+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Схема подключения однофазного двигателя с конденсатором

Главная » Разное » Схема подключения однофазного двигателя с конденсатором

Как подключить однофазный асинхронный двигатель через конденсатор?

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя; Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

6- 4,00 Загрузка…

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Схема однофазного двигателя с конденсатором

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют “Экономитель энергии Electricity Saving Box”. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

Схема подключения однофазного двигателя

Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

Однофазный асинхронный двигатель, схема подключения и запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Подбор конденсатора

Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

Керамический и электролитический конденсатор

Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

Поделиться с друзьями:

Источники: http://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/shema-podklyucheniya-odnofaznogo-elektrodvigatelya.html, http://tokidet.ru/elektrooborudovanie/elektrodvigateli/odnofaznyj-asinhronnyj-dvigatel.html

Как подключить однофазный электродвигатель – схема с конденсатором

Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота – 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т.п.

Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.

Схема подключения однофазного двигателя через конденсатор

Однофазные электродвигатели 220в подключают к сети с применением конденсатора. Это обусловлено некоторыми конструктивными особенностями агрегата. Так, на статоре мотора обмотка с переменным током создает магнитное поле, импульсы которого компенсируются лишь при условии смены полярности с частотой 50 Гц. Несмотря на характерные звуки, которые издает однофазный двигатель, вращение ротора при этом не происходит. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

Чтобы понять, как подключить однофазный электродвигатель через конденсатор, достаточно рассмотреть 3 рабочие схемы с применением конденсатора:

  • пускового;
  • работающего;
  • работающего и пускового (комбинированная).

Каждая из перечисленных схем подключения подходит для использования при эксплуатации асинхронных однофазных электродвигателей 220в. Однако каждый вариант имеет свои сильные и слабые стороны, поэтому они заслуживают более детального ознакомления.

Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Его дальнейшее вращение происходит под воздействием инерционной силы.

Читайте также:  Что такое кварцевый резонатор и как он работает?

Поддержание вращательных движений на протяжении длительного промежутка времени обеспечивается магнитным полем основной обмотки однофазного двигателя с конденсатором. Функции переключателя при этом может выполнять специально предусмотренное реле.

Схема подключения однофазного электродвигателя через конденсатор предполагает наличие нажимной пружинной кнопки, разрывающей контакты в момент размыкания. Такой подход обеспечивает возможность снизить количество используемых проводов (допускается применение более тонкой пусковой обмотки). Во избежание возникновения коротких замыканий между витками рекомендуется применять термореле.

При достижении критически высоких температур этот элемент деактивирует дополнительную обмотку. Аналогичную функцию может выполнять центробежный выключатель, устанавливаемый для размыкания контактов в случаях превышения допустимых значений скорости вращения.

Для автоматического контроля скорости вращения и защиты мотора от перегрузов разрабатываются соответствующие схемы, а в конструкции агрегатов вносятся различные корректировочные компоненты. Установку центробежного выключателя можно произвести непосредственно на роторном валу либо на сопряженных с ним (прямым или редукторным соединением) элементах.

Воздействующая на груз центробежная сила способствует натяжению пружины, соединенной с контактной пластиной. Если скорость вращения достигает заданного значения, происходит замыкание контактов, подача тока на двигатель прекращается. Возможна передача сигнала другому управляющему механизму.

Существуют варианты схем, при которых в одном элементе конструкции предусматривается наличие центробежного выключателя и теплового реле. Подобное решение позволяет деактивировать двигатель посредством теплового компонента (в случае достижения критических температур) либо под воздействием раздвигающегося элемента центробежного выключателя.

В случае подключения двигателя через конденсатор часто происходит искажение линий магнитного поля в дополнительной обмотке. Это влечет за собой увеличение мощностных потерь, общее снижение производительности агрегата. Однако сохраняются хорошие показатели пуска.

Применение рабочего конденсатора в схеме подключение однофазного двигателя с пуcковой обмоткой предполагает ряд отличительных особенностей. Так, после пуска отключения конденсатора не происходит, вращение ротора осуществляется за счет импульсного воздействия со стороны вторичной обмотки. Это существенно увеличивает мощность двигателя, а грамотный побор емкости конденсатора позволяет оптимизировать форму электромагнитного поля. Однако пуск мотора становится более продолжительным.

Читайте также:  Что такое импульсный блок питания и где применяется

Подбор конденсатора подходящей мощности производится с учетом токовых нагрузок, что позволяет оптимизировать электромагнитное поле. В случае изменения номинальных значений будет происходить колебание по всем остальным параметрам. Стабилизировать форму линий магнитных полей позволяет использование нескольких конденсаторов с разными емкостными характеристиками. Такой подход позволяет оптимизировать рабочие характеристики системы, однако предусматривает возникновение некоторых сложностей в процессах монтажа и эксплуатации.

Комбинированная схема подключения однофазного двигателя с пусковой обмоткой рассчитана на использование двух конденсаторов – рабочего и пускового. Это оптимальное решение для достижения средних рабочих характеристик.

Расчет емкости конденсатора мотора

Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций:

  • на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора;
  • пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше.

Рабочее напряжение для них должно быть в 1,5 раза выше, чем в электросети (в нашем случае 220 В). Для упрощения процесса запуска в пусковую цепь лучше устанавливать конденсатор с маркировкой «Starting» или «Start». Хотя допускается использование стандартных конденсаторов.

Реверс направления движения двигателя

Не исключено, что после подключения однофазные электродвигатели будут вращаться в направлении, обратном необходимому. Исправить это несложно. Во время сборки схемы один провод был выведен, как общий, ещё один проводник был подан на кнопку. Для того чтобы изменить вращающееся магнитное направление электромотора, эти 2 провода необходимо поменять местами.



Как подключить однофазный электродвигатель через конденсатор — особенности разных схем

Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?


Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей .

Варианты схем включения — какой метод выбрать?

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором .

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей


Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления. которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь .

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное о том, как подключить однофазный двигатель через конденсатор

http://elektrik24.net

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

Блок: 1/3 | Кол-во символов: 275
Источник: https://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц. Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт. На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Блок: 2/5 | Кол-во символов: 588
Источник: https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v

Переподключение с 380 вольт на 220

Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.

Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

Видео:

Видео: Как подключить электродвигатель с 380 на 220

Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.

Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

Блок: 2/7 | Кол-во символов: 1985
Источник: https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Блок: 3/5 | Кол-во символов: 650
Источник: https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v

Схема звезда-треугольник

В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.

Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.

Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.

Чтобы она работала необходимо три пускателя:

К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.

Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».

Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.

Блок: 3/7 | Кол-во символов: 1147
Источник: https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html

Включение трехфазного двигателя в однофазную сеть

Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.

Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.

Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.

Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).

Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.

Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.

Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.

