КАК СДЕЛАТЬ — Простая схема зарядного устройства
Десульфатацию автомобильных аккумуляторов, а также зарядно-восстановительную тренировку автомобильных аккумуляторов можно производить при помощи простого зарядно-восстановительного устройства, которое восстанавливает засульфатированные аккумуляторы «асиметричным» током.
Кроме методики десульфатации аккумулятора в ручном режиме при помощи простейшего зарядного устройства, как описано в Десульфатация аккумулятора, известен еще один способ тренировки авотомобильного аккумулятора «асиметричным» током, когда в один полупериод аккумулятор заряжается, а следующий разряжается токами 10:1. Такой метод тренировки хорошо зарекомендовал себя не только при десульфатации аккумулятора, но и для профилактики исправных. Картинкаа кликабельна.
Устройство обеспечивает возможность ускоренного заряда током до 10А, но рекомендуется зарядный ток 5А и соответственно ток разряда 0.
Трансформатор можно взять любой, мощностью не менее 200Вт и выходным напряжением 22-25В. Например, можно использовать телевизионный трансформатор ТС-200. Сразу после трансформатора включено реле типаРПУ-0 с напряжением на обмотке 24В или любое другое. Если использовать реле на меньшее напряжения, то потребуется подобрать и последовательно с обмоткой реле включить добавочный резистор. Реле своими контактами подключает зарядно-восстановительное устройство к аккумулятору и предохряняет аккумулятор от разряда в случае пропадания напряжения в электросети.
Заряд аккумулятора происходит во время одного полупериода через диоды VD1 , VD2. Во время второго полупериода, когда диоды закрыты, аккумулятор разряжается через резистор R4. Ток разряда составляет 0.5А.
Зарядный ток устанавливается пременным резистором R2 и контролируется по амперметру. Учитывая, что в полупериод заряда часть тока заряда (10%) протекает через разрядный резистор, то показания амперметра необходимо устанавливать 1. 8А – амперметр показывает усредненное значение тока, а заряд производится в течение половины периода.
Немного об используемых деталях:
Трансформатор на напряжение 22-25В, можно телевизионный ТС-200.
Реле в принципе любое с напряжением обмотки 24В. Важно, чтобы контакты реле выдерживали ток не менее 10А. При использовании реле с обмоткой на 12В, его включаем через ограничивающее сопротивление.
Измерительный амперметр типа М42100 или любой на ток 3-5А
R2 может бітьот 3.3 до 15Ком.
Стабилитроны любые на напряжение от 7.5 до 12В.
Транзистор КТ827 модно заменить на КТ825, но при этом необходимо заменить полярность элементов, как показано на втором варианте схемы. Какртинка кликабельна.
Транзистор должен быть установлен на радиатор площадью не менее 200кв.см. В качестве радиатора можно использовать металлическую стенку корпуса.
В отличие от схемы полного автомата, описанной в Десульфатация аккуумулятора схема , эта схема отличается простотой и достаточно высокой эффективностью. Ее можно собрать из любых подручных радиоэлементов. При этом требуется соблюсти необходимые напряжения и токи.
Возможно, вас заинтересуют статья Как построить гараж недорого и сопутствующие.
Читайте также:
Оставьте комментарий
Добавить комментарий
Заметки для мастера — Зарядные устройства для АКБ
Компактное зарядное устройство на тиристоре
На рис.1 показана схема простого зарядного устройства для автомобильного аккумулятора.
Рис.1
При достижении некоторого значения напряжения (задается цепью R2,V1,V2), зарядное уст-во на тринисторе отключает его от аккумулятора. Образцовое напряжение на аккумулятора сравнивается при каждом положительном полупериоде пока тиристор закрыт. Когда аккумулятор разряжен тиристор открывается в моменты каждого положительного полупериода с некоторой задержкой, но только как аккумулятор будет близок к полной зарядке тиристор будет открывать с большей задержкой и при достижении определенного значения когда аккумулятор полностью зарядится, тиристор перестанет открываться.
Напряжение на выходе тиристора зависит от его параметров, поэтому возможно подборка тиристора если напряжение 13,5В окажется немного заниженным.
Трансформатор любой на напряжение во вторичной обмотке 20В исходя из значения зарядного тока.
Борноволоков Э.П.,Флоров В.В. Радиолюбительские схемы — 3-е издание, перераб. и доп. — К.:Технiка, 1985
На рисунке 2, показана схема автоматического зарядного уст-ва, которое позволяет заряжать автомобильный аккумулятор при разряде и прекращать зарядку при полном заряде аккумулятора. Такое уст-во желательно использовать для аккумуляторов которые находятся при длительном хранении.
Переключение в режим заряда производится путем измерения напряжения на клеммах аккумулятора. Заряд начинается когда напряжение на клеммах аккумулятора становится ниже 11,5 В и прекращается при достижении 14 В.
ОУ в схеме служит как прецизионный компаратор напряжения, который контролирует уровень напряжения батареи. Его инвертирующий вход получает опорное напряжение 1,8 В, а на неинвертирующий вход через делитель подается напряжение аккумулятора около 2В (при полном заряде аккумулятора). В этом случае реле отключено, так как выход ОУ имеет высокий уровень напряжения. При падении напряжения на клеммах аккумулятора, напряжение на неинвертирующем входе ОУ становится 1,8 В, компаратор переключается, это приводит к включению реле, аккумулятор начинает заряжаться.
После сборки зарядного уст-ва его необходимо отрегулировать:
1. Разрядите аккумулятор до напряжения 11,5 В
2. Подключите зарядное уст-во к аккумулятору
3. Отрегулируйте R6 до срабатывания реле
4. При заряде аккумулятора проведите замеры напряжения на его клеммах, при достижении 14 В отрегулируйте потенциометр R5 до отключения реле
При необходимости повторите процесс настройки
На основе стабилизатора LM317 можно сделать простое и эффективное зарядное уст-во. Предложенное уст-во предназначено для зарядки аккумуляторов 12 В.
Узел индикации тока заряда
Если зарядное устройство для автомобильных аккумуляторов не имеет амперметра, трудно гарантировать их надежную зарядку. Возможно ухудшение (пропадание) контакта на батареи, обнаружить которое достаточно трудно. Вместо амперметра на рис.4 предлагается простой индикатор. Он включается в разрыв «плюсового» провода от зарядного устройства к АКБ.
Рис.4
Схема представляет собой транзисторный ключ VT1, включающий светодиод HL1, когда через R1 протекает зарядный ток. В этом случае падение напряжения на резисторе R1 (более 0,6В) достаточно для открывания транзистора VT1 для зажигания HL1. Для конкретного аккумулятора номинал R1 подбирается так, чтобы светодиод зажигался при требуемом зарядном токе. По яркости его свечения можно приблизительно оценить зарядный ток. Резистор R1 – проволочный, изготавливается из 6…12 витков обмоточного провода диаметром 1мм. Можно использовать проволоку с высоким удельным сопротивлением (нихром) или резистор промышленного изготовления, например, ПЭВР-10.
Зарядное устройство с автомобильным регулятором напряжения
Простое зарядное устройство, показанное на рис.5, послужит для зарядки аккумулятора, и его долгосрочным хранением в рабочем состоянии.
Рис.5
Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно – тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой.
3200 .Iз .U2
С (мкФ) = ———————— ,
U1 2
где Iз – зарядный ток (А), U2 – напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 – напряжение сети.
Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).
Из ж.(РЛ 5-99)
Реверсирующая приставка к зарядному устройству
Эта приставка, схема которого показана на рис.6, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки.
Рис.6
При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1.С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.
После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряжаемого конденсатора С1.
В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.
При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.
Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями.
Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см2 каждый.
Кроме указанного на схеме транзистора КТ827А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г – КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.
Фомин.В
г. Нижний Новгород
Простое автоматическое зарядное устройство
Обычное зарядное устройство для зарядки стартерных батарей состоит из трансформатора, обмотка которого имеет отводы, диодного однополупериодного выпрямителя и амперметра, измеряющего зарядный ток. Такое зарядное устройство не может контролировать процесс зарядки и не умеет восстанавливать засульфатированные аккумуляторы.
Рис.7
Если на выходе такого зарядного устройства включить узел, схема которого показана на рис.7, то устройство станет автоматическим и научится восстанавливать аккумуляторы тренировочным током.
При подключении аккумулятора тиристор открывается только на положительных полупериодах пульсирующего напряжения. На отрицательных (когда выпрямительный диод ЗУ закрыт) тиристор закрыт и происходит тренировочная разрядка аккумулятора через резистор R3.
В начале каждого полупериода, еще до открывания тиристора, происходит измерение напряжения на аккумуляторе. Если это напряжение полностью заряженного аккумулятора (13,5 В), то стабилитрон открывается и не дает открываться тиристору.
По мере заряда батареи открывание тиристора происходит ближе к вершине пульсирующего напряжения. Закрывание тиристора происходит на спаде полуволны пульсирующего напряжения, когда это напряжение становится ниже напряжения на аккумуляторе.
Каравкин В.
Литература:
Васильев В.
«Зарядное устройство»
ж. Радио №3 1976 г.
Устройство дозарядки аккумулятора автомобиля
В том случае, если автомобиль длительное время простаивает без движения, происходит постепенный разряд его аккумулятора. Особенно это ощущается при хранении автомобиля в неотапливаемых гаражах в зимнее время – при отрицательных температурах. Запуск двигателя сопряжен с поисками пускового устройства у знакомых автолюбителей или попыткой получить от них заряженный аккумулятор во временное пользование. Избежать эту проблему помогает устройство дозарядки аккумулятора автомобиля. Простота схемы и отсутствие дефицитных радиокомпонентов делают ее доступной для повторения.
Общеизвестно, что все химические источники тока подвержены саморазряду. Степень саморазряда зависит от ряда причин. Причины обусловленные конструктивными особенностями аккумуляторов, в данной статье не рассматриваются – автомобилистам приходится эксплуатировать те аккумуляторы, которые имеются на их транспортных средствах. Технологическая (для автомобилей) причина разряда аккумулятора обусловлена условиями хранения аккумулятора. От этого будет зависеть как срок службы аккумулятора, так и степень его готовности к работе в электрооборудовании автомобиля.
