+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как обозначаются конденсаторы на схемах: основные параметры и емкость

В электротехнике используются конденсирующие элементы разных типов и размеров. При чтении чертежей электрику необходимо знать обозначение конденсаторов на схеме и различать изображения устройств разных видов.

Типы конденсаторных элементов

О конденсаторе

Это устройство обладает способностью хранения электрического заряда. Между его пластинами располагается слой диэлектрика, создающий изоляцию для пары проводящих поверхностей. Основной характеристикой устройства является емкость – способность к накоплению заряда. С точки зрения технологии, наиболее распространенные типы конденсаторов – электролитические и электростатические. Выбор используемого элемента зависит от особенностей электросхемы и того, какую функцию он должен выполнять.

Обозначение конденсаторов на схемах

В отношении того, как именно обозначается конденсатор на схеме, существует строгая стандартизация: устройство узнается по паре параллельных друг другу близко расположенных вертикальных черт.

Эти линии символизируют обкладки. Устройство полагается подписывать литерой С, возле нее обозначить порядковый номер устройства в электросхеме. Рядом с этими обозначениями или под ними указывают значение емкости.

Условные обозначения конденсаторов

В России существует система условных графических обозначений, включающая УГО конденсатора. Визуальной репрезентации этих устройств, а также резисторов посвящен отдельный ГОСТ, входящий в Единую систему конструкторской документации. Используются также международные стандарты – IEEE.

Конденсатор с постоянной емкостью

Такие элементы выпускаются с поляризацией и без нее. Неполяризованные изделия мелкого размера имеют широкую сферу применения, их можно подсоединять в разных направлениях. На схеме их обозначают двумя параллельными короткими черточками, находящимися под прямым углом к линиям соединения. На корпусе устройства указывают его емкость, нередко без единиц измерения (0,1 – это 1 микрофарад).

Важно! За рубежом иногда используют аббревиатуру MFD для указания емкости. Она означает микрофарады.

Графическая репрезентация элемента с постоянной емкостью

Код номера конденсатора

Первая пара знаков показывает емкость, цифра следом за ними – количество нулей. Единица измерения – пикофарад. Иногда на такой маркировке присутствуют буквы, они обозначают допуск в процентах и номинальное напряжение.

Поляризованные конденсаторы

Самым распространенным типом полярного конденсаторного элемента является электролитический. Такие изделия выпускаются в форме цилиндров или в осевом исполнении. Первый вариант несколько компактнее и дешевле. Выводы у него находятся с одной из сторон, тогда как у осевых вариантов – на разных. Поскольку устройства относительно крупные, на их корпусах указываются номинальное напряжение (оно у них относительно низкое) и емкость.

Важно! При подключении этих изделий необходимо строго соблюдать полярность, иначе они могут выйти из строя или даже взорваться.

Так в схемах показывают поляризованные элементы

Танталовые конденсаторы

Эти изделия крайне компактны, ставят их в тех случаях, когда важно минимизировать габариты. В прошлом их маркировали двумя цветными полосами (каждый цвет соответствовал цифре) и пятнышком белого или серого цвета (в первом случае значение полос в микрофарадах делили на 10, во втором – на 100). Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс». Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров.

Переменные конденсаторы

Из-за очень малой емкости эти детали имеют узкую сферу применения – в основном они используются в радиосхемах. Графически переменные элементы изображаются традиционным символом из пары коротких параллелей, зачеркнутых наклонной стрелой. Емкость указывают не четкой цифрой, а диапазоном.

Обозначение переменных изделий

Конденсаторы-триммеры

Это суперминиатюрные изделия, монтируемые прямо на печатную плату. Поскольку показатель емкости меняется только при настроечных работах, такие элементы получили название подстроечных. Графическое представление отличается от стандартного для переменных конденсаторов только тем, что вместо острия стрела снабжена перпендикулярной черточкой.

Ионистор

Это изделие с двухслойным строением и довольно большой емкостью (до 10 Ф). На границе электродной поверхности и электролита у таких устройств возникает пространство статичных носителей заряда. В отличие от электролитических вариаций, способ хранения энергии здесь – электростатическое поле. Сочетание большой площади поверхности и малой толщины пространства обеспечивает столь высокий показатель емкости. Обозначается как символ конденсаторного элемента с перпендикулярной ему вертикальной линией, помещенный в круг. При этом в верхней правой и нижней левой четвертях, на которые символ и вертикаль делят круг, находятся линии, сходные с графиком полусинусоиды.

Температурный коэффициент конденсатора

Этот показатель отражает склонность емкостного значения меняться под действием температурных колебаний. Рабочий показатель температуры сильно влияет на долговечность элемента. Коэффициент зависит от вида элемента, например, у изделий из керамики он небольшой, у электролитических – значительный.

Маркировка отечественных конденсаторов

Постсоветские производители маркируют свои изделия довольно подробно и унифицировано. В редких случаях возможны некоторые отличия в обозначениях.

Ёмкость

Это параметр всегда указывается первым, для дробных чисел его кодировка состоит из трех знаков. Первая цифра – это целая часть числа, отражающего значение емкости, третья – дробная часть, на второй позиции находится буква, обозначающая единицу измерения: m – миллифарад, n – нанофарад, p – пикофарад. Например, 3n6 – 3,6 нанофарад. Целые значения указываются так: число и рядом единица измерения с добавленной буквой F (3 pF – 3 пикофарада).

Важно! Если номинал не указан, целая цифра говорит о том, что значение указывалось в пикофарадах, десятичная дробь – в микрофарадах.

Номинальное напряжение

Если размер изделия достаточный, показатель указывают по стандартной схеме: 180 В (или V) – 180 вольт. На миниатюрных конденсаторах значение кодируют латинской буквой, например, 160 В – литерой Q.

Дата выпуска

Ее принято указывать четырьмя цифрами: первые две – это последние цифры года выпуска, вторые две – месяц (9608 – август 1996 года).

Расположение маркировки на корпусе

Поскольку указание параметров очень важно для монтажа схемы, данные показатели помещают на корпусе устройства самой первой строкой. В начале всегда указывают емкость.

Цветовая маркировка отечественных радиоэлементов

Это кодировка с использованием 4 цветных полос, где каждый цвет соотносится с определенной цифрой. Первые две полосы показывают емкость в пикофарадах, следующая – допустимое отклонение, последняя – номинальное напряжение.

Маркировка конденсаторов импортного производства

У американских и других импортных изделий кодировка емкости выглядит так: начальные две цифры – значение в пикофарадах, третья – число нулей.

Цветовая маркировка импортных конденсаторов

Она состоит из пятерки полос. Начальная пара – емкостной показатель в пФ, следующая полоса – число нулей, четвертая – показатель возможного отклонения, пятая – номинал напряжения.

Данные о конденсаторах на схемах призваны информировать работающих с ними специалистов о видах используемых устройств и их основных характеристиках. При выборе используемого элемента нужно обращать внимание на маркировку.

Видео

Что такое конденсатор, как обозначается на схемах, единицы емкости

Знакомство с конденсатором для тех кто только начинает знакомиться с радиоэлектроникой и радиолюбительством. Что такое конденсатор. какие бывают конденсаторы, как они обозначаются на принципиальных схемах, единицы измерения емкости конденсаторов, включение конденсаторов.

Что такое конденсатор

Конденсатор, это радиодеталь, обладающая электрической емкостью. Конденсатор можно зарядить и он будет хранить заряд, апотом готов отдать его «по первому требованию». На первый взгляд это похоже на работу аккумулятора, но только на первый взгляд.

Конденсатор не является химическим источником тока, да и вообще источником тока. Конденсатор можно назвать временным хранилищем заряда. Заряд в нем можно пополнять и забирать. Во время зарядки и разрядки конденсатора через него протекает ток.

Напряжение на разряженном конденсаторе равно нулю. Но в процессе зарядки напряжение увеличивается, и как только достигает величины напряжения источника тока, заряд прекращается. С нарастанием напряжения на конденсаторе 8 процессе его зарядки ток зарядки уменьшается.

Физически конденсатор это две металлические пластины, разделенные тонким слоем изолятора.

Так и есть. Выходит, что конденсатор пропускать электрический ток не может. Но в процессе зарядки и разрядки ток есть.

То есть, можно сказать, что конденсатор может пропускать изменяющийся ток. то есть, переменный. А постоянный он не пропускает. Это свойство широко используется в электронике и радиотехники для разделения переменного и постоянного токов, которые есть в одной и той же цепи.

Если сопротивление конденсатора постоянному току бесконечно (активное сопротивление), то на переменном токе он обладает весьма определенным реактивным сопротивлением, зависящим от емкости конденсатора и частоты переменного тока.

Еще конденсаторы применяют для задержки подачи напряжения, в таймерах. Там используется то свойство конденсатора, что скорость его заряда или разряда зависит от силы тока заряда или разряда. А если этот ток ограничить резистором, то чем больше будет сопротивление этого резистора, тем дольше будет процесс заряда или разряда.

Если у резистора основным параметром является сопротивление, то у конденсатора -емкость, которая выражается 8 фарадах. Величина 1F (одна фарада) довольно велика, поэтому чаще всего речь идет о микрофарадах, нанофарадах, пикофарадах. Конденсаторы так же как и резисторы бывают постоянные (емкость которых не измена), переменные и подстроечные (с ручкой для регулировки емкости).

Обозначение конденсатора на схемах

В отличие от постоянных резисторов, которые в большинстве своем похожи на бочонок с двумя выводами, постоянные конденсаторы бывают самых разных форм и размеров. Но разделить их можно на две группы, — полярные и неполярные. Разница в том, что у полярного конденсатора есть плюс и минус и подключать в схему его нужно с учетом полярности.

А у неполярного конденсатора выводы равнозначны. На рисунке 1 показаны обозначения конденсаторов, А — неполярный, Б — полярный. В -переменный, Г — подстроечный.

Рис. 1. Обозначение конденсаторов на принципиальных схемах.

Кроме емкости, выраженной, чаще всего в пикофарадах или микрофарадах (иногда и в нанофарадах), другим важным параметром является максимально допустимое напряжение. Если к обкладкам (выводам) конденсатора приложить напряжение выше этой величины может произойти пробой изолятора и конденсатор выйдет из строя.

Если говорят что «конденсатор на 250V», это значит, что на конденсатор нельзя подавать напряжение больше 250V. Меньше -пожалуйста, начиная от нуля. Но больше этой величины, — ни в коем случае!

Таким образом, у конденсатора есть два основных параметра, — емкость, выраженная 8 десятичных долях Фарады (микрофарады, нанофарады, пикофарады), и максимальное напряжение, выраженное в Вольтах.

На схемах значение емкости обычно пишут 8 пикофарадах (р, pF, пФ) и микрофарадах (pF, м, мкФ). 1 мкФ = 1000000 пФ. Но встречаются обозначения и в нанофарадах (nF, п) обычно на зарубежных схемах. 1nF = 1000pF. Бывает что на схемах буква, обозначающая кратную приставку используется как децимальная запятая, например, 1500 р = 1,5n = 1N5 или 1n5.

На многих схемах зарубежной аппаратуры встречается замена греческой буквы «р» на латинскую «и». То есть, 10 микрофарад у них будет так: «10uF». Возможно, это связано с отсутствием греческого шрифта в программе с помощью которой нарисована схема.

Включение конденсаторов

Для получения нужной емкости иногда приходится соединять два конденсатора параллельно или последовательно (рис.2.). При параллельном соединении общая емкость рассчитывается как сумма емкостей:

Собщ = С1 + С2.