Блок: 6/7 | Кол-во символов: 2160
Источник: https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html

Подключение

Для работы устройства требуется 1 фаза с напряжением 220 Вольт. Это означает, что подключить его можно в бытовую розетку. Именно в этом причина популярности двигателя среди населения. На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.

аподключение с пусковым и рабочим кондсенсаторами

Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. В первом типе устройств, пусковая обмотка работает посредством конденсатора только во время старта. После достижения машиной нормальной скорости, она отключается, и работа продолжается с одной обмоткой.
  2. Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

Электродвигатель может быть взят от одного прибора и подключен к другому. Например, исправный однофазный мотор от стиральной машины или пылесоса может использоваться для работы газонокосилки, обрабатывающего станка и т.п.

Существует 3 схемы включения однофазного двигателя:

  1. В 1 схеме, работа пусковой обмотки выполняется посредством конденсатора и только на период запуска.
  2. 2 схема также предусматривает кратковременное подключение, однако оно происходит через сопротивление, а не через конденсатор.
  3. 3 схема является самой распространенной. В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Подключение электромотора с пусковым сопротивлением:

  1. Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление.
  2. Для запуска электромашины этого типа, может быть использован пусковой резистор. Его следует последовательно подключить к пусковой обмотке. Таким образом, можно получить сдвиг фаз 30° между токами обмоток, чего будет вполне достаточно для старта механизма.
  3. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. У такой обмотки меньшее количество витков и тоньше провод.

Подключение мотора с конденсаторным пуском:

  1. У данных электромашин пусковая цепь содержит конденсатор и включается только на период старта.
  2. Для достижения максимального значения пускового момента, требуется круговое магнитное поле, которое выполняет вращение. Чтобы оно возникло, токи обмоток должны быть повернуты на 90° относительно друг друга. Такие фазосдвигающие элементы, как резистор и дроссель не обеспечивают необходимый сдвиг фаз. Только включение в цепь конденсатора позволяет получить сдвиг фаз 90°, если правильно подобрать емкость.
  3. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. У рабочей обмотки его значение всегда меньше (около 12 Ом), чем у пусковой (обычно около 30 Ом). Соответственно, сечение провода рабочей обмотки больше, чем у пусковой.
  4. Конденсатор подбирается по потребляемому двигателем току. Например, если ток равен 1.4 А, то необходим конденсатор емкостью 6 мкФ.

Блок: 3/5 | Кол-во символов: 2929
Источник: https://slarkenergy.ru/oborudovanie/engine/odnofaznyj-220v.html

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Блок: 4/5 | Кол-во символов: 1504
Источник: https://2shemi.ru/shema-podklyucheniya-dvigatelya-cherez-kondensator/

Проверка работоспособности

Как проверить работоспособность двигателя путем визуального осмотра?

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка:

  1. Сломанная опора или монтажные щели.
  2. В середине мотора потемнела краска (указывает на перегревание).
  3. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут.

Если после этого двигатель окажется горячим, то:

  1. Возможно, подшипники загрязнились, зажались или просто износились.
  2. Причина может быть в слишком высокой емкости конденсатора.

Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться – необходимо уменьшить конденсаторную емкость.

Блок: 4/5 | Кол-во символов: 869
Источник: https://slarkenergy.ru/oborudovanie/engine/odnofaznyj-220v.html

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя. Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы. В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны. Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте. Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель. Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего. Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Блок: 4/5 | Кол-во символов: 4929
Источник: https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Блок: 5/5 | Кол-во символов: 390
Источник: https://2shemi.ru/shema-podklyucheniya-dvigatelya-cherez-kondensator/

Подключение однофазного асинхронного электродвигателя к сети

Особенность этого подключения заключается в том, что напряжение на рабочую катушку после включения двигателя в сеть должно подаваться постоянно, а на пусковую через фазосдвигающий конденсатор, только на кратковременное время (2–10 сек).

Сделать это несложного, например, с помощью двух тумблеров, один из которых имеет два фиксированных положения (рабочий), а другой без фиксации (пусковой).

На самом деле, всех этих манипуляций при запуске электродвигателя можно избежать, если использовать специально предназначенные для этих целей коммутирующие устройства.

Пусковая кнопка ПНВС

В этом механизме (ПНВС-10) не было бы ничего особенного, если бы не одна фишка. При нажатии кнопки “Пуск” замыкаются все три пары контактов. При отпускании кнопки, крайние пары остаются в замкнутом положении, а средняя пара возвращается в исходное, разомкнутое положение. После нажатия “Стоп” все контакты размыкаются.

На картинке ясно видно, что средняя пара контактов разомкнута, а две крайние пары замкнуты.

Остается подключить пусковую обмотку к крайним клеммам, а пусковую к средней и одной из крайних (общей) клеммам кнопки.

Вот так просто и если хотите, элегантно реализован весь порядок необходимых подключений.

Небольшая цена (120–190 руб), ещё одно из достоинств этого устройства. Некоторых пользователей смущают относительно большие габариты, но поскольку электромотор чаще всего используется в составе какого-то агрегата (станка), что само по себе подразумевает стационарное применение, то размеры блока кнопок, в этом случае, не помеха.

Подключение к сети однофазного двигателя с помощью магнитного пускателя

Поскольку питание, подаваемое на пусковую катушку через несколько секунд после нажатия кнопки “Пуск” нужно отключить, то понадобится два пускателя, а ещё блок, состоящий из двух кнопок, каждая из которых должна иметь две группы контактов с нормально-замкнутыми и нормально-разомкнутыми парами контактов.

Красным цветом обозначены силовые провода. Синим, провода управления.

Получается дороговато, каждый из пускателей с катушкой на 220 В, стоит 700–3000 руб, а ещё такой способ подключения никак не назовешь компактным и простым.

Все эти недостатки компенсируются возможностью коммутировать довольно большую нагрузку.

О подключении трёхфазных электродвигателей к однофазной сети

На мой взгляд, эта тема в наши дни потеряла свою актуальность. Раньше (период СССР), купить однофазный двигатель было проблематично или просто невозможно, а трёхфазники приобретались “по случаю”. Естественно, сразу же возникал вопрос об адаптации такого движка к однофазной сети. Сейчас таких случаев уже почти нет, а покупать дорогой трёхфазный электродвигатель с тем, чтобы подключать его к сети на 220 В. никто в здравом уме не будет.

Возможно, я ошибаюсь и у читателя есть своё мнение на этот счёт. Выскажите его в комментариях.

