Схемы автоматической защиты трехфазного двигателя при пропадании фазы
Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны. Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.
Первый способ (рис. 14). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключастся к трехфазной сети.
Рис, 14
При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.
Второй способ (рис. 15). Защитное устройство основано на принципе создания искусственной нулевой точки , образованной тремя одинаковыми конденсаторами С1—C3. Между этой точкой и нулевым проводом О включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке O’ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается.
Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, если применить конденсаторы с меньшей емкостью.
Третий способ (рис. 16). Схема защитного устройства аналогична схеме, рассмотренной в первом способе. При нажатии кнопки «Пуск» включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.
Рис. 15
Рис. 16
Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.
В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.
По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.
Простая защита электродвигателя.
Защита трехфазного электродвигателя.
Обычная схема подключения трёхфазного асинхронного электродвигателя состоит из следующих элементов:
• автоматический выключатель
• электродвигатель
• магнитный пускатель
• тепловое реле токовой защиты.
Автоматические выключатели (автоматы) применяемые для защиты двигателей имеют расцепители тепловые и максимального тока, по принципу работы соответствующие максимальным и тепловым реле.
Следует учесть, что не все автоматы имеют такие расцепители и поэтому не все они могут применяться для защиты двигателя от перегрузки.
В схеме защиты автоматы устанавливаются перед пускателем для защиты проводов и аппаратов от тока короткого замыкания, а двигателя от тока короткого замыкания и перегрузки.
Тепловое реле реагирует на превышения тока потребляемого электродвигателем и вызывает размыкание контактов реле, что приводит к обесточиванию катушки и отключению электродвигателя.
Типовые схемы включения трёхфазного электродвигателя
Схемы подключения электродвигателей отличаются магнитными пускателями, в которых используются катушки на разные напряжения.
В первом случае используется магнитный пускатель с рабочим напряжением катушки – 220V; для питания используется любая фаза и ноль — N.
Во втором случае электродвигатель подключается через магнитный пускатель с катушкой на 380V, для питания используются две фазы, например B и С.
Обозначения на схеме:
SA1 — выключатель автоматический (3х-полюсный автомат),
TP1 — тепловое реле,
МП1 — магнитный пускатель,
БК — блок-контакт (нормально разомкнутый),
Start — кнопка «Пуск»,
Stop — кнопка «Стоп».
Наиболее
частые причины повреждения электродвигателя вследствие тепловой
перегрузки является пропадание одной из питающих фаз, что приводит к
ненормальному режиму работы и вызывает увеличение тока в статорных
обмотках, в результате чего происходит перегрев и разрушение изоляции
обмоток статора, приводящий к замыканию обмоток и полной
неработоспособности электродвигателя.
Поэтому в случае, когда возможны ситуации с непреднамеренным отключением одной из фаз питающей сети, и необходимо предотвратить выход из строя электродвигателя, целесообразно заменить стандартную схему подключения электродвигателя на одну из нижеследующих.
Схема №1.
В обычную схему запуска трехфазного электродвигателя помимо автомата и теплового (токового) реле, вводится еще одно дополнительное реле Р с нормально разомкнутыми контактами P1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Start» через обмотку магнитного пускателя МП проходит ток и он своими контактами блокирует кнопку «Start» и подключает электродвигатель к сети.
При пропадании в сети фазы A или C реле
Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку
магнитного пускателя, который соответственно отключит от сети электродвигатель.
При пропадании в сети фазы В обесточивается непосредственно обмотка магнитного пускателя.
Схема №2.
Схема аналогична схеме рассмотренной в первом способе, но имеет отличие в том, что дополнительное реле Р при выключенном двигателе обесточено.
При
нажатии кнопки «Start» включается реле Р1 и контактами Р1 замыкает цепь
питания катушки магнитного пускателя МП, который срабатывает и своими
контактами блокирует цепь управления и включает электродвигатель. При
обрыве линейного провода B отключается реле Р, а при обрыве
проводов А или С магнитный пускатель МП, в обоих случаях
электродвигатель отключается от сети контактами магнитного пускателя МП.
Схема №3.
Следующее устройство работает на принципе создания искусственной нулевой точки образованной тремя одинаковыми конденсаторами С1—С3. Между этой точкой и нулевым проводом N включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя — двигатель отключается.
Реле типа МКУ, на рабочее
напряжение 36V.
Конденсаторы С1—С3 — бумажные, емкостью 4—10 мкФ, на рабочее напряжение не ниже удвоенного фазного.
По сравнению с предыдущими схемами это устройство обеспечивает более высокую чувствительность, вследствие которой двигатель иногда может отключиться в результате нарушения электрической симметрии, вызываемой подключением посторонних однофазных потребителей, питающихся от этой сети.
Для снижения чувствительности нужно применить конденсаторы меньшей емкости.
Схема №4.
Принцип работы устройства также основан на том, что при обрыве одной фазы образуется напряжение смещения нейтрали, которое можно использовать для защиты двигателя.
Для реализации указанного способа создается искусственная нейтраль с помощью трех конденсаторов С1-СЗ. При наличии всех трех фаз электросети А, В и С напряжение между искусственной нейтралью и нулевым проводом N практически равно нулю, а при обрыве любой фазы возникает напряжение смещения.
Это напряжение выпрямляется с помощью диодного моста VD1, в диагональ которого включено электромагнитное реле P. Конденсатор С4 блокирует срабатывание реле в пусковом режиме. Нормально замкнутые контакты P1 при срабатывании реле размыкаются и разрывают цепь питания катушки магнитного пускателя МП, в результате электродвигатель М отключается от сети.
В устройстве использовано реле
постоянного тока типа РП21, рассчитанное на рабочее напряжение 24V с сопротивлением обмотки
200 Ом.
Контактная система реле допускает ток до 5А.
В случае если напряжения смещения окажется недостаточно для срабатывания реле, необходимо увеличить емкости конденсаторов, образующих искусственную нейтраль. При срабатывании реле в режиме пуска можно увеличить емкость конденсатора С4 или отрегулировать контактную систему магнитного пускателя, добиваясь одновременного замыкания его силовых контактов.
Учитывая, что все эти устройства
защиты имеют один общий недостаток, заключающийся в том, что они реагируют на
обрыв фазы только до аппарата защиты и не реагируют на обрывы фаз, происходящие
за пределами устройства, данные устройства необходимо монтировать в
непосредственной близости от электродвигателя.
Если обрыв произойдет на отрезке между устройством и обмотками
электродвигателя, или в самом
электродвигателе защита работать не будет.
Источник:
В. Г. Бастанов «300 Практических советов» стр. 17-19
ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ ПРОПАДАНИЯ ФАЗЫ
электроника для дома
Мгновенное значение суммарного напряжения трех фаз в любой момент времени равно нулю. Если присоединить к каждому из проводов I, II, и III трехфазной сети конденсаторы (С1 С2, С3 на рис. 1), то общая точка а их соединения не будет иметь напряжения по отношению к нулевому проводу, обычно заземленному.
При исчезновении напряжения в одном из проводов между общей точкой а и нулевым проводом (или землей) начинает действовать переменное напряжение, которое и служит для контроля. Без нагрузки между точками а и б это напряжение равно 110 в. В реальной схеме это напряжение несколько меньше и величина его зависит от активного сопротивления цепи контроля и емкостных сопротивлений конденсаторов С1 С2 и С3.
На схеме рис. 2 показано устройство, сигнализирующее о неисправности сети. Цепь контроля состоит из
электрического звонка (поляризованного или с прерывателем) и неоновой сигнальной лампы. При включении нагрузки переключатели находятся в нижнем по схеме положении. Как только в одном из проводов произойдет обрыв, устройство сигнализирует об аварии. Выключив рубильник, переводят переключатели поочередно, по одному, в верхнее положение, получая сигнал, убеждаются в исправности провода и возвращают переключатели в прежнее положение. Тот из переключателей, перевод которого вверх не вызывает сигнала, находится на неисправном проводе. Как только данный провод будет исправлен — о появлении напряжения в этом проводе известит сигнал, — переключатель переводят вниз и включают нагрузку общим рубильником. Сигнальная схема при этом вновь находится в исходном положении.
Конденсаторы С1 С2,С3 подбираются практически емкостью от 0,01 до 0,05 мкф; величина сопротивления определяется типом имеющейся неоновой лампы.
Если установка, питаемая от сети трехфазного тока, включается электромагнитным контактором, легко осуществить автоматическое выключение установки при неисправности сети. Как видно из рис. 3, в цепи контроля находится обмотка реле Р. Нормально ток в этой обмотке отсутствует. Ток возникает лишь при обрыве одного из проводов трехфазной сети. При этом реле срабатывает и разрывает своими контактами цепь кнопки «Стоп», контактор К отключает от сети нагрузку, а вместе с этим обесточивает и все цепи контроля. Реле может быть применено любое, так как действие его кратковременное. Во избежание подгорания и «спекания» контактов реле параллельно им подсоединяют искрогасящую цепочку R2C4(порядка 70 ом и 0,03 мкф). Действие устройства автоматического выключения проверяется поочереднымвывертыванием предохранителей или удалением плавких вставок.
В случаях, когда желательно получить в цепи контроля не переменное, а постоянное напряжение, например, для длительного удержания якоря реле постоянного
тока, можно применить любой вентиль (рис. 4): селеновые или купроксные шайбы, германиевый диод. Напряжение для цепи диода снимается с делителя R1R2. Соотношение плеч определяется практически. Следует постепенно увеличивать R2и уменьшать R1 до получения надежного срабатывания реле при отключении любого из проводов сети I, II, III или конденсаторов С1 С2, С3.
Не следует устанавливать напряжение на плече R2 значительно большим, чем это практически необходимо для срабатывания реле, так как надо иметь в виду, что при обрыве не одного, а двух проводов сети напряжение в цепи контроля возрастает вдвое.
Конденсаторы желательно взять с бумажным диэлектриком, испытанные на напряжение 600 в.
Конденсатор С4 в схеме рис. 4 можно применить электролитический, величина его емкости должна быть достаточной для того, чтобы устранить вибрацию якоря реле, обмотка которого питается током однополупериодного выпрямления. Однако значительное увеличение емкости C4 может привести к задержке срабатывания реле.
И. Евтушенко
Смотрите также другие полезные материалы для электрика
Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.
Для чего нужна защита двигателя?
Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.
Защита двигателя имеет три уровня:
• Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.
• Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.
• Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.
Возможные условия отказа двигателя
Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:
• Низкое качество электроснабжения:
• Высокое напряжение
• Пониженное напряжение
• Несбалансированное напряжение/ ток (скачки)
• Изменение частоты
• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя
• Постепенное повышение температуры и выход её за допустимый предел:
• недостаточное охлаждение
• высокая температура окружающей среды
• пониженное атмосферное давление (работа на большой высоте над уровнем моря)
• высокая температура рабочей жидкости
• слишком большая вязкость рабочей жидкости
• частые включения/отключения электродвигателя
• слишком большой момент инерции нагрузки (свой для каждого насоса)
• Резкое повышение температуры:
• блокировка ротора
• обрыв фазы
Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.
Плавкий предохранительный выключатель
Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.
Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.
Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.
Плавкие предохранители быстрого срабатывания
Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.
Плавкие предохранители с задержкой срабатывания
Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.
Время срабатывания плавкого предохранителя
Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.
В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.
Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.
Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.
Что такое автоматический токовый выключатель и как он работает?
Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.
Различают два вида автоматических выключателей: тепловые и магнитные.
Тепловые автоматические выключатели
Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.
Магнитные автоматические выключатели
Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.
Рабочий диапазон автоматического выключателя
Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.
Функции реле перегрузки
Реле перегрузки:
• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.
IEC и NEMA стандартизуют классы срабатывания реле перегрузки.
Обозначение класса срабатывания
Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.
Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.
Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.
Сочетание плавких предохранителей с реле перегрузки
Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.
На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.
Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.
Современные наружные реле защиты двигателя
Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.
Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:
• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса
• Диагностирует возникшие неисправности
• Позволяет выполнять проверку работы реле во время техобслуживания
• Контролирует температуру и наличие вибрации в подшипниках
Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.
Например, электродвигатель может быть защищён от:
• Перегрузки
• Блокировки ротора
• Заклинивания
• Частых повторных пусков
• Разомкнутой фазы
• Замыкания на массу
• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)
• Малого тока
• Предупреждающего сигнала о перегрузке
Настройка наружного реле перегрузки
Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.
Пример вычисления
Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.
Данные отображаются в фирменной табличке, какпоказано в иллюстрации.
Вычисления для 60 Гц
Коэффициент усиления напряжения определяется следующими уравнениями:
Расчет фактического тока полной нагрузки (I):
(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)
(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)
Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:
I для «треугольника»:
I для «звезды»:
Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.
Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.
Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.
Внутренняя защита, встраиваемая в обмотки или клеммную коробку
Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:
• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.
• При высокой температуре окружающей среды.
• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.
• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.
Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.
Обозначение TP
TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:
• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
• Число уровней и тип действия (2-я цифра)
• Категорию встроенной тепловой защиты (3-я цифра)
В электродвигателях насосов, самыми распространёнными обозначениями TP являются:
TP 111: Защита от постепенной перегрузки
TP 211: Защита как от быстрой, так и от постепенной перегрузки.
Обозначение | Техническая егрузка и ее варианты (1-я цифра) | Количество уровней и функциональная область (2-я цифра) | Категория 1 (3-я цифра) |
ТР 111 | Только медленно (постоянная перегрузка) | 1 уровень при отключении | 1 |
ТР 112 | 2 | ||
ТР 121 | 2 уровня при аварийном сигнале и отключении | 1 | |
ТР 122 | 2 | ||
ТР 211 | Медленно и быстро (постоянная перегрузка, блокировка) | 1 уровень при отключении | 1 |
ТР 212 | 2 | ||
ТР 221 ТР 222 | 2 уровня при аварийном сигнале и отключении | 1 | |
2 | |||
ТР 311 ТР 321 | Только быстро (блокировка) | 1 уровень при отключении | 1 |
2 |
Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.
Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.
Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.
Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.
Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.
Устройства тепловой защиты, встраиваемые в клеммную коробку
В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.
Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.
Тепловой автоматический выключатель, встраиваемый в обмотки
Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.
Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).
Внутренняя установка
В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.
Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.
Принцип действия теплового автоматического выключателя
На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.
Подключение
Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.
Обозначение TP на графике
Защита по стандарту IEC 60034-11:
TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.
Терморезисторы, встраиваемые в обмотки
Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.
В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.
Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.
Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.
Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.
Принцип действия терморезистора
Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.
На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.
По сравнению с PTO терморезисторы имеют следующие преимущества:
• Более быстрое срабатывание благодаря меньшему объёму и массе
• Лучше контакт с обмоткой электродвигателя
• Датчики устанавливаются на каждой фазе
• Обеспечивают защиту при блокировке ротора
Обозначение TP для электродвигателя с PTC
Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.
Соединение
На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.
Электродвигатели с защитой TP 111
Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.
Электродвигатели с защитой TP 211
Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.
Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т. е терморезисторов компании Siemens.
Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле
Устройство защиты электродвигателя УЗДР-8-10, в Санкт-Петербурге с доставкой по России
При всей универсальности, реле контроля фаз проверяет параметры только питающей сети. Однако, возможны такие ситуации, когда они соответствуют норме, а нагрузка находится в аварийном или предаварийном состоянии, например, перегрев электродвигателя при перегрузке. Кроме того, при снижении сопротивления изоляции, возможно поражение обслуживающего персонала током. Устройство защиты электродвигателя следит за состоянием не только питающей сети, но и нагрузки.
После включения устройства защиты электродвигателя, оно проверяет напряжения фаз сети, порядок их чередования и ток утечки в нагрузке. Если эти параметры соответствуют норме, нагрузка начинает нормально работать, в противном случае универсальное устройство защиты запрещает включение потребителя и индицирует причину аварии на табло. В дальнейшем, в процессе работы, реле контроля фаз измеряет напряжение сети, ток, протекающий по каждой фазе, и температуру нагрузки. Если значения указанных величин выходят за пределы установленные пользователем или произойдет обрыв фазы, то устройство защиты электродвигателя отключает нагрузку, индицируя на табло причину аварии.
Чтобы избежать случайных срабатываний устройства защиты электродвигателя, например при кратковременном дребезге пускателя, отключение нагрузки происходит не сразу, а по истечении времени задержки, установленного пользователем (максимум 10 с). Следует иметь в виду, что задержка отключения при перегрузке по току, зависит от ее величины, что позволяет избежать отключения системы, например при кратковременной неопасной пергрузке электродвигателя.
Пользователь может устанавливать следующие параметры устройства:
- верхний и нижний предел допустимого напряжения
- допустимая разница напряжений на фазах (перекос фаз по напряжению)
- максимальный допустимый ток нагрузки
- допустимая разница токов по фазам (перекос по току)
- задержка перед отключением в аварийной ситуации
- Предельно допустимые сопротивление изоляции (300 кОм) и температура нагрузки (80–90°C) записаны в память устройства и могут быть изменены производителем по требованию заказчика.
Если устройство защиты электродвигателя питается от контролируемой сети, то после аварийного отключения он выключается тоже и индикация причины аварии пропадает. Чтобы избежать такой потери информации в устройстве защиты электродвигателя предусмотрено питание от независимого источника 220 В. В этом случае вся информация на табло сохраняется до отключения последнего.
УралКомплектЭнергоМаш :: Защита электродвигателей
Защита электродвигателейЭлектронные реле защиты электродвигателей серии C и GL, взрывозащищëнных ( EEx e ) электродвигателей серии G и BG
ЗАЩИТЫ/СЕРИЯ | C | GL | G/GB |
ПЕРЕГРУЗКА | | | |
ПЕРЕКОС ФАЗ ИЛИ ПОТЕРЯ ФАЗЫ | | | |
ПОСЛЕДОВАТЕЛЬНОСТЬ ФАЗ | — | — | |
ПЕРЕГРЕВ | — | |
Электронные реле защиты электродвигателей измеряют потребляемый двигателем ток. Токи измеряются тремя токовыми трансформаторами, значения используются для создания тепловой модели электродвигателя и сравнения их со значениями токов, установленными на реле. Реле FANOX работает при любых условиях пуска и работы электродвигателей. Три класса срабатывания серии C перекрывают все режимы старта и рабочего цикла. 3 питающих электродвигатель проводника пропускаются в соответствующие отверстия в реле, не подключаясь к нему, поэтому цепи питания двигателя и реле полностью гальванически развязаны. Диапазон измеряемых токов до 1000 А благодаря возможности использования токовых трансформаторов. Термопамять: при аварийном отключении, электронное реле FANOX не запустит двигатель до полного его остывания, сохранив всю информацию о двигателе. | ||
- Перегрузки по току
(реле защиты создает тепловую модель двигателя во время пуска, работы и останова; при перегрузке учитываются аварийные отключения, что влияет на скорость срабатывания; при аварийном отключении, электронное реле не даст запустить двигатель до полного остывания, информация о двигателе сохраняется при отключении, светодиод мигает начиная с 1. 1 х I р при перегрузке) - Перекоса фаз и потери фазы
(реле обнаруживает обрыв фазы, даже если электродвигатель работает с нагрузкой меньше номинальной; перекос фаз обнаруживается в случае если значения токов в фазах отличаются более чем на 40%; электронное реле останавливает двигатель в течении 3 сек., предотвращая его поломку) - Неправильной последовательности фаз
(очередность фаз определяется токовыми датчиками, действует в процессе старта двигателя, для правильного определения время старта, не используется при использовании преобразователя частоты) - Перегрева двигателя
(терморезисторные датчики встроены в реле(термисторы / PTC )
Серия C
Реле защиты двигателей малой и средней мощности в компрессорах, вентиляторах, конвейерах, для точной защиты от перегрузок во время старта. 3 класса срабатывания перекрывают все режимы старта рабочего цикла.
Серия GL
Защищают двигатели любой мощности (до 630 А и выше), общая защита + защита от перегрева. 7 классов срабатывания перекрывают все режимы старта и рабочего цикла.
Серия G
Реле защиты взрывозащищенных двигателей серии G для двигателей любой мощности, во взрывоопасных зонах: химическая промышленность, нефтедобыча, угольные шахты и т.д.
Серия BG
Характеристики реле серии BG аналогичны серии G . BG для использования с выносным дисплеем — не имеет светодиодов на передней панели.
- Токовые трансформаторы
- Выносной дисплей (модуль можно устанавливать на дверь шкафа вместо кнопки диаметром 22 мм, длина кабеля = 2 м)
Технические характеристики cерия C
Технические характеристики cерия GL
Технические характеристики cерия G и BG
|
Схема подключения серии C без токового трансформатора | Схема подключения серии C с токовым трансформатором | Схема подключения серии GL, G и BG без токового трансформатора |
Кривые срабатывания защиты
Кривые срабатывания серии C | Кривые срабатывания серии GL | Кривые срабатывания серии G и BG |
Кривые срабатывания (IEC 947-4-1)
- Зеленые линии — холодные кривые срабатывания.
- Синие линии — кривые, по которым работает реле, если в момент пуска двигатель находиться в нагретом состоянии, реле срабатывает быстрее.
Классы срабатывания/ время срабатывания
Классы срабатывания позволяют пользователю выбирать защиту от перегрузки в зависимости от области применения электродвигателя и режимов его пуска.
Каждому классу соответствует кривая срабатывания, определяющая время срабатывания реле при перегрузке по току.
Прямой пуск двигателя
ВРЕМЯ СТАРТА | КЛАСС СРАБАТЫВАНИЯ | ВРЕМЯ СРАБАТЫВАНИЯ | |||||||||||
МОДЕЛИ | МОДЕЛИ | ||||||||||||
C9 | C21 | C45 | GL16 | GL40 | GL90 | P19 | P44 | P90 | PF16 | PF47 | G17 | BG17 | |
1 | 10 | 10 | 10 | 10 | 10 | 10 | 5 | 5 | 5 | 10 | 10 | 4 | 4 |
2 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 6 | 6 |
3 | 10 | 20 | 20 | 15 | 15 | 15 | 10 | 10 | 10 | 20 | 20 | 10 | 10 |
4 | 20 | 20 | 20 | 20 | 20 | 20 | 15 | 15 | 15 | 20 | 20 | 12 | 12 |
5 | 20 | 30 | 30 | 20 | 20 | 25 | 15 | 15 | 15 | 20 | 20 | 16 | 16 |
6 | 20 | 30 | 30 | 25 | 25 | 25 | 30 | 30 | 18 | 18 | |||
7 | 30 | 30 | 30 | 20 | 30 | 35 | 30 | 30 | 22 | 22 | |||
8 | 30 | 30 | 30 | 30 | 30 | 35 | 30 | 30 | 24 | 24 | |||
9 | 30 | 30 | 30 | 35 | 35 | 35 | 30 | 30 | 28 | 28 | |||
10 | 30 | 30 | 30 | 35 | 35 | 35 | 30 | 30 | 30 | 30 |
Пуск звезда/треугольник
ВРЕМЯ СТАРТА | КЛАСС СРАБАТЫВАНИЯ | ВРЕМЯ СРАБАТЫВАНИЯ | |||||||||||
МОДЕЛИ | МОДЕЛИ | ||||||||||||
C9 | C21 | C45 | GL16 | GL40 | GL90 | P19 | P44 | P90 | PF16 | PF47 | G17 | BG17 | |
5 | 10 | 10 | 10 | 10 | 10 | 10 | 5 | 5 | 5 | 10 | 10 | 4 | 4 |
10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 6 | 6 |
15 | 20 | 20 | 20 | 10 | 15 | 15 | 10 | 10 | 10 | 10 | 20 | 8 | 8 |
20 | 20 | 20 | 30 | 20 | 20 | 20 | 15 | 15 | 15 | 20 | 20 | 10 | 10 |
25 | 30 | 30 | 30 | 20 | 20 | 25 | 15 | 15 | 15 | 20 | 20 | 14 | 14 |
30 | 20 | 30 | 30 | 20 | 25 | 30 | 20 | 30 | 16 | 16 | |||
35 | 30 | 30 | 30 | 20 | 30 | 35 | 20 | 30 | 18 | 18 | |||
40 | 30 | 30 | 30 | 25 | 30 | 35 | 30 | 30 | 20 | 20 |
Уважаемые заказчики! Узнать цену на реле защиты двигателей, а также получить ответы на любые технические вопросы, можно обратившись в коммерческий отдел УКЭМ (343) 222-79-77 либо заполнив заявку он-лайн. ..
Защита питаемого трёхфазной сетью электрооборудования от некачественного напряжения
ОБЛАСТЬ ПРИМЕНЕНИЯ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Основным оборудованием, нуждающимся в защите от несимметричных режимов и нарушений порядка чередования фаз, являются трёхфазные асинхронные электродвигатели.
Ассимметрия трёхфазного питания приводит к снижению рабочего и пускового моментов электродвигателя, снижает его КПД и увеличивает величину скольжения.
Полное отсутствие одной из фаз в системе питания приводит к повреждению электродвигателя вследствие перегрева. Усугубляет опасность этого режима небольшой ток потребления и нечувствительность к нему максимальных токовых защит.
Обратное чередование фаз непосредственно двигателю вреда не наносит, но при этом меняется направление его вращения. Такой режим чаще всего губителен для механизмов, приводимых двигателем, и как минимум нарушает технологический процесс.
Изменение порядка чередования фаз возникает в результате ошибки персонала при подключении кабельных линий или шлейфов воздушных линий электропередачи после выполнения ремонтных работ. Это может произойти как на территории потребителя, так и в электроустановках электросетевой компании.
К основным параметрам настройки реле относятся:
- регулирование уставки срабатывания при повышении уровня напряжения;
- установка нижнего предела напряжения питания;
- установка времени повторного включения.
Пределы допустимого изменения параметров питающей электросети устанавливаются исходя из характеристик питаемого оборудования.
Повторное включение происходит после восстановления нормального режима питающей сети. После отключения нагрузки в результате работы реле напряжения и контроля чередования фаз, орган измерения продолжает осуществлять непрерывный контроль состояния сети.
При возвращении параметров электропитания к норме происходит автоматическое повторное включение нагрузки. Время повторного включения выбирают с учётом характеристики сети питания.
Необходимость задержки включения обусловлена отстройкой от колебаний параметров переходного режима и возможной неуспешностью попыток включения линий питания.
2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
9 схем правильного подключения реле напряжения
24.03.2015 3 комментария 33 850 просмотров
Реле контроля напряжения на фазах позволяет мгновенно отключить электроэнергию после счетчика при возникновении аварийной ситуации – скачке напряжения в сети. Данное устройство применяется как в однофазной, так и в трехфазной электросети для защиты потребителей электроэнергии от выхода из строя. Далее мы рассмотрим типовые схемы подключения реле напряжения в квартирном щитке.
Итак, простейшая схема разводки провода от вводного автоматического выключателя в квартире к реле контроля напряжения выглядит следующим образом:
В данном случае сеть однофазная (220 Вольт) и нагрузка составляет не более 7 кВт, поэтому дополнительно не нужно подключать магнитный пускатель либо контактор на дин рейку. Если же нагрузка будет более 7 кВт, рекомендуется выполнить подключение через пускатель, как показано на второй схеме подсоединения реле РН-113:
Сразу же обращаем Ваше внимание на то, что помимо устройства защиты сети от перенапряжения в распределительном щитке должно присутствовать УЗО либо дифавтомат, чтобы защитить жителей дома от токов утечки, которые могут стать причиной поражения человека электрическим током. Принципиальная схема подключения реле напряжения и УЗО (либо дифавтомата) выглядит примерно так:. Если же у Вас в частном доме трехфазная сеть на 380 Вольт, подключение защитного устройства можно выполнить по одной из двух схем:
Если же у Вас в частном доме трехфазная сеть на 380 Вольт, подключение защитного устройства можно выполнить по одной из двух схем:
Первую рекомендуется использовать в том случае, если в доме нет трехфазных потребителей – мощной электроплиты либо котла на 380 В. Если же Вы используете 3-х фазные электродвигатели, необходимо защитить их соответствующим реле напряжения, к примеру, РНПП-311 либо РКН 3-14-08, схемы которых мы Вам предоставляем:
Помимо этого рекомендуем ознакомиться с видео уроками, на которых доходчиво разъяснен весь процесс монтажа:
Правильное подсоединение устройства к сети
Как Вы видите, в обеих вариантах дополнительно присутствует магнитный пускатель, который позволяет коммутировать высокие нагрузки (свыше 7 кВт). К тому же, пускатель позволяет дистанционно управлять защитой, что делает данную схему подключения реле напряжения очень удобной!
Правильное подсоединение устройства к сети
Назначение и принцип работы реле контроля фаз
Реле для контроля напряжения фаз следует включать в схемы приборов, которые приходится часто переподключать к питающей трехфазной сети. К примеру, винтовой компрессор, не являющийся стационарным аппаратом, постоянно перемещают с одного места на другое, каждый раз подсоединяя его к линии заново. Если неправильно выполнить действия по его подключению, спутав при этом фазы, пяти секунд после запуска оборудования будет достаточно для того, чтобы произошла серьезная поломка.
Ремонт аппаратуры сопряжен с немалыми затратами, поэтому в таких устройствах контроль напряжения фаз просто необходим.
Есть и другие приборы, которые при неправильном соединении проводов не сгорают, а просто не включаются. В этом случае работники обычно приходят к выводу, что аппарат сломан, начинают его проверять – а прозвонка показывает, что все в порядке. И хорошо, если понимание того, что при подключении были просто перепутаны фазные жилы, придет быстро, иначе рабочее время будет потрачено впустую.
Что такое реле напряжения и как оно настраивается – на следующем видео:
Теперь поговорим о том, как работает реле контроля. Основная задача прибора заключается в защите электрических аппаратов от повреждения в результате воздействия некачественного напряжения
Это очень важно для дорогостоящего оборудования, поэтому электроприборы импортного производства устанавливаются только вместе с контрольным реле. Оно обеспечивает защиту аппаратуры при обрыве фаз, неправильном подсоединении, а также асимметричном напряжении
При соответствии фаз параметрам контрольного прибора релейные контакты включаются, пропуская через контактор в цепь трехфазное напряжение. Если ток хотя бы на одной фазной жиле отсутствует, напряжение в линию пропущено не будет
После восстановления питания на фазном проводе по истечении нескольких секунд произойдет автоматическое включение нагрузки. Итак, как можно убедиться, реле осуществляет автоматический контроль, отключая подачу напряжения в случае аварии и включая нагрузку после нормализации параметров электрической цепи.
Назначение и функции
Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.
Применяется для следующих целей:
Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов;
Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения;
Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт;
Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт.
Для коммутации однофазной нагрузки данное устройство не используется.
В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.
В трехфазных сетях осуществляет контроль:
- уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
- чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении относительно питающих вводов оборудования;
- пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
- перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.
Преимущества реле контроля фаз
В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:
- в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
- позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
- в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
- способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
- не требует формирования дополнительной трансформации со стороны рабочего напряжения.
В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.
Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.
Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.
Технические характеристики оборудования
При выборе типа реле контроля фаз следует учитывать технические характеристики, которые напрямую зависят от типа оборудования
Имеет смысл подробно разобрать, на что следует обратить особое внимание
Хотя некоторые зарубежные аналоги нисколько не красивееФОТО: aredi.ru
Рабочее напряжение
Наиболее широкий диапазон рабочего напряжения имеет первый тип реле контроля фаз – устройства ЕЛ11 и ЕЛ11МТ. Эти приборы предназначены для оборудования, работающего от сети 100, 110, 220, 380, 400 и 415 В. У реле второго типа (ЕЛ12 и ЕЛ12МТ) диапазон скромнее. Он ограничивается напряжением 100, 200 и 280 В. А самым малым диапазоном обладает ЕЛ13. Это реле рассчитано на рабочее напряжение 220 и 380 В.
ЕЛ12УЗ по внешнему виду практически не отличить от одиннадцатогоФОТО: directlot.ru
Пределы срабатывания реле контроля фаз
В случае исчезновения одной из фаз, сработает реле любого типа, а вот при падении напряжения отсечка на разных типах будет отличаться по показателям. Устройства серии ЕЛ11 имеют отсечку при 0,7 Uфн, у серии ЕЛ12 и ЕЛ13 этот предел равен 0,5 Uфн.
Неправильная фазировка также может стать причиной отсечки реле контроля фаз, серий ЕЛ11 и ЕЛ12. А вот ЕЛ13 при неправильном подключении фаз, не сработает, это также не стоит упускать из вида.
РНПП-301 выглядят значительно аккуратнееФОТО: electrikexpert.ru
Время срабатывания: порог отсечки
При снижении напряжения ниже установленного типом порога, реле контроля фаз может сработать через различный временной промежуток. У моделей ЕЛ11 и 12 он составляет 0,1-10 сек, а у ЕЛ13 – 0,1-0,15 сек.
Рабочая температура и её диапазон
Серия ЕЛ13 имеет наименьший диапазон рабочих температур. Эти модели работают при минимальной -10ºС и максимальной +45ºС. Что касается серии ЕЛ11 и ЕЛ13, то здесь рабочий диапазон шире. Он варьируется от -40 до +40ºС.
Масса устройств и условия их хранения
Разница в массе практически незначительна. У ЕЛ 11 и 12 она составляет 300 г, а ЕЛ13 весит 250 г. Температура хранения реле любых типов -60ºС до +50ºС.
Реле контроля фаз DEVOLT 380 кажется слишком громоздкимФОТО: зелэлектро.рф
Виды промежуточных реле
Промежуточное реле на Din-рейку
По конструкции они разделяются на реле электромагнитные промежуточные или механические и электронные приборы. Механические реле могут работать в разных условиях. Это долговечные и надежные приборы, но недостаточно точные. Поэтому чаще в цепь монтируют их аналоги – электронные реле на дин-рейку. Также реле можно установить на ровную поверхность. Для этого фиксаторы замков нужно раздвинуть.
По назначению устройства делятся на следующие категории.
- Комбинированные взаимозависимые приборы, функционирующие в группе.
- Логические устройства, которые работают на микропроцессорах в цепи с цифровыми реле.
- Измерительные, с механизмом подстройки, срабатывающие на определенный уровень сигнала.
По способу работы РП бывают прямые, которые непосредственно размыкают или замыкают цепь, и косвенные, работающие вместе с другими устройствами. Они не размыкают цепь сразу после поступившего сигнала.
Есть приборы максимального типа переключения, когда срабатывание происходит в момент увеличения порогового значения параметра цепи. Минимальный тип срабатывает во время снижения характеристик.
По способу подключения в цепь есть первичные, которые можно подключать в цепь напрямую. Вторичные устанавливают через катушки индуктивности или конденсаторы.
Как сделать правильный выбор?
Ознакомившись немного с устройством и работой обоих приборов защиты, возникает вопрос, как узнать, какое в доме напряжение, чтобы сделать правильный выбор. Ответ здесь один – надо измерить параметры энергоснабжения. Самостоятельно это проделать нельзя. Лучше обратиться к соответствующим специалистам, имеющим специальные измерительные приборы. Они сделают замер напряжения, поступающего в квартиру определенное время.
Если результаты замеров укажут на отсутствие продолжительного пониженного или повышенного напряжения, тогда с экономической точки зрения лучше поставить реле. Сама установка РН обойдется дешевле и за расход электроэнергии меньше придется платить.
Совместная установка реле и контактора
Дополнительный контактор устанавливается в случае, когда величина коммутируемых токов слишком велика. Зачастую установка реле вместе с контактором обходится дешевле покупки РКН, которое будет соответствовать параметрам потока электронов.
К номинальному току контрольного элемента в таком случае одно требование – он должен превышать значение, при котором срабатывает контактор. Последний полностью возьмет на себя токовую нагрузку.
У этого варианта подключения имеется один, но довольно существенный, недостаток – пониженное быстродействие. Оно обусловлено тем, что к миллисекундам, нужным для срабатывания прибора контроля, добавляется время, необходимое для реакции контактора
Исходя из этого, при выборе обоих устройств нужно обращать внимание на максимально высокое быстродействие каждого из них
При подключении этой связки фазный провод от ВА подсоединяется к нормально разомкнутому контакту.
Им является вход контакторной цепи. Фазный вход РКН должен подключаться посредством отдельного кабеля. Он может подсоединяться к клемме входа контактора или к контакту выхода ВА.
Поскольку фазный вход контрольного элемента подключается проводником меньшего сечения, необходимо обратить внимание на надежность соединения. Чтобы он не выпадал из гнезда, в котором находится более толстый кабель, оба провода нужно скрутить вместе и зафиксировать припоем или опрессовать специальной гильзой
При выполнении монтажа нужно убедиться, что проводник, подходящий к реле, прочно закреплен. Для подключения выхода РКН к клемме соленоида контактора используется кабель диаметром 1 – 1,5 кв.мм. Ноль контрольного элемента и вторая клемма катушки подсоединяются к нулевой шине.
Выход контактора соединяется с распределительной шиной с помощью силового фазного проводника.
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ
Основными компонентами фазового реле являются:
- блок измерений;
- устройство обработки информации;
- исполнительная (коммутационная) часть.
БЛОК ИЗМЕРЕНИЙ
Эта часть схемы реле осуществляет непрерывный контроль параметров электропитания – фазных токов и напряжений. Для фиксации искажений симметрии трёхфазной питающей системы напряжений устройство содержит фильтр гармонических составляющих обратной последовательности.
Гармонические составляющие или высшие гармоники представляют собой высокочастотные сигналы, сопутствующие основной частоте промышленного тока и кратные ей.
Теоретически кривые каждого из фазных напряжений, вырабатываемых генераторами электростанций должны иметь строго синусоидальную форму. На практике любой источник напряжения даёт некоторые искажения синусоиды.
Свой вклад в дело ухудшения синусоидальности вносят также разнообразные потребители, содержащие нелинейную нагрузку. В результате, питающее напряжение электрической сети никогда не является синусоидальным на 100%.
В соответствии с теоремой Фурье любая сложная периодическая функция может быть представлена суммой простых гармонических функций.
Примечание. Гармонической называют функцию, изменяющуюся по закону синуса или косинуса.
Таким образом, любое отклонение от синусоидальности влечёт за собой появление высших гармоник – слагаемых формулы разложения Фурье. Каждая из функций – слагаемых имеет частоту, в n раз превышающую частоту основной функции, где n – порядковый номер слагаемого.
То есть применительно к системе питания промышленной частоты 50 Гц, 1-я гармоника обладает частотой 50 Гц, 2-я – 100 Гц, 3-я – 150 Гц и так далее. Амплитуда гармоник уменьшается с увеличением их порядкового номера.
Вся совокупность гармоник образует три последовательности фазных чередований:
- составляющие 1, 4, 7, 10 … образуют прямую последовательность;
- 2, 5, 8, 11… — соответствуют обратному фазному чередованию;
- 3, 6, 9, 12… — составляют нулевую последовательность.
Нарушения симметрии системы характеризуются увеличением гармоник обратной последовательности, что и является критерием отклонения от нормы, применяемым в алгоритме контроля при работе реле.
БЛОК ЛОГИКИ
Данные, полученные из блока измерения, подвергаются здесь сравнению с условиями, определёнными выставленными уставками. Блок логики формирует команды, которые передаются исполнительному органу.
Следует заметить, что в схемотехнике реле контроля бывает невозможно выделить компоненты, относящиеся к блокам логики и измерений. В некоторых моделях используются многофункциональные микропроцессорные чипы, объединяющие эти блоки.
ИСПОЛНИТЕЛЬНЫЙ ОРГАН
Отключение защищаемой электроустановки или части сети производится «сухими» контактами электромагнитного реле или пускателя.
Термин «сухой контакт» является устойчивым жаргонным выражением проектировщиков автоматизированных систем. Выражение заимствовано из жаргона англоязычных коллег путём прямого перевода слов dry contact. Данное выражение никак не связано с отсутствием влаги.
Означает оно то, что контакт не имеет гальванической связи с цепями управления, не заземлён и не подключен к источнику питания.
В различных моделях реле контроля фаз применяются исполнительные органы двух типов, коммутирующие нагрузку непосредственно или воздействуя на промежуточный элемент – магнитный пускатель.
В первом случае устройство имеет три входа для подключения трёхфазного питания и три выхода для непосредственного присоединения к нагрузке. Коммутация нагрузки осуществляется внутри устройства.
При подключении реле контроля фаз второго типа подразумевается использование пускателя. В этих приборах имеются выходы контактов исполнительного реле, предназначенных для работы в цепях отключения. Сухие контакты реле контроля фаз коммутируют катушку пускателя.
Такие комбинации используются для защиты оборудования большой мощности, непосредственная коммутация которого невозможна контактами исполнительного органа.
Как это работает
Для того чтобы понять всю важность установки в доме реле контроля напряжения, нужно понимать принцип его работы. Это специальное оборудование, которое реагирует на изменения напряжения в электрической сети помещения. Обычная схема установки защитного прибора – соединение между счетчиком энергоснабжения и распределительным щитком
Его работа направлена на фиксирование определенного уровня напряжения на линии электроснабжения. Если значение будет выходить из допустимого диапазона, установленного по умолчанию или произвольно, то реле контроля напряжения будет разъединять цепь, чтобы обеспечить безопасность всей электронике и другого оборудования, которое было подключено к электрической сети.
Самый важный элемент в конструкции данного защитного оборудования – реле напряжения. Оно изготавливается на основе микропроцессора или стандартного компаратора. В конструкции с встроенным микропроцессорным реле напряжения обычно имеют повышенную плавность во время регулирования минимальных и максимальных значений уровня напряжения в электрической сети.
Возможность самостоятельно выставлять допустимый диапазон работы установки делает ее более универсальной, чем конструкции со статичным значением. Это может быть связано с требованиями к эксплуатации определенного типа техники. Способность корректировать диапазон срабатывания реле контроля напряжения предусмотрено не во всех конструкциях данного назначения. Если в приборе предусмотрено возможность изменять порог чувствительность, то реализация функции производится при помощи тумблера на градуированной шкале.
Также очень важной характеристикой предохранительного прибора считается его скорость срабатывания при резком изменении напряжения в электрической сети. Для того чтобы обеспечить электротехнике лучшую защиту, реле контроля напряжения должно срабатывать за минимальное время
От этого обычно и зависит безопасность всех устройств, подключенных к линии. Если промежуток времени будет слишком длинным, то подключенные бытовые приборы и электроника могут перегореть, что повлечет за собой существенные убытки для семьи.
Поэтому не стоит экономить на установке такого устройства. На сегодняшний день существуют приборы, которые могут обесточить всю линию за десятки наносекунд, что является очень хорошим показателем. Данное защитное оборудование не имеет ничего общего с обычным стабилизатором, который направлен на постоянное выравнивание напряжения в сети на стабильное, чтобы обеспечить нормальное функционирование всем подключенным приборам. При резких скачках напряжения стабилизатор не защитит электротехнику.
Реверс на основе Реле Контроля Фаз
В качестве небольшого бонуса — мой ответ на вопрос читателя. Ему нужен был реверс (переключение фаз) трехфазного питания на основе реле контроля фаз (РКФ) для питания нескольких компрессоров. На его предприятии два источника питания, которые подключаются по очереди, а контролировать и менять чередование фаз не имеется возможности.
Я предложил такую схему:
Схема реверса фаз на реле контроля фаз
РКФ реагирует на 2 последовательности фаз на входных клеммах L11, L12, L13. При первой последовательности фаз внутреннее реле РКФ выключено (на РКФ будет гореть индикация неправильного подключения). При второй последовательности внутреннее реле будет включено, и будет гореть индикация, что подключение (последовательность фаз) правильная.
Соответственно, при первой последовательности будет включаться контактор КМ1, при второй — КМ2.
Важно, чтобы в РКФ была задержка переключения (реакции) несколько секунд. Также, при автоматическом включении компрессоров в работу между подачей питания на компрессор и включением его двигателя должна быть пауза не менее 1 сек
Как и во всех реверсивных схемах, имеется электрическая блокировка от одновременного включения обоих контакторов КМ1, КМ2 (нормально закрытые контакты в цепях питания катушек этих контакторов). НЗ контакты входят в конструкцию контакторов, или нужно применить дополнительные контакты. В идеале, блокировка также должна быть и механической.
Катушки контакторов на схеме на 380 В, но могут быть и на 220 В, если нижний вывод катушки подключить к нейтральному проводу. Выходы контакторов соединены параллельно, но с измененной фазировкой. На входе схемы (в точках L11, L12, L13) должен стоять защитный автомат на соответствующих ток.
Настройка схемы.
- При подаче питающего напряжения в той последовательности, которая будет встречаться чаще всего (или которую мы принимаем за первую), РКФ подключаем так, чтобы его внутреннее реле не включилось. Для этого нужно в процессе настройки, если необходимо, поменять местами фазные провода на входных клеммах РКФ. При подаче питания на РКФ будет индикация неправильной последовательности фаз на входе, это нормально в данном режиме. Должен включиться контактор КМ1, и питание через него поступит на компрессоры. Проверить направление вращения, время проверки — не более 3 сек. Если направление вращения неправильное, поменять местами любые две фазы в точках L23, L22, L21. Затем проверить направление ещё раз.
- Проверяем переключение при второй последовательности фаз. Для этого меняем любые две фазы в точках L11, L12, L13. При подаче питания внутреннее реле РКФ должно включиться, и загореться индикация о правильной последовательности. Включится контактор КМ2. Проверить направление вращения компрессоров. Оно должно быть правильным, как и в первом случае.
- Возвращаем фазировку в точках L23, L22, L21 в первоначальное состояние.
Результат работы схемы — двигатели всегда будут вращаться в правильном направлении, ведь какая бы последовательность фаз ни была на входе, на выходе всегда будет «то пальто». А проверку уровня напряжения лучше загрубить или отключить — во избежание непредвиденных состояний схемы.
Параметры
Разберем табличку из инструкции, некоторые характеристики:
Технические характеристики CKF-318-1
- Напряжение питания — 3×400/230+N. Это означает, что реле может питаться трехфазным напряжением только с нейтралью, это сделано специально для контроля обрыва нулевого провода. В более ранней модификации этого реле — F&F CKF-318 — реализовано питание только линейным напряжением, т.е. без нейтрали. В некоторых других реле контроля фаз для этого предусмотрен переключатель системы питания.
- Допустимые напряжение — 400…50 В. Нижний предел — понятно, реле просто не хватит питания. А верхний маловат. В трехфазных сетях часто линейное напряжение может быть больше 400 В. Да и фазное тоже, при неблагоприятных обстоятельствах. Как я понял, тут имеется ввиду фазное напряжение. А что будет, если нейтрали нет (см.пункт выше), или она оборвана? Нагрузка отключится от сети.
- Максимальный ток контактов реле — 8 А. Это для чисто активной нагрузки (АС1), типа ТЭНов.
- Максимальный ток катушки контактора — 2 А. А это уже для реактивной (индуктивной) нагрузки, АС3. Для чего нужен этот контактор и почему я его не стал использовать — вы узнаете ниже.
- Контакт — 2 NONC (2 переключающих). Во многих реле контроля фаз, что я встречал, используется 1 выходное реле, а в ФиФ CKF-318-1 — два. Часто хватает и одного, но два — более функционально.
- Напряжение отключения — 150…210 (нижнее) и 240…280 В.Понятно, что это — фазные напряжения.
- Асимметрия напряжения — 55 В. При перекосе фазных напряжений более чем на 55 В реле отключает нагрузку. Это значение не регулируется, но эту проверку можно отключить, переключив на режим 4.
- Задержка отключения при падении и асимметрии — 0,5…15 с. Это по желанию. Чем больше задержка — тем меньше раз будет срабатывать реле, но больше шансов повредить оборудование
- Гистерезис — 5 В. Я уже неоднократно писал, что гистерезис так же полезен, как театральная пауза у хорошего актёра.
Далее мне по характеристикам сказать нечего.
Устройство РП
Конструкция промежуточного реле
Конструкция устройства зависит от производителя и может изменяться в соответствии с назначением. Стандартный прибор состоит из следующих узлов:
- электромагнитная катушка с сердечником;
- магнитопровод;
- пружинный механизм;
- группа контактов.
Обмотка катушки содержит большое количество витков изолированного медного провода. Внутри расположен металлический сердечник, который закреплен Г-образной пластиной (ярмо). Над катушкой установлена пластина или якорь. Он выполнен из металла и удерживается возвратной пружиной. Подвижные контакты закреплены на якоре. Пара неподвижных контактов расположена напротив. Сердечник и катушка вместе образуют электромагнит. Такие детали, как ярмо, сердечник, и якорь – это составные части магнитопровода.
РП могут быть рассчитаны как на постоянный, так и переменный ток, с напряжением от 12 до 220 вольт. Внешне приборы ничем не отличаются. Устройство, работающее на постоянном токе, имеет цельный магнитопровод. Если он набран из отдельных пластин, прибор предназначен для работы с переменным током не выше 10 ампер.
Для удобства монтажа устройства используют своеобразные колодки, что позволяет установить реле промежуточное на 220В на дин-рейку. В приспособлении имеются отверстия под контакты реле, а также контактные винты, чтобы подключить внешние проводники. Как входные, так и выходные контакты имеют одинаковую нумерацию.
Особенности различных исполнений и их возможности
Известны две разновидности приборов, используемых в составе линейных трехфазных систем: фазные реле тока и коммутаторы напряжения. Они имеют типовое исполнение, определяемое требованиями нормативной документации. Интерес представляет сравнительная оценка двух разновидностей модульных устройств.
Плюсы токовых реле
Классическая схема подключения прибора контроля фаз и напряжения в цепь управления трехфазным мотором
Бесспорными преимуществами токовых защитных реле (ТР) при их сравнении с устройствами контроля напряжения являются:
- независимость от ЭДС, постоянно возникающей при фазных сбоях в случае перегрузки электродвигателя;
- возможность определения отклонений в поведении электрической машины;
- допустимость контроля не только самой линии (перед ответвлением), но и подключенной к ней нагрузки.
В отличие от ТР приборы контроля напряжения не позволяют реализовать большинство из перечисленных функций. Они предназначаются в основном для установки в линейные цепи.
Обнаружение фазного сбоя
Сбой из-за обрыва фазы – рядовое явление, связанное со сгоревшим предохранителем или механическим повреждением в сети. В схожих условиях 3-хфазный двигатель, например, при пропадании одной из фаз продолжает работать за счет мощности, отбираемой от оставшихся двух. Любая попытка запустить его вновь при отсутствии одной из фаз будет безуспешной.
Длительность ее обнаружения (реакция на перегрузку) бывает настолько продолжительной, что за это время тепловая защита просто не успевает отключить агрегат. В ее отсутствии реле обрыва фазной жилы срабатывает из-за перегрева обмоток электродвигателя. Но это случается далеко не всегда, что объясняется особенностями работы недогруженного по одной из фаз устройства. В этом случае в нем начинает действовать так называемая «обратная ЭДС».
Обнаружение реверса
Использование защитных реле – это обеспечение безопасности рабочего персонала: 1 – оборванная фаза; 2 – шаговое напряжение
Возможность обнаружения реверса фазы востребована в следующих ситуациях:
- на двигателе проводится техобслуживание;
- в систему распределения энергоносителя внесены существенные изменения;
- после восстановления показателя мощности меняется фазовая последовательность.
Выявление дисбаланса
Выявление дисбаланса в электроцепи
Несбалансированность в электросетях обычно проявляется как значительное различие амплитуд фазных напряжений, поступающих с районной подстанции. Такой дисбаланс наблюдается в ситуациях, когда на стороне потребителя нарушено равномерное распределение нагрузок по каждой из фаз. Его наличие в системе приводит к разбросу токов в отдельных линиях, что заметно сокращает срок службы подключенного оборудования (электродвигателей, например).
Объясняется это тем, что так называемое «слипание» фаз в линиях индуктивных нагрузок вызывает дополнительный нагрев проводов и способствует разрушению изоляции. Все это является обоснованием необходимости установки в действующие электросети указанной модели реле защиты фазы.
Что такое обрыв фазы? Как я могу защитить свое оборудование?
Вопрос:
Что такое обрыв фазы? Как я могу защитить свое оборудование?
Ответ:
Когда одна фаза трехфазной системы потеряна, происходит потеря фазы. Это также называется «однофазным». Обычно обрыв фазы вызван перегоревшим предохранителем, тепловой перегрузкой, обрывом провода, изношенным контактом или механическим отказом. Обрыв фазы, который остается незамеченным, может быстро привести к небезопасным условиям, отказам оборудования и дорогостоящим простоям.
В условиях обрыва фазы двигатели, насосы, воздуходувки и другое оборудование потребляют чрезмерный ток на оставшихся двух фазах, что приводит к быстрому перегреву обмоток двигателя. Выходная мощность значительно снижается, и запуск в таких условиях невозможен. Это потенциально может оставить оборудование в состоянии «заблокированного ротора», что приведет к перегреву и еще более быстрому повреждению оборудования.
Часто бывает сложно быстро найти неисправность при потере фазы и определить основную причину. Напряжения и токи в трехфазной системе обычно не просто падают до нуля при потере фазы.Часто измерения дают сбивающие с толку значения, для правильной интерпретации которых требуется сложный анализ. Между тем, поломки и простои оборудования продолжают расти.
Трехфазное реле контроля, также называемое реле обрыва фазы, является экономичным вложением, которое легко установить. Трехфазное реле контроля защищает от повреждений, вызванных обрывом фазы, а также другими условиями трехфазного короткого замыкания. Эти реле уведомляют об условиях неисправности и предоставляют управляющие контакты для отключения двигателей или другого оборудования до того, как произойдет повреждение.Кроме того, реле обеспечивает четкую индикацию наличия неисправности, что позволяет быстро устранять неисправности и сокращать время простоя.
Трехфазные реле контроля могут быть спроектированы в новых установках или легко модернизированы в существующие установки. Доступно несколько моделей, обеспечивающих различные типы защиты, и предлагается несколько диапазонов напряжения для большинства трехфазных приложений.
Трехфазные двигатели и другое оборудование широко используются в различных отраслях промышленности:
- ОВК
- Горное дело
- Насос
- Лифт
- Кран
- Подъемник
- Генератор
- Орошение
- Петро-Хим
- Сточные воды
- И более
Macromatic предлагает единственный в своем роде монитор фазы, который сохраняет индикацию неисправности и продолжает контролировать все напряжения даже при наличии потери фазы. Проиграйте любую фазу. Видеть это. Каждый раз. Узнайте больше о трехфазных контрольных реле Macromatic, чтобы предотвратить повреждение важных двигателей и оборудования.
Как защитить электродвигатели?
В цепь (или цепи) управления должны быть включены защитные устройства для прерывания потока тока к двигателю для защиты от перегрузок или других состояний, опасных для двигателя или ведомой машины, а также для защиты от неправильной или небрежной работы само оборудование.
Наиболее частыми причинами ненормальной работы электродвигателей являются перегрузки, открытое поле, обрыв фазы, обратная фаза, превышение скорости, перегрев подшипников или других механических частей, низкое напряжение или сбой напряжения.
1. Защита от перегрузки:Перегрузка — это увеличение тока двигателя выше его безопасного предела и может быть вызвано перегрузкой приводимого механизма, низким напряжением в сети или многофазной системой с разомкнутой линией, которая приводит к однофазной работе. Защита от перегрузки является важной характеристикой любого контроллера, который предназначен для надлежащей защиты двигателя и обеспечения максимальной доступной мощности в различных условиях перегрузки и температуры.
Избыточный ток, продолжающийся всего секунду или две, обычно не вызывает серьезных повреждений, поэтому защитное устройство не должно срабатывать при кратковременных перегрузках ограниченной величины. С другой стороны, защитное устройство должно реагировать на длительные и большие перегрузки, которые опасны для двигателя тем, что могут сжечь обмотки и изоляцию.Таким образом, какое бы устройство защиты от перегрузки ни использовалось, оно должно иметь временную задержку, чтобы гарантировать, что оно сработает только при длительной перегрузке.
Аппарат, имеющий обратнозависимую задержку по времени, отключит двигатель после очень короткого интервала при большой перегрузке, но после относительно длительного интервала при небольшой перегрузке. Такая защита, очевидно, более подходит для большинства целей, поскольку при большой перегрузке температура двигателя повышается быстрее. Эта обратнозависимая характеристика обеспечивается некоторыми специальными типами реле, предохранителем, а также обычным соленоидным реле, снабженным масляной заслонкой.
На защиту от перегрузки или перегрузки по току могут влиять предохранители, электромагнитные и тепловые реле перегрузки. Реле перегрузки или предохранители необходимо размещать только в двух из трех фаз трехфазной машины, если нейтраль системы не заземлена, но их следует размещать на всех трех фазах, если она заземлена. Хотя реле перегрузки дороже предохранителя, оно имеет то преимущество, что оно автоматически сбрасывается при повторном включении переключателя. Выбор конкретного защитного устройства зависит от номинальной мощности, типа и назначения двигателя, пускового режима и характера перегрузки.
2. Защита открытого поля: Двигателипостоянного тока большого размера могут достигать опасно высокой скорости с потерей возбуждения поля, в то время как двигатели малых размеров могут не гоняться из-за трения и т. Д. Реле потери поля доступны для защиты шунтирующих двигателей постоянного тока или двигателей с составной обмоткой от потери возбуждения поля. Существуют различные схемы пускового оборудования для синхронных двигателей постоянного и переменного тока.
3. Защита от обрыва фазы:Это состояние может быть вызвано перегоревшим предохранителем, обрывом соединения или разрывом линии.Если двигатель находится в состоянии покоя во время обрыва фазы, ток статора возрастет и останется на очень высоком уровне, но двигатель останется неподвижным, и, таким образом, обмотки могут быть повреждены из-за плохой вентиляции. Опасные условия могут существовать также во время работы двигателя.
4. Защита от перефазировки:Если поменять местами две фазы питания трехфазного асинхронного двигателя, направление вращения двигателя изменится.Это известно как смена фаз. При эксплуатации лифтов и в промышленности это может привести к серьезным повреждениям. Доступны реле обрыва фазы и реверса фазы. Они защищают двигатель, машины и персонал от опасностей обрыва фазы или обратной последовательности фаз.
5 . Защита от превышения скорости:Для определенных двигателей возможны завышенные скорости, которые могут повредить приводимую машину, материалы в производственном процессе или двигатель.Защита от превышения скорости может включать точный выбор и использование контрольного оборудования для таких приложений, как бумажные и полиграфические предприятия, сталелитейные заводы, перерабатывающие предприятия и текстильная промышленность.
Центробежное устройство работает с определенной заданной скоростью, обычно примерно на 20 процентов выше нормальной, и вызывает остановку двигателя.
6 . Защита от перегрева подшипников:Защита от перегрева подшипников или других механических частей может быть обеспечена путем размещения термопар в требуемых ситуациях и расположения таким образом, чтобы при достижении температуры определенного значения срабатывали реле, и приводился к отключению двигателя или срабатыванию аварийных сигналов. звено.
7 . Защита от низкого напряжения:Эта защита необходима частично для предотвращения повреждения двигателя и его ведомой машины из-за сильных токов при включении полного номинального напряжения после временного отключения, а частично для защиты оператора оборудования. Расцепитель низкого напряжения обычно состоит из простого соленоида, удерживаемого напряжением источника питания, который заставляет пусковое оборудование возвращаться в положение «выключено» при сбое питания.
В дополнение к упомянутым выше характеристикам для защиты от неисправностей двигателя или ведомой машины, также должна быть предусмотрена защита от неосторожного обращения с ручным приводом или неправильной работы автоматического оборудования из-за заедания реле или контакторов или загрязнения контактов.
Основная опасность с ручным приводом — это слишком быстрое движение пускового рычага, и этого можно избежать, установив механический храповик, чтобы рычаг не перемещался более чем на один шаг за раз. Другая возможность — запуск машин постоянного тока со слабым полем, приводящим к излишне сильному току для обеспечения заданного крутящего момента. Для защиты от такой возможности могут быть предусмотрены механические или электрические блокировки.
Механическая блокировка может состоять из металлического плунжера, приводимого в действие рычагом полевого реостата, который предотвращает перемещение пускового рычага, за исключением случаев, когда реостат находится в положении полного поля. В электрической блокировке плунжер управляется соленоидом, который возбуждается только тогда, когда поле полностью включено.Аналогичные блокировки должны быть предусмотрены в управляющем оборудовании для коллекторных электродвигателей переменного тока, используемых для управления скоростью путем переключения щеток; главный выключатель не должен замыкаться, если щетки не находятся в низкоскоростном положении.
При полностью автоматическом оборудовании всегда существует вероятность того, что один или несколько ускоряющих контакторов останутся замкнутыми после обесточивания из-за грязи, забившей их движение. Однако этого можно избежать, поместив на подвижный рычаг вспомогательные контакты, которые замыкаются, когда контактор разомкнут.Эти контакты соединены последовательно с кнопкой запуска, так что последняя не работает, если какой-либо из контакторов остается замкнутым.
【Защита двигателя】 # 6 Способы защиты двигателя от специалистов
Защита электродвигателей — Для защиты электродвигателей используются различные защитные устройства. Двигатели используются на разных уровнях в различных приложениях. Асинхронные двигатели широко используются на бытовом, промышленном и коммерческом уровне.В промышленных установках используются асинхронные двигатели различных категорий. Большие промышленные двигатели дороги, поэтому защита двигателя является важным параметром. Для защиты двигателей используются различные блоки защиты двигателя. Защита двигателя была разделена на различные категории в зависимости от режима работы двигателя. Ниже рассматриваются различные категории защиты двигателя.
Защита от перегрузки:Защита от перегрузки — это тип защиты от механической перегрузки.Условия механической перегрузки могут возникать в двигателе по разным причинам, когда двигатель находится в рабочем состоянии. Ситуации перегрузки могут привести к повышению температуры двигателя, что может привести к его повреждению. Защита, используемая в условиях перегрузки, может отключать двигатель в условиях перегрузки от основного источника питания. Когда двигатель перегружен из-за каких-либо обстоятельств, обмотки электродвигателя подвергаются возгоранию, так как температура двигателя увеличивается в условиях перегрузки, и в результате обмотки двигателя могут быть повреждены.Точно так же, если выходы двигателя закрыты и нет смысла для выделения тепла, тогда температура двигателя увеличивается по мере того, как двигатель продолжает работать, что также может привести к повреждению обмоток двигателя. Блоки защиты от перегрузки срабатывают в случае перегрузки, питание двигателя прекращается, и двигатель защищается от дальнейшего повреждения.
Защита от перегрузки двигателя
Максимальная токовая защита:Каждый раз, когда через двигатель проходит чрезмерный ток, срабатывает блок защиты двигателя.Автоматические выключатели и предохранители используются в качестве защитных устройств для различных двигателей. Защита от перегрузки по току может защитить персонал от поражения электрическим током, оборудование управления двигателем, проводники параллельных цепей двигателя и сам двигатель — от высоких токов.
Защита от низкого напряжения:Блок защиты или устройство используется для отключения двигателя от источника напряжения или источника питания в случае падения напряжения ниже номинального значения для двигателя.Двигатель снова работает, когда напряжение выравнивается до нормального значения. У разных устройств защиты есть свои точки сброса. Некоторые блоки защиты сбрасываются вручную. Он автоматически возвращается в нормальное состояние по разным алгоритмам. Некоторые защитные устройства возвращаются в нормальное состояние по прошествии некоторого заданного интервала времени. Некоторые блоки можно вернуть в нормальное состояние, когда напряжение стабилизируется до нормального значения.
Защита от обрыва фазы:Как правильно выбрать контактор для вашего двигателя
Защита от обрыва фазы используется для защиты двигателя в случае обрыва фазы во время работы двигателя.Обычно он используется в трехфазных двигателях, и в случае отказа любой фазы двигатель отключается от источника питания. Двигатель без защиты от обрыва фазы продолжает работать, даже если обрыв фазы в цепи может повредить двигатель или повлиять на его работу. Если одна фаза вышла из строя, другая фаза начинает подавать больший ток в цепь, что может сжечь двигатель или цепь, к которой он подключен.
Защита от перепутывания фаз:Это метод защиты, который используется для защиты двигателя от состояния чередования фаз.Реверс фазы в двигателе может происходить по множеству причин, которые могут вызвать проблемы безопасности и эксплуатации. Если два соединения из трех соединений двигателя обратны, то двигатель начинает вращаться в противоположном направлении. При обнаружении обратного вращения двигателя блок защиты от чередования фаз отключает двигатель от сети.
Защита от чередования фаз двигателя
Защита от замыканий на землю:Защита от замыкания на землю используется для защиты двигателя от различных состояний короткого замыкания.В случае короткого замыкания через двигатель или цепь протекает чрезмерный ток. Защита от замыкания на землю используется для отключения двигателя в случае замыкания на землю.
Защита нейтрали или замыкания на землю ТТ
Связанные темы:
Schneider Electric — Выбор правильных компонентов управления и защиты двигателя
Функции защиты двигателя — Руководство по электрическому монтажу
Это меры, реализованные для предотвращения работы двигателей в ненормальных условиях, которые могут привести к негативным событиям, таким как: перегрев, преждевременное старение, разрушение электрических обмоток, повреждение муфты или редуктора. коробка, …
Обычно предлагаются четыре уровня схем защиты: «Обычный», «Расширенный», «Расширенный плюс» и «Высокопроизводительный», которые могут быть приняты в зависимости от сложности и мощности ведомой машины.
- «Обычные» функции защиты применимы для каждого типа двигателя или приложения,
- «Расширенный» функции защиты применяются к более сложным машинам, требующим особого внимания,
- «Advanced Plus» и «Высокая производительность» Функции защиты оправданы для двигателей большой мощности, приложений с высокими требованиями или двигателей, находящихся в критическом процессе или когда ток заземления должен быть измерен с высокой точностью (~ 0,01 А).
Как показано на следующем рисунке: «Высокопроизводительные» защиты основаны не только на токе, но и на напряжении.
Рис. N76 — Классификация функций защиты
Защита | Обычный | Продвинутый | Advanced Plus | Высокая производительность |
---|---|---|---|---|
Короткое замыкание / мгновенная перегрузка по току | ☑ | ☑ | ☑ | ☑ |
Тепловая перегрузка | ☑ | ☑ | ☑ | ☑ |
Несимметрия фазных токов | ☑ | ☑ | ☑ | ☑ |
Обрыв фазного тока | ☑ | ☑ | ☑ | ☑ |
Перегрузка по току (мгновенная и с выдержкой времени) | ☑ | ☑ | ☑ | ☑ |
Замыкание на землю / Мгновенное замыкание на землю | ☑ | ☑ | ☑ | ☑ |
Длительный старт (остановка) / Неполная последовательность | ☑ | ☑ | ☑ | |
Заклинивание (заблокированный ротор) | ☑ | ☑ | ☑ | |
Минимальный ток | ☑ | ☑ | ☑ | |
Реверс фазного тока | ☑ | ☑ | ||
Температура двигателя (по датчикам) | ☑ | ☑ | ||
Блокировка быстрого цикла / Блокировка | ☑ | ☑ | ||
Снятие нагрузки | ☑ | ☑ | ||
Надрез или толчок / Количество пусков | ☑ | ☑ | ||
Асимметрия фазных напряжений | ☑ | |||
Обрыв фазного напряжения | ☑ | |||
Реверс фазного напряжения | ☑ | |||
Пониженное напряжение | ☑ | |||
Перенапряжение | ☑ | |||
Недостаточная мощность | ☑ | |||
Превышение мощности | ☑ | |||
Пониженный коэффициент мощности | ☑ | |||
Повышенный коэффициент мощности | ☑ | |||
Повторное включение двигателя | ☑ |
Вот список функций защиты двигателя и результат срабатывания.
Короткое замыкание = отключение в случае короткого замыкания на выводах двигателя или внутри обмоток двигателя.
Мгновенная перегрузка по току = срабатывает без преднамеренной задержки по времени, когда ток превышает заданное значение.
Тепловая перегрузка = отключение двигателя в случае продолжительной работы с крутящим моментом, превышающим номинальное значение. Перегрузка обнаруживается путем измерения чрезмерного тока статора или с помощью датчиков PTC.
Неуравновешенность фазных токов = отключение двигателя в случае сильного дисбаланса тока, ответственного за повышенные потери мощности и перегрев.
Потеря фазного тока = отключение двигателя, если ток одной фазы равен нулю, так как это обнаруживает разрыв кабеля или соединения.
Перегрузка по току = аварийный сигнал или отключение двигателя в случае высокого фазного тока, обнаруживающего превышение крутящего момента на валу.
Замыкание на землю / Мгновенное замыкание на землю = отключение в случае короткого замыкания между клеммой двигателя и землей. Даже если ток короткого замыкания ограничен, быстрое действие может предотвратить полное разрушение двигателя.Его можно измерить по сумме трех фаз, если требуемая точность невысока (~ 30%). Если требуется высокая точность, ее необходимо измерить с помощью заземляющего трансформатора тока (точность 0,01 А).
Длительный пуск (остановка) = отключение в случае запуска дольше обычного (из-за механической проблемы или провала напряжения) во избежание перегрева двигателя.
Заклинило = отключение во избежание перегрева и механической нагрузки, если двигатель блокируется во время работы из-за перегрузки.
Пониженный ток = аварийный сигнал или отключение двигателя в случае обнаружения низкого значения тока, обнаруживающего состояние холостого хода (например: слив насоса, кавитация, сломанный вал и т. Д.)
Реверс фазного тока = отключение при неправильном Обнаружена последовательность фазных токов
Температура двигателя (датчиками) = аварийный сигнал или отключение в случае высокой температуры, обнаруженной датчиками.
Блокировка быстрого цикла = предотвращение подключения и предотвращение перегрева из-за слишком частого запуска.
Отключение нагрузки = отключение двигателя при обнаружении падения напряжения, чтобы уменьшить нагрузку питания и вернуться к нормальному напряжению.
Надрез или толчковый режим / Количество пусков = определенное количество последовательных операций в течение заданного времени.
Неуравновешенность фазных напряжений = отключение двигателя в случае высокого дисбаланса напряжений, что приводит к повышенным потерям мощности и перегреву.
Потеря фазного напряжения = отключение двигателя при пропадании одной фазы напряжения питания.Это необходимо для того, чтобы избежать однофазной работы трехфазного двигателя, которая приводит к снижению крутящего момента, увеличению тока статора и невозможности запуска.
Реверс фазового напряжения = предотвращение подключения и предотвращение обратного вращения двигателя в случае неправильного подключения фаз к клеммам двигателя, что может произойти, например, во время технического обслуживания.
Пониженное напряжение = предотвратить подключение двигателя или отключение двигателя, так как пониженное напряжение не может гарантировать правильную работу двигателя.
Повышенное напряжение = предотвращение подключения двигателя или отключения двигателя, так как повышенное напряжение не может гарантировать правильную работу двигателя.
Недостаточная мощность = аварийный сигнал или отключение двигателя в случае, если мощность ниже нормальной, поскольку в этой ситуации обнаруживается слив насоса (риск разрушения насоса) или сломанный вал.
Избыточная мощность = аварийный сигнал или отключение двигателя в случае превышения мощности нормальной, так как эта ситуация указывает на перегрузку машины.
Пониженный коэффициент мощности = может использоваться для обнаружения малой мощности с двигателями, имеющими высокий ток холостого хода.
Превышение коэффициента мощности = может использоваться для определения конца начальной фазы.
Повторное включение двигателя = управляет автоматическим повторным включением и блокировкой двигателя.
Следствием ненормального перегрева является снижение изоляционной способности материалов, что приводит к значительному сокращению срока службы двигателя. Это проиллюстрировано на рис. N77 и подтверждает важность защиты от перегрузки или перегрева.
Рис. N77 — Уменьшение срока службы двигателя из-за перегрева
Реле перегрузки (тепловые или электронные) защищают двигатели от перегрузок, но они должны допускать временную перегрузку, вызванную запуском, и не должны срабатывать, если время запуска не является чрезмерно большим.
В зависимости от области применения время запуска двигателя может варьироваться от нескольких секунд (для запуска без нагрузки, низкого момента сопротивления и т. Д.) До нескольких десятков секунд (для высокого момента сопротивления, высокой инерции ведомой нагрузки, и т.п.). Поэтому необходимо установить реле, соответствующие времени пуска.
Чтобы удовлетворить это требование, стандарт IEC 60947-4-1 определяет несколько классов реле перегрузки, каждый из которых характеризуется своей кривой срабатывания (см. рисунок N78).
Мощность реле выбирается в соответствии с номинальным током двигателя и расчетным временем пуска.
Класс отключения 10 адаптирован для двигателей с нормальным режимом работы.
Класс отключения 20 рекомендуется для двигателей, работающих в тяжелых условиях.
Класс отключения 30 необходим для очень длительного пуска двигателя.
Рис. N78 — Кривые срабатывания реле перегрузки
Хорошо ли защищены ваши электродвигатели?
Электродвигатели обычно находятся вне поля зрения, но они выполняют множество важных функций в жилых, коммерческих и промышленных зданиях. Электродвигатели используются для привода кондиционеров воздуха, чиллеров, печных нагнетателей, водяных насосов и лифтов, и это лишь несколько примеров. По этой причине важно поддерживать их в оптимальных условиях эксплуатации, а важным аспектом безопасной работы двигателя является обеспечение их надежной электрической защиты.
Трехфазные электродвигатели обычно используются для среднего или крупного оборудования и характеризуются тем, что работают с тремя токоведущими проводниками. Эти двигатели требуют специальной защиты из-за их подключения. В небольших приложениях, таких как вентиляторы с дробной мощностью, обычно используются однофазные электродвигатели. В них используются либо два токоведущих провода, либо токоведущий провод и нейтральный провод.
Неисправности двигателя почти всегда приводят к нарушению работы, поскольку основное оборудование выводится из строя.Также учтите, что электродвигатели дороги, поэтому в интересах управляющих компаний избегать их замены. Короче говоря, адекватная защита двигателя окупается в долгосрочной перспективе.
В этой статье дается обзор основных проблем с электричеством, которые угрожают двигателям, и способов защиты от них. Если вы планируете капитальный ремонт здания, это хорошая возможность обновить моторное оборудование и улучшить электрозащиту.
Защита от серьезных электрических неисправностей
Некоторые неисправности приводят к тому, что электрический ток двигателя резко увеличивается во много раз по сравнению с его нормальным значением.Эти неисправности должны быть немедленно отключены, иначе они вызовут необратимое повреждение двигателя и могут стать причиной возгорания. Электрический ток может достигать чрезвычайно высоких значений в следующих случаях:
- Контакт между токоведущим проводом и нулевым проводом.
- Контакт между токоведущим проводом и заземленной поверхностью или проводом.
- Контакт между двумя или более токоведущими проводниками.
Эти неисправности вызывают так называемое короткое замыкание в электротехнике: соединение с низким сопротивлением между двумя точками с разными значениями напряжения, которое вызывает чрезвычайно высокий ток — часто с величиной в тысячи ампер.
Защита двигателяиспользует магнитный отключающий механизм для устранения этих опасных неисправностей. Ток короткого замыкания индуцирует сильное магнитное поле через электромагнит, который, в свою очередь, заставляет контакт размыкаться, отключая двигатель от источника питания.
Электродвигатели при запуске потребляют высокий пусковой ток, который может достигать значений до 800% от номинального тока двигателя. Это нормальное поведение, которое длится лишь кратковременные моменты, пока двигатель начинает вращаться, поэтому это не считается неисправностью.Защита двигателя должна быть рассчитана таким образом, чтобы пропускать пусковой ток при отключении более высоких значений.
Защита от перегрузки двигателя
Перегрузка — это менее серьезный тип неисправности, когда двигатель потребляет ток, превышающий его номинальное значение, но только с небольшим запасом. Однако перегрузки вызывают чрезмерный нагрев электродвигателей, что сокращает их срок службы.
В отличие от защиты от короткого замыкания, которая является мгновенной, защита от перегрузки имеет встроенную временную задержку. Это допускает кратковременные токи выше номинального значения, которые являются нормальными для некоторых типов оборудования, например пусковой ток при запуске двигателя. Фактически, если двигатель не запускается по какой-либо причине, такой как препятствие, блокирующее вал, или чрезмерная нагрузка, срабатывает защита от перегрузки и отключает двигатель.
Защита от перегрузки действует быстрее по мере увеличения величины тока, что означает, что для сброса тока, немного превышающего номинальное значение, может потребоваться несколько минут, а для устранения значительного сверхтока может потребоваться несколько секунд.Токи, которые достаточно велики, чтобы активировать защиту от короткого замыкания, описанную в предыдущем разделе, вызывают немедленное отключение.
Защита от перегрузки может быть тепловой или электронной. Когда он тепловой, он основан на контакте, который расширяется при нагревании: больший ток вызывает больше тепла, а большее количество тепла вызывает более быстрое отключение. С другой стороны, электронная защита от перегрузки использует запрограммированную реакцию с таким же поведением, что и тепловая защита, и измеряется ток, чтобы определить, насколько быстро контакт откроется.
Защита от перепадов напряжения
Двигатели имеют номинальное значение напряжения, но обычно допускают отклонения на 10% выше и ниже этого значения. Однако рабочее напряжение должно быть как можно ближе к номинальному значению, чтобы обеспечить оптимальную производительность. Когда напряжение, подаваемое на двигатель, слишком низкое или слишком высокое, он потребляет более высокий ток, что приводит к перегреву его обмоток и сокращает срок его службы.
Существуют специальные реле максимального и минимального напряжения, которые измеряют напряжение, подаваемое на двигатель, и отключают источник питания, если напряжение выходит за пределы допустимого диапазона.Эти реле часто регулируются, поэтому важно установить разумный диапазон напряжения:
- Слишком узкий диапазон выше и ниже номинального напряжения может привести к нежелательным отключениям двигателя, поскольку даже незначительные колебания напряжения приводят к отключению.
- Однако слишком широкий диапазон не обеспечивает адекватной защиты, поскольку напряжение может резко меняться.
Защита от потери фазы и дисбаланса фаз
Однофазные двигатели отключаются, когда один из их проводов отсоединяется, даже если другой остается, поскольку нет пути для электрического тока.С другой стороны, трехфазные двигатели могут продолжать работать только с двумя фазными проводами, но это чрезвычайно требовательно для двигателя и сокращает его срок службы. Имейте в виду, что отключение напряжения на любом фазном проводе имеет тот же эффект, что и отключение проводника — двигатель остается под напряжением только на двух из трех его клемм.
Связанная проблема — это дисбаланс фаз, который возникает, когда напряжение, подаваемое на трехфазный двигатель, резко меняется между фазами.Дисбаланс фаз приводит к тому, что двигатель производит больше шума и тепла, снижая при этом его эффективность и срок службы. В идеале для оптимальной работы двигателя фазовый дисбаланс должен быть ниже 2%.
Фазовые мониторы — это устройства, которые отслеживают фазные напряжения двигателя и могут быть интегрированы с контактором для отключения двигателя в случае чрезмерного дисбаланса или потери фазы.
Заключение
Надлежащая защита двигателя может считаться вложением, поскольку она предотвращает повреждение дорогостоящего оборудования.Это также делает внутренние помещения более безопасными, поскольку электрические неисправности, способные вызвать возгорание, устраняются до того, как у них появится возможность это сделать. Работая с квалифицированными инженерами-электриками, вы можете убедиться, что все ваши электродвигатели имеют надежную защиту и установлены в соответствии с Электротехническим кодексом Нью-Йорка.
Как вы думаете, мы рассмотрели все аспекты защиты электродвигателей? Дайте нам знать, добавив свои комментарии ниже.
% PDF-1.6 % 314 0 объект > эндобдж xref 314 96 0000000016 00000 н. 0000003481 00000 н. 0000003673 00000 п. 0000003700 00000 н. 0000003750 00000 н. 0000003808 00000 п. 0000004010 00000 н. 0000004090 00000 н. 0000004168 00000 п. 0000004249 00000 н. 0000004329 00000 н. 0000004409 00000 п. 0000004489 00000 н. 0000004569 00000 н. 0000004649 00000 п. 0000004729 00000 н. 0000004809 00000 н. 0000004889 00000 н. 0000004969 00000 н. 0000005049 00000 н. 0000005129 00000 н. 0000005209 00000 н. 0000005289 00000 п. 0000005368 00000 н. 0000005447 00000 н. 0000005526 00000 н. 0000005605 00000 н. 0000005684 00000 п. 0000005763 00000 н. 0000005842 00000 н. 0000005921 00000 н. 0000006000 00000 н. 0000006079 00000 п. 0000006158 00000 н. 0000006237 00000 н. 0000006316 00000 н. 0000006394 00000 п. 0000006635 00000 н. 0000006713 00000 н. 0000006769 00000 н. 0000006846 00000 н. 0000006922 00000 н. 0000008319 00000 н. 0000009876 00000 н. 0000011542 00000 п. 0000013070 00000 п. 0000014747 00000 п. 0000015938 00000 п. 0000017127 00000 п. 0000017341 00000 п. 0000069397 00000 п. 0000069651 00000 п. 0000070031 00000 п. 0000070284 00000 п. 0000126664 00000 н. 0000126923 00000 н. 0000127289 00000 н. 0000128552 00000 н. 0000129739 00000 н. 0000130929 00000 н. 0000131000 00000 н. 0000131487 00000 н. 0000181210 00000 н. 0000181461 00000 н. 0000181882 00000 н. 0000182178 00000 н. 0000520885 00000 н. 0000521150 00000 н. 0000523110 00000 п. 0000524805 00000 н. 0000525386 00000 н. 0000565136 00000 н. 0000565175 00000 н. 0000588312 00000 н. 0000588351 00000 н. 0000680819 00000 п. 0000680876 00000 н. 0000681030 00000 н. 0000681139 00000 н. 0000681236 00000 н. 0000681412 00000 н. 0000681503 00000 н. 0000681598 00000 н. 0000681758 00000 н. 0000681932 00000 н. 0000682049 00000 н. 0000682168 00000 н. 0000682340 00000 н. 0000682461 00000 н. 0000682588 00000 н. 0000682726 00000 н. 0000682916 00000 н. 0000683106 00000 н. 0000683214 00000 н. 0000683340 00000 н. 0000002216 00000 н. трейлер ] / Назад 7849666 >> startxref 0 %% EOF 409 0 объект > поток h ެ U} LSW? -PX` [#Ba (ȃF $ L6ts | X: QVa8 = f / «Tfus | ep2mn: I}>%; = ߽
онлайн-курсов PDH.
PDH для профессиональных инженеров. ПДХ Инжиниринг.«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии
курсов. «
Russell Bailey, P.E.
Нью-Йорк
«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам
, чтобы познакомить меня с новыми источниками
информации.»
Стивен Дедак, P.E.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
.очень быстро отвечает на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. «
Blair Hayward, P.E.
Альберта, Канада
«Простой в использовании веб-сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей роте
имя другим на работе. «
Roy Pfleiderer, P.E.
Нью-Йорк
«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком
с деталями Канзас
Городская авария Хаятт.»
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс
.информативно и полезно
на моей работе »
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны.Вы
— лучшее, что я нашел ».
Russell Smith, P.E.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал. «
Jesus Sierra, P.E.
Калифорния
«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле
человек узнает больше
от отказов »
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя
студент, оставивший отзыв на курс
материалов до оплаты и
получает викторину «
Арвин Свангер, П.Е.
Вирджиния
«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил огромное удовольствие «
Mehdi Rahimi, P. E.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
на связи
курсов.»
Уильям Валериоти, P.E.
Техас
«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о
обсуждаемых тем »
Майкл Райан, P.E.
Пенсильвания
«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую
всем инженерам »
Джеймс Шурелл, П.Е.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не на основании какой-то непонятной секции
законов, которые не применяются
до «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор.
организация «
Иван Харлан, П.Е.
Теннесси
«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
а онлайн-формат был очень
доступный и простой
использовать. Большое спасибо. «
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»
Joseph Frissora, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время
обзор текстового материала. Я
также оценил просмотр
Предоставлено фактических случаев »
Жаклин Брукс, П.Е.
Флорида
«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель
Тест потребовал исследований в
документ но ответов
в наличии. «
Гарольд Катлер, П.Е.
Массачусетс
«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роадс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курсов со скидкой.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще
курсов. Процесс прост, и
намного эффективнее, чем
в пути «.
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало
время искать, где на
получить мои кредиты от. «
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
проще поглотить все
теорий. «
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.мой собственный темп во время моего утро
метро
на работу.»
Клиффорд Гринблатт, П.Е.
Мэриленд
«Просто найти интересные курсы, скачать документы и взять
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
CE единиц. «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.»
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес который
сниженная цена
на 40%. «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику
коды и Нью-Мексико
правил. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
при необходимости дополнительных
Сертификация . «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил — много
оценено! «
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
«Курс был по разумной цене, а материалы были краткими и
хорошо организовано. «
Glen Schwartz, P.E.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока —
хороший справочный материал
для деревянного дизайна. «
Брайан Адамс, П.E.
Миннесота
«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»
Роберт Велнер, P.E.
Нью-Йорк
«У меня был большой опыт работы в прибрежном строительстве — проектирование
Building курс и
очень рекомендую .»
Денис Солано, P.E.
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлен. «
Юджин Брэкбилл, P.E.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на
.обзор везде и
всякий раз.»
Тим Чиддикс, P.E.
Колорадо
«Отлично! Поддерживаю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, без всякой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
«Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Полная
и всесторонний ».
Майкл Тобин, P.E.
Аризона
«Это мой второй курс, и мне понравилось то, что мне предложили этот курс
поможет по моей линии
работ.»
Рики Хефлин, P.E.
Оклахома
«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».
Анджела Уотсон, P.E.
Монтана
«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
«Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличный освежитель ».
Luan Mane, P.E.
Conneticut
«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем
вернись, чтобы пройти викторину «
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использовать в реальных жизненных ситуациях »
Натали Дерингер, P.E.
Южная Дакота
«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.»
Ира Бродская, П.Е.
Нью-Джерси
«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться
и пройдите викторину. Очень
удобно а на моем
собственный график. «
Майкл Гладд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, П.Е.
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
Сертификат. Спасибо за изготовление
процесс простой. »
Фред Шейбе, P.E.
Висконсин
«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел
одночасовое PDH в
один час. «
Стив Торкильдсон, P.E.
Южная Каролина
«Мне понравилось загружать документы для проверки содержания
и пригодность, до
имея для оплаты
материал .»
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об EE для инженеров, не занимающихся электричеством».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
процесс, которому требуется
улучшение.»
Thomas Stalcup, P.E.
Арканзас
«Мне очень нравится удобство участия в викторине онлайн и получение сразу
Сертификат. «
Марлен Делани, П.Е.
Иллинойс
«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру
.много различных технических областей за пределами
по своей специализации без
надо ехать.