При последовательном соединении приходится пользоваться более сложной формулой: Собщ = (С1«С2) / (С1+С2) .

Рис. 2. Параллельное и последовательное включение конденсаторов, формулы для расчета емкости.

Маркировка конденсаторов

Теперь о маркировке конденсаторов. Здесь как и у резисторов есть несколько стандартов. Если конденсатор достаточно больших размеров, то на нем емкость может быть так и указана, например, на стакане оксидного конденсатора емкостью 10 мкФ так и будет написано: 10 pF или 10 мкФ, далее будет указано напряжение, например, 25V, и отмечена полярность выводов, у отечественных конденсаторов возле положительного вывода будет «+», а у иностранных возле отрицательного вывода будет «-» или полоска.

На крупных неполярных конденсаторах тоже все будет написано просто и ясно, например, на конденсаторе типа К73-14 емкостью 0,22 мкФ на максимальное напряжение 250V будет так и написано: 0,22pF 250V.

Сложнее с маленькими керамическими или слюдяными неполярными конденсаторами. Места здесь для маркировки мало, поэтому придумывают сокращения. Например, на конденсаторах типа К10-7 в виде пластинок емкость указывается с использованием кратной приставки как децимальной запятой, вот несколько примеров такой маркировки:

  • 150 пФ — «150р» или «150п»
  • 1500 пФ — «1N5» или «1Н5»
  • 15000пФ (0,015 мкФ) — «15N» или «15Н» .

У зарубежных керамических конденсаторов используется такая же маркировка как у резисторов, только за основу идет не единицы Ом, а единицы Пикофарад. Обозначение состоит из трех цифр. Первые две —

значение в пФ, а третья — множитель, практически численно показывающая сколько нулей нужно приписать, чтобы получилось значение выраженное в пФ. Вот несколько примеров такого обозначения:

  • 15 пФ — «150» (к 15 приписать 0 нолей)
  • 150 пФ — «151»(к 15 приписать 1 ноль)
  • 1500 пф — «152» (к 15 приписать 2 ноля)
  • 0,015 мкФ (15000 пФ) — «153» (к 15 приписать 3 нуля).
  • 0,15 мкФ (150000 пФ) — «154» (к 15 приписать 4 нуля).

Эксперимент с конденсатором

Чтобы практически познакомиться со способностью конденсатора накапливать заряд можно провести один эксперимент. Возьмем оксидный конденсатор типа К50-35 емкостью 2200 мкФ и соберем схему, показанную на рисунке 3. Здесь мы будем заряжать конденсатор от батарейки, и разряжать через лампочку от карманного фонаря.

Когда переключатель S1 находится в показанном на схеме положении, через него и резистор R1 конденсатор С1 заряжается. Переключаем S1 в нижнее по схеме положение, и конденсатор С1 разряжается через лампочку Н1.

Рис. 3. Схема простого эксперимента с конденсатором.

Теперь приступаем к делу. Переключаем S1 вниз по схеме и лампочка вспыхивает. Горит она недолго. Затем, возвращаем S1 в исходное положение. Конденсатор заряжается от батарейки. И снова переключаем S1 вниз по схеме.

Лампочка опять вспыхивает, так как на неё поступает заряд, накопленный конденсатором. Если слишком быстро переключать S1 лампа будет вспыхивать слабее, или вообще не будет вспыхивать, так как С1 не успевает зарядиться через R1.

РК-2010-04.

Как обозначаются (маркируются) конденсаторы на схемах: маркировка конденсаторов

Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях.

Различные типы конденсаторных элементов

О конденсаторе

Базовая структура конденсатора имеет простое объяснение. Между двумя конденсаторными пластинами имеется диэлектрик, изолирующий две проводящие поверхности. Таким образом, конденсатор представляет собой пассивное устройство, способное хранить электрозаряд.

Конденсаторные пленки, диэлектрик и конструкция в значительной мере определяют свойства конденсатора, а именно возможность сохранять заряд, который пропорционален напряжению, приложенному к его пластинам. Эта пропорциональность, получившая название емкости, считается существенной особенностью конденсатора.

Технологически конденсаторы можно подразделить на три типа:

  • электростатические;
  • электролитические;
  • другие электрохимические устройства (двойнослойные).

Применение конденсатора зависит от вида и предназначения схемы. Буферный конденсаторный элемент используется для перехвата пиковых нагрузок. Применяются эти элементы в фильтрах для подавления помех и построения резонансных схем.

Условные обозначения конденсаторов

Разработаны системы УГО (условных графических обозначений) для конденсаторов в РФ (ГОСТ 2.728-74) и общемировые стандарты (IEEE 315-1975).

Обозначение различных конденсаторов на схеме показывает их тип и главные характеристики.

Конденсатор с постоянной емкостью

Делятся на два основных типа:

  • поляризованные;
  • неполярные.

Малогабаритные неполяризованные конденсаторные элементы могут быть подсоединены в любом направлении. Существуют различные типы, но керамические являются наиболее широко распространенными и подходящими для большинства целей.

На электросхемах обозначаются парой коротких параллельных линий, перпендикулярных соединительным схемным линиям. Рядом часто размещается величина емкости элемента.

Обозначение конденсатора с постоянной емкостью

Важно! Иногда в иностранных схемах встречается обозначение MFD. Это не мегафарады, а μF.

Возможные единицы емкости:

  • микро (μ) означает 10 в -6 степени фарад;
  • нано (n) – 10 в -9 степени фарад;
  • пико (р) – 10 в -12 степени фарад.

На поверхность самого конденсатора тоже наносится значение емкости. Часто оно указано без обозначений единиц, особенно на маленьких элементах. Например, 0,1 – это 1 мкФ = 100 нФ.

Иногда написание единиц используется вместо десятичной точки. Если встречается обозначение 4n7, это значит 4,7 нФ.

Код номера конденсатора

Цифровой код часто применяется на маленьких элементах, где печать затруднена:

  • первые два числа – начальные цифры значения ёмкости;
  • третья показывает число нулей, а сама величина измеряется в пФ;
  • буквы могут означать допуски и номинальное напряжение.

Например:

  • 102 означает 1000 пФ, а не 102 пФ;
  • 472J – это 4700 пФ (J свидетельствует о 5-процентном допуске).

Важно! Неполярные конденсаторы обычно имеют ёмкость менее 1 мкФ.

Поляризованные конденсаторы

Конденсаторные элементы такого типа должны быть подключены с учетом полюсов. На схеме это показано символом «+». На самом приборе указывается нанесением маркировки, которая идентифицирует «плюс». Для деталей цилиндрической формы обычно более длинный вывод является «плюсом». Поляризованные конденсаторы не повреждаются при паяльных работах.

Поляризованные конденсаторы

Электролитические конденсаторы – наиболее широко используемый тип поляризованного конденсаторного элемента. Они доступны в двух исполнениях:

  • цилиндрические, с обоими выводами на одном конце;
  • осевые, с выводами на каждом конце.

Цилиндрические, как правило, немного меньше и дешевле.

Реальные размеры таких элементов достаточно большие, чтобы четко наносить на них значение емкости, номинального напряжения и указывать «плюсовой» вывод. Поэтому их легко идентифицировать.

Важно! При включении в обратном направлении элементы могут повредиться и даже взорваться, поэтому необходимо четко придерживаться полярности.

Номинальное напряжение электролитических конденсаторов довольно низкое. При отсутствии четких требований лучше выбирать деталь с номиналом, несколько большим напряжения схемы.

Электролитический конденсаторный элемент на схемах может указываться в трех вариантах, представленных на рисунке.

Обозначение поляризованных конденсаторов

Танталовые конденсаторы

Конденсаторы из тантала поляризованы и имеют низкое пробивное напряжение. Они обладают очень малыми габаритами, используются в особых ситуациях, где важен размер.

На последних моделях танталовых конденсаторных элементов указывается значение емкости, напряжения и «плюсовой» вывод. Более старые модели имеют систему цветового кода, которая условно обозначает емкость.

Код состоит из двух полос сверху элемента (для двух цифр) и цветового пятна, обозначающего количество нулей. Соответствие цветовых значений для конкретных емкостей определяется по таблицам. Пятно серого цвета означает, что емкостное значение в мкФ надо умножить на 0,01, белого – на 0,1. Нижняя полоса около конденсаторных выводов дает значение напряжения:

  • желтая – 6,3 В;
  • черная – 10 В;
  • зеленая – 16 В;
  • синяя – 20 В;
  • серая – 25 В;
  • белая – 30 В;
  • розовая – 35 В.

Важно! «Плюсовой» контакт находится всегда с правой стороны элемента, если разместить его цветовым пятном к себе.

Танталовые конденсаторы

Переменные конденсаторы

Этот тип конденсаторных элементов главным образом применяется в радиосхемах. Элемент состоит из двух систем дисков. Одна – закреплена стационарно, другая – может поворачиваться, входя в промежутки между стационарными дисками. Переменные детали обладают маленькими емкостями, 100-500 пФ, и не используются в электросхемах синхронизации из-за малой емкостной величины и ограниченных пределов доступных значений. Вместо них применяются обычные конденсаторы с фиксированными значениями емкости и переменные резисторы.

Обозначение переменных конденсаторов

На схеме переменные конденсаторы представлены конденсаторным символом, перечеркнутым наклоненной стрелкой, а вместо точной емкостной величины написаны пределы ее изменения.

Конденсаторы-триммеры

Разновидность переменных конденсаторных элементов – триммеры, это миниатюрные детали с переменной емкостью. Они монтируются непосредственно на печатной плате, а емкостная величина изменяется только в период настройки схемы. Поэтому их еще именуют подстроечными. Регулирование производится с помощью отвертки.

Обозначение подстроечного конденсатора

Емкостное значение триммера обычно меньше 100 пФ. На электросхеме триммер указан, как переменный конденсатор со стрелкой, только стрелка вместо острия имеет перпендикулярную черту. Рядом пишется диапазон изменения емкости.

Ионистор

Ионистор называют суперконденсатором. Он представляет собой двухслойный элемент с относительно высокой емкостью (0,22-10 Ф). Структура суперконденсатора отличается от структуры обычной электролитической детали. В двойном слое на границе раздела между поверхностью электрода и электролитом образуется зона неподвижных носителей заряда, где энергия хранится, как электростатическое поле, в отличие от химической энергии электролитического конденсаторного элемента. Так как пограничный слой чрезвычайно тонкий, а поверхность электрода велика, достигается большая емкость, что делает суперконденсатор пригодным для использования в качестве ИП.

Ионистор и его обозначение

Температурный коэффициент конденсатора

Температурный коэффициент (ТКЕ) отражает, как изменяется емкость, измеренная при 20°С, при температурных изменениях. Есть элементы с линейными и нелинейными зависимостями.

Важной для практики является рабочая температура элемента. Она оказывает значительное влияние на срок его службы. Определяется конструктивным исполнением конденсатора. Например, электролитические конденсаторы больше подвержены температурному влиянию, чем керамические.

Видео

Оцените статью:

Обозначения электронных компонентов на схемах. Обозначение электрических элементов на схемах. Элементы принципиальных электрических схем

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т. п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Конденсатор.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр — это ёмкость .

Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Резистор.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.