Блок: 3/3 | Кол-во символов: 2858
Источник: https://masterkvartira.ru/kak-podkljuchit-asinhronnyj-dvigatel-na-220-volt.html

Кол-во блоков: 15 | Общее кол-во символов: 25379
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://motocarrello.ru/jelektrotehnologii/1502-shemy-podkljuchenija-trehfaznogo-jelektrodvigatelja.html: использовано 3 блоков из 7, кол-во символов 5292 (21%)
  2. https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v: использовано 3 блоков из 5, кол-во символов 6167 (24%)
  3. https://slarkenergy.ru/oborudovanie/engine/odnofaznyj-220v.html: использовано 4 блоков из 5, кол-во символов 7921 (31%)
  4. https://2shemi.ru/shema-podklyucheniya-dvigatelya-cherez-kondensator/: использовано 3 блоков из 5, кол-во символов 2866 (11%)
  5. https://masterkvartira.ru/kak-podkljuchit-asinhronnyj-dvigatel-na-220-volt.html: использовано 1 блоков из 3, кол-во символов 2858 (11%)
  6. https://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya: использовано 1 блоков из 3, кол-во символов 275 (1%)

Источник: m-strana.ru

Типы однофазных асинхронных двигателей

Однофазный асинхронный двигатель запускается несколькими способами. Механические методы — не очень практичные методы, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Они классифицируются следующим образом:

  1. Двухфазный двигатель
  2. Двигатель конденсаторно-пусковой
  3. Конденсаторный двигатель, конденсаторный двигатель
  4. Двигатель с постоянным разделенным конденсатором (PSC)
  5. Электродвигатель с расщепленными полюсами

1.Двухфазный асинхронный двигатель:

Асинхронный двигатель с расщепленной фазой также известен как двигатель с резистивным пуском . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка. Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма

Характеристики двигателя:

Пусковой момент асинхронного двигателя с резистивным пуском составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

Приложения:

Электродвигатели

с разделенной фазой наиболее подходят для легко запускаемых нагрузок, когда частота запуска ограничена, и они очень дешевы.

  1. Эти моторы используются в стиральных машинах.
  2. Они используются в вентиляторах кондиционирования воздуха.
  3. Используется в пищевых миксерах, шлифовальных машинах, полировальных машинах, воздуходувках, центробежных насосах,
  4. Применяются в небольших дрелях, токарных станках, оргтехнике и т. Д.
  5. Иногда они также используются для приводов, требующих более 1 кВт.

Конденсаторные двигатели:

Конденсаторные двигатели — это двигатели, у которых есть конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Есть три типа конденсаторных двигателей.


2. Конденсаторно-пусковой двигатель:

Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. Е. От 3,0 до 4,5 раз больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинального значения VAr требуемого конденсатора используются электролитические конденсаторы порядка 250 F. Конденсатор Cs рассчитан на кратковременный ток.

Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора.

Рисунок: Конденсаторный пусковой двигатель (а), принципиальная схема (б) Диаграмма

Приложения:

  1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый запуск.
  2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
  3. Они также используются для конвейеров и некоторых станков.

3. Двухзначный конденсаторный двигатель

Этот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку.Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно.

Рисунок: Конденсаторный двигатель с двумя значениями

Приложения:

  1. Конденсаторные двигатели с двумя номиналами используются для нагрузок с большей инерцией, требующих частого запуска.
  2. Применяются в насосном оборудовании.
  3. Применяются в холодильных установках, воздушных компрессорах и т. Д.

4.Двигатель с постоянным разделением конденсаторов (PSC):

Эти двигатели имеют ротор с сепаратором, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь при пуске и работе.

Преимущества

Однозначный конденсаторный двигатель имеет следующие преимущества:

  1. В двигателях этого типа центробежный выключатель не требуется.
  2. Этот двигатель имеет более высокий КПД.
  3. Он имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
  4. Обладает более высоким крутящим моментом отрыва.

Ограничения конденсаторного двигателя с постоянным разделением:

  1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Следовательно, следует использовать конденсаторы с масляным наполнением, разнесенные по бумаге. Бумажные конденсаторы того же номинала больше по размеру и дороже.
  2. Однозначный конденсатор имеет низкий пусковой крутящий момент, обычно меньший, чем крутящий момент при полной нагрузке.

Приложения:

  1. Эти двигатели используются для вентиляторов и нагнетателей в обогревателях.
  2. Применяется в кондиционерах.
  3. Применяется для привода компрессоров холодильников.
  4. Также используется для работы с оргтехникой.

5. Двигатель с экранированными полюсами:

Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов.У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка.

Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора.

Приложения:

  1. Двигатели с расщепленными полюсами используются для привода устройств, которым требуется низкий пусковой момент.
  2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех типов и т. Д., Из-за их низкой начальной стоимости и легкости запуска.
  3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и оборудования для кондиционирования воздуха, электронном оборудовании, охлаждающих вентиляторах и т. Д.

3phconv

3phconv


K3PGP
. Экспериментатор . Уголок

Дом Астрономия Велосипед Строительство Лазер Moonbounce Программное обеспечение Гость Разное


Одинарный в 3-фазное преобразование мощности

Это сборник данные, полученные по моему запросу, отправлены в MOON-NET.

——

От кого: K3PGP — Джон
Кому: [email protected]
Тема: Трехфазное питание от однофазного источника?
Дата: вторник, 23 марта 1999 г., 17:50

Я видел упоминание о людях, использующих трехфазный двигатель и Конденсаторная батарея
для создания трехфазного напряжения 208 В переменного тока от однофазного 220 В переменного тока. линия. В одном конкретном случае
я видел двигатель мощностью 15 л.с., который использовался для питания 208 Vac при 25
ампер на каждую ногу к источнику питания передатчика.Источник был единичным фаза 220
В перем. К сожалению, я не могу получить более подробную информацию.

Кто-нибудь знает, как для этого подключается мотор? Как я определить
, двигатель какого размера мне нужен, а также подключение и стоимость конденсаторы?

К сожалению, у меня есть незавершенный проект EME, требующий трех фаза 208
В перем. тока при прибл. 25 ампер на ногу. Все, что доступно на на участке
однофазное 220в. Любая помощь будет оценена по достоинству.

Спасибо…

Джон — K3PGP
http://www.k3pgp.org

— = = —
——

Ответов было получено от:

Кен W6GHV, Джим N9JIM ex-WB9AJZ, Майк Мерфи KA8ABR, Том W2DRZ, Расс K2TXB, Кент Д. О’Делл KA2KQM, Оливье CT1FWC / F6HGQ, Стэн WA1ECF, Майк WD0CTA, Том KB2BAH, Клифф K7RR, Дэйв N7DB и Тед VE3BQN.

Ниже приводится краткое изложение эти ответы. Хотя многое из этого относится к работающим двигателям та же система может применяться для работы любого трехфазного оборудования в том числе передатчики от однофазного источника.

Если я кого-то упустил или проиграл чтобы отдать должное, пожалуйста, дайте мне знать!


Ответ на мой вопрос — Y-E-S, и основная идея была лучшей. резюмировано Russ K2TXB и размещено ниже.

