЙ РУЧНОЙ ИПР

ООО БУЧАНСКИЙ ЗАВОД ВЕДА ИЗВЕЩАТЕЛЬ ПОЖАРНЫЙ РУЧНОЙ ИПР ПАСПОРТ ЖШГИ.425312.007 ПС 2007 1.НАЗНАЧЕНИЕ 1.1.Извещатель пожарный ручной ИПР (в дальнейшем извещатель) предназначен для подачи сигнала тревоги

Подробнее

Генератор 20Гц 100 кгц 2кВт

Генератор 20Гц 100 кгц 2кВт Схемы 201г. Технические характеристики Генератор предназначен для работы на активную и /или индуктивную нагрузку и обеспечивает следующие параметры: — выходное напряжение 20

Подробнее

Сеть магазинов «ПРОФИ» Единый телефон: (495)

Мультиметр MS8216 Инструкция по эксплуатации ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ Сертификация по безопасности Данный измерительный прибор соответствует стандарту IEC1010, т.е. предназначен для проведения измерительных

Подробнее

АВЛГ ИН СОДЕРЖАНИЕ

СОДЕРЖАНИЕ 1. Назначение и принцип работы..3 2. Методика проверки на соответствие электрическим параметрам….4 3. Приложение 1 (схема эл. структурная).5 4. Приложение 2 (схема эл. принципиальная). 6 5.

Подробнее

Часть I.Расчёт сопротивлений

Фонд «Талант и успех». Образовательный центр «Сириус». Направление «Наука». прельская физическая смена. 207 год. Часть I.Расчёт сопротивлений Закон Ома. Сопротивление. Последовательное и параллельное соединение.симметричные

Подробнее

Что такое выпрямитель

Что такое выпрямитель Для чего нужны выпрямители Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители

Подробнее

3.1. Изображение обмоток реле

3.1. Изображение обмоток реле Раздельное включение обмоток. Обмотки нейтрального реле с выводами 1-4 и 2-3. Обмотки можно запитывать от разных источников или от одного, соединяя их последовательно или

Подробнее

Аппаратное обеспечение ЭВМ

Лабораторная работа Бригада Макет Лицей. 0 класс «ИССЛЕДОВАНИЕ КОМБИНАЦИОННЫХ ЦИФРОВЫХ УСТРОЙСТВ» Предметы: Выполнили: Приняли: АОЭВМ, ПП, УП. ЦЕЛЬ РАБОТЫ… Приобрести навыки чтения принципиальных схем..2.

Подробнее

принцип работы, проверка и включение, схемы

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор, который представляет собой один из видов тиристора.

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении. Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт. После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается. А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p — n переходов . Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах. Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Практическое применение симисторов

Необходимые знания для проверки, замены и последующего ремонта различных радиоэлектронных блоков с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.

Аналоговый мультиметр

Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.
Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.

Цифровой мультиметр

Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
    • аналоговый покажет бесконечность, стрелка не двинется;
    • цифровой или никак не отреагирует или высветит несколько МОм.
  2. При прозвонке анод-управляющий электрод:
    • аналоговый покажет от нескольких до десятков кОм;
    • цифровой выдаст такие же цифры.
  3. При прозвонке катод-управляющий электрод:
    • то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Многие используют самодельные пробники и измерительные приборы для того, чтобы проверить работоспособность, а также примерную оценку параметров симисторов и тринисторов. Для того чтобы это сделать, можно использовать такой прибор как омметр, также можно пользоваться авометром, который работает в режиме омметра напряжение у них должно быть полтора вольта.

На случай, если кто-то забыл, что такое симистор , тринистор, омметр и авометр, или просто для справочной информации. Симистор — это прибор на полупроводниках, является одним из видов тринисторов, который используют для коммуникации в сетях с переменным током, в основном рассматривается как управляемый выключатель. Тренистор прибор на полупроводниках, который выполнен на базе монокристалла полупроводника и в котором, минимум 3 p-n-перехода, у него есть два вида состояний: открытое (высокая проводимость) и закрытое (низкая проводимость). Омметр — прибор, который определяет электрически активные сопротивления, измерения можно проводить как при переменном токе, так и при постоянном. Существуют следующие виды омметров: гигаомметры, мегаомметры, миллиомметры, микроомметры, тераомметры, их различие состоит в диапазоне измеряемых сопротивлений. Авометр (мультиметр) это прибор в который может выполнять несколько функций, чаще всего это амперметр, вольт метр и омметр их существует 2 вида, цифровые и аналоговые.

Во время проверки симистора, нужно подключить к нему омметр (авометр) к аноду плюсовым щупом, минусовым щупом подключить к катоду. Для начала нужно установить предельное измерение «х1» и замкнуть пинцетом управляющего электрода и выводы анода. Стрелка прибора должна отклонится примерно к середине шкалы. После этого нужно убрать пинцет и в случае, если симистор «чувствительный», это когда, симистор открывается при малом токе и удерживается в таком состоянии небольшим анодным током и положение стрелки, при этом, не должно изменятся.

Также, аналогичные испытания нужно провести на пределе «х10» и измерять сопротивление между катодом и анодом симистора в открытом состоянии (некоторые виды симисторов, могут удерживаются и при этом пределе). В случае, если сопротивление находится в пределах 140-300 Ом, значит симистор можно смело использовать для вашей конструкции.

Если Вы проверяете симистор с большим током то удержание стрелка индикатора, после того как Вы отсоедините пинцет, она должна вернутся на нулевое положение шкалы. Такой вид симистора, обычно стараются не использовать.

Точно также поступают и при проверке тринистора: подключается омметр (авометр) к катоду и аноду, дальше перемыкаются выводы управляющего электрода и анода. Проверяйте семисторы и тренистора, а также остальные элементы ваших конструкций, и они будут работать без сбоев.

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.


Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки


При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.


Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями. Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.
Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки. Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

Важно! Не забудьте о том, что обычный тиристор проводит ток лишь в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
    2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;

  1. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

Можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

назначение и основные характеристики, принцип работы для «чайников» и проверка в схемах

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора — Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении.  Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость
Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Профессиональные схемы

Пробник для проверки симистора или тиристора достаточно простого исполнения и с наименьшим количеством деталей представлен на схеме 1.

Схема 1 — Простой пробник для проверки симистора или тиристора

Перечень деталей пробника:

  1. Трансформатор подбирается любого типа, но с напряжением на вторичной обмотке около 6,3 В.
  2. Диод VD1 на напряжение от 10 В и более и с выпрямительным током более 350 мА (можно найти подходящий по справочнику радиолюбителя или в интернет).

При работе нужно подключить симистор и поставить S2 в положение «=», после чего включить SA1 (SB1 пока не нажимать). При этом лампочка не должна светиться. Нажимаем SB1 (лампа загорается) и при отпускании SB1 лампа накаливания должна гореть. Поставить SА1 в положение «0», и лампа гаснет. SА1 в положение поставить «переменного» тока и лампа не должна гореть. При нажатии SB1 лампа загорается, а при отпускании — гаснет.

Универсальная схема устройства для проверки симистора изображена на схеме 2. Она является более сложной, но очень эффективной.

Схема 2 — Универсальная современная схема устройства для проверки симистора или тиристора

Перечень радиоэлементов:

  1. Трансформатор со II обмоткой 2 и 9 вольт (I = 0,2..0,3 А).
  2. Конденсаторы керамические: C3, C4, C9, C10.
  3. Конденсаторы электролитические — остальные.
  4. Диод VD1: U > 50 В и I > 1 А.
  5. Диоды VD2, VD3: U > 25 В и I > 300 мА.
  6. Микросхемы и их аналоги: 7805 (КР142ЕН5(А,В)) и 7905 (КР1162ЕН5(А,Б) или КР1179ЕН05).

При проверке необходимо SA3 задать ток управления (подача на УЭ). Для проверки тиристора нужно поставить SA2 в режим «прямое» и включить питание пробника (лампа гореть не должна).

Нажать кнопку SВ2 — лампа горит даже при ее отпускании (SВ2). Нажать SВ1, и лампа должна погаснуть.

Таким образом, симисторы получили широкое распространение в различных устройствах с электронным регулированием. Они выходят из строя, и проверить их несложно. Для этого необходимо выбрать лишь метод проверки. Проверка мультиметром менее точна, чем стрелочным омметром, ток которого способен открыть переход триака. Для более точного и профессионального определения исправности собирается специальная схема.

Originally posted 2018-04-06 09:24:37.

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот

Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.)

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и  катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Тестирование элемента

Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема.

С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.

Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится.

Проверка тестером

Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.

Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль

Суть измерения сводится к проверкам переходов прибора. Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:

  1. Измерительные щупы подключаются к силовым выводам симистора T1 и T2. Если радиоэлемент исправен, то мультиметр должен показать бесконечно большое сопротивление.
  2. Меняется полярность приложенного сигнала на рабочих выводах. Для этого измерительные щупы переставляются. Сопротивление также должно быть большим.
  3. Кратковременно соединяется рабочий вывод T1 или T2 и управляющий электрод G.
  4. Снова измеряется сопротивление перехода между T1 и T2. В одну сторону оно должно измениться. Так, для BTB12-800CW оно составит около 50 Ом.
  5. Изменяется полярность. При этом импеданс перехода должен быть большим, что соответствует отсутствию обратного пробоя.

Использование схемы

Существует множество различных схем, использующихся радиолюбителями для тестирования работоспособности триака. Но лучше применять универсальную схему, способную проверить любой элемент тиристорного семейства, например, BTB16-700BW. Она не нуждается в настройке и работает сразу после сборки. Для того чтобы её собрать, понадобятся следующие элементы:

  1. Резисторы R1—R4 470 Ом, R4—R5 1 кОм.
  2. Конденсаторы С1 и С2 — 100 мкФ х 6,5 В.
  3. Диоды VD1, VD2, VD5 и VD6 — 2N4148; VD2 и VD3 — АЛ307.

В качестве источника питания можно использовать батарейку типа КРОНА.

Суть измерений сводится к следующим действиям: переключатель S3 переставляется в верхнее положение, в результате на устройство подаётся питание. После этого кратковременным нажатием на кнопку S2 подаётся ток на управляющий вывод элемента.