Резисторы различают по сопротивлению и мощности. Сопротивление, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Диоды.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Стабилитроны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Транзисторы.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

Обозначение радиоэлементов. Фото и названия

Обозначение Название Фото Описание
Заземление Защитное заземление — обеспечивает защиту людей от поражений электрическим током в электроустановках.
Батарейка — гальванический элемент в котором происходит преобразование химической энергии в электрическую энергию.
Солнечная батарея служит для преобразования солнечной энергии в электрическую энергию.
Вольтметр — измерительный прибор для определения напряжения или ЭДС в электрических цепях.
Амперметр — прибор для измерения силы тока, шкалу градуируют в микроамперах или в амперах.
Выключатель — коммутационный аппарат, предназначенный для включения и отключения отдельных цепей или электрооборудования.
Тактовая кнопка — коммутационный механизм, замыкающий электрическую цепь пока есть давление на толкатель.
Лампы накаливания общего назначения, предназначены для внутреннего и наружного освещения.
Мотор (двигатель) — устройство, преобразующее электроэнергию в механическую работу (вращение).
Пьезодинамики (пьезоизлучатели) используют в технике для оповещения какого-либо происшествия или события.
Резистор — пассивный элемент электрических цепей, обладающий определенным значением электрического сопротивления.
Переменный резистор предназначен для плавного изменения тока, посредством изменения собственного сопротивления.
Фоторезистор Фоторезистор – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей (освещения).
Термистор Терморезисторы или термисторы — полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Предохранитель — электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения.
Конденсатор служит для накопления заряда и энергии электрического поля. Конденсатор быстро заряжается и разряжается.
Диод обладает различной проводимостью. Назначение диода — проводить электрический ток в одном направлении.
Светодиод (LED) — полупроводниковый прибор, создающий оптическое излучение при пропускании электричества.
Фотодиод — приемник оптического излучения, преобразующий свет в электрический заряд за счет процесса в p-n-переходе.
Тиристор — это полупроводниковый ключ, т.е. прибор, назначение которого состоит в замыкании и размыкании цепи.
Назначение стабилитрона — стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи.
Транзистор — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им.
Фототранзистором называют полупроводниковый транзистор, чувствительный к облучающему его световому потоку (освещению).

xn--18-6kcdusowgbt1a4b.xn--p1ai

Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр — это ёмкость.

Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»


П О П У Л Я Р Н О Е:

>>
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 29 094 просм.

www.mastervintik.ru

РАДИОЭЛЕМЕНТЫ

В данном справочном материале приводится внешний вид, наименование и маркировка основных зарубежных радиодеталей — микросхем различных типов, разъёмов, кварцевых резонаторов, катушек индуктивности и так далее. Информация действительно полезная, так как многие хорошо знакомы с отечественными деталями, но с импортными не очень, а ведь именно они ставятся во все современные схемы. Минимальное знание английсого приветствуется, так как все надписи не по русски. Для удобства детали объединены по группам. На первую букву в описании не обращайте внимания, пример: f_Fuse_5_20Glass — означает предохранитель 5х20 миллиметров стеклянный.

Что касается обозначения всех указанных радиоэлементов на электрических принципиальных схемах — смотрите справочную информацию по этому вопросу в другой статье.

Форум по деталям

Обсудить статью РАДИОЭЛЕМЕНТЫ

radioskot.ru

Графические и буквенные обозначения радиодеталей на схемах

AM амплитудная модуляция
АПЧ автоматическая подстройка частоты
АПЧГ автоматическая подстройка частоты гетеродина
АПЧФ автоматическая подстройка частоты и фазы
АРУ автоматическая регулировка усиления
АРЯ автоматическая регулировка яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная характеристика
БГИМС большая гибридная интегральная микросхема
БДУ беспроводное дистанционное управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный (с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное (выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска; головка записывающая
ГИР гетеродинный индикатор резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический шумопонижающий фильтр
ЕАСС единая автоматизированная сеть связи
ЕСКД единая система конструкторской документации
зг генератор звуковой частоты; задающий генератор
зс замедляющая система; звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
кк катушки кадровые отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура металл-диэлектрик-полупроводник
МОП структура металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора *по схеме с общим истоком)
ок общий коллектор (включение транзистора по схеме с обшим коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВ поверхностные акустические волны
пдс приставка двухречевого сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота; преобразователь частоты
птк переключатель телевизионных каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная установка
ПУ предварительный усили^егіь
ПУВ предварительный усилитель воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный сигнал
РЛС регулятор линейности строк; радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты гетеродина
РРС регулятор размера строк
PC регистр сдвиговый; регулятор сведения
РФ режекторный или заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
СДУ светодинамическая установка; система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент индуктивности
ткмп температурный коэффициент начальной магнитной проницаемости
ткнс температурный коэффициент напряжения стабилизации
ткс температурный коэффициент сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный ламповополупроводниковый телевизор
УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧ усилитель сигналов промежуточной частоты
УПЧЗ усилитель сигналов промежуточной частоты звук?
УПЧИ усилитель сигналов промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения; устройство сравнения
УСВЧ усилитель сигналов сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная испытательная таблица
ФАПЧ фазовая автоматическая подстройка частоты
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая вычислительная машина

www.radioelementy.ru

Радиодетали — это… Что такое Радиодетали?

Радиодетали Обозначение радиодеталей на схемах

Радиодетали — просторечное название электронных компонентов, применяемых для изготовления устройств (приборов) цифровой и аналоговой электроники.

На появление названия повлиял тот исторический факт, что в начале XX века первым повсеместно распространнёным, и при этом технически сложным для неспециалиста электронным устройством, стало радио. Изначально термин радиодетали означал электронные компоненты, применяемые для производства радиоприёмников; затем обиходное, с некоторой долей иронии, название распространилось и на остальные радиоэлектронные компоненты и устройства, уже не имеющие прямой связи с радио.

Классификация

Электронные компоненты делятся, по способу действия в электрической цепи, на активные и пассивные.

Пассивные

Базовыми элементами, имеющиеся практически во всех электронных схемах радиоэлектронной аппаратуры (РЭА), являются:

С использованием электромагнитной индукции

На базе электромагнитов:

Кроме того, для создания цепи используются всевозможные соединители и разъединители цепи — ключи; для защиты от перенапряжения и короткого замыкания — предохранители; для восприятия человеком сигнала — лампочки и динамики (динамическая головка громкоговорителя), для формирования сигнала — микрофон и видеокамера; для приёма аналогового сигнала, передающегося по эфиру, приёмнику нужна Антенна, а для работы вне сети электрического тока — аккумуляторы.

Активные
Вакуумные приборы

С развитием электроники появились вакуумные электронные приборы:

Полупроводниковые приборы

В дальнейшем получили распространение полупроводниковые приборы:

и более сложные комплексы на их основе — интегральные микросхемы

По способу монтажа

Технологически, по способу монтажа, радиодетали можно разделить на:

См. также

Ссылки

dic.academic.ru

обозначения на схеме. Как читать обозначения радиодеталей на схеме?

Технологии 4 июня 2016

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных — резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Видео по теме

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Обозначения конденсаторов на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго — в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах — в виде треугольника, а у его вершины — черта, перпендикулярная высоте.

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

Нормативная база

Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:

Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.

Электрические щиты, шкафы, коробки

На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, гостевого дома. Эти другие обозначения есть на следующей картинке.

Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.

Изображение розеток

На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

Обозначение розеток на чертежах

Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.

Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.

Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или , духовки и т.д.

Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

Отображение выключателей

Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.

Кроме обычных могут стоять — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.

В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Лампы и светильники

Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.

Радиоэлементы

При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.

Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

Буквенные обозначения

Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

Название элемента электрической схемы Буквенное обозначение
1 Выключатель, контролер, переключатель В
2 Электрогенератор Г
3 Диод Д
4 Выпрямитель Вп
5 Звуковая сигнализация (звонок, сирена) Зв
6 Кнопка Кн
7 Лампа накаливания Л
8 Электрический двигатель М
9 Предохранитель Пр
10 Контактор, магнитный пускатель К
11 Реле Р
12 Трансформатор (автотрансформатор) Тр
13 Штепсельный разъем Ш
14 Электромагнит Эм
15 Резистор R
16 Конденсатор С
17 Катушка индуктивности L
18 Кнопка управления Ку
19 Конечный выключатель Кв
20 Дроссель Др
21 Телефон Т
22 Микрофон Мк
23 Громкоговоритель Гр
24 Батарея (гальванический элемент) Б
25 Главный двигатель Дг
26 Двигатель насоса охлаждения До

Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

  • реле тока — РТ;
  • мощности — РМ;
  • напряжения — РН;
  • времени — РВ;
  • сопротивления — РС;
  • указательное — РУ;
  • промежуточное — РП;
  • газовое — РГ;
  • с выдержкой времени — РТВ.

В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.

В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.

Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.

Основное обозначение Наименование элемента Дополнительное обозначение Вид устройства
А Устройство АА
АК
AKS
Регулятор тока
Блок реле
Устройство
B Преобразователи
BF
BK
BL
BM
BS
Громкоговоритель
Телефон
Датчик тепловой
Фотоэлемент
Микрофон
Звукосниматель
С Конденсаторы СВ
CG
Батарея конденсаторов силовая
Блок конденсаторов зарядный
D Интегральные схемы, микросборки DA
DD
ИС аналоговая
ИС цифровая, логический элемент
E Элементы разные EK
EL
Теплоэлектронагреватель
Лампа осветительная
F Разрядники, предохранители, устройства защиты FA
FP
FU
FV
Дискретный элемент защиты по току мгновенного действия
Дискретный элемент защиты по току инерционного действия
Предохранитель плавкий
Разрядник искровой
G Генераторы, источники питания GB
GC
GE
Батарея аккумуляторов
Синхронный компенсатор
Возбудитель генератора
H Устройства индикационные и сигнальные HA
HG
HL
HLA
HLG
HLR
HLW
HV
Прибор звуковой сигнализации
Индикатор
Прибор световой сигнализации
Табло сигнальное
Лампа сигнальная с зелёной линзой
Лампа сигнальная с красной линзой
Лампа сигнальная с белой линзой
Индикаторы ионные и полупроводниковые
K Реле, контакторы, пускатели KA
KH
KK
KM
KT
KV
KCC
KCT
KL
Реле токовое
Реле указательное
Реле электротепловое
Контактор, магнитный пускатель
Реле времени
Реле напряжения
Реле команды включения
Реле команды отключения
Реле промежуточное
L Катушки индуктивности, дроссели LL
LR
LM
Дроссель люминисцентного освещения
Реактор
Обмотка возбуждения электродвигателя
М Двигатели МА Электродвигатели
Р Приборы измерительные PA
PC
PF
PI
PK
PR
PT
PV
PW
Амперметр
Счётчик импульсов
Частотомер
Счетчик активной энергии
Счетчик реактивной энергии
Омметр
Измеритель времени действия, часы
Вольтметр
Ваттметр
Q Выключатели и разъединители силовые QF Выключатель автоматический
R Резисторы RK
RP
RS
RU
RR
Терморезистор
Потенциометр
Шунт измерительный
Варистор
Реостат
S Устройства управления и коммутации SA
SB
SF
Выключатель, или переключатель
Выключатель кнопочный
Выключатель автоматический
T Трансформаторы, автотрансформаторы TA
TV
Трансформатор тока
Трансформатор напряжения
U Преобразователи UB
UR
UG
UF
Модулятор
Демодулятор
Блок питания
Преобразователь частоты
V Приборы электровакуумные и полупроводниковые VD
VL
VT
VS
Диод, стабилитрон
Прибор электровакуумный
Транзистор
Тиристор
X Соединители контактные XA
XP
XS
XW
Токосъёмник
Штырь
Гнездо
Соединитель высокочастотный
Y Устройства механические с электромагнитным приводом YA
YAB
Электромагнит
Замок электромагнитный

Тематические материалы:

Обновлено: 04.06.2021

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Основные свойства и назначения конденсатора. Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

Конденсатор это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины . Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость . Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U — это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, — диэлектрическая проницаемость, — диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора ;

Номинальное напряжение ;

Удельная емкость и другие .