ПРИМЕЧАНИЕ: При таком подключении двигатель НЕ Начните. Будет только гудеть. Вам нужно намотать веревку на вал и запустить его вручную, как двигатель газонокосилки. Другой вариант — конденсаторный пуск, описанный в следующая статья.

Для тех из вас, кто хочет более подробно в следующей подборке статей. я обновлю эту статью, как только мой двигатель мощностью 15 л.с. У меня есть шанс провести несколько реальных тестов с его помощью 3-х фазный источник питания передатчика.


Используется много качества промышленные машины доступны по привлекательным ценам, 3-х фазные электродвигатели. В большинстве жилых домов нет доступ к 3-х фазной электросети по разумной цене. Если строитель домашнего магазина решает использовать эти машины, они должны либо замените трехфазные двигатели однофазными двигателями или найдите способ использовать однофазное питание в своем доме для их работы.Этот статья объясняет, как построить вращающийся фазовый преобразователь, который будет преобразовать однофазную электрическую мощность 220 В переменного тока в трехфазную 220 VAC для питания вашего промышленного оборудования.

Безопасность должна быть вашим первым делом беспокойство, и любая электрическая проводка должна выполняться в соответствии с вашими местными электрический код. При этом некоторые типичные размеры проводов, будут описаны методы защиты от перегрузки и короткого замыкания. чтобы вы начали. Также металлический каркас моторов и вашего машины должны быть заземлены. Это защитное заземление обычно не провести любое электричество.Он присутствует в случае, если токопроводящий проводник случайно задевает металлический каркас. Это обеспечивает путь с низким сопротивлением, по которому электричество течет вместо того, чтобы идти через ваше тело на землю.

Есть два основных типа фазовых преобразователей на рынке, которые позволят использовать 3-фазные двигатели для работы с однофазным входом преобразователя. Эти типы называются статическими и вращающимися. Статический преобразователь в основном только пусковая цепь, которая после запуска двигателя отключается и позволяет двигателю работать на однофазном питании.В Недостатком этого метода является то, что токи обмоток двигателя будет очень неуравновешенным, и двигатель не сможет работать выше примерно двух третей его номинальной мощности. Роторный преобразователь обеспечивает ток во всех 3 фазах и, хотя и не идеально, позволяют двигателю обеспечивать всю или почти всю свою номинальную мощность в лошадиных силах. Если коэффициент обслуживания двигателя составляет от 1,15 до 1,25, вам следует иметь возможность использовать полную номинальную мощность. Фактор обслуживания может быть находится на паспортной табличке двигателя и обычно обозначается аббревиатурой S.F. Причины, по которым электроэнергия не идеальна, носят технический характер. и может включать небольшой дисбаланс напряжения и тока, например а также фазовые углы между фазами не идеальны. В балансировка напряжения и тока проста, если у вас есть доступ к вольтметру или, желательно, амперметру клещевого типа. Но даже если у вас нет этих измерителей, используя приблизительные значения рабочих конденсаторов, указанных в этой статье, токи должны быть рядом, и вы сможете получить почти полную мощность от ваши 3-х фазные двигатели.

Терминология, используемая для описанные части фазового преобразователя нуждаются в пояснении. В вращающаяся часть вращающегося фазового преобразователя — стандартная 3-х фазная Электродвигатель называется холостым. Это называется так потому, что как правило, его вал не имеет механической нагрузки. С подача однофазного питания на трехфазный двигатель не запустит его вращающийся, средство для запуска холостого двигателя, вращающегося около номинального скорость нужна. Это можно сделать несколькими способами. Тяговая веревка можно использовать небольшой однофазный электродвигатель, или можно использовать пусковой конденсатор.Если используются механические средства, питание на холостой ход не подается до тех пор, пока двигатель не будет вращается, и трос или питание однофазного двигателя удаленный. Чтобы сбалансировать напряжения и токи в 3 фазах на выходе можно использовать пару рабочих конденсаторов. Выключатель требуется большинством местных электротехнических норм для каждой части оборудование. Если вилка и розетка используются для подключения питания к оборудования, это соответствует требованиям отключения. Перегрузка защита требуется для каждого двигателя.Это может быть встроено в мотор или поставляются отдельно. Проверьте паспортную табличку двигателя, если не сказано встроенная защита от перегрузки, значит она должна быть поставляется отдельно. Обычно тепловое реле перегрузки и магнитный контактор используется для управления двигателем. В магнитный контактор — это сверхмощное реле для включения двигателей и выкл. Он предназначен для работы с высокими пусковыми токами моторы. Также доступны механические (ручные) контакторы. с тепловой защитой от перегрузки в составе выключателя.Для цель этой статьи два провода, несущие одну фазу Электропитание 220 В переменного тока будет называться линиями 1 и 2. Они соединены к клеммам 1 и 2 холостого двигателя соответственно. Провод поступающий с третьего вывода холостого двигателя будет называться строка 3.

Для построения роторной фазы преобразователь следуйте общей схеме, показанной ниже:

Рисунок 1

Однофазный 220 В переменного тока ввод вводится в строках 1 и 2, обозначенных L1 и L2 на рисунке. 1.Предохранители картриджа с выдержкой времени используются для короткого замыкания защита. 1R-1 и 1R-2 — главные контакты для магнитного контактор (силовое реле). Катушка для этого реле обозначается 1R. Рабочие конденсаторы подключаются между линиями 1-3 и 2-3. В перегрузки являются частью теплового реле перегрузки с нормальным замкнутый контакт с маркировкой OL-1. Этот контакт откроется, если есть сработала перегрузка. Открытие этого контакта отключает поток ток через цепь управления 120 В переменного тока, обесточивающую катушку 1р.Клеммы холостого двигателя имеют маркировку T1, T2 и T3. В Схема запуска использует реле 2R и его контакт 2R-1 для подключения пусковой конденсатор между линиями 1 и 3, в то время как кнопка пуска удерживается. В цепи управления вспомогательный контакт реле 1, обозначенный 1R-X, поддерживает питание катушки 1R после запуска. кнопка отпущена. 3-фазная выходная мощность подключена после главных контактов (1R-1 и 1R-2), чтобы питание от линий 1 и 2 не подключены к выходу, если фаза конвертер работает.

Более простая альтернатива, что исключает отдельную цепь запуска, а также устраняет набор рабочих конденсаторов между линиями 2-3 называется самостоятельным пусковой фазовый преобразователь. Этот дизайн обсуждается далее в этом статья.

Выберите размер провода на основе от тока, который будет течь в проводе. Таблицу 1 можно использовать для руководства и основан на 3-фазных двигателях 220 В переменного тока и 125% ток на паспортной табличке двигателя. Используйте только медный провод минимального размера. из №14. Допускается использование провода большего диаметра, чем указано в таблице. 1.

Стол 1
Минимальный рекомендуемый провод размеры.

Двигатель
л.с.