Ток саморазряда автомобильных аккумуляторов во многом зависит от «возраста» аккумулятора. Приблизительно можно считать, что ток саморазряда аккумулятора при хранении в неотапливаемом помещении или на открытом воздухе составляет до 180 мА. Приблизительно такой ток подзаряда аккумулятора обеспечит его постоянную готовность к работе.
В схеме (рис.8) маломощный трансформатор TR1 понижает напряжение 220 В примерно до 12 В.
Рис.8
Переменное напряжение выпрямляется мостовым выпрямителем D1 и через резистор R3 подается на выход «OUT». Возможно использовать автомобильный штекер XR1, который можно вставить в гнездо прикуривателя автомобиля. При подаче питания на схему зажигается зеленый (GREEN) светодиод D2.
При протекании тока подзаряда аккумулятора автомобиля на резисторе R3 создается падение напряжения. Будучи приложенным к базе транзистора Т1 через резистор R4 это напряжение вызывает насыщение транзистора и зажигание светодиода D3 (RED).
Яковлев Е.Л.
г. Ужгород
(«Радиоаматор» №12, 2009)
Зарядное устройство для АКБ
При отсутствии полноценного зарядного устройства довольно простой выпрямитель можно изготовить по простой схеме на рис.9.
Рис.9
Заменить полноценное зарядное устройство он не может, так как сила зарядного тока составляет всего 0,4 … 0,5 А, но вполне пригоден для того, чтобы, например, за 2…3 суток довести аккумуляторную батарею до того работоспособного состояния, которое было утрачено за месяцы зимнего бездействия. Выпрямитель собран на четырех кремниевых диодах. Последовательно с ними включена лампа на 220В мощностью 70…100 Вт, ограничивающая зарядный ток. В схеме могут быть использованы диоды, имеющие максимально допустимое обратное напряжение не менее 400 В и средний выпрямительный ток не менее 0,4 А. Подходят диоды Д7Ж, Д226, Д226Д, Д237Б, Д231, Д231Б, Д232 или другие с аналогичными характеристиками.
При работе с выпрямителем следует соблюдать осторожность, так как все его детали через лампу соединены непосредственно с электросетью и поэтому прикосновение к ним опасно. Если выпрямитель подключен к сети, то не следует прикасаться даже к корпусу аккумуляторной батареи, так как он может быть покрыт тончайшей пленкой электролита – проводника электрического тока. При необходимости измерить напряжение или плотность электролита в аккумуляторной батарее выпрямитель обязательно следует отключить от сети.
Горнушкин Ю.
«Практические советы владельцу автомобиля»
Простое подзарядное устройство
Схема представляет собой простой безтрансформаторный источник питания, выдающий постоянное напряжение 14,4 В, при токе до 0,4 А. (рис.10)
Рис.10
Конструкция простая и используется для подзарядки аккумуляторной батареи, которая хранилась длительное время.
Как показывает практика для восстановления требуется небольшой ток, около 0,1- 0,3 А (для 6СТ-55). Если хранящийся аккумулятор, периодически, примерно раз в месяц, ставить на такую подзарядку на 2-3 дня, то можно быть уверенным в том, что в любой момент будет готов к эксплуатации, даже через несколько лет такого хранения (проверенно практически).
Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от электросети поступает на мостовой выпрямитель VD1…VD4 через конденсатор C1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор C1 гасит избыток напряжения и ограничивает ток до величины не более 0,4 А. Конденсатор C2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно VD5 .
Устройство работает следующим образом. При саморазрядке батареи до напряжения ниже 14,4 В начинается её «мягкая» зарядка слабым током, причем величина этого тока находиться в обратной зависимости от напряжения на аккумуляторе. Но в любом случае (даже, при коротком замыкании) не привышает 0,4 А. При зарядке батареи до напряжения 14,4 В зарядный ток прекращается вовсе.
В устройстве использованы: конденсатор C1 – бумажный БМТ или любой неполярный на 3…5 мкф и напряжение не ниже 300 В, С2 – К50-3 или любой электролитический на 100…500 мкф, на напряжение не ниже 25 В; диоды выпрямителя VD1…VD4 – Д226, КД105, КД208, КД209 и т.п.; стабитрон Д815Е или другие на напряжение 14 -14,5 В при токе не ниже 0,7 А. Смонтировать стабилитрон желательно на теплоотводящей пластине.
При эксплуатации устройств подобного типа необходимо соблюдать правила безопасности при работе с электроустановками.
Обзор схем зарядных устройств
Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле
I=0,1Q
где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.
Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.
Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.
В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.
В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.
Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).
Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.
Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.
Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.
Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.
На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.
Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.
Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:
В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.
Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).
Примечание:
Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.
Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.
В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:
Примечание:
Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.
В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.
Зарядные устройства для автомобильного аккумулятора своими руками
Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора. Для решения проблемы потребуется воспользоваться зарядкой для АКБ, которая стоит немалых денег. Чтобы не тратиться на покупку нового зарядного устройства для автомобильного аккумулятора, можно смастерить его своими руками. Важно только отыскать трансформатор с необходимыми характеристиками. Для изготовления самодельного устройства не обязательно быть электриком, а весь процесс в целом займёт не больше нескольких часов.
Особенности функционирования аккумуляторов
Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.
Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.
Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.
При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.
Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.
Пример напряжения на клеммах заряженного аккумулятора
Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:
- Постоянный ток. При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
- Постоянное напряжение. При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.
Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.
Требования к зарядке АКБ
Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:
- Обеспечение стабильного напряжения 14,4 В.
- Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
- Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
- Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.
Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.
Варианты самодельных зарядных устройств для АКБ
Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.
Зарядка из лампочки и полупроводникового диода
Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:
- Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
- Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
- Штекер для подключения в розетку.
- Провода с клеммами (крокодилы) для подключения к АКБ.
Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.
Схема подключения зарядного устройства из лампочки и диода к АКБ
Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.
Это важно! Не рекомендуется использовать лампы накаливания мощностью более 200 Вт, так как диод может сгореть от перегрузки. Оптимальный вариант мощности ламп – это 60-150 Вт.
Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ — вполне реально.
Зарядное устройство для АКБ из выпрямителя
Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:
- постоянный ток;
- переменный ток;
- ассиметричный ток.
Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.
Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:
- предохранитель;
- мощный диод;
- стабилитрон 1N754A или Д814А;
- выключатель;
- переменный резистор.
Электрическая схема ассиметричного выпрямителя
Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.
Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.
Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.
Упрощённая схема выпрямителя с трансформатором
Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.
Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение
Зарядное устройство из блока питания компьютера: пошаговая инструкция
В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.
Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:
- Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.
Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода
- Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
- На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.
За режим работы ШИМ отвечает микроконтроллер TL494
- С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.
Резистор, обозначенный фиолетовой точкой, необходимо выпаять
- Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).
На место удалённого резистора припаивают регулятор
- Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.
Выходное напряжение регулируется переменным резистором
- Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.
Полученное сопротивление должно составлять 120,8 кОм
- Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.
Последовательная пайка резисторов суммирует их сопротивление
- После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.
Общий вид зарядного устройства из блока питания компьютера
Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.
При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.
Какие ещё имеются варианты ЗУ для АКБ
Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.
Использование зарядки от ноутбука для АКБ
Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:
- Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
- Лампа галогеновая мощностью 90 Вт.
- Соединительные провода с зажимами.
Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.
Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора
Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.
ЗУ своими руками из микроволновой печи или аналогичных приборов
С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.
Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.
- С микроволновки нужно снять трансформаторный блок.
- Удалить вторичную обмотку, после чего заменить её на изолированный провод сечением свыше 2 мм2 .
- Определиться с необходимым количеством витков, которые нужно сделать при помощи изолированного провода. Выяснить необходимое значение можно экспериментальным путём. Для этого необходимо намотать 10 витков, после чего измерить выходное напряжение. К примеру, если его значение будет составлять 2 В, то для достижения 14,5 В понадобится сделать около 70 витков. Выходное напряжение будет зависеть от сечения используемого провода.
С трансформаторного блока микроволновой печи удаляется обмотка
- Для реализации схемы понадобится диодный мост и мощный конденсатор.
- По желанию в цепь можно включить амперметр, который будет показывать ток.
Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору
Сборку устройства можно осуществлять на любом основании. При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром.
Бестрансформаторное зарядное устройствоЕсли поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.
Электрическая схема ЗУ без использования трансформатора напряжения
Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.
В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.
Как заряжать аккумулятор от самодельного устройстваОтдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:
- Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
- Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
- Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
- Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
- Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.
Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.
Оцените статью: Поделитесь с друзьями!Обсуждения закрыты для данной страницы
Самое простое, но самое правильное зарядное устройство
Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью «впихнуть невпихуемое», т. е. выжать из приготовленных на выброс АКБ последнее. Вопрос этот встал в середине 90х — в то время самыми распространенными и используемыми были кислотные, щелочные, никель-кадмиевые и никель-металлгидридные аккумуляторы.
Сразу скажу, что штатные ЗУ, предназначенные для зарядки разных АКБ уже не справлялись: одни уже в начале цикла говорили, что ничего нельзя сделать, а другие честно проходили цикл, но АКБ свою емкость так и не набирала даже на 10%.
Итак, есть два способа зарядки от источника постоянного тока: постоянным (во времени) током или постоянным (во времени) напряжением. Однако, в любом случае отмечается нагрев пациента и закипание (если электролит жидкий). Опуская всякие детали, перейду к тому, что же я вывел для себя.
А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее — импульсы постоянного тока также не очень благоприятны. В итоге родилось вот такое устройство:
Плюс аккумулятора по схеме сверху.
Это решение позволяет заряжать аккумулятор, а также разряжать в паузах длиной в полу-период.
R1 — регулируется общий ток, который составляет 10% от емкости АКБ+Jразр, т.е.Jобщ=Jзар+Jразр.
R2 — рассчитывается так, чтоб через него в паузах разряда шел ток Jразр в 10 раз меньший, чем ток заряда. Я для этой цели использую и лампы накаливания, если токи заряда велики.
Например, если емкость АКБ 55Ач, то зарядный ток нужно поддерживать на всем протяжении заряда равным Jзар=5.5+0.55=6.1А.
Первый опыт был настолько многообещающим, что я не мог поверить.
1. Щелочной брикет 10-НКГЦ-10 был настолько мертв, что родное армейское полностью автоматическое ЗУ вообще отказывалось заряжать. Этим устройством я зарядил так, что до сих пор (с 1995 года) пользуюсь этой батареей (естественно, заряжая, при необходимости). Пусть и изредка.
2. Шахтерский фонарь выпуска 1992 года, проведший в разряженном состоянии на балконе друга несколько лет (с нашими-то зимами). На момент вручения его мне в 1997 году он вообще признаков жизни не подавал. А ведь я его до сих пор использую на рыбалке 😉
3. Аккумулятор в первом автомобиле был при покупке забракован продавцом (UA9CDV) и был крайне рекомендован к смене первой же зимой, т.к. «намаялся он с ним»… А ведь я поездил на авто несколько лет и до сих пор на нем ездит уже третий владелец. Авто 1993 года.
4. Аккумулятор видеокамеры друга в 2000 году не держал уже даже 5 минут. После «правильной» процедуры он заставлял работать видеокамеру в течение 1 часа, хотя по паспорту она всего 45 минут могла непрерывно работать и длительней у него никогда не получалось.
Более перечислять не буду, ибо страница станет навязчивой.
При этом, нужно отметить, что аккумуляторы не «кипели» как при родных зарядниках и не грелись столь сильно.
Правила пользования:
1. Подключить R2 к аккумулятору.
2. Резистором R2 установить разрядный ток 1/10 от необходимого зарядного тока. Будьте бдительны: если аккумулятор не подает признаков жизни, с подбором этого резистора можно ошибиться существенно. Сможете скорректировать его позже.
3. Подключить ЗУ к аккумулятору. Резистором R1 установить зарядный ток Jзар=1/10 от емкости АКБ
4. Скорректировать R2 и R1 минут через 20 после начала заряда.
5. В течение зарядки вручную поддерживать ток заряда постоянным во времени. Это требование желательное, но сколько себя помню — ни разу его не соблюдал 😛 Поэтому ток заряда изначально ставил больше, т.к. он неизбежно снизится существенно (зависит от состояния АКБ).
6. При таких условиях, заряжать любой аккумулятор (из перечисленных в начале) нужно 14-16 часов.
Примите во внимание, что эффект от такой зарядки на современных, т. н. «кальцинированных» АКБ не будет столь высоким. Более того, у меня сложилось впечатление, что их специально делают явно одноразовыми. Посудите сами: автомобильные аккумуляторы работают не более 3 лет! Данная процедура не восстанавливает их столь же явно и еще через год приходит понимание, что их маркетологи с технологами свой хлеб отработали — аккумуляторы приходится менять! Некальцинированные аккумуляторы могли и 10 лет «ходить» в умелых руках. Между строк читайте «с данной схемой зарядки» 🙂
Различают несколько основных типов свинцово-кислотных АКБ:
Wet Standard (Sb/Sb)
Wet Low Maintenance (Sb/Ca)
Wet «Maintenance Free» (Ca/Ca)
И только в первом типе возможна т.н. десульфатация. В остальных типах процесс сульфатации необратим.
В случае с Li-on и Li-Pol аккумуляторами вопрос решается гораздо сложнее: с применением зарядных процессоров и прочей обвязки, однако, у них нет памяти, поэтому есть вариант обойти различные хитрости. Но их заряжать ассиметричным током не рекомендую (лучше постоянным). Хотя и делал это неоднократно))
С учетом такого опыта, я сделал в источнике питания трансивера третью клемму, на которую подал через диод питание с трансформатора. Теперь, подключая аккумулятор к этой клемме и к минусовому выводу, я заряжаю все свои старые аккумуляторы на протяжении уже более 10 лет. Тем более, что и ток выходит знатный!
А вот видеокурс от пользователя Владимир Коротеев, повторившего данный способ:
30.09.2010
Схема зарядного устройства для автомобильного аккумулятора: мастерим своими руками
Приобрести хороший аппарат не так просто по причине высокой стоимости, а подделок очень много. Для собственников транспортных средств наступление зимнего периода — настоящая пытка по той причине, что аккумуляторы начинают барахлить, выходят из строя. Часто по утрам можно встретить водителей, которые просят «прикурить», вот только не сигарету, а АКБ.
Можно возить с собой портативное зарядное устройство, но не все могут купить такую роскошь. Мобильное ЗУ стоит баснословные суммы, которые не по карману среднестатистическому человеку. О том, как найти выход из положения и что можно смастерить, рассмотрим ниже.
Немного об АКБАккумуляторная батарея необходима автомобилю для того, чтобы дать напряжение с показателем 12,0 Вольт при падении тока от генератора ниже 11,3 Вольт. При отсутствии процесса восстановления (дозарядки) АКБ на свинцовых стенках начинается процесс сульфатации, что приводит к короткому замыканию, потере ёмкости, выходу агрегата из строя.
Чаще всего процесс происходит в зимнее время при частом старте мотора. Вот почему механики настоятельно рекомендуют оставлять технику на ночлег в гараже или крытой стоянке.
Также раз в месяц нужно проводить подзарядку АКБ, а если проживаете в условиях с отрицательными температурами, то лучше два раза. Если вы действительно любите свой автомобиль, то снимите АКБ на ночь и оставьте его до утра в тёплом месте.
Подзарядку следует осуществлять постоянным током, величина которого всегда высчитывается по такой формуле: 0,1 от общей ёмкости батареи. Например, ёмкость АКБ равна 65А, значит, сила тока равна 6,5А.
Но, неоднократные исследования европейского и американского научных центров подтвердили тот факт, что чем меньше сила тока на подзарядке, тем медленнее происходит процесс сульфатации. Иными словами, чем меньше мы даём силу, тем дольше служит аккумулятор.
Автомеханики советуют оставлять батарею на длительный подзаряд на ночь в пределах 2–3 А, не более. Этого вполне будет достаточно для восстановления сил и длительного срока эксплуатации.
Существует и обратная сторона медали, она заключается в процессе десульфатации. То есть, процесс обратный сульфатации. Расписывать принцип его действия можно долго, но вкратце, это когда идёт систематическая перезарядка от стабильного тока.
Например, когда после восстановления заряда 12,8 или 13,3 Вольт, в батарею продолжает поступать ток. В итоге это приводит к закипанию АКБ, пластин, повышению плотности, химический состав электролита меняется, стенки — пластины рушатся.
Современные зарядные и зарядно-пусковые устройства оборудованы специальными датчиками.
Схемы простого зарядного устройства для аккумулятора автомобиляСразу отметим, что смастерить можно различной степени сложности зарядку, всё зависит от поставленных целей и мощностных показателей. Зарядное устройство (далее — ЗУ) понадобится каждый день, даже если батарея новая и мощная.
Жизненный пример: поставили машину, забыли выключить магнитолу на ночь, к утру АКБ разряжена. Запустить мотор с утра не получится.
И здесь следует различать: пуск силового агрегата проводится с полуоборота или нужно «маслать» долго и нудно. Это всё к тому, что от этого зависит степень заряда, который следует дать батареи.
Простейший пример: нужен источник постоянного тока с показателем 12 Вольт, а лучше от 12 до 24,5 В. Второй момент: строго ограниченное сопротивление. Подручное средство с такими характеристиками найти несложно.
Во многих семьях имеется портативная техника, цифровые гаджеты. Блок питания в самый раз, вот почему. Напряжение на выходе равно 19,5 вольт, сила тока равна 2,0 А. Внешний штекер — минус, внутренний — плюс.
Ограничителем напряжения может смело выступить автомобильная лампа накаливания. Более мощной перегружать не стоит, так как возможен сбой в работе блока питания.
Далее следует такая схема: входной разъем от блока в качестве минуса — лампа, как ограничитель сопротивления — плюсовая клемма батареи — плюс самого АКБ. В течение одного часа устройство подзарядится так, что силы тока достаточно будет для пуска мотора.
Нет блока питания или жалко использовать его не по назначению, тогда купите один раз выпрямительный диод. Изделие небольшое по размерам и много места не отнимет.
Смастерить ЗУ можно таким способом: снять непосредственно сам аккумулятор с транспортного средства. Создаём цепь, состоящую из точки — розетки (220В) — минусовая сторона диода — сторона со знаком плюс — ограничитель нагрузки — клемма АКБ со знаком минус — плюсовая клемма — вход в 220 В розетки.
Если нет под рукой автолампы, возьмите бытовую лампу на 220В. Достаточно будет 100 Ватт, но не менее. Сила тока будет равна половине ампера. Рассчитать это легко: напряжение умножаем на ток, и будет нам мощность.
За полную ночь такой подзарядки АКБ наберётся сил для прокрутки мотора налегке. Ну, а если вы додумаетесь совместить три лампы подряд, то увеличите силу тока ровно втрое.
Несмотря на такую простоту, неосторожное движение может привести серьёзным последствиям:
- перегорит блок питания;
- посыплются пластины от замыкания;
- прочие нежелательные моменты.
Элементарная схема обычного зарядного устройства для автомобильного аккумулятора из блока питания выглядит так. Находим сам блок, читаем его величину напряжения, которая колеблется от 5 до 12 Вольт.
У каждой модели разный показатель. Вот на данном этапе многие совершают ошибку, когда не смотрят на показатель. Результат — созданное устройство работает нестабильно, показатели не соответствуют действительности.
Величина в 12 Вольт будет несколько маловата, нужно повысить её до уровня 15–16 Вольт. Сделать это можно с помощью подключения стороннего сопротивления в 1,0 кОм. В итоге, изменяем коэффициент передачи и повышаем выходное напряжение.
Самое сложное уже позади, теперь подключаем крокодилы, что это такое объяснять не стоит.
ЗУ трансформаторного типаЭтот вид наиболее распространённый в наше время, так как имеет выше класс безопасности, надёжности, простоты использования. Элементарная схема ЗУ состоит из трансформатора, выпрямительного моста, ограничителя сетевой нагрузки. Через цепь проходит ток большой величины и ограничитель должен быть надёжным и качественным.
Соблюдение безопасности- Любой вид ЗУ должен устойчиво располагаться на огнестойкой поверхности;
- обязательно применять индивидуальные средства защиты в виде перчаток, защитных очков, коврика под ноги;
- постоянный контроль во время процесса зарядки, хотя бы на начальном этапе тестирования самодельного устройства;
- проверять силу тока, напряжение, температуру оборудования. При сильном, нетипичном нагревании, отключить от цепи питания и дать остыть. Найти источник неполадки.
Схемы зарядных устройств для автомобильных аккумуляторов
Доброго времени суток всем автолюбителям! Если у вас есть свой автомобиль, значит, есть и аккумулятор. А если есть аккумулятор, значит, его нужно заряжать. Большинство автолюбителей используют заводские зарядные устройства. Но ведь его можно изготовить и самому. Для этого нужна схема зарядного устройства для автомобильного аккумулятора, инструмент и желание его сделать.
Содержание
Какие бывают зарядные для аккумуляторов
Как вы знаете, генератор заряжает АКБ на 85-90%. И чтобы не допустить потери емкости, его нужно периодически подзаряжать. Например, вы определяетесь, какой аккумулятор лучше купить, и выбор падает на кальциевый. В этом случае, стоит знать, что его рекомендуется заряжать каждые 2-3 месяца. А если этого не делать – через год батарея пойдет на свалку. Т.е. без зарядного устройства обойтись не получится.
Давайте разберемся, какие вообще существуют зарядные устройства, в чем их основные отличия, достоинства и недостатки.
По типу, они делятся на 2 большие группы:
- импульсные зарядные устройства;
- трансформаторные.
В свою очередь, они также могут быть разных видов. Давайте их рассмотрим.
Импульсные зарядные устройства
Принцип работы импульсного устройства заключается в зарядке аккумулятора на малых токах. Поэтому, отпадает необходимость использования большого трансформатора. А следовательно, они обладают компактными размерами и малым весом. Кроме того, многие модели оснащены функцией десульфатации восстанавливающей емкость аккумулятора.
Из недостатков, стоит отметить сложность ремонта. Принципиальная схема импульсных зарядных устройств, довольно сложная, поэтому без соответствующих знаний с ней будет сложно разобраться.
Трансформаторные устройства
В основе работы лежит трансформатор, который преобразовывает высокое напряжение в низкое. Отсюда большой вес и немалые габариты. Электрическая схема таких устройств, довольно простая, поэтому их легко ремонтировать и при желании можно собрать самостоятельно, воспользовавшись заводской схемой.
Основное различие этих приборов в реализации регулировки тока:
- тиристорная регулировка – сейчас используется редко, т.к. есть более совершенные аналоги;
- транзисторная – эта схема очень популярна, в ее основе лежит использование шим контроллеров;
- ступенчатая – регулировка напряжения делается механически, за счет добавления или уменьшения обмоток трансформатора.
Большое преимущество трансформаторных устройств в их простоте и надежности.
Десульфатирующее устройство
Большой плюс, когда зарядное устройство для автомобильного аккумулятора умеет работать в режиме десульфатации. Если вы не знаете – это разрушение сульфатов серной кислоты, которые образуются на свинцовых пластинах после глубоких разрядов АКБ.
Принцип работы десульфатирующего устройства довольно прост. В первый период, когда диоды открыты, аккумулятор заряжается, а во второй разряжается малым током. Например, ток заряда 10А, а для разряда – 1А. При желании, можно сделать его своими руками.
Для этого понадобятся:
- трансформатор мощностью от 200 Вт;
- реле для защиты АКБ от разрядки;
- диоды;
- переменный резистор для регулировки напряжения;
- амперметр;
- стабилитроны.
В этой схеме нужно предусмотреть радиаторы для охлаждения транзисторов.
Самодельные устройства
В интернете можно найти множество схем для изготовления зарядных для АКБ своими руками. Давайте сделаем небольшой обзор самых популярных и простых вариантов.
Популярные способы:
- самодельные зарядные из компьютерного блока питания. Один из самых простых вариантов. Для его изготовления потребуется минимум запчастей, т.к. он делается на базе готовой платы. На выходе можно получить регулируемое и мощное устройство;
- на диодах. Самая простая схема, включает диод, проводящий ток в одну сторону и обычную электролампу. Конечно, ее можно использовать лишь в экстренных случаях. Более совершенное устройство можно получить, используя понижающий трансформатор и выпрямительный диод на ток от 20 ампер;
- любительские устройства для аккумуляторов, основанные на использовании трансформаторов.
Браться за собственноручное изготовление зарядного устройства для аккумулятора, имеет смысл лишь в том случае, если у вас есть соответствующие знания. Иначе можно получить неожиданные результаты.
Если вы все же решите делать его самостоятельно, стоит учесть несколько деталей:
- прибор должен быть регулируемым;
- его электрическая схема должна включать стабилизатор зарядного тока. Она нужна для того, чтобы ограничивать подаваемый на АКБ ток по мере его зарядки;
- для мощного зарядного, необходимо предусмотреть систему принудительной вентиляции. Обычных радиаторов может не хватить.
Давайте рассмотрим несколько примеров изготовления альтернативы заводским приборам.
Зарядное из блока компьютерного блока питания
Один из доступных способов изготовления зарядного устройства своими руками – сделать его на базе компьютерного блока питания. Давайте разберемся, как его изготовить.
Понадобится:
- блок питания;
- переменный резистор на 33 и 68 кОм;
- предохранитель на 10А;
- два крокодила и провода для их подсоединения к плате;
- паяльник;
Мощность блока питания должна быть не меньше 150Вт, иначе он просто не сможет выдать достаточного напряжения для автомобильных аккумуляторов.
Подготовка
Самое главное, найти подходящий блок питания. Это определяется по шим-контроллеру, установленному на плате. Чтобы сделать самодельное зарядное устройство, подойдут:
- TL494;
- KA7500;
- TL495;
- MB3759;
- UTC51494;
Либо их аналоги. Кстати, в обозначении микросхемы важны цифры – буквы могут быть другими. Если шим-контроллер подходящий, нужно проверить исправность блока питания. Для этого нужно взять основной разъем блока и замкнуть зеленый провод с любым черным. Блок должен запуститься без компьютера.
Переделка платы
Когда вы достанете плату, первым делом нужно избавиться от всех лишних проводов. Легче всего их выпаять мощным паяльником. Для этого, нужно расплавлять припой с обратной стороны платы и аккуратно вытягивать проводки.
Максимальное напряжение, которое может выдать компьютерный блок питания – 12В. А этого для зарядки мало, т.к. нужно 14,5В. Поэтому потребуется отключить на плате защиту от повышения напряжения.
Для этого:
- находится 13, 14 и 15 ноги шим контроллера TL494;
- тестером определяется +5В, которые к ним подходят;
- дорожка перерезается.
После этого, нужно отпаять от первой ноги два резистора и впаять переменные резисторы на 33 и 68 кОм. К резистору на 33 кОм подключается регулятор.
Теперь нужно сделать выводы для подключения платы к АКБ. Для этого подойдет кабель с сечением в 2,5 мм2. Меньше брать не стоит. На плате находится вывод 12 В и земля, к которым нужно припаять эти провода. С другой стороны, к ним присоединяются крокодилы. Для защиты от замыкания, на плюсовую клемму желательно установить предохранитель на 10А.
После этого, блок собирается. Таким образом, можно своими руками сделать простейшее регулируемое зарядное для автомобильных батарей. Его можно усовершенствовать, добавив к электросхеме блок автоматического понижения выходящего тока и вольтметр.
Простое зарядное на диодах
Как уже писалось выше – заряжать аккумулятор таким способом, стоит лишь в экстренных случаях. Для изготовления понадобится:
- автомобильная лампа на 12В;
- зарядное от ноутбука – используется как диод;
- провода.
Последовательность подключения к батарее:
- плюс от зарядки подключается к плюсовой клемме напрямую;
- минус, подключается через лампу.
И все – такая вот схема простого зарядного устройства. Заряжаться аккумулятор будет 6-8 часов. При подключении, важно не перепутать плюс с минусом.
Таким образом, при желании, можно самому сделать полноценное зарядное для машины. Пусть даже и самое простое. Самое главное, что им можно зарядить свой аккумулятор. Но если вы сомневаетесь в своих силах – лучше приобрести заводской прибор. Тем более цена на них не такая уж и высокая.
Простое автомобильное зарядное устройство и схема индикатора
Автомобильный аккумулятор — это типичный свинцово-кислотный аккумулятор, состоящий примерно из 6 ячеек по 2 В каждая, так что общее напряжение аккумулятора составляет около 12 В. Типичные значения номинальных значений батареи находятся в диапазоне от 20 Ач до 100 Ач. Здесь мы рассматриваем автомобильный аккумулятор номиналом 40 Ач, поэтому требуемый зарядный ток будет около 4 А. В данной статье описывается принцип работы, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.
Принцип работы автомобильного зарядного устройства
:Это простое автомобильное зарядное устройство с индикацией. Аккумулятор заряжается от сети переменного тока 230 В, 50 Гц. Это переменное напряжение выпрямляется и фильтруется, чтобы получить нерегулируемое постоянное напряжение, используемое для зарядки аккумулятора через реле. Это напряжение батареи постоянно контролируется схемой обратной связи, состоящей из делителя потенциала, диода и транзистора. Реле и цепь обратной связи питаются от регулируемого постоянного напряжения (полученного с помощью регулятора напряжения).Когда напряжение аккумуляторной батареи превышает максимальное значение, схема обратной связи спроектирована таким образом, что реле выключается и зарядка аккумуляторной батареи прекращается.
Также получите представление о том, как работает схема зарядного устройства свинцово-кислотной батареи?
Схема автомобильного зарядного устройства
:Схема автомобильного зарядного устройства
Зарядное устройство для автомобильного аккумулятора Конструкция схемы:Чтобы спроектировать всю схему, мы сначала проектируем три различных модуля — блок питания, обратную связь и нагрузочную секцию.
Этапы проектирования источника питания:
- Здесь желаемой нагрузкой является автомобильный аккумулятор емкостью около 40 Ач. Поскольку зарядный ток аккумулятора должен составлять 10% от номинала аккумулятора, требуемый зарядный ток будет около 4 А.
- Теперь требуемый вторичный ток трансформатора будет около 1,8 * 4, т. Е. Ток около 8 А. Поскольку требуемое напряжение нагрузки составляет 12 В, мы можем остановиться на трансформаторе с номиналом 12 В / 8 А. Теперь необходимое среднеквадратичное значение переменного напряжения составляет около 12 В, пиковое напряжение будет около 14.4 В, то есть 15 В.
- Поскольку здесь мы используем мостовой выпрямитель, PIV для каждого диода должен более чем в четыре раза превышать пиковое напряжение переменного тока, то есть более 90 В. Здесь мы выбираем диоды 1N4001 с рейтингом PIV около 100 В.
- Поскольку здесь мы также проектируем стабилизированный источник питания, максимально допустимая пульсация будет равна пиковому напряжению конденсатора минус необходимое минимальное входное напряжение для регулятора. Здесь мы используем регулятор напряжения LM7812, чтобы обеспечить регулируемое напряжение 5 В для реле и таймера 555.Таким образом, пульсации будут около 4 В (пиковое напряжение около 15 В и входное напряжение регулятора около 8 В). Таким образом, расчетная емкость конденсатора фильтра составляет около 10 мФ.
Расчет секции обратной связи и нагрузки:
Проектирование секции обратной связи и нагрузки предполагает подбор резисторов секции делителя напряжения. Поскольку диод будет проводить только тогда, когда напряжение батареи достигнет 14,4 В, значения резисторов должны быть такими, чтобы положительное напряжение, подаваемое на диод, составляло не менее 3 В, когда напряжение батареи примерно равно максимальному.
Имея это в виду и сделав необходимые вычисления, мы выбираем потенциометр 100 Ом и другие резисторы на 100 Ом и 820 Ом каждый.
Работа цепи зарядного устройства автомобильного аккумулятора:Также прочтите пост — Работа и применение схемы зарядного устройства солнечной батареи
Работа схемы начинается при наличии источника питания. Мощность переменного тока 230 В RMS понижается до 15 В RMS с помощью понижающего трансформатора.Это низковольтное переменное напряжение затем выпрямляется мостовым выпрямителем для получения нерегулируемого постоянного напряжения с пульсациями переменного тока. Конденсатор фильтра пропускает через него пульсации переменного тока, создавая на нем нерегулируемое и фильтрованное постоянное напряжение. Здесь выполняются две операции: — 1. Это нерегулируемое напряжение постоянного тока подается непосредственно на нагрузку постоянного тока (в данном случае аккумулятор) через реле. 2. Это нерегулируемое напряжение постоянного тока также подается на регулятор напряжения для создания регулируемого источника постоянного тока 12 В.
Здесь реле представляет собой реле 1С, и общая точка подключена к нормально замкнутому положению, так что ток течет через реле к батарее, и она заряжается.Когда ток проходит через светодиод, он начинает проводиться, указывая на то, что батарея заряжается. Часть тока также протекает через последовательные резисторы, так что напряжение батареи разделяется с помощью устройства делителя потенциала. Первоначально падение напряжения на делителе потенциала недостаточно для смещения диода. Это напряжение равно напряжению батареи и, таким образом, определяет зарядку и разрядку батареи. Первоначально потенциометр настраивается до середины.По мере постепенного увеличения напряжения аккумулятора оно достигает точки, когда напряжения на делителе потенциала достаточно для прямого смещения диода. Когда диод начинает проводить, переход база-эмиттер транзистора Q2 приводится в состояние насыщения, и транзистор включается.
Поскольку коллектор транзистора подсоединен к одному концу катушки реле, на последний подается напряжение, и точка общего контакта перемещается в нормально разомкнутое положение. Таким образом, источник питания отключается от батареи, и зарядка батареи прекращается.По прошествии некоторого времени, когда батарея начинает разряжаться и напряжение на делителе потенциала снова достигает такого положения, что диод смещен в обратном направлении или находится в выключенном состоянии, транзистор вынужден отключиться, и таймер теперь находится в выключенном положении, так что нет выхода. Общая точка реле возвращается в исходное положение, то есть в нормально замкнутое положение. Аккумулятор снова начинает заряжаться, и весь процесс повторяется.
Применения цепи зарядного устройства автомобильного аккумулятора:- Эта схема является портативной и может использоваться в местах, где имеется источник переменного напряжения.
- Может использоваться для зарядки аккумуляторов игрушечных автомобилей.
- Это теоретическая схема и может потребовать некоторых практических изменений.
- Зарядка и разрядка аккумулятора может занять больше времени.
Схема и ремонт автомобильного зарядного устройства
Очень часто в автомастерских есть зарядные устройства для зарядки свинцово-кислотных аккумуляторов, однако некоторые зарядные устройства нуждаются в обслуживании из-за периодических неисправностей.Вот несколько примеров и принципиальных схем.
1, простая пусковая схема зарядного устройства батареи
Одна из основных пусковых схем зарядного устройства батареи показана на следующей схеме. Преобразователь имеет два выхода, центральный провод — земля, а два выхода (~ 11,8 В) — источник питания переменного тока; один из них напрямую подключен к диоду, другой — к переключателю для контроля высокого и низкого зарядного тока. Выпрямитель MB 40A, который может выдерживать максимальный ток 40A. Предохранитель цепи перегрузки 20A подключается последовательно, чтобы действовать как защита.
MB40 используется только наполовину, что делает это устройство пригодным для обслуживания, мы можем использовать два других диода на земле, если цепь положительного смещения диодов разомкнута. Токовую защиту от перегрузки можно заменить использованием тех же или аналогичных продуктов.
2, Запуск зарядного устройства со световыми индикаторами
Принцип действия зарядного устройства такой же, как и у основного, на выходе имеется предохранитель тока перегрузки 10А. Отличие состоит в том, что для индикации используются 3 светодиода:
LED 3 для включения питания, D4 — это простой выпрямитель, а R6 — для ограничения тока.
Светодиод 2 индикатора зарядки аккумулятора. Во время зарядки или подключения аккумулятора Q2 имеет положительное смещение и включается, поскольку R4 имеет высокое сопротивление, а напряжение базы Q2 низкое. Когда аккумулятор полностью заряжен, Q1 включен, R4 закорочен, следовательно, напряжение Q2 высокое, и он выключен — тогда светодиод 2 выключен.
Светодиод 1 для индикации состояния аккумулятора. Когда напряжение аккумулятора достаточно высокое, D2 будет включен, поэтому светодиод 1 будет включен, в то время как светодиод 2 будет выключен Q1.
D3 и Q1 на самом деле являются оптопарой EL817.R4 = 100М.
Печатная плата с компонентами выглядит следующим образом:
Технические характеристики устройства защиты 17M-K: 250 В, 10 А и температура от 50 до 160 ° C.
3, с использованием зарядного устройства SCR
SCR действует как диод для выпрямления переменного тока, когда он проходит при выключенном транзисторе. Когда батарея полностью заряжена, выходное напряжение достаточно высокое, чтобы включить транзистор и выключить SCR, батарея все еще будет заряжаться.Схема простого зарядного устройства на 12 В
Схема простого зарядного устройства на 12 В
Простая электрическая схема зарядного устройства на 12 В, разработанная с использованием нескольких легко доступных компонентов, и эта схема подходит для различных типов аккумуляторов, требующих 12 В.Вы можете использовать эту схему для зарядки батареи 12 В SLA или гелевой батареи 12 В и так далее. Эта схема предназначена для обеспечения зарядного тока до 3 ампер, и в этой схеме нет защиты от обратной полярности или защиты от перегрузки по току, поэтому, пожалуйста, проверьте эту схему перед тем, как приступить к зарядке аккумулятора.
Эта простая принципиальная схема зарядного устройства 12 В дает вам общее представление о стандартном зарядном устройстве, и вы можете добавить в эту схему дополнительные функции, такие как защита от обратной полярности, установив диод на выходе. (Диодный анод для вывода положительного источника питания и диодный катод как выходной положительный вывод) и установка защиты от перегрузки по току с использованием транзисторов. Следующая схема зарядного устройства представляет собой необработанный прототип, обеспечивающий выходное напряжение аккумулятора 12 В.
Принципиальная схема
Необходимые компоненты
- Понижающий трансформатор (0–14 В переменного тока / 3 А) — выбор зависит от ваших требований.
- Мостовой выпрямительный модуль BR1010
- Конденсаторы 0,01 мкФ, 100 мкФ / 25 В каждый
- Резистор 1 кОм (используйте 0.25 Вт для обычного светодиода)
- Светодиод
Строительство и работа
Используйте понижающий трансформатор необходимого тока для целевой батареи, здесь мы использовали понижающий трансформатор 0–14 В переменного тока / 3 А, а для выпрямления переменного тока в постоянный мы использовали модуль мостового выпрямителя BR1010, который обеспечивает высокоэффективный источник постоянного тока с высоким номинальным током.
BR1010
Этот модуль мостового выпрямителя будет иметь четыре клеммы, две для входа питания переменного тока, отмеченные знаком, и две клеммы для выхода постоянного тока, отмеченные положительным и отрицательным знаком.
КонденсаторыC1 и C2 работают как фильтр в этой цепи, тогда светодиод указывает на наличие источника постоянного тока на выходе. Подключите целевой аккумулятор к выходу для зарядки.
Постройте интеллектуальное зарядное устройство с использованием однотранзисторной схемы
Что вы узнаете:
- В течение следующего года количество различных грузовых автомобилей с нулевым уровнем выбросов значительно увеличится.
- Какие производители инвестируют в полностью электрические грузовики?
- Какие производители грузовиков работают над автомобилями на топливных элементах?
Около 3.7 миллионов тяжелых грузовиков используются в США, доставляя товары по всей стране. Обычно они приводятся в действие дизельными двигателями, которые шумят и выделяют загрязнения. По данным IDTechEx, несмотря на то, что на эти большие дизельные двигатели грузовиков приходится всего 9% мирового парка автомобилей, они составляют 39% выбросов парниковых газов в транспортном секторе и около 5% выбросов CO 2 от ископаемого топлива.
Но это может скоро измениться. Для тех, кто в автомобильном мире пытается убедить босса в том, что изменение климата является важным стратегическим вопросом для бизнеса, происходит нечто важное: компании стремятся к зеленым долларам, деньгам, потраченным на сокращение загрязнения и отходов, и при этом они также демонстрируя хорошее корпоративное гражданство.
В следующем году количество различных грузовых автомобилей с нулевым уровнем выбросов значительно увеличится. Такие производители, как Ford, GM, Peterbilt, Tesla и Volvo, инвестируют в полностью электрические грузовики, а Daimler, Hyundai и Toyota работают над автомобилями на топливных элементах.
Tesla
Например, производитель электромобилей Tesla планирует производить полуфабрикаты и имеет предварительные заказы от таких гигантов, как Anheuser-Busch, DHL, FedEx, JB Hunt Transport Services, PepsiCo, UPS и Walmart ( Инжир. 1) . Электрический полуприцеп Tesla класса 8 будет выпускаться с пробегом на 300 и 500 миль. По заявлению компании, Semi будет разгоняться от 0 до 60 миль в час за 20 секунд при полной нагрузке в 40 тонн. Он сможет поддерживать эту скорость при подъеме на 5% уклон.
1. Ожидается, что к концу августа Tesla произведет около 350 автомобилей Semi. Затем, согласно отчетам автомобильной промышленности, его производительность увеличится до 100 в неделю к концу 2021 года и до 500 в неделю к концу 2022 года.
В последнем отчете о прибылях и убытках Tesla генеральный директор Tesla Илон Маск сказал, что Semi готов к производству — все инженерные работы уже завершены, — но автопроизводитель не сможет достичь массового производства, пока компания не нарастит производство аккумуляторных элементов на 4680 единиц. Компания рассчитывает начать поставки Tesla Semi где-то в этом году.
Kenworth
Новый Kenworth T680E с нулевым уровнем выбросов является первой аккумуляторно-электрической моделью класса 8 за его 97-летнюю историю. Расчетная дальность действия T680E составляет 150 миль, в зависимости от приложения. В нем используется быстрое зарядное устройство постоянного тока CCS1 с максимальной мощностью 120 кВтч, а время зарядки составляет 3,3 часа. Kenworth T680E обеспечивает непрерывную мощность в 536 л.с. и максимальную мощность до 670 л.с. плюс крутящий момент в 1623 фунт-фут.
Peterbilt
Модель 579EV компании Peterbilt теперь доступна для заказов клиентов, производство ожидается во втором квартале 2021 года (рис. 2) . Полностью интегрированная, полностью электрическая трансмиссия в модели 579EV использует литий-железо-фосфатные аккумуляторные батареи с терморегулятором, чтобы обеспечить запас хода до 150 миль.При использовании в сочетании с рекомендованным быстрым зарядным устройством постоянного тока аккумуляторные батареи заряжаются за 3-4 часа, что делает 579EV хорошо подходящим для региональных перевозок и операций на последней миле.
2. Peterbilt Model 579EV доступен в конфигурации с тандемным приводом, с двигателями Meritor 14Xe, обеспечивающими питание через приводные инверторы. Рекуперативное торможение улавливает энергию от остановок и остановок, чтобы помочь зарядить аккумуляторы и увеличить запас хода автомобиля. (Источник: Peterbilt)
Volvo
Volvo Trucks вывела на рынок свой грузовик с нулевым уровнем выбросов VNR Electric в конце 2020 года.VNR Electric имеет запас хода 150 миль со скоростью до 65 миль в час по шоссе. Он разработан для клиентских приложений и ездовых циклов с местным и региональным распределением, включая продукты питания и напитки, а также маршруты получения и доставки. Грузовик выпускается в трех моделях: прямая тележка; трактор 4х2; и трактор 6х2. По данным компании, в нем используются литий-ионные батареи емкостью 264 кВтч, которые могут заряжаться до 80% за 70 минут.
Daimler
Компания Daimler, крупнейший производитель грузовиков в мире, теперь поставляет грузовик Freightliner eCascadia Class 8.В eCascadia, когда водитель нажимает педаль акселератора примерно на половину (50%), контроллер трансмиссии сначала проверяет другие компоненты, чтобы определить, является ли передача 50% крутящего момента на электродвигатель безопасной и эффективной для системы.
Если все требования соблюдены, контроллер трансмиссии позволяет инвертору извлекать энергию из батареи и передавать ее электронным двигателям, чтобы удовлетворить потребность водителя в 50% крутящем моменте. Если контроллер трансмиссии определяет, что передача 50% крутящего момента не рекомендуется (если грузовик неподвижен или движется медленно), он снизит крутящий момент до идеального уровня, например, 30%.
Разработанный для eCascadia, полностью электрический Detroit ePowertrain использует электрическую трансмиссию eAxle. Благодаря интеграции электродвигателя, трансмиссии и специальной электроники в компактный блок, eAxle может напрямую приводить в действие колеса грузовика.
Detroit ePowertrain предлагает две модели Detroit eAxle. Установка с двумя двигателями имеет максимальный крутящий момент 23000 фунт-футов и максимальную мощность 360 л.с. Конструкция с одним двигателем обеспечивает максимальный крутящий момент 11500 фунт-футов и максимальную мощность 180 л. с.
GM
GM входит в игру по доставке электричества через новое бизнес-подразделение под названием BrightDrop, чей электрический грузовой фургон EV600 появится на дорогах в конце 2021 года для его первого клиента, FedEx.
BrightDrop EV600 — это легкий электрический грузовой автомобиль, специально созданный для доставки товаров и услуг на большие расстояния. Характеристики EV600 включают в себя:
- EV600, работающий от аккумуляторной системы GM Ultium, рассчитан на пробег до 250 миль при полной зарядке.
- Пиковая скорость зарядки до 170 миль пробега электромобиля в час за счет быстрой зарядки постоянного тока мощностью 120 кВт.
- Грузовое пространство более 600 кубических футов.
- Предлагается для полной массы автомобиля (GVWR) менее 10 000 фунтов.
Стандартные функции безопасности включают в себя: систему помощи при парковке спереди и сзади, автоматическое экстренное торможение, предупреждение о лобовом столкновении, индикатор расстояния следования, торможение передним пешеходом, систему удержания полосы движения с предупреждением о выезде с полосы движения, автоматический дальний свет IntelliBeam и камеру заднего обзора HD. Дополнительные доступные функции безопасности и помощи водителю включают в себя: торможение при перекрестном движении сзади, помощь при рулевом управлении в слепой зоне, автоматическое торможение задним ходом, HD Surround Vision, предупреждение пешеходов сзади и улучшенное автоматическое экстренное торможение, среди прочего.
BrightDrop планирует сделать EV600 доступными большему количеству клиентов, начиная с начала 2022 года.
Ford
Автогигант Ford перешел в новый сектор рынка электромобилей с планами разработать полностью электрическую версию своего автомобиля. Транзитный грузовой фургон будет доступен с конца 2021 года.Ожидается, что автомобиль будет иметь запас хода в 126 миль. Исследования, основанные на внутренних данных компании, показывают, что средний пользователь общественного транспорта проезжает 74 мили в день, что находится в пределах прогнозируемой дальности действия электрической версии транспортного средства.
Rivian
Rivian в прошлом году получила огромный заказ на 100 000 полностью электрических автофургонов от гиганта электронной коммерции Amazon. Пока вы читаете это, Amazon начала тестирование первой партии своих электрических автофургонов Rivian Automotive в Лос-Анджелесе.Rivian ожидает, что первые фургоны будут доставлены для Amazon во второй половине 2021 года, в общей сложности 10 000 фургонов будут введены в эксплуатацию к концу 2022 года, а полные 100 000 — к 2030 году.
Fuel-Cell Electric
Заправка топливом время и запас хода являются важными факторами при эксплуатации большегрузных автомобилей. В этом отношении водород является подходящим топливом для грузовиков большой грузоподъемности, так как обеспечивает короткое время дозаправки и поездки на большие расстояния, одновременно предлагая решение с нулевым уровнем выбросов.
Компания Daimler представила концептуальный автомобиль на водородных топливных элементах под названием грузовик Mercedes-Benz Genh3, заявив, что он сможет проехать до 621 мили на одном баке. Серийная версия Genh3 Truck имеет полную массу 40 тонн и полезную нагрузку 25 тонн. Два бака с жидким водородом и система топливных элементов сделают эту полезную нагрузку возможной и увеличивают дальность полета и, следовательно, составляют основу концепции Genh3 Truck.
Daimler Trucks предпочитает использовать жидкий водород (Lh3), потому что в этом состоянии энергоноситель имеет более высокую плотность энергии по отношению к объему, чем газообразный водород.В результате баки грузовика на топливных элементах, в котором используется жидкий водород, намного меньше и из-за более низкого давления значительно легче. Это дает грузовикам больше грузового пространства и большую массу полезной нагрузки. В то же время можно перевозить больше водорода, что значительно увеличивает дальность полета грузовиков.
ГрузовикиGenh3 начнут испытывать заказчики в 2023 году, а серийное производство — во второй половине этого десятилетия.
General Motors присоединяется к другим автопроизводителям, таким как Toyota, в разработке технологии водородных топливных элементов для грузовых перевозок на дальние расстояния. GM сотрудничает с производителем грузовых автомобилей Navistar и поставщиком водорода Oneh3 для разработки полной системы дальних перевозок с нулевым уровнем выбросов в США.
Грузовики будут работать на водороде, а не на аккумуляторах, что устранит необходимость в зарядных станциях на длинных маршрутах грузовиков.
Navistar International Corp будет использовать два блока питания на топливных элементах GM Hydrotec для питания своего грузового электромобиля на топливных элементах серии International RH. Каждый силовой куб Hydrotec содержит более 300 водородных топливных элементов, а также системы управления температурой и мощностью (рис.3) .
3. Блоки питания на топливных элементах Hydrotec компании General Motors обеспечивают мощность более 80 кВт и могут быть размещены по 2-3 единицы на автомобиль для достижения более высоких номинальных мощностей. (Источник: General Motors)
Водородные грузовики будут запущены в производство в конце 2023 года как модель 2024 года. Целевая дальность полета составляет более 500 миль, при этом время заправки водородом менее 15 минут.
В конце прошлого года Toyota объявила о сделке с производителем грузовиков Hino о совместной разработке грузовиков на водородных топливных элементах для Северной Америки.Ожидается, что первый демонстрационный автомобиль появится в первой половине 2021 года. Компании будут использовать недавно разработанное шасси серии Hino XL с технологией топливных элементов Toyota.
Корейская компания Hyundai работает над своим водородным топливным элементом Xcient, который может быть заряжен в течение 8-20 минут на одной зарядке при давлении в баке 350 бар. По данным компании, грузовики Xcient имеют аккумуляторную батарею емкостью 73,2 кВтч (24,4 кВтч × 3) и запас хода около 400 км на одной зарядке (в конфигурации 4 x 2 при буксировке 18-тонного прицепа).Электродвигатель (максимальная мощность 350 кВт) генерирует движущую силу за счет электроэнергии, подаваемой от батареи и батареи.
Государственная поддержка
Совет по воздушным ресурсам Калифорнии (CARB) в прошлом году принял постановление о передовых экологически чистых грузовиках, обязывающее производителей грузовиков переходить с дизельных грузовиков и фургонов на электрические грузовики с нулевым уровнем выбросов, начиная с 2024 года. К 2045 году каждый проданный грузовик в Калифорнии будет с нулевым уровнем выбросов. Начиная с 2024 года производители коммерческих грузовиков должны продавать грузовики с нулевым уровнем выбросов в качестве растущего процента от своих годовых продаж в масштабах штата.
Президент Байден объявил, что его администрация планирует заменить парк автомобилей с двигателями внутреннего сгорания, принадлежащий федеральному правительству, электромобилями, произведенными в США. По данным Управления общего обслуживания США (GSA), федеральный парк насчитывает около 650 000 автомобилей, из которых около 100 000 средних -грузовых и 40 000 большегрузных автомобилей на складе.
Руководство по использованию перемычек для зарядки разряженного автомобильного аккумулятора
Многие из нас были там.На улице холодно, а батарея не заводится. Независимо от того, застрял ли вы человек или вам помогает Добрый Самаритянин, вам нужно убедиться, что толчок выполняется правильно.
В электрическую систему автомобиля входит много современной инженерной мысли. Генераторы, аккумуляторы и множество других промежуточных элементов убедитесь, что ваш автомобиль заводится с первой попытки и продолжает работать. Когда все работает правильно, эти части почти не заметны, но когда что-то идет не так, их важность становится намного яснее.
Вообще говоря, запуск от внешнего источника с помощью кабелей или зарядного устройства — это простой и безопасный способ быстро зарядить разряженный аккумулятор. Существует множество историй о взрывах аккумуляторов и повреждениях транспортных средств после неправильного запуска от внешнего источника, но в большинстве случаев это ложь. При этом всегда будет определенный уровень риска для транспортных средств, особенно когда кабели используются неправильно.
По большей части, для запуска аккумулятора не требуется много технических знаний. Первым делом необходимо ознакомиться с руководством по эксплуатации обоих транспортных средств. Вы должны убедиться, что ни на одном из транспортных средств нет точек подключения, кроме аккумулятора.
Батареи некоторых транспортных средств хранятся в незнакомых местах. Например, в некоторых автомобилях батареи установлены в колесной арке или багажнике. Это редкость, но бывает. Эти автомобили обычно требуют использования соединительного блока.
Водителям гибридных транспортных средств следует избегать запуска другого транспортного средства от внешнего источника. Многие гибриды имеют 12-вольтовую вспомогательную батарею, использование которой для запуска двигателя от внешнего источника может разрядить ее до точки, при которой автомобиль не может запуститься.
Кабели должны быть сначала подключены к аккумулятору транспортного средства-донора, а затем к севшему. Положительный всегда должен быть подключен к положительному, а отрицательный — к отрицательному. Неправильное подключение кабелей может привести к появлению пугающих искр и повреждению обеих батарей.
Убедитесь, что соединительные кабели подсоединены в правильном порядке.
В большинстве случаев для обеспечения безопасной зарядки необходимо сделать следующее:
- Убедитесь, что оба ключа автомобиля находятся в выключенном положении.
- Убедитесь, что оба автомобиля находятся на парковке или нейтрали.
- Подключите одну перемычку к положительной (+) клемме донорской батареи
- Подключите эту же клемму к положительной (+) клемме разряженного аккумулятора
- Подключите другой кабель к отрицательной (-) клемме донорского аккумулятора
- Подсоедините другой конец кабеля к оголенному металлу на двигателе или раме автомобиля с разряженным аккумулятором
- Дайте разряженной батарее зарядиться в течение нескольких минут. Если мертвый автомобиль не заводится через пять минут, вероятно, аккумулятор необходимо заменить.
Очень важно проехать не менее 15 минут, чтобы снова полностью зарядить аккумулятор.
Процесс использования зарядного устройства для зарядки разряженной батареи практически такой же, вы просто меняете работающую батарею на зарядное устройство.
Подключение отрицательного полюса к отрицательному может показаться более простым вариантом, но в редких случаях оно может привести к взрыву батарей.Зачем рисковать? Заземлить металл так же просто и безопаснее для обоих автомобилей.
Вообще говоря, большинство автомобильных аккумуляторов в основном одинаковы, и их довольно просто запустить. Опять же, важно ознакомиться с руководством пользователя и убедиться, что ваш старт безопасен и эффективен. Важно каждый сезон проверять соединительные кабели и хранить их в багажнике.
CarOne обслуживает и ремонтирует все марки и модели. Мы — автомобильный ремонтный центр Kingston, ON, который твердо верит в предоставление высококачественного ремонта автомобилей по доступной цене. Мы более чем рады помочь со всеми потребностями вашей аккумуляторной батареи и системы питания автомобиля.
Создайте свой собственный решения для зарядки аккумуляторов электромобилей
Приведенное ниже примечание по применению должно помочь разработчикам создавать собственные решения для зарядки аккумуляторных батарей электромобилей. При необходимости можно получить помощь от компании.
Популярность электромобилей (EV) в Индии быстро растет.Согласно опросу, рынок электромобилей в Индии вырастет с 3 миллионов единиц в 2019 году до 29 миллионов единиц к 2027 году с среднегодовым темпом роста 21,1 процента. В результате возрастет спрос на зарядные устройства переменного / постоянного тока, интеллектуальные зарядные устройства для электромобилей.
Для эффективной зарядки аккумуляторов и обеспечения их длительного срока службы нам нужна интеллектуальная система управления аккумулятором или система зарядки. Чтобы реализовать такую систему зарядки электромобилей, Holtek разработала интеллектуальные зарядные устройства для электромобилей на основе их недорогого флэш-микроконтроллера (MCU) ASSP HT45F5Q-X для зарядки батарей электромобилей.
В настоящее время доступны три конструкции зарядных устройств для электромобилей, подходящие для индийского рынка — с характеристиками 48 В / 4 А, 48 В / 12 А и 48 В / 15 А — для быстрой разработки продукта. Эта интеллектуальная система зарядки на основе полупроводников может поддерживать как литий-ионные, так и свинцово-кислотные батареи.
Блок-схема зарядного устройства для электромобилей показана на рис. 1. Здесь устройство для зарядки аккумуляторов ASSP flash MCU HT45F5Q-X является сердцем схемы зарядного устройства электромобиля со встроенными операционными усилителями (OPA) и цифро-аналоговыми преобразователями ( ЦАП), которые необходимы для зарядки аккумулятора.
Рис. 1: Блок-схема зарядного устройства для электромобилейТехнические характеристики флэш-микроконтроллера для зарядного устройства серии HT45F5Q-X показаны на рис. 2. Разработчики могут выбрать подходящий микроконтроллер из серии HT45F5Q-X в соответствии с требованиями своего приложения.
Рис. 2: Технические характеристики HT45F5Q-XХарактеристики и работа зарядного устройства EV для спецификации 48 В / 12 А кратко описаны ниже. Эта конструкция зарядного устройства для электромобилей использует микроконтроллер HT45F5Q-2 для реализации функции управления зарядкой аккумулятора.
MCU включает в себя модуль зарядки аккумулятора, который можно использовать для управления зарядкой с обратной связью с постоянным напряжением и постоянным током для эффективной зарядки аккумулятора.Внутренняя структурная схема микроконтроллера HT45F5Q-2 представлена на рис. 3.
Рис. 3: Блок-схема HT45F5Q-2Модуль зарядки аккумулятора в HT45F5Q-2 имеет встроенные OPA и DAC, необходимые для процесса зарядки. Поэтому конструкция снижает потребность во внешних компонентах, таких как шунтирующие регуляторы, OPA и DAC, которые обычно используются в обычных схемах зарядки аккумуляторов. В результате периферийная схема является компактной и простой, что приводит к меньшей площади печатной платы и низкой общей стоимости.
Работа зарядного устройства EV
Входное напряжение для зарядного устройства EV — это переменное напряжение в диапазоне от 170 до 300 В.Зарядное устройство EV использует конструкцию полумостового резонансного преобразователя LLC из-за его характеристик высокой мощности и высокого КПД для получения мощности постоянного тока для зарядки аккумулятора.
В конструкции используется выпрямительная схема для преобразования входного переменного напряжения в высоковольтное выходное постоянное напряжение, а также имеется фильтр электромагнитных помех (EMI) для устранения высокочастотного шума от входного источника питания. ИС контроллера широтно-импульсной модуляции (ШИМ), такая как UC3525, может использоваться для управления полевыми МОП-транзисторами полумостового LLC-преобразователя.
Процесс зарядки аккумулятора контролируется MCU HT45F5Q-2. Он контролирует уровень напряжения аккумулятора и зарядного тока и передает обратную связь на ИС контроллера ШИМ. На основе обратной связи контроллер ШИМ изменяет рабочий цикл своего сигнала ШИМ и управляет схемой полевого МОП-транзистора для получения переменного выходного напряжения и тока для зарядки аккумулятора.
Для лучшей защиты HT45F5Q-2 изолирован от остальной части схемы (т. Е. Высоковольтных компонентов) с помощью оптопары.Светодиодные индикаторы уровня заряда аккумулятора позволяют узнать состояние зарядки.
Процесс зарядки аккумулятора
Изменение зарядного напряжения и тока во время процесса зарядки графически проиллюстрировано на рис. 4. Если напряжение аккумулятора слишком низкое при подключении для зарядки, сначала будет установлен низкий зарядный ток (например, непрерывный заряд (TC)) и заряд процесс начнется.
Рис. 4: Кривая зарядки аккумулятораКогда напряжение аккумулятора увеличивается до заданного уровня (Vu), для зарядки применяются постоянное напряжение (CV) и постоянный ток (CC), и продолжается до тех пор, пока аккумулятор не будет полностью заряжен. Батарея считается полностью заряженной, когда напряжение достигает VOFF. Когда зарядный ток падает до Iu, устанавливается конечное напряжение (FV). Ниже описывается процесс контроля напряжения, тока и температуры в этом зарядном устройстве для электромобилей.
(а) Контроль напряжения
Напряжение зарядки определяется на основе начального напряжения батареи, когда она подключена для зарядки. По мере того, как зарядка продолжается, напряжение зарядки изменяется соответствующим образом, и, наконец, когда аккумулятор полностью заряжен, устанавливается окончательное напряжение.Уровни напряжения зарядки для зарядного устройства 48 В / 12 А поясняются ниже.
- Если напряжение батареи <36 В, зарядка TC (0,6 A), настройка напряжения FV (56 В)
- Если напряжение батареи <40 В, зарядка TC (0,6 A), установка напряжения CV (58 В)
- Если напряжение аккумулятора> 40 В, зарядка CC (12,0 A), установка напряжения CV (58 В)
- Когда полностью заряжен, устанавливается напряжение FV (56 В). Если напряжение батареи ниже FV, зарядный ток будет сброшен до CC (12,0 А).
(б) Текущий контроль
Ток зарядки устанавливается в зависимости от напряжения аккумулятора.Первоначально, если напряжение батареи слишком низкое, для зарядки батареи будет установлен ток капельной зарядки. Как только напряжение аккумулятора достигает определенного уровня, для зарядки подается постоянный ток, пока аккумулятор не зарядится полностью. Уровни тока зарядки для зарядного устройства 48 В / 12 А перечислены ниже.
- Ток зарядки <1,2 А, определение окончания зарядки
- Ток зарядки> 0,2 А, определение начала зарядки
(c) Защита от перегрева
Зарядное устройство EV имеет термистор с отрицательным температурным коэффициентом (NTC) для контроля температуры и вентилятор для регулирования нагрева.При повышении температуры автоматически включается вентилятор для отвода тепла; он отключается, когда температура снижается до нижнего порогового значения. Кроме того, вентилятор включается при высоком токе зарядки и выключается при низком токе зарядки.
- Когда температура NTC> 110 ° C, зарядный ток будет снижен до 50% от зарядного тока и будет периодически контролироваться
(d) Светодиодные индикаторы состояния зарядки
Они перечислены ниже.
- Зарядка TC, красный индикатор медленно мигает (0,3 сек горит, 0,3 сек выкл)
- CC, зарядка CV, красный свет быстро мигает (0,1 с горит, 0,1 с не горит)
- Когда не заряжается, горит зеленый свет
- Когда время зарядки превышает восемь часов, горят красный и зеленый свет
(e) Продолжительность зарядки
Когда продолжительность зарядки превышена (продолжительность зависит от емкости аккумулятора), напряжение падает до FV, ток снижается до TC, и зарядное устройство постоянно контролирует напряжение аккумулятора.
Схема и сборка печатной платы
Схема зарядного устройства Holtek EV для типа 48V / 12A показана на рис. 5 для справки, а его печатная плата в сборе показана на рис. 6.
Рис. 5: Схема зарядного устройства электромобиля на 48 В / 12 АСкачать оригинал:
Нажмите здесьФлэш-микроконтроллер ASSP HT45F5Q-2 также может использоваться для разработки решений с более высокой мощностью. Он предлагает программируемую опцию для установки пороговых значений параметров, что делает его очень удобным для зарядных устройств электромобилей.Holtek предоставляет технические ресурсы, такие как блок-схемы, схемы приложений, файлы печатных плат, исходный код и т. Д., Чтобы помочь дизайнерам в быстрой разработке продукта и ускорить вывод продукта на рынок.
Рис. 6: Печатная плата зарядного устройства для электромобилейПлатформа для разработки зарядных устройств для электромобилей серии HT45F5Q-X также будет доступна в ближайшее время. Используя этот программный инструмент, пользователи смогут легко выбрать напряжение / ток зарядки и другие параметры для создания программы. Это приложение также сможет создать программу, содержащую стандартный процесс зарядки, что значительно упростит процесс разработки.
Кришна Чайтанья Камасани — директор по операциям в Индии в Holtek Semiconductor
Как выбрать правильное зарядное устройство
Позвольте мне начать с заявления об отказе от ответственности: BatteryStuff.com не продает недорогие стандартные зарядные устройства для аккумуляторов, которые часто можно найти в торговых точках и некоторых других интернет-магазинах. Мы специально обслуживаем зарядные устройства с микропроцессорным управлением, также известные как интеллектуальные зарядные устройства. Все имеющиеся у нас зарядные устройства проверяются, тестируются и выбираются на основе функции, надежности и долговечности.
Зарядное устройство этого типа предназначено для зарядки свинцово-кислотных и других типов аккумуляторов на основе компьютерных алгоритмов. Проще говоря, зарядное устройство собирает информацию от аккумулятора и регулирует ток и напряжение заряда на основе этой информации. Это позволяет заряжать аккумулятор быстро, правильно и полностью при использовании интеллектуального зарядного устройства. Все зарядные устройства, которые мы продаем, могут оставаться подключенными к аккумулятору в течение неограниченного времени и не будут перезаряжать или повреждать его.
Простые шаги по выбору зарядного устройства, подходящего для ваших нужд.
Шаг 1. Выбор зарядного устройства в зависимости от типа батареиНезависимо от того, является ли ваша батарея необслуживаемой, влажной ячейкой (залитой), AGM (абсорбированным стекломатом), гелевой ячейкой или VRLA (свинцово-кислотной батареей с регулируемым клапаном), одно зарядное устройство должно работать для всех типов, кроме гелевых элементов. Однако некоторые из наших зарядных устройств для гелевых элементов будут хорошо работать с другими типами аккумуляторов.
Шаг 2: Определение размера батареи
Мы имеем в виду не физический размер, а то, сколько ампер-часов хранит ваша батарея. Например, типичный полноразмерный автомобильный аккумулятор составляет около 50 ампер-часов, поэтому вы должны выбрать зарядное устройство на 10 ампер, которое потребует около 6 часов для его зарядки, если аккумулятор полностью разряжен. Другим примером может быть морская батарея глубокого разряда, рассчитанная на 100 ампер-часов. Зарядному устройству на 10 ампер потребуется около 11 часов, чтобы полностью зарядить разряженную батарею. Чтобы рассчитать общее время зарядки аккумулятора, хорошее практическое правило состоит в том, чтобы разделить номинальную мощность аккумулятора в ампер-часах на мощность зарядного устройства (в амперах), а затем прибавить около 10% для дополнительного времени, чтобы полностью зарядить аккумулятор. .
Некоторым людям, желающим быстрой подзарядки, следует поискать зарядное устройство с большим током, например зарядное устройство для гольф-кары. Если вы никуда не торопитесь, можете выбрать зарядное устройство меньшего размера. Самое главное — убедиться, что у вас достаточно мощности зарядного устройства, чтобы выполнить требуемую работу за отведенное вам время.
Шаг 3. Выбор зарядного устройства в зависимости от желаемого результата
Некоторым людям требуется зарядное устройство, чтобы заряжать аккумулятор мотоцикла, классического автомобиля или самолета в межсезонье.В этих случаях подойдет простое слаботочное зарядное устройство. Другим требуется быстрое и мощное зарядное устройство для быстрого восстановления батареи троллингового двигателя или комплекта батарей для инвалидных колясок. Другие типы зарядных устройств и причины, по которым они могут вам понадобиться:
- Зарядные устройства MULTI VOLTAGE для использования при посещении другой страны
- Водонепроницаемые зарядные устройства для непогоды
- Зарядные устройства, которые используются в качестве источников питания для жилых автофургонов
- Зарядное устройство для нескольких аккумуляторов одновременно
Надеемся, мы помогли вам определить, какое зарядное устройство лучше всего подходит для вашего приложения.