Величина емкости конденсатора зависит от

Площадь пластин . Это понятно из формулы: емкость прямо пропорциональна заряду. Естественно, увеличив площадь обкладок, получаем большее количество заряда.

Расстояния между обкладками . Чем они ближе расположены, тем больше напряженность получаемого электрического поля.

Устройство конденсатора


Наиболее распространенные конденсаторы — это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от
друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.

Как заряжается и разряжается конденсатор?

При подключении к источнику постоянного тока, обкладки конденсатора заряжаются, одна приобретает положительный потенциал, а другая отрицательный. Между обкладками противоположные по знаку, но равные по значению, электрические заряды создают электрическое поле. Когда напряжения станут одинаковыми и на обкладках, и на источнике подаваемого тока, движение электронов прекратится и зарядка конденсатора закончится. Определенный промежуток времени конденсатор сохраняет заряды и выполняет функции автономного источника электроэнергии. В таком состоянии он может находиться достаточно долгое время. Если вместо источника, включить в цепь резистор, то конденсатор разрядится на него.

Процессы, происходящие в конденсаторе

При подключении прибора к переменному или постоянному току в нем будут происходить разные процессы. Постоянный ток не пойдет по цепи с конденсатором. Так как между его обкладками находится диэлектрик, цепь фактически разомкнута.

Переменный ток , за счет того что периодически меняет направление, может проходить через конденсатор. При этом происходит периодический разряд и заряд конденсатора. На протяжении первой четверти периода заряд идет до максимума, в нем запасается электроэнергия, в следующую четверть конденсатор разряжается и электрическая энергия возвращается обратно в сеть. В цепи переменного тока, конденсатор обладает кроме активного сопротивления, еще и реактивной составляющей. Кроме того, в конденсаторе, ток опережает напряжение на 90 градусов, это важно учитывать, при построении векторных диаграмм .

Применение

Конденсаторы используются в радиотехнике, электронике, автоматике. Конденсатор –незаменимый элемент, который применяется во многих отраслях электротехники, на предприятиях, в научных разработках. Как пример, при необходимости, выступает в качестве разделителя токов: переменного и постоянного, применяется в конденсаторных установках, если необходимо

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.
Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметр
Чем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.
1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):
1 микроФарад — 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатора
Расстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.
Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторов
О разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

Неполярные конденсаторы
Неполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторов
На корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:
10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции.
Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.
Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторы
Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика.
Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.
На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы


Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

Простой способ проверки полярности электролитического конденсатора амперметром и БП.

Как правило электролитические конденсаторы на самом корпусе имеют обозначения, где у него плюс, а где минус. В большинстве случаев возле минуса конденсатора стоит графический значок минуса. Хотя реже обозначен плюс. Но вот если в руки попался конденсатор электролит, у которого данное обозначение залито краской, клеем, или оно сильно потерто, и обозначение полюса не видно, либо оно не явное (как было у меня), но сам конденсатор при этом полностью рабочий и подходит по своим характеристикам. Тут проблему неизвестных полюсов легко можно решить простыми средствами, а именно с помощью обычного блока питания и амперметра.

Итак, основная идея выявления, где и какие полюса на электролитическом конденсаторе заключается в следующем. При правильном подключении конденсатора к источнику напряжения (когда плюс и минус элемента совпадает с плюсом и минусом блока питания) через компонент ток будет проходит кратковременно, лишь в момент заряда конденсатора. Когда же мы полярный конденсатор электролит подключаем к источнику напряжения неправильно (минус на плюс, а плюс на минус), то возникают увеличенные токи утечки, которые достигают единиц, а то и вовсе сотен миллиампер. Именно по этому току утечки мы и поймем, правильно или неправильно подключен наш тестируемый конденсатор к источнику напряжения.

Для проверки полярности конденсатора электролита понадобится всего три вещи (блок питания, амперметр, сам проверяемый конденсатор). Итак, берем обычный блок питания, и идеальным вариантом будет именно лабораторный блок питания с возможностью регулировки выходного напряжения. Используемое напряжение должно быть около 9 вольт, хотя для конденсаторов малой емкости напряжение уже должно быть не менее 12 вольт. Мощность блока питания для проверки полярности конденсатора особо роли не играет. То есть, подойдет абсолютно любой БП мощности с подходящим напряжением.

Далее нам понадобится амперметр, который должен измерять силу постоянного тока в диапазоне от сотен микроампер до сотен миллиампер. К примеру, на моем самодельном лабораторном блоке питания уже установлен вольтметр и амперметр, по которым я и ориентировался при проверки полярности электролитических конденсаторов. Хотя берем просто обычный мультиметр, где имеется функция измерения постоянного тока. Стоит учитывать, что токи утечки будут разные у разных емкостей конденсаторов. Например, при проверки конденсатора емкостью 10 000 мкф на 25 вольт токи утечки при обратном подключении составляли около 30 мА. У конденсатора на 1000 мкф они уже были около 8 мА, а у емкости 1 мкф ток был около 1 мА. Но в разных случаях величина тока будет различная, и может вовсе не соответствовать моим примерам. Главное, что ток утечки при неправильном подключении конденсатора к источнику напряжения будет гораздо больше, чем в случае правильного подключения.

Еще вы можете столкнуться с такой штукой. При измерении тока утечки его величина может быть не постоянной, а начать постепенно увеличиваться все больше и больше. Ну, как бы это не считаю нормальным и предлагаю такие конденсаторы более лучше проверить на их целостность и пригодность. Для этого хорошо иметь под рукой тестер конденсаторов и проверить элемент на его основные рабочие параметры (емкость, ESR, внутреннее сопротивление и т.д.). Хотя, пожалуй, будет лучше если вы отложите в сторону такой конденсатор и вместо него найдете заведомо полностью рабочий. Это вас точно обезопасит от вероятности непригодного элемента.

Теперь что касается электробезопасности при проведении подобных тестов электролитических конденсаторов. Нужно понимать, что неправильное подключение электролитического конденсатора к достаточно большому напряжению легко может спровоцировать его выход из строя, вплоть до возникновения взрыва. Когда мы измеряем массивные конденсаторы (например 10 000 мкф), то вероятность взрыва минимальна. Но вот когда мы в руки берем конденсатор электролит с емкостью около 1 мкф и рассчитанного на малое напряжение (например 10 В), и подаем на него 12 вольт, да еще и неправильную полярность, то буквально в течении 10 секунд этот элемент может просто взорваться у нас в руках. А при взрыве его внутренности (куски фольги) легко могут повредить ваши глаза. Так что при измерении подобных конденсаторов, во первых подумайте о важности этой проверки (возможно проще и безопасней будет просто купить, приобрести заведомо нормальный конденсатор с известными полюсами), во вторых обезопасьте себя защитными очками, и в третьих, производить такое неправильное подключение конденсатора к блоку питания нужно кратковременно (не более 1-2 секунд).

Видео по этой теме:

P.S. Случаи, когда не видно маркировку полюсов электролитических конденсаторов крайне редки. Допустим в моем случае на боку конденсатора электролита была характерная для минуса полоса, но на ней не изображался сам синус. И у меня возникли сомнения, а действительно это минусовой полюс конденсатора. После вышеописанной проверки я точно убедился, что это был все-таки минусовой вывод. Либо иногда обозначение может быть просто замазано краской, клеем, термопастой и т.д. Так что очень редко, но все же приходится проверять электролитические конденсаторы на их полярность.

Керамические конденсаторы есть ли полярность — MOREREMONTA

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Полярность конденсатора

для различных типов в зависимости от его маркировки

Полярность конденсатора

— важный момент, который следует учитывать при подключении. Существуют различные конденсаторы, некоторые из них «поляризованные», а некоторые относятся к категории «неполяризованных». Оба типа имеют «два терминала». Разница между этими двумя типами конденсаторов очень проста. Если рассматриваемые конденсаторы поляризованы, то клеммы, классифицируемые как «анод» и «катод».Они должны быть подключены с учетом полярности источника питания. Если рассматриваемые конденсаторы неполяризованные. Эти конденсаторы можно подключать без учета полярности.

Конденсаторы изначально классифицируются на основе значения емкости. Если емкость фиксированная, они классифицируются как «фиксированные конденсаторы». Если емкость переменная, то они классифицируются как «переменные конденсаторы». Эти фиксированные конденсаторы подразделяются на «поляризованные» и «неполяризованные».Каждый тип конденсатора выбирается исходя из требований к емкости.

Что такое полярность конденсатора?

Конденсатор, состоящий из клемм, которые обладают определенными значениями напряжения, которые могут быть положительными или отрицательными. Классификация клемм этого типа приводит к определению конденсатора с полярностью или без полярности.

Символ поляризованного конденсатора

Приведенное выше символическое представление также известно как схема полярности конденсатора.

Как определяется полярность конденсатора?

Есть несколько способов определения полярности конденсаторов. Один из них — «Маркировка» конденсаторов.

  • Некоторые конденсаторы имеют разную высоту клемм.
  • На неполяризованном изображении упоминается как «NP» и «BP».
  • Некоторые из них помечены знаком «Позитив». В некоторых случаях стрелки играют жизненно важную роль в определении полярности конденсаторов.

Выше приведены некоторые способы определения полярности конденсатора.Клемма с положительной полярностью известна как Анод , а другая клемма — Катод .

Керамический конденсатор

Это наиболее популярные конденсаторы из-за их «малых размеров». Кроме того, когда нам требуется конденсатор с большей емкостью для хранения зарядов, предпочтение отдается керамическим конденсаторам. Этот компонент разработан с использованием пары электродов для проводимости. Эта пара разделена средой из непроводящего керамического материала, называемого диэлектриком.Это набор конденсаторов, который относится к категории неполяризованных конденсаторов.

Керамический конденсатор

Следовательно, он не имеет полярности. Это обеспечивает гибкость подключения этого конденсатора в схему.

Пленочный конденсатор

Даже эти конденсаторы не имеют полярности. В зависимости от конструкции они подразделяются на различные типы. Эти типы также не обладают никакой полярностью.

Пленочный конденсатор

Электролитический конденсатор

Обсуждаемые выше конденсаторы считаются «конденсатором без полярности».Эти конденсаторы определяются по маркировке. Наличие полосы указывает на то, что конкретный терминал является отрицательным. В типе «Осевой» предусмотрена стрелка для определения наличия отрицательного вывода в конденсаторе. Это также указывает направление потока заряда в соответствующем конденсаторе.

Если вы могли наблюдать несколько конденсаторов, у некоторых конденсаторов положительный вывод длиннее, чем отрицательный. Танталовый конденсатор, который относится к категории электролитических конденсаторов, на его клеммах можно определить по присутствующему на нем значку плюса.

Неполяризованные конденсаторы могут быть подключены без каких-либо проблем с идентификацией клемм перед подключением. Но поляризованные должны быть связаны с вниманием, потому что это может привести к повреждению схемы. Даже это приводит к перегреву контура.

Маркировка полярности конденсаторов

Маркировка на конденсаторах помогает определить полярность.

  1. Полярность на большом конденсаторе.

Индикация полярности конденсатора

Знак «плюс» рядом с выводом указывает на то, что соответствующий вывод является положительным.Итак, он считается анодом. Другой вывод следует рассматривать как катод.

  1. Полярность конденсатора можно определить по стрелке.

Полярность конденсатора по стрелке

Стрелка, указывающая на клемму, считается отрицательной.

Это процесс, описанный в «Идентификации полярности конденсатора», который может быть выполнен. Но для неполяризованных конденсаторов должна быть какая-то идентификация. В случае неполяризованных конденсаторов он обозначен как NP на конденсаторе, например NPA или NPR, где NP означает неполяризованный, A означает осевой, а R означает радиальный.

Следовательно, существуют различные способы определения полярности конденсатора. Во время изготовления на нем могут быть обозначения. Некоторые конденсаторы даже отмечены полосой. Тем не менее, необходимо соблюдать осторожность при фиксации этого в схемах. Какие из перечисленных выше конденсаторов вы предпочитаете поляризованные или неполяризованные для высоковольтных устройств?

поверхностный монтаж — полярность немаркированного электролитического конденсатора smt

Простой и эффективный метод определения полярности алюминиевого электролитического конденсатора.

Вот метод, который должен работать.
Я никогда раньше не видел, чтобы это описывалось, НО оно основано на очень хорошо зарекомендовавшей себя практике.

Общеизвестно, что эффективно неполяризованный конденсатор может быть сформирован путем последовательного размещения двух электролитических конденсаторов с противоположной полярностью. Когда подается постоянное напряжение или полупериод переменного напряжения, «правильно» поляризованный конденсатор приобретает заряд, в то время как обратнополяризованный конденсатор имеет только очень небольшое падение напряжения на нем.Этот метод достаточно хорошо известен, чтобы его упомянули некоторые производители конденсаторов в своих примечаниях по применению, и он используется во многих реальных конструкциях.

Даже Корнелл Дубилье говорят, что работает 🙂 . Говорят:

Если два алюминиевых электролитических конденсатора одинакового номинала соединены последовательно, спина к спине с положительным клеммы или подключенные отрицательные клеммы, в результате одиночный конденсатор представляет собой неполярный конденсатор с половина емкости.

Два конденсатора выпрямляют приложенного напряжения и действуют так, как если бы они были обойдены диодами. При подаче напряжения конденсатор правильной полярности получает полное напряжение. В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателя вторая анодная фольга заменяет катодную фольгу для достижения неполярной конденсатор в единственном корпусе.

Метод основан на допущении, что электролитический конденсатор с обратным смещением «безопасно» пропускает обратный ток без повреждений.Это предположение кажется доказанным для влажных алюминиевых конденсаторов, но может быть верным, а может и нет, например, для танталовых конденсаторов. Caveat Emptor 🙂 — хотя, в худшем случае, разрушение танталового конденсатора (что в некоторых кругах может рассматриваться как чистая социальная выгода :-)) не должно иметь большого вреда.

Метод:

  • Убедитесь, что ориентацию конденсатора можно определить либо по маркировке, либо по другому внешнему виду, либо добавив метку, например маленькую точку с маркером.

  • Подключите два конденсатора последовательно с противоположной полярностью.

  • Подключите напряжение «несколько вольт» к напряжению, значительно меньшему номинального. Скажем, 5 В для конденсатора от 10 В до 563 В, но это не критично.

  • Измерьте напряжение на каждом конденсаторе.

  • Конденсатор с наибольшим напряжением на нем (вероятно) правильно поляризован.

Только пример. Ваше напряжение будет меняться.

Если напряжение на каждом конденсаторе примерно одинаковое или в нем преобладает сопротивление измерителя, то конденсаторы, вероятно, не являются электролитическими конденсаторами.

В очень простом тесте этот метод оказался исключительно успешным.
Два конденсатора 25 В, 100 мкФ были подключены последовательно с противоположной полярностью, и к паре было приложено около 6 В. Большая часть напряжения падает на правильно поляризованный конденсатор. На конденсаторе с обратным смещением упало менее 0,5 В. Изменение применяемой полярности привело к перестановке относительных напряжений (как и ожидалось), так что правильно смещенный конденсатор снова сбросил большую часть напряжения.

Испытание было повторено с последовательно включенными конденсаторами емкостью 1 мкФ и 100 мкФ с противоположными полярностями.Результаты были такими же, как и раньше, с конденсатором, смещенным в прямом направлении, который очень легко идентифицировать.

Этот тест МОЖЕТ не пройти, если конденсаторы с очень низкой и очень высокой утечкой были протестированы вместе.


Тот же эффект можно использовать для определения правильной полярности с помощью тока утечки с обратным смещением. Приложение напряжения с каждой из двух полярностей должно привести к гораздо более высокому току утечки при обратной полярности.

Использование самого высокого диапазона сопротивления измерителя также может позволить измерить относительные токи утечки, но некоторые измерители могут не подавать достаточное напряжение для этого.(Я попробовал два дешевых измерителя с максимальным диапазоном 2 МОм — недостаточно высоким. Напряжение O / C измерителя составляло всего около 0,3 В в каждом случае.

Просто используя источник питания, одиночный конденсатор и последовательный резистор будут использовать тот же эффект. Используя, скажем, + 5 В и резистор 100 кОм, конденсатор будет иметь большее напряжение при правильном смещении, чем при обратном смещении. Однако использование двух номинально идентичных конденсаторов позволяет им «отсортировать» требуемое эффективное эквивалентное значение сопротивления.

Маркировка постоянного конденсатора. Обозначение конденсаторов на схемах

Наряду с самыми распространенными радиодетали, резисторы, конденсаторы по праву занимают второе место по применению в электрических цепях и схемах. Основные характеристики конденсатора — это номинальная емкость и номинальное напряжение … Чаще всего в схемах радиоэлектроники используются конденсаторы постоянной емкости, а гораздо реже — переменные и настраиваемые.

Номинальное напряжение конденсаторов обычно не указывается на схемах, хотя иногда встречается в некоторых случаях, например в высоковольтных цепях питающего рентгеновского аппарата, номинальное напряжение часто пишется с обозначением Номинальная мощность.Для оксида их еще называют электролитическими конденсаторами, также очень часто указывается номинальное напряжение.


Большинство оксидных конденсаторов полярны, поэтому их можно подключать к электрической цепи только с соблюдением полярности. Чтобы представить это на диаграмме, символ положительной крышки имеет знак «+».

Для развязки силовых цепей в высокочастотных цепях по переменному току применяют проходные конденсаторы … Они имеют три выхода: два — с одной пластины («вход» и «выход»), а третий — с другой, внешний, который соединен с экраном.Эта конструктивная особенность отражает условное графическое обозначение такого конденсатора. Наружная крышка рисуется короткой дугой, а также одним или двумя отрезками прямых с выводами от середины. Для выполнения той же задачи, что и ввод, используются эталонные конденсаторы. Пластина, соединенная с корпусом, выделяется в обозначении такого конденсатора тремя наклонными линиями, говорящими о «».

Обозначение конденсаторов переменной емкости (КПИ) на схемах

КПЭ используются для оперативной наладки и состоят из статора и ротора.Такие конденсаторы широко используются, например, для регулировки частоты радиовещательных и телевизионных приемников. КПЭ допускает многократную регулировку мощности в заданных пределах. Это их свойство отображается на схемах знаком настройки — наклонной стрелкой, пересекающей базовый символ под углом 45 °, а рядом обычно пишется минимальная и максимальная вместимость). Если требуется обозначить ротор КПЭ, действуйте так же, как и в случае с прямоточным конденсатором

.

Для одновременного изменения емкости в нескольких цепях используются блоки, состоящие из двух, sin и более КПЭ.Принадлежность КПЭ к блоку обозначена на схемах пунктирной линией механического подключения. При отображении блока КПЭ в разных частях схемы механическое соединение не отображается, ограничиваясь только соответствующей нумерацией разделов.

Саморегулирующиеся конденсаторы (другое название — нелинейное) обладают свойством изменять номинальную емкость под воздействием внешних условий. В электронных самоделках и конструкциях часто используют вариконы … Уровень их емкости меняется в зависимости от приложенного к пластинам напряжения. Буквенный код Varicond — CU , на схемах указывается латинской буквой U

Аналогично обозначим тепловые конденсаторы … Буквенный код этого типа конденсаторов СК и на схемах обозначен символом t °

Керамические конденсаторы SMD из-за своих малых размеров иногда маркируются кодом, состоящим из одного или двух символов и числа.2 ПФ) конденсатор фирмы Кемет.

Конденсаторы изготавливаются с диэлектриками разных типов: NP0, X7R, Z5U и Y5V…. Диэлектрик NP0 (COG) имеет низкую диэлектрическую проницаемость, но хорошую температурную стабильность (ТКЕ близок к нулю). Конденсаторы SMD большой емкости, изготовленные из этого диэлектрика, являются самыми дорогими. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую термическую стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготавливать конденсаторы большой емкости, но со значительным разбросом параметров.Конденсаторы SMD с диэлектриками X7R и Z5U используются в схемах общего назначения.

Обычно керамические конденсаторы на

диэлектрической основе с высокой проницаемостью

в соответствии с EIA тремя символами, первые два из которых обозначают

для нижнего и верхнего пределов диапазона рабочих температур, а

третий — допустимый изменение емкости в этом диапазоне.

Расшифровка кодовых обозначений приведена в

Z5U — конденсатор с точностью

22, -56% в диапазоне температур от +10 до + 85 ° C.X7R — конденсатор с точностью ± 15% в диапазоне

температур от -55 до + 125 ° С.

Маркировка электролитического конденсатора SMD

.

Электролитические конденсаторы

SMD часто маркируются с указанием их емкости и рабочего напряжения, например 10 6 В — 10 мкФ 6 В. Иногда этот код используется вместо обычного, состоящего из символа и 3-х цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в пФ.6pF = 4.7mF

Приведенные ниже принципы кодовой маркировки используются такими известными компаниями, как PANASONIC, HITACHI и др. Существует три основных метода кодирования.

Код состоит из двух или трех знаков (букв или цифр), обозначающих рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двузначного обозначения код рабочего напряжения не указывается.

Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических схем.Основными характеристиками конденсатора являются номинальная емкость и номинальное напряжение. Чаще всего в схемах используются конденсаторы постоянного тока, а гораздо реже — переменные и настраиваемые. В отдельную группу входят конденсаторы, изменяющие свою емкость под действием внешних факторов.

Общие графические обозначения конденсаторов постоянной емкости данные на рис. . 3.1 и определяются соответствующим ГОСТом.
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах обычно не указывается.Лишь в некоторых случаях, например, на принципиальных схемах высокого напряжения рядом с обозначением номинальной емкости можно также указать номинальное напряжение (см. рис. 3.1, C4 ). Для оксидных конденсаторов (старое название — электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало почти обязательным ( рис. 3.2 ).

Подавляющее большинство оксидных конденсаторов полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности.Чтобы показать это на схеме, на обозначении положительной пластины такого конденсатора ставится знак «+», обозначение C1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется другое изображение обкладок конденсатора (см. рисунок 3.2 , C2 и C3).