Двигатель
Ток

Проволока
Размер

1/2

2.0

№ 14

3/4

2,8

№ 14

1,0

3,6

№ 14

2.0

6,8

№ 14

3,0

9,6

№ 14

5,0

15,2

№ 12

7.5

22,0

№ 10

Если длина провода длиннее используется более 50 футов, например, от панели автоматического выключателя до фазовый преобразователь, выберите размер провода, чтобы сохранить напряжение падение в проводе менее 3 процентов. Не забудьте добавить токи всех устройств, которые будут получать энергию от этого питающего провода. Таблица 2 может использоваться в качестве руководства и основана на медном проводе.

Стол 2
Минимальный рекомендуемый размер провода для низкого падения напряжения. Амперы против футов.

Ток
в амперах

60
Ft

90
Ft

120
Ft

150
Ft

180
Ft

210
Ft

5

№ 14

№ 14

№ 14

№ 14

№ 14

№ 14

6

№ 14

№ 14

№ 14

№ 14

№ 14

№ 12

7

№ 14

№ 14

№ 14

№ 14

№ 12

№ 12

8

№ 14

№ 14

№ 14

№ 12

№ 12

№ 12

9

№ 14

№ 14

№ 12

№ 12

№ 10

№ 10

10

№ 14

№ 14

№ 12

№ 12

№ 10

№ 10

12

№ 14

№ 12

№ 12

№ 10

№ 10

№ 10

14

№ 12

№ 12

№ 10

№ 10

№ 10

№ 8

16

№ 12

№ 12

№ 10

№ 10

№ 10

№ 8

18

№ 10

№ 10

№ 10

№ 8

№ 8

№ 8

20

№ 10

№ 10

№ 10

№ 8

№ 8

№ 8

25

№ 10

№ 10

№ 8

№ 8

№ 6

№ 6

30

№ 8

№ 8

№ 8

№ 6

№ 6

№ 6

Выбор холостого двигателя это первый шаг.Это должен быть трехфазный двигатель, рассчитанный на работу. при доступном сетевом напряжении и частоте, обычно 220 VAC, 60 Гц. Фазовые преобразователи, протестированные здесь, были звездой (звездой). ранить. Некоторые двигатели имеют треугольную обмотку. Многие моторы имеют более 3-х провода так, чтобы его можно было подключить более чем к одному напряжению. Двойной Двигатели с обмоткой под напряжением обычно имеют 9 выводов, как показано ниже.

Рисунок 2

Проверьте паспортную табличку двигателя, если для напряжения указано 220/440, то его можно подключить в одну сторону для 220 вольт и другой способ на 440 вольт.Если вы не уверены, отсоедините все провода и измерьте сопротивление между проводами и сравните с рис. 2. Тот же двигатель будет иметь силу тока указан как 15 / 7,5, что означает, что он потребляет 15 ампер при подключении для 220 В переменного тока и 7,5 А при подключении для 440 В переменного тока. Рейтинг скорости не важно; от 1100 до 3600 об / мин все в порядке. Выше скорость может дать немного лучшие фазовые углы, но чем ниже скорость вообще проще завести. Двигатели на шариковых подшипниках рекомендуется вместо двигателей с подшипниками скольжения.Если мотор имеет маслосъемные колпачки, это подшипник скольжения, если в нем есть смазка фитинги или их отсутствие вообще, это шарикоподшипник. Вращаться двигатель, чтобы убедиться, что подшипники исправны. Также при покупке Используемый двигатель подключите омметр между каждым проводом и рамой, чтобы убедитесь в отсутствии коротких замыканий. Это признак того, что изоляция внутри двигателя неисправна. В качестве руководства Стоимость бывшего в употреблении трехфазного двигателя мощностью 2 лошадиные силы или меньше должна быть около 20 долларов; для более крупных двигателей используйте около 10 долларов за каждую лошадиную силу.В Номинальная мощность холостого двигателя должна быть такой же или выше чем самый большой трехфазный двигатель, который вы будете использовать. Если у вас есть оборудование, которое запускается с нагруженным двигателем, например, воздушный компрессор, то мощность двигателя в 1,5 раза больше, чем рекомендуемые.

Пусковой конденсатор должен быть рассчитанным как минимум на 250 В переменного тока. Недорогой электролитический тип может быть использован. Если холостой двигатель составляет 1 л.с. или меньше, тем больше дорогой маслонаполненный тип, используемый для рабочих конденсаторов, также может быть используется, потому что небольшие размеры не слишком дороги.Я Пусковой преобразователь фаз использует тот же набор маслозаполненных конденсаторы как пусковые, так и рабочие. В электролитический тип со временем потеряет емкость и поэтому следует покупать новые. Его можно определить по круглый, черный, пластиковый корпус. Рейтинг микрофарад должен быть выбирается по номинальной мощности холостого двигателя. Поскольку холостой двигатель запускается без механической нагрузки, размер не критично и для руководства от 50 до 100 мкФ на лошадиную силу будет работать.Больший рейтинг принесет мотор чтобы ускориться и потреблять больше тока при запуске. А 220- Пусковой конденсатор 250 В переменного тока, 270-324 мкФ, новый продается примерно по цене 15 долларов.

Рабочие конденсаторы по желанию. Конвертер будет нормально работать и без них, однако вы может получить около 80% мощности от ваших 3-фазных двигателей. из-за низкого тока в третьей линии. Рабочие конденсаторы обычно рассчитаны на 330 или 370 В переменного тока. Маслонаполненный тип должен быть использовал. Они рассчитаны на непрерывный режим работы переменного тока, в то время как электролитического типа нет и может взорваться.Маслонаполненный тип не потеряет емкость с годами и, следовательно, может быть куплены б / у или излишки. Новый рабочий конденсатор на 50 мкФ может стоить 50 долларов при использовании или излишек всего 7 долларов. Может быть идентифицируется по металлическому корпусу и овальной форме (иногда прямоугольные или даже круглые.) Назначение рабочих конденсаторов — для уравновешивания напряжения и тока в 3-х фазных линиях. Один комплект подключен между линиями 1 и 3. Другой подключен между строками 2 и 3. Набор может потребоваться, потому что если больше, чем нужно около 50 мкФ, два и более отдельных конденсатора должны быть подключены параллельно, чтобы получить желаемое значение.В лучший способ определить их размер — методом проб и ошибок с помощью зажима. введите амперметр на 3-х фазных линиях, в то время как 3-фазный двигатель Бег. Для идеального баланса каждый набор может иметь разное значение. Для справки или в случае отсутствия идеальной балансировки токов. необходимо, рейтинг микрофарад можно оценить по лошадиным силам номинал холостого мотора. Используя равную емкость от 12 до 16 микрофарад на лошадиную силу должно дать удовлетворительный результат. остаток средств.

Эффект бега конденсаторы на напряжение и ток в 3 фазных линиях показаны в цифра 3 и рисунок 4 цифра 3 , холостому двигателю мощностью 3/4 л.с. требовалось около 18 микрофарад между обе строки 1-3 и строки 2-3. На рис. 4 для холостого двигателя мощностью 5 лошадиных сил требовалось около 70 микрофарады между фазами. Этот бездельник лучше всего уравновешивался 80 мкФ между линиями 1-3 и 60 мкФ между линиями 2-3, хотя 70 микрофарад между ними было незначительно худший.

В течение текущего тесты балансировки 3-фазный двигатель включал только шпиндель токарный станок, металл не резался.Это должно было получить повторяемая, хоть и небольшая, нагрузка. В таблице 3 показан текущий баланс. с использованием различных рабочих конденсаторов.

Фаза самозапуска преобразователь использует емкость только между одной фазой (1-3) вместо использования 2 комплектов, как рекомендовано здесь. Результат попытки этого с тем же 5-сильным фазовым преобразователем показан на рисунке 5. Баланс напряжений и токов улучшен по сравнению с режимом бездействия конденсаторы, но не так хорошо, как поместить емкость между ними строки 1-3 и строки 2-3.В любом случае, в качестве побочного преимущества, однофазный ток потребления, который включает как фазовый преобразователь и потребление мощности двигателя нагрузки также будет уменьшено резко, как показано на рисунке 6. Когда 3-фазные двигатели не были работал и работал только холостой ход, однофазный ток без пусковых конденсаторов составлял 14,8 ампер, а с пробегом конденсаторов это было всего 4,4 ампера, как показано треугольниками на Рисунок 6. Снижение тока на 70 процентов впечатляет, но из-за изменения коэффициента мощности фактическая потребляемая мощность изменилась только с 379 Вт до 295 Вт или 22%.

Стол 3
Токарный двигатель 1/2 л.с. токарный шпиндель Только.

  Однофазная линия
 Ампер Вольт пФ Вт Трехфазные линии
                              ------ Амперы ------ Емкость
                          Линия1 Линия2 Линия3 пФ Вт 1-3 2-3

17,22 246,2 0,16 685 2,37 2,42 0,43 0,45 289 0 0
15.85 246,7 0,16 627 2,27 2,33 0,59 0,43 279 10 10
10,13 246,6 0,22 545 1,91 2,09 1,29 0,39 279 50 50
 8,67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 60 60
 7,15 245,6 0,29 512 1,68 2,00 1,72 0,32 240 70 70
 7,13 245,6 0,29 504 1,81 1,88 1,76 0,32 249 80 60
 
 

Убедиться, что размер не за горами пробег конденсаторов при резке металла, парочка точки данных были получены при скорости шпинделя 130 об / мин и подаче скорость 0.004 дюйма / оборот при уменьшении диаметра из куска мягкой стали. Первоначальный диаметр составлял 1,850 дюйма. Первый проход 0,030 уменьшил диаметр вдвое до 1,790. Второй проход 0,060 начался с диаметра 1,790 и уменьшил его до 1,670. В таблице 4 перечислены результаты, показывающие баланс аналогичен тому, когда использовалась та же самая емкость, и шпиндель не резал металл.

Стол 4
60 мкФ между строками 1-3 и строки 2-3.

  Однофазная линия
       Ампер Вольт пФ Вт  
  3-фазная линия
                   ----- Амперы ------
           Линия 1 Линия 2 Линия 3 пФ Вт

8,67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 Только шпиндель
  8,71 247,1 0,26 565 1,83 2,08 1,53 0,40 303 0,030 дюйма
  8.85 247,1 0,30 648 1,90 2,18 1,58 0,50 387 0,060 дюйма 

 

Показаны два реле. на схеме в фиг.1 . Реле номер 1 является главным силовым реле и должно иметь Номинальная мощность двигателя в лошадиных силах соответствует размеру холостого двигателя. Эти часто называют магнитными контакторами. Он имеет два основных полюса для переключения однофазных линий 220 В переменного тока и вспомогательного набор контактов, используемых для фиксации катушки реле под напряжением когда главные контакты замкнуты.Холостой ход отключен нажатие кнопки остановки, которая размыкает цепь катушки вызывая размыкание контактора. Реле номер 2 используется для подключить пусковой конденсатор к цепи. Реле используется так что высокие пусковые токи не проходят через толчок кнопка. Можно использовать реле номинального тока двигателя или если номинальный ток используется реле, выберите на нем как минимум 2-х кратную паспортную табличку Текущий. Фактический ток зависит от размера запуска конденсатора и может быть оценен с помощью следующего уравнения.6 = 24,9 ампер

Электрические нормы требуют отключение для каждой единицы оборудования. Выключатель (или вилка) отделяет все токоведущие проводники от линии Напряжение. Для однофазных систем 220 В переменного тока это 2 провода (2 полюсный переключатель), для 3-фазных систем это 3 провода (3-полюсный переключателя.) Поскольку преобразователь фазы питается однофазным мощность может использоваться 2-полюсный разъединитель или 2 из 3 полюсов 3 полюсный переключатель. Каждая единица оборудования, использующая 3-фазное питание также должен иметь собственный 3-полюсный рабочий выключатель.Многие из этих имеют предохранители как часть переключателя и называются плавкими предохранителями. отключается. Для двигателей это полезно, так как перегрузки двигателя недостаточно защищают от короткого замыкания как предохранители. Использование временной задержки, патронные предохранители распространены с цепями двигателя. Некоторые местные коды позволяют использовать филиал выключатель цепи или автоматический выключатель в качестве сервисного отключения для оборудования, если оно находится в пределах видимости оборудования. В отключение фазового преобразователя часто может удовлетворить это требование в домашних магазинах.

Холостой двигатель запущен первый и обычно оставленный включенным, в то время как 3-фазные двигатели в магазин включается и выключается по мере необходимости. Более одного двигателя на время можно управлять, и каждый работающий двигатель будет действовать как фаза преобразователь для других, поэтому общая мощность может быть 2 в 3 раза больше холостого хода мотора лошадиных сил. Если используется ручной переключатель вместо магнитного контактора нажмите кнопку включения пусковой конденсатор должен удерживаться до того, как ручной переключатель будет включенный.Когда запускается холостой двигатель (около 1 секунды или меньше) затем отпускают кнопку пускового конденсатора.

Коммерческие поставщики статические преобразователи позволяют использовать статический преобразователь для запуска холостой двигатель, чтобы несколько двигателей могли работать одновременно. Однако некоторые из этих коммерческих устройств используют напряжение или ток. реле для включения пускового конденсатора. Если мотор рядом с размер холостого хода (для которого рассчитан статический преобразователь) составляет запущен, пусковой ток может понизить линейное напряжение на доли секунды и приведет к включению пускового конденсатора.Это может привести к перегрузке статического преобразователя, поскольку другие двигатели Бег. Рекомендуемый здесь дизайн не имеет этого ограничение, поскольку пусковой конденсатор задействован только тогда, когда оператор нажимает кнопку пуска.


Собственная Пусковой преобразователь фазы

Фаза самозапуска конвертер проще и дешевле, чем показанный конвертер в рисунок 1. A самозапуск Схема показана ниже.

Рисунок 7

Однако текущие и баланс напряжения на 3-фазном выходе больше зависит от нагрузки, поэтому что некоторый дисбаланс присутствует при нагрузках, отличных от какая емкость была выбрана.

Для многих магазинов маленький величина дисбаланса является приемлемой и большинство коммерческих роторных фазовые преобразователи относятся к самозапускаемому типу. Внутри одного коммерческие 2-х сильные роторно-фазовые преобразователи были два 30 конденсаторы микрофарад, подключенные параллельно, это эффективно 60 микрофарады. Так как между батареей конденсаторов прошло всего два провода. и двигатель, они должны быть подключены только к одной фазе. В преобразователь на 3 л.с. другого производителя, три на 40 мкФ использовались конденсаторы (всего 120 мкФ.)

Для простейшего преобразователя без отдельной пусковой цепи, используя 25-30 мкФ на мощность холостого хода между одной из входных линий и третьей (сгенерированная) линия обеспечит приемлемый фазовый преобразователь. Тоже малая емкость и холостой либо не заводится, либо начнется очень медленно. Поскольку обычно используются предохранители с выдержкой времени для защиты двигателя от короткого замыкания допускает некоторое превышение ток для запуска около 5 секунд, рекомендуется достаточно емкости, чтобы запустить холостой ход быстрее, чем это.Избыточная емкость приведет к тому, что трехфазное напряжение превысит допустимое значение. входное линейное напряжение, особенно когда холостой ход не нагружен. В таблицах 5 и 6 показаны напряжения с разной емкостью для 5 Фазовый преобразователь л.с. и 3 л.с. соответственно. Токарный станок раньше нагрузка на преобразователь для испытаний в таблицах 5 и 6 имеет Двигатель 1/2 л.с. используемый сверлильный станок имеет двигатель мощностью 3/4 л.с. Как более Была приложена трехфазная нагрузка, напряжения между линиями 1-3 и 2-3. были уменьшены, как показано в таблицах. Также показано в таблицах 5 и 6 время, необходимое для запуска холостого хода.Сравните рисунок 4 и рисунок 5 и решите, улучшение балансировки выпуска стоит дополнительных усилий отдельная пусковая цепь, которая требуется, если одинаковая емкость подключен через обе линии 1-3 и 2-3.

Стол 5
Самозапускающийся холостой ход 5 л.с.

 Время пуска, 3-фазные напряжения
          Секунды L1-L2 L1-L3 L2-L3 
120 мкФ: 2,6 247,1 262,8 238,7 Без нагрузки
                         246.9 255,4 231,0 Токарный станок
                                       247.1 251.0 227.2 Токарный и сверлильный станок

130 мкФ: 1,6 246,9 264,8 243,7 Без нагрузки
                         246,6 258,6 234,8 Токарный станок
                                       246,2 253,7 229,8 Токарный и сверлильный станок

150 мкФ: 1,0 247,9 270,3 253,6 Без нагрузки
                         246,6 263,2 244,0 Токарный станок
                                        247,8 259,2 238,8 Токарный и сверлильный станок
 

Стол 6
Самозапускающийся холостой ход 3 л.с.

 Время пуска, 3-фазные напряжения
          Секунды L1-L2 L1-L3 L2-L3

 50 мкФ: 0,8 245,6 249,4 225,0 Без нагрузки
                         245,6 239,0 220,0 Токарный станок

 70 мкФ: 0,8 245,5 260,4 238,7 Без нагрузки
                           
100 мкФ: 0,6 246,1 277,7 256,1 Без нагрузки
                         245,9 262,5 245,6 Токарный станок
                                       245,6 255,9 236,6 Токарный и сверлильный станок

120 микрофарад: 0,6 245.5 288,0 265,7 Без нагрузки
                         245,7 270,3 254,9 Токарный станок
                                       245,3 261,5 245,9 Токарный станок и сверлильный станок 

Дом Астрономия Велосипед Строительство Лазер Moonbounce Программное обеспечение Гость Разное

Содержание этого веб-сайта 1995-2012 K3PGP и авторов-составителей.

Конденсаторные двигатели с разделенной фазой или запуск однофазных асинхронных двигателей с помощью конденсатора

Мы уже обсуждали методы запуска однофазного асинхронного двигателя. Если вы пропустили это, читайте здесь,

1) Теория вращающегося поля однофазных асинхронных двигателей

2) Способы пуска однофазных асинхронных двигателей

Принципиальная схема двигателя с конденсаторной разделенной фазой показана на рисунке ниже.

Как и в двигателях с резистивным разделением фаз, здесь есть две обмотки, основная и вспомогательная обмотка, но основное различие между этими двумя методами заключается в том, что в двигателях с конденсаторной разделенной фазой конденсатор подходящего номинала подключается последовательно со вспомогательной обмоткой.Конденсатор соединен последовательно со вспомогательной обмоткой для получения желаемого временного сдвига фаз между током вспомогательной обмотки Ia и током основной обмотки Im. Центробежный переключатель также обеспечивает отключение вспомогательной обмотки, когда скорость однофазного асинхронного двигателя достигает 70-80% синхронной скорости.

Вы можете прочитать,

Назначение центробежного переключателя в асинхронном двигателе

Как видно на векторной диаграмме двигателя с конденсаторной разделенной фазой, существует угол β между током вспомогательной обмотки Ia и током основной обмотки Im.


Имейте в виду, что угол между током вспомогательной обмотки Ia и током основной обмотки Im составляет 180 °, если имеется только основная обмотка, и из-за этого однофазный асинхронный двигатель не может запуститься сам по себе.

Кроме того, крутящий момент, создаваемый в любой машине, прямо пропорционален IaImSinβ, поэтому в этом методе пуска будет чистый пусковой крутящий момент, и двигатель запустится. Величина используемого конденсатора должна выбираться в зависимости от требований к пусковому крутящему моменту нагрузки.Если требуемый пусковой момент нагрузки больше, то угол β должен быть увеличен путем выбора более высокого значения конденсатора. Максимальный пусковой момент может быть получен этим методом пуска, если угол β = 90 °. Но чтобы иметь β = 90 °, размер и стоимость конденсатора увеличиваются. Таким образом, достигается компромисс между требованиями к пусковому крутящему моменту нагрузки и размером и стоимостью конденсатора.

Следует отметить, что вспомогательная обмотка и конденсатор включены в цепь только на короткое время, и поэтому они могут быть спроектированы с минимальными затратами.Кривая крутящего момента и скорости для двигателя с конденсаторной разделенной фазой изображена на рисунке ниже.

Из рисунка видно, что пусковой момент в этом методе высокий. Конденсаторные двигатели с разделенной фазой имеют типичную номинальную мощность от 100 до 800 Вт. Значение пускового конденсатора варьируется от 20 до 30 мкФ для двигателей мощностью 100 Вт и от 60 до 100 мкФ для двигателей на 750 Вт. Электролитические конденсаторы переменного тока в основном используются в этом методе пуска, но двигатели не следует часто запускать, иначе электролитические конденсаторы могут перегреться и повредиться.

Как использовать частотно-регулируемый привод для однофазного двигателя?

Использование частотно-регулируемого привода для регулирования скорости двигателя имеет много преимуществ. Многие двигатели малой мощности используют однофазный источник питания. Как использовать частотно-регулируемый привод для управления скоростью однофазных двигателей? ATO предоставит следующие методы.

I. Текущая ситуация с однофазным двигателем
В механическом оборудовании с однофазным источником питания обычно используется двигатель переменного тока мощностью менее 1,5 кВт. Кроме того, в большинстве из них используется однофазный пусковой емкостный двигатель, в то время как в другом небольшом количестве оборудования используется однофазный рабочий емкостный двигатель.Когда используется однофазный пусковой емкостной двигатель, при пуске центробежный переключатель замыкается, а затем включается пусковая емкость. Когда скорость двигателя достигает примерно 75% от номинальной, центробежный переключатель отключается. Пусковой крутящий момент примерно в 2,4 раза больше номинального крутящего момента. Импульсный ток примерно в 7 раз больше номинального. При таком методе большой импульсный ток, большой механический удар, большой пусковой крутящий момент и невозможно регулировать скорость.При использовании однофазного емкостного двигателя центробежный выключатель отсутствует. Емкость рабочая подключена на длительный срок. Этот двигатель имеет небольшой пусковой крутящий момент, который обычно составляет 3/5 номинального крутящего момента. Поэтому он подходит только для нагрузок с мягкими характеристиками, таких как нагнетатель, водяной насос и т. Д. Существуют также некоторые другие однофазные двигатели с рабочей емкостью, для которых увеличение рабочей емкости может увеличить пусковой крутящий момент. Однако пусковой ток примерно в 6 раз больше номинального тока, и он имеет механический удар.В однофазном емкостном двигателе используется метод регулирования напряжения для изменения коэффициента скольжения двигателя. Он также может осуществлять плавное регулирование скорости. Однако эффект от этого метода плохой. Скорость не может быть стабилизирована. Его крутящие характеристики тоже плохие. Использование частотно-регулируемого привода позволяет однофазному оборудованию обладать хорошими характеристиками при плавном регулировании скорости.

II. Методы с использованием ЧРП для однофазного двигателя

  1. Пусть однофазный двигатель работает как двухфазный
    Исключите пусковую емкость или рабочую емкость однофазного двигателя и исключите центробежный переключатель, позвольте однофазному двигателю работать как двухфазному двигателю.Основная и вторичная обмотки двигателя управляются регулировкой скорости через частотно-регулируемый привод. В однофазном двигателе фаза вторичной обмотки опережает фазу на 90 ° по сравнению с основной обмоткой, что заставляет двигатель образовывать круглую вращающуюся ленту и иметь отличные характеристики двигателя. ЧРП инвертирует высокое напряжение постоянного тока через восемь силовых устройств. Четыре силовых устройства инвертируются в переменный ток переменной частоты для управления основной обмоткой. Остальные четыре силовых устройства инвертируются в фазе опережения на 90 ° переменного тока для управления вторичной обмоткой.Общая частота синхронно регулируется схемой предусилителя (как показано ниже). Такой ЧРП имеет хорошие характеристики. Он может заставить двухфазный двигатель точно вращаться под круглым полем. Пусковой и рабочий крутящий момент двигателя определяется постоянным напряжением основной и вторичной обмоток, и частотно-регулируемый привод может устанавливать эти напряжения. ЧРП может позволить двухфазному двигателю работать в режиме плавного пуска или плавного отключения без ударов, тем самым достигая хороших характеристик пускового момента.Недостатком является то, что стоимость ЧРП высока для установки восьми устройств питания.
  2. Использование однофазного частотно-регулируемого привода
    Однофазный двигатель нельзя просто соединить с частотно-регулируемым приводом. Поскольку центробежный переключатель не может плавно регулировать скорость, его необходимо исключить. Пусковая и рабочая емкость не могут выдержать высокочастотную несущую частотно-регулируемого привода. При высокой частоте емкость легко нагревается или ломается. В однофазном двигателе рабочая емкость рассчитана таким образом, чтобы вторичная обмотка опережала основную обмотку на 90 °.Такая конфигурация проводится при промышленной частоте 50 Гц. Емкость емкости связана с частотой сети. Следовательно, рабочая емкость не может обеспечить требование исходного фазового сдвига на 90 ° из-за изменения промышленной частоты. Мы должны решить вышеупомянутые проблемы, чтобы применить однофазный частотно-регулируемый привод в однофазном емкостном двигателе. Применение однофазного частотно-регулируемого привода должно снизить несущую частоту, устранить высокочастотную несущую или гармоническую волну, чтобы уменьшить опасность, вызываемую рабочей емкостью.В однофазном работающем емкостном двигателе рабочая емкость не должна использовать электролитический конденсатор. Вместо этого следует принять высококачественную фиксированную емкость с высокочастотной стойкостью. Таким образом, можно использовать однофазный частотно-регулируемый привод (как показано ниже). Применение однофазного частотно-регулируемого привода имеет низкую стоимость. Однако из-за наличия емкости он не может принципиально достичь основных характеристик двухфазного двигателя. Тем не менее, он экономичен и практичен, сочетая хорошее применение при нормальной легкой нагрузке, он имеет практическую ценность.

См. Следующую видеоинструкцию по подключению преобразователя частоты ATO для однофазного двигателя

В гражданских случаях необходимо использовать однофазный источник питания. После использования частотно-регулируемого привода двигатель может осуществлять плавное регулирование скорости для повышения производительности. Это выгодно не только для качества работы, но и для экономии энергии. Различные частотно-регулируемые приводы с однофазным источником питания 220 В имеют более низкую стоимость, чем частотно-регулируемые приводы с трехфазным напряжением 380 В, поэтому они относительно экономичны.
Покупка частотно-регулируемого привода ATO для однофазного двигателя, однофазный частотно-регулируемый привод мощностью 1 л.с., однофазный частотно-регулируемый привод мощностью 2 л.с., однофазный частотно-регулируемый привод мощностью 5 л.с. …

.
Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *