+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

зачем нужен, расчет для амперметра, как сделать

Многие домашние электрики недовольны тестерами промышленного производства, поэтому задумываются о том, как из амперметра сделать вольтметр, а также как повысить функциональность тестера промышленного производства. Для этой цели можно изготовить специальный шунт.

Перед тем как приступить к работе, следует выполнить расчет шунта для микроамперметра и найти материал, обладающий хорошей проводимостью.

Конечно, для большей точности измерений можно просто приобрести миллиамперметр, но такие приборы стоят довольно дорого, а применять их на практике приходится весьма редко.

В последнее время в продаже появились тестеры, рассчитанные на большое напряжение и сопротивление. Для них шунт не нужен, но и стоимость их очень высока. Для тех, кто использует классический тестер, изготовленный еще в советское время, или пользуется самодельным, шунт просто необходим.

Недостатки промышленного амперметра

Подобрать токовый амперметр — дело непростое. Большинство приборов выпускается на Западе, в Китае или в странах СНГ, и в каждой стране к ним предъявляют свои индивидуальные требования. Также в каждой стране свои допустимые величины постоянного и переменного тока, требования к розеткам. В связи с этим при подключении амперметра западного производства к отечественному оборудованию может оказаться, что прибор не может правильно измерить силу тока, напряжение и сопротивление.

С одной стороны, такие устройства очень удобны. Они компактны, снабжаются зарядным устройством и просты в пользовании. Классический стрелочный амперметр не занимает много места и имеет визуально понятный интерфейс, но он часто не рассчитан на существующее напряжение сопротивление. Как говорят бывалые электрики, на шкале «не хватает ампер». Приборы, устроенные таким образом, обязательно нуждаются в шунтировании. Например, бывают ситуации, когда нужно измерить величину до 10а, а на шкале прибора отсутствует цифра 10.

Вот основные недостатки классического фабричного амперметра без шунта:

  • Большая погрешность в измерениях;
  • Диапазон измеряемых величин не соответствует современным электроприборам;
  • Крупная калибровка не позволяет измерять малые величины;
  • При попытке измерить большую величину сопротивления прибор «зашкаливает».

Для чего нужен шунт

Шунт необходим для того, чтобы правильно измерить сопротивление в тех случаях, если амперметр не предназначен для измерения таких величин. Если домашний мастер часто имеет дело с такими величинами, есть смысл изготовить шунт для амперметра своими руками. Шунтирование значительно повышает точность и эффективность его работы. Это важное и нужное устройство для тех, кто часто пользуется тестером. Обычно его используют владельцы классического амперметра 91с16. Вот основные преимущества самодельного шунта:

  • Позволяет измерить сопротивление там, где у фабричного или самодельного амперметра не хватает делений на шкале;
  • Помогает адаптировать зарубежные амперметры к российским электрическим цепям;
  • Точность тестера значительно увеличивается;
  • Защищает тестер от поломок и продлевает срок его службы. Любая ситуация, когда тестер «зашкаливает» является стрессом для прибора. Если амперметр «зашкаливает» часто (обычно так бывает, если он отсутствует), прибор быстро выходит из строя, а починить его непросто (легче купить новый).

Порядок изготовления

С самостоятельным изготовлением шунта легко справится даже первокурсник профессионально-технического училища или начинающий электрик-любитель. Если подключить это устройство соответствующим образом, оно значительно увеличит точность амперметра и прослужит долго. В первую очередь необходимо произвести расчет шунта для амперметра постоянного тока. Узнать о том, как производить расчеты, можно через интернет или из специализированной литературы, адресованной домашним электрикам. Рассчитать шунт можно с помощью калькулятора.

Для этого нужно просто подставить конкретные значения в готовую формулу. Для того чтобы воспользоваться схемой расчета, необходимо знать реальные напряжение и сопротивление, на которые рассчитан конкретный тестер, а также представлять себе тот диапазон, до которого нужно расширить возможности тестера (это зависит от того, с какими именно приборами чаще всего приходится иметь дело домашнему электрику).

Для изготовления прекрасно подойдут

такие материалы:

  • Стальная скрепка;
  • Моток медной проволоки;
  • Манганин;
  • Медный провод.

Можно приобрести материалы в специализированных магазинах или воспользоваться тем, что есть дома.

По сути, шунт — это источник дополнительного сопротивления, снабженный четырьмя зажимами и подсоединенный к прибору. Если для его изготовления используется стальная или медная проволока, не стоит скручивать его в виде спирали.

Лучше аккуратно уложить его в виде «волн». Если шунт рассчитан правильно, тестер будет работать намного лучше, чем раньше.

Металл для изготовления этого устройства должен хорошо проводить тепло. А вот индуктивность в том случае, если домашний электрик имеет дело с протеканием большого тока, может негативно повлиять на результат и способствовать его искажению. Это тоже нужно иметь в виду при изготовлении шунта в домашних условиях.

Полезные советы

Если домашний электрик решил приобрести амперметр промышленного производства, следует выбирать прибор с мелкой калибровкой, потому что он будет более точным. Тогда, возможно, не понадобится и самодельный шунт.

При работе с тестером следует соблюдать элементарную технику безопасности. Это поможет избежать серьезных травм, вызванных поражением электрическим током.

Если тестер систематически «зашкаливает», использовать его не стоит.

Возможно, что прибор или неисправен, или не способен показать правильный результат измерений без дополнительного приспособления. Лучше всего приобретать современные амперметры отечественного производства, потому что они лучше подходят для тестирования электроприборов нового поколения. Перед тем как начинать работу с тестером, следует внимательно прочитать инструкцию по эксплуатации.

Шунт — прекрасный способ оптимизировать работу домашнего электрика по тестированию электрических цепей. Для того чтобы сделать это устройство своими руками, понадобятся только исправный тестер промышленного производства, подручные материалы и элементарные познания в области электрики.

obinstrumentah.info

Как изготовить шунт для амперметра

 Зарядка аккумулятора. Амперметр.


♦  В предыдущей статье: «Выпрямитель для зарядки аккумулятора»

для контроля зарядного тока применяется амперметр на 5 — 8 ампер. Амперметр довольно дефицитная вещь и не всегда подберешь его на такой ток. Попробуем изготовить амперметр своими руками.
Для этого потребуется стрелочный измерительный прибор магнитно-электрической системы на любой ток полного отклонения стрелки по шкале.

Необходимо посмотреть, чтоб у него не было внутреннего шунта или добавочного сопротивления для вольтметра.
♦    Измерительный стрелочный прибор имеет внутреннее сопротивление подвижной рамки и ток полного отклонения стрелки. Стрелочный прибор может использоваться как вольтметр (добавочное сопротивление включается последовательно с прибором) и как амперметр (добавочное сопротивление включается параллельно с прибором).

♦     Схема для амперметра справа на рисунке.

Добавочное сопротивление —

шунт рассчитывается по специальным формулам… Мы же изготовим его практическим путем, применив только калибровочный амперметр на ток до 5 — 8 ампер, или применив тестер, если он имеет такой предел измерения.

♦   Соберем несложную схему из зарядного выпрямителя, образцового амперметра, провода для шунта и заряжаемого аккумулятора. Смотрите рисунок…

 

 

 

 

♦     В качестве шунта можно использовать толстый провод из стали или меди. Лучше всего и проще, взять тот же провод, каким наматывалась вторичная обмотка, или чуть-чуть потолще.

Необходимо взять отрезок медного или стального провода длиной около 80 сантиметров, снять с него изоляцию. На двух концах отрезка сделать колечки для болтового крепления. Включить этот отрезок последовательно в цепь с образцовым  амперметром.

Один конец от нашего стрелочного прибора припаять к концу шунта, а другим проводить по проводу шунта. Включить питание, установить регулятором или тумблерами ток заряда по контрольному амперметру — 5 ампер.
Начиная от места пайки, другим концом от стрелочного прибора проводить по проводу. Установить одинаковые показания обоих амперметров. В зависимости от сопротивления рамки вашего стрелочного прибора, разные стрелочные приборы будут иметь разную длину провода шунта, иногда до одного метра.
Это конечно не всегда удобно, но если у вас будет свободное место в корпусе, можно аккуратно разместить.

♦     Провод шунта можно смотать в спираль как на рисунке, или еще как нибудь по обстоятельствам. Витки немного растянуть, чтоб не касались друг друга или надеть колечки из хлорвиниловой трубочки по всей длине шунта.
♦     Можно предварительно определить длину провода шунта, а потом вместо голого применить провод в изоляции и намотать уже в навал на заготовку.

Подбирать надо тщательно, проделывая все операции несколько раз, тем точнее будут показания вашего амперметра.
Соединительные провода от прибора необходимо обязательно припаивать непосредственно к шунту, иначе будут неправильные показания стрелки прибора.

♦     Соединительные провода могут быть любой длины, а потому шунт может быть расположен в любом месте корпуса выпрямителя.
♦     Необходимо подобрать шкалу к амперметру. Шкала у амперметра для измерения постоянного тока равномерная.

 

Один из вариантов шкалы смотрите на рисунке:

Тут можно сделать шкалу на 5 ампер, на 8 ампер или на полное отклонение стрелки до 10 ампер.
Могут быть другие шкалы, на другие цифры по шкале.
А можно подрисовать свои цифры.
Нужно немного пофантазировать.

 

Такой амперметр подойдет только для измерения постоянного или пульсирующего тока.

domasniyelektromaster.ru

СХЕМА АМПЕРМЕТРА

   Некоторые схемы и устройства, например усилители мощности, автомобильные зарядные устройства, лабораторные источники питания, могут иметь токи, которые достигают до 20 ампер и более. Ясно, что пару ампер можно легко померять обычным дешёвым мультиметром, а как быть с 10, 15, 20 и более ампер? Ведь даже на не очень больших нагрузках встроенные в амперметры шунтирующие резисторы в течение длительного времени замера, иногда даже часов, могут перегреться и в худшем случае поплавится.

   Профессиональные инструменты для измерения больших токов, достаточно дорогие, так что имеет смысл собрать схему амперметра самому, тем более ничего тут сложного нет.

Электрическая схема мощного амперметра

   Схема, как вы можете видеть, очень простая. Её работа уже испытана многими производителями, и большинство промышленных амперметров работают таким же образом. Например, вот эта схема тоже использует данный принцип.

Рисунок платы мощного амперметра

   Особенность заключается в том, что в данном случае используется шунт (R1) с сопротивлением очень низкого значения — 0.01 Ом 1% 20W — это дает возможность рассеять совсем немного тепла.

Работа схемы амперметра

   Работа схемы довольно проста, при прохождении определенной тока через R1 будет падение напряжения на нём, его можно измерить, для этого напряжение усиливается операционным усилителем OP1 и поступает далее на выход через контакт 6 на внешний вольтметр, включенный на пределе 2V.

   Настройки будут заключаться в установке ноля на выходе амперметра при отсутствии тока, и в калибровке, сравнивая его с другим, образцовым инструментом для замера тока. Питается амперметр стабильным симметричным напряжением. Например от 2-х батареек по 9 вольт. Для измерения тока подключите датчик к линии и мультиметр в диапазоне 2V — смотрите показания. 2 вольта будет соответствовать току 20 ампер.

Испытания схемы амперметра

   С помощью мультиметра и нагрузки, например небольшой лампочки или сопротивления, мы будем измерять ток нагрузки. Подключим амперметр и получаем показания тока с помощью мультиметра. Рекомендуем выполнить несколько тестов с разными нагрузками, чтобы сравнить показания с эталонным амперметром и убедиться, что все работает правильно. Скачать файл печатной латы можете здесь.

el-shema.ru

Как сделать шунт для амперметра к сварочному аппарату.

Опубликовал admin | Дата 29 ноября, 2011

Перед началом работы зайдите в рубрику «Программы» и скачайте для себя две программы.
Первая программа — Программа для работ с проволокой.
Вторая — Черчение передних панелей и шкал приборов.

Подберите подходящую измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Я нашел у себя на 50микроампер, на примере ее и будем рассчитывать нужный нам шунт для амперметра.

Выберем предел измерения тока нашим амперметром, ну пусть будет, например 300 ампер. Для самодельных сварочных самый раз.Теперь мультиметром измеряем активное сопротивление головки. У моей головки оно равно 1454 ома.  Теперь мы знаем два параметра измерительной головки. Ток полного отклонения и сопротивление. Из формулы закона Ома — I=U/R, выводим формулу для определения напряжения — U=IxR. Открываем виндовский калькулятор. Умножаем значение тока в амперах 0,00005А на сопротивление в омах 1454 ома, получаем величину напряжения, которое необходимо приложить к измерительной головке, чтобы стрелка отклонилась на последнее деление шкалы. У меня получилось U=0,0727В или 72,7 милливольт. Опять идем к Ому. Выводим формулу для сопротивления: R=U/I . Теперь определяем сопротивление шунта. Делим 0, 0727вольт на сварочный ток 300 ампер. Получаем R шунта = 0,0002423 ома.Открываем программу для работы с проволокой. Скриншот на фото.

Выбираем материал, из которого изготовим шунт. Справа в выпадающем окне выбираем сталь. Самый распространенный материал. Для простоты изготовления пусть шунт будет круглого сечения. В используемой величине ставим точку в окошечке «Диаметр». Вводим величину сопротивление шунта  — 0,0002423 ома. Выбираем диаметр нашего шунта, для прочности выбирает пруток диаметром 10 миллиметров. Нажимаем на «Результат». Результат вы видите на фото. Теперь сделать сам шунт не сложнее, чем два пальца об асфальт. Берем стальной пруток соответствующего диаметра, нарезаем резьбу на всю длину для лучшего охлаждения шунта, отмеряем 150мм, отрезаем, получаем шпильку М10 на 150мм. Так как мы нарезали резьбу, то мы изменили диаметр шунта, поэтому его длина для данного сопротивления будет меньше расчетной, при регулировке все определится. Берем четыре гайки  на десять, лучше медные или латунные, два наконечника для проводов большого сечения 1 и два лепестка 2, для проводов идущих к измерительной головке. У вас должна получиться примерно вот такая конструкция, только с медными гайками.

Меняя расстояние между лепестками, можно достаточно просто откалибровать амперметр. Лишнюю сталь потом можно отрезать.
Далее открываем программу  FrontDesigner_3.0.

Программа имеет русский интерфейс, поэтому я думаю, вы спокойно разберетесь, что к чему. В результате у вас должно получиться примерно вот такой рисунок. Печатайте новую шкалу на бумагу для фотографий. В заключении хочу показать мое зарядное для автомобильных аккумуляторов. Правда за восемь лет оно уже по истаскалось. Здесь шкала и передняя панель, как раз начерчены с помощью этой программы. Печать велась на струйном принтере. Фотография передней панели, после приклейки, обязательно покрывалась автомобильным бесцветным лаком. Первый слой должен быть очень тонким, иначе могут расплыться чернила. Клеить все это дело можно с помощью ПВА. Надеюсь вам это пригодится. До свидания  К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:71 031


www.kondratev-v.ru

Амперметр цифровой своими руками. Цифровые амперметры и вольтметры

Амперметры – это устройства, которые используются с целью определения силы тока в цепи. Цифровые модификации изготавливаются на базе компараторов. По точности измерения они различаются. Также важно отметить, что приборы могут устанавливаться в цепи с постоянным и переменным током.

По типу конструкции различают щитовые, переносные, а также встроенные модификации. По назначению есть импульсные и фазочувствительные устройства. В отдельную категорию выделены селективные модели. Для того чтобы более подробно разораться в приборах, важно узнать устройство амперметра.

Схема амперметра

Обычная схема цифрового амперметра включает в себя компаратор вместе с резисторами. Для преобразования напряжения применяется микроконтроллер. Чаще всего он используется с опорными диодами. Стабилизаторы устанавливаются только в селективных модификациях. Для увеличения точности измерений используются широкополосные фильтры. Фазовые устройства оснащаются трансиверами.

Модель своими руками

Собрать цифровой амперметр своими руками довольно сложно. В первую очередь для этого потребуется качественный компаратор. Параметр чувствительности должен составлять не менее 2.2 мк. Минимальное разрешение он обязан выдерживать на уровне в 1 мА. Микроконтроллер в устройстве устанавливается с опорными диодами. Система индикации подсоединяется к нему через фильтр. Далее, чтобы собрать цифровой амперметр своими руками нужно установить резисторы.

Чаще всего они подбираются коммутируемого типа. Шунт в данном случае должен располагаться за компаратором. Коэффициент деления прибора зависит от трансивера. Если говорить про простую модель, то он используется динамического типа. Современные устройства оснащаются сверхточными аналогами. Источником стабильного тока может выступать обычная батарейка литий-ионного типа.

Устройства постоянного тока

Цифровой амперметр постоянного тока выпускается на базе высокочувствительных компараторов. Также важно отметить, что в приборах устанавливаются стабилизаторы. Резисторы подходят только коммутируемого типа. Микроконтроллер в данном случае устанавливается с опорными диодами. Если говорить про параметры, то минимальное разрешение устройств равняется 1 мА.

Модификации переменного тока

Амперметр (цифровой) переменного тока можно сделать самостоятельно. Микроконтроллеры у моделей используются с выпрямителями. Для увеличения точности измерения применяются фильтры широкополосного типа. Сопротивление шунта в данном случае не должно быть меньше 2 Ом. Чувствительность у резисторов обязана составлять 3 мк. Стабилизаторы чаще всего устанавливаются расширительного типа. Также важно отметить, что для сборки понадобится триод. Припаивать его необходимо непосредственно к компаратору. Допустимая ошибка приборов данного типа колеблется в районе 0.2 %.

Импульсные приборы измерения

Импульсные модификации отличаются наличием счетчиков. Современные модели выпускаются на базе трехразрядных устройств. Резисторы используются только ортогонального типа. Как правило, коэффициент деления у них равняется 0.8. Допустимая ошибка в свою очередь составляет 0.2%. К недостаткам устройств можно отнести чувствительность к влажности среды. Также их запрещается использовать при минусовых температурах. Самостоятельно собрать модификацию проблематично. Трансиверы в моделях применяются только динамического типа.

Устройство фазочувствительных модификаций

Фазочувствительные модели продаются на 10 и 12 В. Параметр допустимой ошибки у моделей колеблется в районе 0.2%. Счетчики в устройствах применяются только двухразрядного типа. Микроконтроллеры используются с выпрямителями. Повышенной влажности амперметры данного типа не боятся. У некоторых модификаций имеются усилители. Если заниматься сборкой устройства, то потребуются коммутируемые резисторы. Источником стабильного тока может выступать обычная литий-ионная батарейка. Диод в данном случае не нужен.

Перед установкой микроконтроллера важно припаять фильтр. Преобразователь для литий-ионной потребуется переменного типа. Показатель чувствительности у него находится на уровне 4.5 мк. При резком падении напряжения в цепи необходимо проверить резисторы. Коэффициент деления в данном случае зависит от пропускной способности компаратора. Минимальное давление приборов данного типа не превышает 45 кПа. Непосредственно процесс преобразования тока занимает около 230 мс. Скорость передачи тактового сигнала зависит от качества счетчика.

Схема селективных устройств

Селективный цифровой амперметр постоянного тока изготавливается на базе компараторов с высокой пропускной способностью. Допустимая ошибка моделей равняется 0.3 %. Работают устройства по принципу одностадийного интегрирования. Счетчики используются только двухразрядного типа. Источники стабильного тока устанавливаются за компаратором.

Резисторы применяются коммутируемого типа. Для самостоятельной сборки модели потребуются два трансивера. Фильтры в данном случае могут значительно повысить точность измерений. Минимальное давление приборов лежит в районе 23 кПа. Резкое падение напряжения наблюдается довольно редко. Сопротивление шунта, как правило, не превышает 2 Ом. Токоизмерительная частота зависит от работы компаратора.

Универсальные приборы измерений

Универсальные приборы измерений подходят больше для бытового использования. Компараторы в устройствах часто устанавливаются не большой чувствительности. Таким образом, допустимая ошибка лежит в районе 0.5%. Счетчики используются трехразрядного типа. Резисторы применяются на базе конденсаторов. Триоды встречаются как фазового, так и импульсного типа.

Максимальное разрешение приборов не превышает 12 мА. Сопротивления шунта, как правило, лежит в районе 3 Ом. Допустимая влажность для устройств составляет 7 %. Предельное давление в данном случае зависит от установленной системы защиты.

Щитовые модели

Щитовые модификации производятся на 10 и 15 В. Компараторы в устройствах устанавливаются с выпрямителями. Допустимая ошибка приборов составляет не менее 0.4 5. Минимальное давление устройств равняется около 10 кПа. Преобразователи применяются в основном переменного типа. Для самостоятельной сборки устройства не обойтись без двухразрядного счетчика. Резисторы в данном случае устанавливаются со стабилизаторами.

Встраиваемые модификации

Цифровой встраиваемый амперметр выпускается на базе опорных компараторов. Пропускная способность у моделей довольно высокая, и допустимая погрешность равняется около 0.2 %. Минимальное разрешение приборов не превышает 2 мА. Стабилизаторы используются как расширительного, так и импульсного типа. Резисторы устанавливаются высокой чувствительности. Микроконтроллеры часто применяются без выпрямителей. В среднем процесс преобразования тока не превышает 140 мс.

Модели DMK

Цифровые амперметры и вольтметры данной компании пользуются большим спросом. В ассортименте указанной фирмы имеется множество стационарных моделей. Если рассматривать вольтметры, то они выдерживают максимальное давление 35 кПа. В данном случае транзисторы применяются тороидального типа.

Микроконтроллеры, как правило, устанавливаются с преобразователями. Для лабораторных исследований устройства данного типа подходят идеально. Цифровые амперметры и вольтметры этой компании производятся с защищенными корпусами.

Устройство Торех

Указанный амперметр (цифровой) производится с повышенной проводимостью тока. Максимальное давление устройство выдерживает в 80 кПа. Минимальная допустимая температура амперметра равняется -10 градусов. Повышенной влажности указанный измерительный прибор не боится. Устанавливать его рекомендуется рядом с источником тока. Коэффициент деления равняется только 0.8. Максимальное давление амперметр (цифровой) выдерживает в 12 кПа. Потребляемый ток устройства составляет около 0.6 А. Триод используется фазового типа. Для бытового использования данная модификация подходит.

Устройство Lovat

Указанный амперметр (цифровой) делается на базе двухразрядного счетчика. Проводимость тока модели равняется только 2.2 мк. Однако важно отметить высокую чувствительность компаратора. Система индикации используется простая, и пользоваться прибором очень комфортно. Резисторы в этот амперметр (цифровой) установлены коммутируемого типа.

Также важно отметить, что они способны выдерживать большую нагрузку. Сопротивление шунта в данном случае не превышает 3 Ом. Процесс преобразования тока происходит довольно быстро. Резкое падение напряжения может быть связано только с нарушением температурного режима прибора. Допустимая влажность указанного амперметра равняется целых 70 %. В свою очередь максимальное разрешение составляет 10 мА.

Модель DigiTOP

Этот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка.

Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены.

Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А. Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом.

Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа.

fb.ru

Упрощенный авометр своими руками для начинающего радиолюбителя

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов. 

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1—Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

 

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3—R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4—3 В, с резистором R5— 10 В, с резистором R6—30 В.

Миллиамперметр пятипредельный: 0—1, 0—3, 0—10, 0—30 и 0—100 мА. Его образует универсальный шунт составленный из резисторов R7—R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

 

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1—Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

 

 Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра — к разметке шкалы по образцовым ре­зисторам.

 Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2—3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,— параллельно соединенные само­дельный калибруемый (VK) и образ­цовый (V0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений — до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то — меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора — пленочный (СП, СПО) сопротивлением 5—10 кОм и проволочный сопротивле­нием 50—100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7—R9, второй — при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА0, калибруемый мАк, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор Rp. Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора Rv, ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 — на пределе 3 мА, резистор R9— на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 — на пре­деле 30 мА и, наконец, резистор R11— на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте — можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50—60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них — шкала омметра, нижняя — общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток Iи=300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с  микроамперметром   на   ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

 Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения   автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов 




П О П У Л Я Р Н О Е:

  • МАЛОГАБАРИТНЫЙ СИГНАЛИЗАТОР РАДИАЦИОННОЙ ОПАСНОСТИ.
  • МАЛОГАБАРИТНЫЙ СИГНАЛИЗАТОР РАДИАЦИОННОЙ ОПАСНОСТИ СО СВЕТОВОЙ ИНДИКАЦИЕЙ.

    Прибор реагирует на изменение ионизирующего излучения в окружающем человека

    пространстве путем увеличения или уменьшения числа световых вспышек в единицу времени, например в минуту. Он чувствителен к космическому радиационному фону, предупреждает человека об изменении радиационной обстановки в данной местности и может найти применение, например в качестве индикатора уровня концентрации радиоактивных элементов, содержащихся в материалах. Может быть полезен геологам, командирам штабов гражданской обороны, обслуживающему персоналу в радиологических учреждениях, при производстве работ, связанных с неразрушающим контролем качества материалов при помощи источников ионизирующего излучения в условиях повышенного шума, когда звуковые сигнализаторы малоэффективны. Полезен и тем, кто занимается изучением и охраной природы. Подробнее…

  • Простое автоматическое зарядное устройство
  • Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

    Подробнее…

  • Активная акустическая система.
  • Всем хороши минимузыкальные центры,  и широкий набор функциональных возможнос­тей, и неплохие характеристики, мало места занимают в квартире. Одно плохо, — выходная мощность невысокая, обычно не более 5-10W. Конечно, можно купить более мощный аппарат, но музыкальный центр с выходной мощностью около 100W стоит на порядок дороже. А это существенно для кармана многих наших граждан. Подробнее…


— н а в и г а т о р —


Популярность: 14 589 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о