В технологических целях или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но делают только три вывода (один из них общий). Условное графическое обозначение

Для развязки цепей питания высокочастотных устройств переменного тока используются так называемые проходные конденсаторы … У них тоже три вывода: два — от одной крышки («вход» и «выход»), и третий (обычно в виде винта) — от другого, внешнего, который подключается к экрану или заворачивается. в шасси. Эта конструктивная особенность отражается в условном графическом обозначении такого конденсатора ( рис. 3.3, , С1). Наружная крышка обозначается короткой дугой, а также одним (C2) или двумя (SZ) отрезками прямой с выводами из середины. Условное графическое обозначение с условным обозначением SZ используется при изображении проходного конденсатора в стенке экрана.Для той же цели, что и для сквозной подачи, используются эталонные конденсаторы. Крышка, соединенная с корпусом (шасси), выделяется в обозначении такого конденсатора тремя наклонными линиями, обозначающими «землю» (см. рис. 3.3 , C4).

Конденсаторы переменной емкости (KPE) предназначены для онлайн-регулировки и обычно состоят из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки приемников радиовещания. Как следует из названия, их можно отрегулировать несколько раз в определенных пределах.Это свойство отображается на схемах знаком регулирования — косой стрелкой, пересекающей базовый символ под углом 45 °, а рядом с ним часто указывается минимальная и максимальная емкость конденсатора (рисунок 3.4). Если необходимо обозначить ротор КПЭ, действуйте так же, как и в случае проходного конденсатора (см. Рис. 3.4, С2).
Для одновременного изменения емкости в нескольких цепях (например, в колебательных цепях) используются блоки, состоящие из двух, трех и более КПЭ.Принадлежность КПЭ к одному блоку показана на схемах пунктирной линией механического звена, соединяющего знаки регулирования, и нумерацией секций (через точку в условном обозначении, рис. 3.5 ). При изображении блока КПЭ в разных частях схемы на большом расстоянии друг от друга механическое соединение не показано, ограничиваясь только соответствующей нумерацией участков (см. рис. 3.5 , C2.1, C2.2 , С2.3).

Разновидность КПЭ — конденсаторы настроенные … Конструктивно они выполнены таким образом, что изменить их мощность можно только инструментом (чаще всего отверткой). В условном графическом обозначении это отображается знаком контроля обрезки — наклонной линией с тире на конце ( рис. 3.6 ). Ротор подстроечного конденсатора при необходимости обозначается дугой (см. рис. 3.6 , SZ, C4).

Саморегулирующиеся конденсаторы (или нелинейные) обладают способностью изменять емкость под воздействием внешних факторов.В электронных устройствах часто используются вариконды (от английских слов var (able) — переменная и cond (enser) — другое название конденсатора). Их емкость зависит от приложенного к пластинам напряжения. Буквенный код вариконов — CU (U — общепринятый символ напряжения, см. Таблицу 1.1), UGO в данном случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).
УГО тепловых конденсаторов устроено аналогично.Буквенный код этого типа конденсатора — SK ( рис. 3.7 , конденсатор СК2). Температура среды обозначается символом tº

. Электролитический конденсатор

— обзор

Электролитический конденсатор

Электролитический конденсатор является предметом отдельного рассмотрения, и его следует рассматривать отдельно от всех других конденсаторов. Принцип заключается в том, что некоторые металлы, в частности алюминий и тантал, могут иметь очень тонкие пленки соответствующих оксидов, образующихся на поверхности, когда напряжение прикладывается с правильной полярностью (положительный металл) между металлом и слабокислой жидкостью.Эти очень тонкие пленки затем изолируют металл от проводящей жидкости, электролита, образуя конденсатор; электролитический конденсатор. Название происходит от сходства с электролитической (металлической) ячейкой.

Тот же самый эффект вызывает проблему поляризации конденсаторов, см. Главу 7.

В наиболее распространенном типе электролитических конденсаторов используется алюминиевая фольга, на которой можно протравить, сделать ямочки или гофры для увеличения эффективная площадь, заключенная в алюминиевый баллончик, заполненный слабокислым раствором пербората аммония в форме желе.Конденсатор формируется путем приложения к конденсатору медленно нарастающего напряжения с положительным полюсом фольги и отрицательным полюсом корпуса до тех пор, пока напряжение не достигнет своего номинального уровня, а постоянный ток не упадет до минимума, что указывает на то, что изоляция настолько хороша, насколько это возможно. быть. С этого момента, когда конденсатор используется, к нему должно подаваться постоянное (поляризационное) напряжение той же полярности, чтобы поддерживать изолирующую пленку. Если конденсатор используется с обратным напряжением, пленка растворяется, удаляя любую изоляцию и позволяя большим токам проходить через жидкость, которая испаряется, разрушая банку.Электролит обычно находится в желеобразной форме, но разрушение, которое может быть вызвано взрывом электролита (не говоря уже о шуме), гарантирует, что ни один из тех, кто достиг этого, не захочет повторить попытку.

Использование тантала в качестве металла электролита позволяет получить совершенно иную конструкцию, в которой оксидная пленка более устойчива и способна выдерживать перепады напряжения. Танталовые конденсаторы ( tantalytics ) могут использоваться без постоянного поляризующего напряжения, могут работать с практически сухим электролитом и, как правило, имеют лучшие характеристики, чем традиционный алюминиевый электролитический тип.Опыт использования тантала привел к разработке «сухих» электролитов для алюминиевого типа электролитов.

Танталитические конденсаторы не следует использовать в приложениях звуковой связи, в которых напряжение смещения мало или отсутствует.

Из-за очень хрупкой природы изолирующей пленки, толщина которой может составлять всего несколько атомов, электролитические конденсаторы всегда склонны к большой утечке, поэтому указывается ток утечки при номинальном напряжении, а не коэффициент мощности. или коэффициенты рассеяния.Утечка часто связана со значением емкости и рабочим напряжением, и формула:

I утечка = 4 + (0,006 × C × В ) часто используется

, с I в μα , C в F и V в вольтах. Например, использование этой формулы для конденсатора 200 мкФ при 12 В дает ток утечки 4 + (0,006 × 200 × 12) = 18,4 мкА. Некоторые производители будут использовать эту формулу для определения значений утечки. Ни один производитель не гарантирует, что электролит имеет низкую величину утечки, но измеренные значения часто бывают на удивление хорошими, если электролит эксплуатируется в разумных условиях.Боб Пиз приводит примеры электролитов 500 мкФ с утечкой 2 нА при рабочем напряжении 10 В.

Рисунок 4.6. Типичные размеры электролитического алюминия (Фото: Nichicon Corp.).

Многие производители также указывают ожидаемый срок службы электролитиков более 100 000 часов при 40 ° C и номинальном напряжении, поскольку все еще существуют некоторые предубеждения против их использования для чего-либо, кроме бытовой электроники. Военные приложения обычно запрещают использование электролитов, но теперь они широко применяются в промышленном оборудовании.Часто указываются диапазоны температур от –40 ° C до + 85 ° C, но при более высоких температурах требуется значительное снижение номинальных характеристик, а при более низких температурах существует риск замерзания гелеобразного электролита. Это до некоторой степени уравновешивается увеличением потерь при замерзании электролита, что приводит к более сильному рассеиванию и последующему оттаиванию. Однако это не тот эффект, на который вам следует полагаться. Некоторые типы могут иметь вентиляционные отверстия для сброса давления газа внутри электролита.

Электролитики используются в основном в качестве резервуаров и сглаживающих конденсаторов для источников питания с частотой сети, поэтому их наиболее важные параметры, кроме емкости и номинального напряжения, касаются величины пульсирующего тока, который они могут пропускать. Для каждого конденсатора производитель указывает максимальный пульсирующий ток (обычно при 100 или 120 Гц), а также два параметра, которые касаются способности конденсатора пропускать ток, ESR и импеданса. ESR — это эффективное последовательное сопротивление в миллиомах, обычно 50 мОм, для низкочастотных токов, и это значение может устанавливать ограничение на ток пульсаций, который может пройти; также на эффективность конденсатора для сглаживания.Другой параметр — это эффективный импеданс в мОм, измеренный при 10 кГц и 20 ° C, который используется для измерения того, насколько эффективно конденсатор будет пропускать токи на более высоких частотах. Если в цепи развязки используется электролитический конденсатор, который может работать с большим диапазоном частот, следует использовать другие типы конденсаторов для работы с частотами выше 10 кГц, например, конденсаторы из полиэфира для диапазона до 10 МГц и слюдяные или керамический для более высоких частот. Полезное практическое правило — иметь один электролит для пяти керамических или дисковых материалов.

В электролизерах общего назначения используется алюминий, часто с отдельным алюминиевым корпусом с номинальным значением изоляции 1000 В. Физическая форма представляет собой цилиндр с биркой, стержнем или винтовым соединением на одном конце. Диапазон емкости обычно очень велик для блоков с более низким напряжением, до 15 000 мкФ при работе 16 В, но при более высоких номинальных напряжениях 400 В значения от 1 мкФ до 220 мкФ более обычны. Многие конструкторы избегают использования электролита при рабочем напряжении более 350 В. Допуск значения большой (от -10% до + 50%), а допустимые токи пульсации колеблются от 1 А до 7 А в зависимости от размера конденсатора.

Исчерпывающий набор руководящих указаний по применению алюминиевых электролитов см. На веб-сайте:

http://www.nichicon-us.com/tech-info.html

Еще одно полезное правило Практический опыт заключается в том, что вам нужно 1000 мкФ сглаживания на каждый ампер выходного постоянного тока, но это не обязательно удовлетворительно. Предположим, например, что конденсатор емкостью 5000 мкФ используется с питанием 6 В при полном номинальном токе пульсаций 5 А и имеет ESR 50 мОм.Пилообразная пульсация будет составлять 6 В от пика к пику, а еще 5 × 0,05 В = 0,25 В из-за ESR почти незначительна. Рассеивание в конденсаторе также будет слишком большим, и в такой схеме лучше использовать несколько конденсаторов параллельно.

Электролитические элементы меньшего размера предназначены для непосредственного монтажа на печатных платах для развязки или дополнительного сглаживания, они имеют цилиндрическую форму и имеют концевые заделки для проводов, либо осевые (провод на каждом конце), либо радиальные (оба провода на одном конце).Диапазон напряжения может составлять от 10 В до 450 В, с диапазоном рабочих температур от –40 ° C до + 85 ° C (рекомендуется снижение номинальных значений при более высоких температурах) и с коэффициентами мощности, которые могут быть от 0,08 до самых высоких. как 0,2. Самый большой диапазон значений, обычно от 0,1 мкФ до 4700 мкФ, доступен для меньших рабочих напряжений. Субминиатюрные версии имеют рабочее напряжение в диапазоне от 6,3 В до 63 В и ток утечки, который составляет минимум 3 мкА, а для более крупных емкостных устройств утечка определяется по формуле: 0.01 C × V . Например, конденсатор 47 мкФ 40 В может иметь утечку: 0,01 × 47 × 40 = 18,8 мкА, но измеренные значения обычно намного меньше, всего 10 нА или даже меньше для современных конденсаторов.

Специализированный тип жидкого электролита предназначен для резервного копирования памяти в цифровых схемах. Микросхемы памяти CMOS могут сохранять данные, если на одном из выводов микросхемы поддерживается напряжение ниже нормального напряжения питания. Потребление тока на этом выводе очень низкое, и поэтому оно может обеспечиваться конденсатором в течение значительных периодов времени.Этот метод используется не для вычислителей, в которых используется батарея, а для таких устройств, как контроллеры центрального отопления, которые должны сохранять свои настройки, если электроснабжение отсутствует на сравнительно короткий период. Типичные значения для этих электролитов — 1F0 и 3F3. Время разряда составляет от 1 до 5 часов при 1 мА и от 300 до 500 часов при более типичном потребляемом токе 5 мкА, но следует учитывать высокий ток утечки.

Типы твердого электролита теперь доступны в алюминиевом диапазоне электролитов.В отличие от алюминиевых электролитов традиционного типа, они не требуют вентиляции и не подвержены испарению электролита. Кроме того, в отличие от традиционного электролитического, они могут работать в течение периодов без поляризующего напряжения и могут принимать обратное напряжение, хотя всего около 30% от номинального прямого напряжения при 85 ° C, что значительно меньше при более высоких температурах. Типичные размеры от 2,2 мкФ до 100 мкФ с номинальным напряжением от 10 В до 35 В при 85 ° C. Диапазон температур составляет от –55 ° C до + 125 ° C, и даже при максимальной рабочей температуре 125 ° C ожидаемый срок службы превышает 20 000 часов.Токи утечки довольно высоки, в диапазоне от 9 мкА до 250 мкА, а номинальные значения тока пульсации находятся в диапазоне от 20 мА до 300 мА. Одна важная особенность заключается в том, что спецификации не накладывают ограничений на величину тока заряда или разряда, протекающего в цепи постоянного тока, при условии, что рабочее напряжение не превышается.

ТАНТАЛОВЫЕ ЭЛЕКТРОЛИТИКИ

Танталовые электролиты неизменно используют твердые электролиты наряду с металлическим танталом и имеют гораздо меньшую утечку, чем алюминиевые.Это делает их в высшей степени подходящими для таких целей, как связь сигналов, фильтры, схемы синхронизации и развязка. Обычные формы этих электролитов представляют собой миниатюрные шарики с эпоксидным покрытием или трубчатые осевые частицы. Диапазон напряжения составляет от 6,3 В до 35 В со значениями от 0,1 мкФ до 100 мкФ. Диапазон температур от –55 ° C до + 85 ° C. Танталовые электролиты могут использоваться без какого-либо смещения постоянного тока, а также могут принимать небольшое обратное напряжение, обычно менее 1,0 В. Ожидается минимальный ток утечки 1 мкА, а для более высоких значений емкости и рабочего напряжения ток утечки определяется из емкости, умноженной на коэффициент напряжения, при минимальном гарантированном значении 1 пА.Можно ожидать коэффициентов мощности в диапазоне от 0,02 до 0,2. Следует проявлять осторожность, чтобы не превышать номинальное импульсное напряжение, обычно в 1,3 раза больше номинального номинального напряжения постоянного тока.

Код и значения конденсатора — Учебное пособие 45

Коричневый Красный Оранжевый Желтый Зеленый Синий Серый
Черный Красный Зеленый Серый Фиолетовый Синий Оранжевый Белый
Красный Оранжевый Желтый Зеленый Синий Фиолетовый

1,0 нФ

Конденсатор EIA / MIL: 102

Каждый студент средней школы

знает какой конденсатор

EIA / MIL: 102

Следовательно, определение этого может не потребоваться, но поехали. Конденсатор — это пассивный двухконтактный электронный компонент, который накапливает электрическую энергию в электрическом поле. Он используется для добавления емкости в схему, что делает его важной частью каждого проекта электроники. Также важно знать, что физическая форма конденсаторов различается, что означает, что в настоящее время используются разные типы конденсаторов.

Большинство конденсаторов имеют два электрических проводника. Проводники обычно представляют собой металлические пластины, разделенные диэлектрической средой.Используемый проводник может быть фольгой, тонкой металлической пленкой или электролитом. Диэлектрическая среда, разделяющая проводники, сама по себе не является проводником и может быть изготовлена ​​из стекла, керамики, воздуха, слюды или пластиковой пленки. Из этих описаний очевидно, что конденсаторы бывают разных конфигураций и типов. Чтобы помочь вам принять легкое решение при выборе конденсатора, в этой статье будут рассмотрены доступные вам общие типы конденсаторов.

7 общих конденсаторов для вашей электроники

Керамические конденсаторы — Керамический конденсатор — это конденсатор, в котором в качестве диэлектрической среды используется керамика для разделения проводников в конденсаторе.Это означает, что эти конденсаторы названы в честь используемой диэлектрической среды и их разработки.

Использование керамики и керамических конденсаторов дает пользователю множество преимуществ. Эти преимущества включают:

  • Низкий коэффициент потерь, который гарантирует разумный уровень стабильности при использовании.
  • Его жесткие допуски делают его широко используемым вариантом в ВЧ схемах.
  • Монолитная многослойная керамика также может использоваться в качестве шунтирующих конденсаторов.
  • Он относительно более доступен по цене и обеспечивает высокую емкость для ваших приложений.

Обычно используются керамические конденсаторы: COG — для низких значений емкости, X7R — для более высоких значений емкости, а Z5U — для более высоких емкостей, но обеспечивает более низкую стабильность, чем COG или X7R.

Электролитические конденсаторы — Электролитический конденсатор получил свое название от его конструкции. В этом случае пропитанный электролитом лист обычно помещают между двумя алюминиевыми проводящими пленками. Электролитический конденсатор — наиболее распространенный используемый тип свинцовых конденсаторов. При использовании не рекомендуется превышать номинальное рабочее напряжение.Это связано с тем, что электролитические конденсаторы подвержены повреждениям.

Применение и преимущества использования электролитического конденсатора включают:

  • Это поляризованный конденсатор, обычно используемый для сглаживания или фильтрации шин питания.
  • Его низкий уровень стабильности означает, что его следует использовать в некритичных приложениях, таких как элементы синхронизации.
  • Они плохо работают в высокочастотной среде. Электролитические конденсаторы следует использовать для частот ниже 100 кГц.

Танталовые конденсаторы — Танталовые конденсаторы широко используются в приложениях, где учитывается физический размер конденсатора.Это потому, что они намного меньше традиционных алюминиевых конденсаторов, используемых в различных устройствах. Конденсаторы построены из пленки оксида и тантала. Они служат проводником и диэлектрической средой. Тантал обычно не имеет высоких рабочих напряжений и в сочетании с их размерами, эти особенности делают их популярными среди создателей электроники.

Применение и преимущества тантала включают:

  • Это поляризованные конденсаторы, которые могут воспламеняться при чрезмерном напряжении.
  • Они имеют более низкое последовательное эквивалентное сопротивление по сравнению с другими вариантами.
  • Обычно они имеют более низкое напряжение, и 35 вольт обычно являются максимальными для любого танталового конденсатора.

Конденсаторы полиэфирные — Если название «полиэстер» не звучит, не волнуйтесь. Конденсаторы из полиэстера также называют по-разному, например, майларовый или полиэтилентерефталатный конденсатор. Варианты наименования обусловлены материалом, из которого изготовлены эти конденсаторы.

Майлар — это материал, используемый в качестве диэлектрической среды, и этот материал иногда называют полиэфиром или полиэтилентерефталатом (ПЭТ).Свойства, применение и преимущества полиэфирных конденсаторов включают:

  • Полиэстер обеспечивает повышенную диэлектрическую прочность, что позволяет разрабатывать небольшие конденсаторы с высоким напряжением.
  • Обычно они зеленого цвета и доступны по цене. Общий цвет этого конденсатора также получил название «зеленые колпачки».
  • Низкий допуск менее 10% означает, что эти конденсаторы могут использоваться в различных приложениях.

Конденсаторы из поликарбоната — И снова используемая диэлектрическая среда дает свое название конденсатору.Конденсатор из поликарбоната состоит из поликарбонатного диэлектрика, который обеспечивает стабильность и высокую устойчивость. Хотя конденсаторы из поликарбоната широко распространены, они обычно используются в качестве альтернативы конденсаторам других типов. Диэлектрическая среда из поликарбоната выполнена в виде фольги с металлическими электродами в качестве проводников.

Свойства, применение и преимущества поликарбонатного конденсатора включают:

  • Высокое сопротивление изоляции и низкий коэффициент рассеяния.
  • Он может оптимально работать при температурах от -55 ° C до 125 ° C.
  • Конденсаторы из поликарбоната могут самовосстанавливаться, так как испаряются дефектные электроды, что возвращает конденсатор к жизни.

Конденсатор из полистирола — Хотя конденсаторы из полистирола не так широко используются, как другие в этом списке, они довольно распространены и обладают интересными свойствами. Во-первых, между проводниками конденсаторов используется диэлектрическая среда из полистирола.Конденсаторы из полистирола характеризуются высокой изоляцией, низкой утечкой и отличной температурной стабильностью.

Они также относительно доступны по цене, а их свойства, применение и преимущества включают:

  • Они обычно применяются в аудиоустройствах или оборудовании.
  • Они обладают низкой утечкой и низким диэлектрическим поглощением, что означает более длительный срок службы при использовании.
  • Они недоступны для покупки, как другие варианты, из-за их ограниченного использования в электронике.

Конденсатор полипропиленовый — Конденсаторы пропиленовые обычно доступны или изготавливаются как компоненты с выводами. В этих конденсаторах используется полипропиленовый диэлектрик, что означает, что их можно использовать там, где требуется высокая степень допуска. Полипропиленовые конденсаторы обычно используются в громкоговорителях, поскольку они гарантируют повышенную производительность.

Свойства и преимущества полипропилена включают:

  • Они демонстрируют высокую стабильность, что делает их лучшими для приложений, где стабильность емкости является важным фактором.
  • Они доступны только в виде компонентов с выводами и не могут устанавливаться на поверхность.

Сводка

Перечисленные здесь общие типы конденсаторов представляют собой универсальные варианты, которые можно использовать в большинстве приложений. Но важно отметить, что некоторые конденсаторы лучше работают в определенных приложениях по сравнению с другими. Таким образом, важно всегда учитывать область применения, для которой вам нужен конденсатор, прежде чем выбирать любой из этих типов конденсаторов, перечисленных здесь.

Что такое конденсатор — типы, формула, символ, принцип работы, единица

Узнайте, что такое конденсатор — типы, формула, символ, принцип работы, единицы измерения.

Здесь мы узнаем , что такое конденсатор — типы, формула, символ, принцип работы, единицы измерения, электролитический конденсатор, подробное объяснение применения и функции.

Различные типы конденсаторов

Что такое конденсатор?

Конденсатор — это электронный компонент, способный накапливать электрический заряд. Конденсатор — это пассивный электрический компонент, который может накапливать энергию в электрическом поле между парой проводников (, называемых «пластинами» ).

Проще говоря, мы можем сказать, что конденсатор — это устройство, используемое для хранения и высвобождения электричества, обычно в результате химического воздействия. Также называется аккумуляторной ячейкой, вторичной ячейкой, конденсатором или аккумулятором. Лейденская банка была ранним примером конденсатора.

Конденсаторы — еще один элемент, используемый для управления потоком заряда в цепи. Название происходит от их способности накапливать заряд, как у небольшой батареи.

Конденсаторы состоят из двух проводящих поверхностей, разделенных изолятором; к каждой поверхности подсоединяется проволочный вывод.

Что такое конденсатор и как работают конденсаторы

Обозначение конденсатора и единица измерения

В электронике обычно используются два обозначения конденсатора. Один символ обозначает поляризованные конденсаторы, а другой — неполяризованные конденсаторы.

Символ конденсатора поляризованных и неполяризованных конденсаторов

На приведенной выше диаграмме символ с одной изогнутой пластиной представляет поляризованный конденсатор. Изогнутая пластина представляет собой катод ( отрицательный ) конденсатора, а другая пластина является анодом ( положительный ).Иногда к положительной стороне добавляют еще и знак плюса.

Единица СИ емкости составляет фарад ( символ : F ). Отделение названо в честь великого английского физика Майкла Фарадея.

Конденсатор емкостью 1 фарад, заряженный 1 кулоном электрического заряда, имеет разность потенциалов между пластинами в 1 вольт.

Типы конденсаторов

Существует несколько типов конденсаторов для разных применений и функций.Ниже приведены основные и наиболее распространенные типы:

1. Конденсаторы керамические

Керамический конденсатор со сквозным отверстием и SMD

Это неполяризованные конденсаторы, изготовленные из двух или более чередующихся слоев керамики и металла. Керамика действует как диэлектрик, а металл — как электроды.

Керамические конденсаторы

также называются «дисковыми конденсаторами ».

Трехзначный код обычно печатается на корпусе конденсаторов этого типа, чтобы указать их емкость в пикофарадах.Первые две цифры представляют собой номинал конденсатора, а третья цифра представляет количество добавляемых нулей.

2. Конденсатор электролитический

Электролитический конденсатор со сквозным отверстием и SMD

Конденсаторы этого типа обычно используются там, где требуется большая емкость. Анод электролитических конденсаторов выполнен из металла и покрыт окисленным слоем, используемым в качестве диэлектрика. Другой электрод может быть влажным нетвердым или твердым электролитом.

Электролитические конденсаторы поляризованы.Это означает, что при подаче на него постоянного напряжения необходимо соблюдать полярность. Проще говоря, положительный вывод конденсатора должен быть соединен с положительной клеммой, а отрицательный вывод — с отрицательной клеммой. Несоблюдение этого правила приведет к повреждению конденсатора.

Эти конденсаторы сгруппированы в следующие 3 типа в зависимости от их диэлектрической проницаемости:

  1. Конденсаторы алюминиевые электролитические.
  2. Конденсаторы электролитические танталовые.
  3. Конденсаторы электролитические ниобиевые.

3.Пленочный конденсатор

Пленочный конденсатор со сквозным отверстием и SMD

Это наиболее распространенный тип конденсаторов, используемых в электронике.

Пленочные конденсаторы или пластиковые пленочные конденсаторы неполяризованы. Здесь изолирующая пластиковая пленка действует как диэлектрик. Электроды этих типов конденсаторов могут быть из металлического алюминия или металла, реагирующего с цинком. Они наносятся на одну или обе стороны пластиковой пленки, образуя металлизированный пленочный конденсатор. Иногда поверх пленки используют отдельную металлическую фольгу, образуя пленочный или фольгированный конденсатор.

Пленочные конденсаторы

доступны в различных формах и размерах и имеют несколько преимуществ перед конденсаторами бумажного типа. Они очень надежны, долговечны и имеют меньшие допуски. Они также хорошо работают в условиях высоких температур.

4. Конденсатор переменной емкости

Переменный конденсатор со сквозным отверстием и SMD

Это неполяризованные конденсаторы переменной емкости. У них есть подвижные и неподвижные пластины для определения емкости. Обычно они используются в передатчиках и приемниках, транзисторных радиоприемниках и т. Д.

Эти конденсаторы сгруппированы как:

  1. Конденсаторы настроечные; и
  2. Подстроечные конденсаторы

Как работает конденсатор?

Вы можете представить конденсатор в виде двух больших металлических пластин, разделенных воздухом, хотя на самом деле они обычно состоят из тонкой металлической фольги или пленок, разделенных пластиковой пленкой или другим твердым изолятором и свернутых в компактный корпус. Рассмотрите возможность подключения конденсатора к батарее.

Простой конденсатор, подключенный к батарее через резистор

Как только соединение установлено, заряд течет от клемм аккумулятора по проводу к пластинам, положительный заряд на одной пластине, отрицательный заряд на другой.

Почему? Обвинения со знаком «Like-Sign» на каждом терминале хотят уйти друг от друга. В дополнение к этому отталкиванию существует притяжение к заряду противоположного знака на другой соседней пластине. Первоначально ток большой, потому что в некотором смысле заряды не могут сразу сказать, что провод на самом деле никуда не идет, что нет полной цепи провода.

Начальный ток ограничен сопротивлением проводов или, возможно, настоящим резистором. Но по мере того, как заряд накапливается на пластинах, отталкивание заряда сопротивляется потоку большего заряда, и ток уменьшается.В конце концов, сила отталкивания заряда на пластине становится достаточно сильной, чтобы уравновесить силу заряда на клемме аккумулятора, и весь ток прекращается.

Зависимость тока в цепи от времени

Наличие разделенных зарядов на пластинах означает, что между пластинами должно быть напряжение, и это напряжение должно быть равно напряжению батареи, когда весь ток прекращается. Ведь поскольку точки соединены проводниками, они должны иметь одинаковое напряжение; даже если в цепи есть резистор, напряжение на резисторе отсутствует, если ток равен нулю, согласно закону Ома.

Количество заряда, который собирается на пластинах для создания напряжения, является мерой емкости конденсатора, его емкости, измеряемой в фарадах (ф). Соотношение C = Q / V, где Q — заряд в кулонах.

У больших конденсаторов есть пластины с большой площадью для удержания большого количества заряда, разделенные небольшим расстоянием, что подразумевает небольшое напряжение. Конденсатор в один фарад чрезвычайно велик, и обычно мы имеем дело с микрофарадами (мкФ), одной миллионной фарад, или пикофарадами (пФ), одной триллионной (10–12) фарад.

Рассмотрим приведенную выше схему еще раз. Предположим, мы перерезаем провода после того, как весь ток перестал течь. Заряд на пластинах теперь задерживается, поэтому между клеммами все еще есть напряжение. Заряженный конденсатор теперь чем-то похож на батарею.

Если мы подключим к нему резистор, ток будет течь, так как положительный и отрицательный заряды мчатся, чтобы нейтрализовать друг друга. В отличие от батареи, здесь нет механизма для замены заряда на пластинах, снятых током, поэтому напряжение падает, ток падает, и, наконец, не остается никакого общего заряда и нет разницы напряжений где-либо в цепи.

Поведение тока, заряда на пластинах и напряжения во времени выглядит так же, как на графике выше. Эта кривая является экспоненциальной функцией: exp (-t / RC). Напряжение, ток и заряд падают примерно до 37% от их начальных значений за время R × C секунд, которое называется характеристическим временем или постоянной времени цепи.

Постоянная времени RC — это мера того, насколько быстро схема может реагировать на изменения условий, такие как подключение батареи к незаряженным конденсаторам или подключение резистора к заряженному конденсатору.Напряжение на конденсаторе не может измениться сразу; для протекания заряда требуется время, особенно если этому потоку препятствует большой резистор. Таким образом, конденсаторы используются в цепи для гашения быстрых изменений напряжения.

Конденсаторы комбинации

Как и резисторы, конденсаторы можно соединить двумя основными способами: параллельно и последовательно .

Как рассчитать емкость конденсатора?

Из физической конструкции конденсаторов должно быть очевидно, что соединение двух вместе параллельно приводит к большему значению емкости.Параллельное соединение приводит к увеличению площади пластины конденсатора, что означает, что они могут удерживать больший заряд при том же напряжении. Таким образом, формула для полной емкости в параллельной цепи: CT = C1 + C2… + Cn.

Та же форма уравнения для резисторов, соединенных последовательно, что может сбивать с толку, если вы не задумываетесь о физике происходящего.

Емкость последовательного соединения ниже, чем у любого конденсатора, потому что для данного напряжения во всей группе будет меньше заряда на каждой пластине.Общая емкость в последовательной цепи составляет: CT = {1 {1C1} + {1C2}… + {1Cn}} .

Опять же, это легко спутать с формулой для параллельных резисторов, но здесь есть хорошая симметрия.

Похожие сообщения:

Биполярные конденсаторы (звук) — Марк Гаррис

Следующий список конденсаторов, которые используются звуковыми декодерами, в которых биполярный (неполярный) конденсатор подключен последовательно с динамиком. Термины «Биполярный» и «Неполярный» относятся к тому факту, что конденсатор не имеет полярности постоянного тока.На конденсаторе нет клемм «+» или «-» или маркировки как таковой. Вы не можете подключить его задом наперед!

Если вы посмотрите на картинку слева, то верхняя помечена «N P» для N на P в раскрашенном виде.

На следующем рисунке у нас есть еще несколько конденсаторов с маркировкой «B P» для B i- P olarized.

Если вы хотите узнать больше о том, зачем нужны или используются эти конденсаторы, см. Внизу.


Детали, выделенные жирным шрифтом, являются наиболее подходящими деталями с точки зрения физических размеров.

9017 9017 11 11 Panasonic 5 мм x 11 мм 9 0177 ECN 9017
Значение

Напряжение

или

Ток

Рейтинг

Производство

Название

Производство

Номер детали

16V Panasonic ECE-A1CN100U 5 мм x 11 мм
10 мкФ 25V Panasonic ECE-A1EN100U 9017 9017 9017 ECE-A1VN100U 5 мм x 11 мм
10 мкФ 16V Nichicon UVP1C100M 5 мм x 11 мм
10 мкФ 35V Nichicon UVP1V100M 5 мм x 11 мм
10 мкФ 10V 10V
10 мкФ 16 В Nichicon USP1C100M 6.3 мм x 7 мм
10 мкФ 25V Nichicon USP1E100M 6,3 мм x 7 мм
22 мкФ EC C
22 мкФ 25 В Panasonic ECE-A1EN220X 5 мм x 11 мм
22 мкФ 10V Nichicon 16V Nichicon UVP1C220M 5 мм x 11 мм
22 мкФ 25V Nichicon UVP1E220M Nichicon USP1A220M 9 0253 5 мм X 7 мм
22 мкФ 16 В Nichicon USP1C220M 6.3 мм X 7 мм
22 мкФ 25V Nichicon USP1E220M 6,3 мм X 7 мм
33uF
33 мкФ 10 В Nichicon UVP1A330M 5 мм x 11 мм
33 мкФ 16V Nichicon USP1A330M 6.3 мм X 7 мм
33 мкФ 16V Nichicon USP1C330M 6,3178 9017 9017 9017 9017 9017 9017 9017 9017 ECE-A1AN470U 5 мм x 11 мм
47 мкФ 10 В Nichicon UVP1A470M 5 мм x 11 мм UVP1 Nichicon3 мм x 11 мм
47 мкФ 10V Nichicon USP1A470M 6,3 мм X 7 мм
47uF3 6,3 мм X 7 мм


Почему биполярный или неполяризованный конденсатор?

Обычно конденсаторы НЕ имеют никакой поляризации.См .: Емкость. Однако обычный алюминиевый электролитический (AL) тип предлагает намного большую емкость на единицу объема по самой низкой цене, чем любая другая конденсаторная технология. Следствием конденсатора AL является то, что он является поляризованным конденсатором из-за физических / химических свойств, присутствующих внутри конденсатора. К счастью, в большинстве конструкций электрических цепей используется питание постоянного тока, и в этом случае поляризованная природа конденсатора AL НЕ является недостатком.

Итак, что произойдет, если в цепи используется питание переменного тока, например, в аудиосхемах.Конкретнее при работе с динамиками?

Оказывается, что использование этих других типов конденсаторов (не AL) приведет к получению физически большого и дорогостоящего конденсатора.

Введите биполярный конденсатор AL. Это может быть сделано с использованием «трюка со схемой», заключающегося в размещении двух поляризованных конденсаторов AL в последовательной конфигурации «BACK to BACK».

Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *