Замена конденсаторов на блоке питания
Наиболее стандартная и частая проблема выхода из строя блока питания компьютера — конденсаторы. Электролитические конденсаторы — разновидность конденсаторов, в которых диэлектриком между обкладками является пленка оксида металла на границе металла и электролита. Этот окисел получают методом электрохимического анодирования, что обеспечивает высокую равномерность изолирующего слоя.
Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная штамповка.
Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.
Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.
Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.
Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:
Откручиваем 4-ре винта и снимаем крышку БП:
Смотрим на вздутые конденсаторы и записываем их емкость и напряжение — это основные параметры для покупки новых кондеров:
К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.
Выпаиваем конденсаторы:
Скорее всего, при покупке новых конденсаторов, особенно при замене их в материнской плате, Вам зададут вопрос: — «А Вам простой или для материнских плат?»
Чем же отличаются компьютерные конденсаторы от обычных?
В компьютерах часто используют оксидные конденсаторы с низким паразитным внутренним сопротивлением (Low ESR) — низкоимпедансные. Визуально их можно отличить по маркировке, которая нанесена золотистой краской.
ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESR
До последнего времени четкое определение конденсатора с низким ESR отсутствовало.
Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.
Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.
В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
- срок службы больше, чем у стандартных конденсаторов;
- максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
- пульсирующий ток определяется на частоте 100 кГц;
- повышенная температурная стабильность (температурный коэффициент импеданса) .
Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.
Впаиваем новые конденсаторы соблюдая полярность:
Включаем и проверяем блок питания. У меня все работает! Пол часа работы и мы своими руками проделали большой фронт работы — сами перепаяли конденсаторы, получили опыт и таким же похожим способом мы можем самостоятельно перепаивать конденсаторы на материнской плате.
В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.
Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.
Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.
Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:
Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.
Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.
Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный
(или потёкший
) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.
Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.
Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.


После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.
При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.
После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка
, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.
Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).
Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.
Замена конденсатора без выпаивания с платы
Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.
Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.
А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.
Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать
на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.
Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.
Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.
На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).
Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).
Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.
Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.
Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!
Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.
Наиболее стандартная и частая проблема не рабочих БП — это электролитические конденсаторы.
Электролитические конденсаторы — разновидность конденсаторов, в которых диэлектриком между обкладками является пленка оксида металла на границе металла и электролита. Этот окисел получают методом электрохимического анодирования, что обеспечивает высокую равномерность изолирующего слоя.
Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная выштамповка.
Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.
Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.
Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.
Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:
Откручиваем 4-ре винта и снимаем крышку БП:
Смотрим на вздутые конденсаторы и записываем их емкость и напряжение — это основные параметры для покупки новых кондеров:
К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.
Выпаиваем конденсаторы:
Скорее всего, при покупке новых конденсаторов, особенно при замене их в материнской плате, Вам зададут вопрос: — «А Вам простой или для материнских плат?»
Чем же отличаются компьютерные конденсаторы от обычных?
В компьютерах часто используют оксидные конденсаторы с низким паразитным внутренним сопротивлением (Low ESR) — низкоимпедансные. Визуально их можно отличить по маркировке, которая нанесена золотистой краской.
ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESR
До последнего времени четкое определение конденсатора с низким ESR отсутствовало.
Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.
Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.
В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
- срок службы больше, чем у стандартных конденсаторов;
- максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
- пульсирующий ток определяется на частоте 100 кГц;
- повышенная температурная стабильность (температурный коэффициент импеданса) .
Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.
Впаиваем новые конденсаторы соблюдая полярность:
Включаем и проверяем блок питания, все работает.
Сегодня я расскажу, как заменить неисправные конденсаторы в блоке питания ПК.
Итак, у нас есть нерабочий блок питания. Нужно, выяснить, точно ли виноваты конденсаторы.

Диагностика неисправности блока питания
Первым делом нужно попробовать включить блок питания без компьютера. Для этого надо подключить его в сеть и замкнуть 20 или 24-пиновый коннекторы (в зависимости от модели). Возьмите пинцет, скрепку или кусочек провода и поместите предмет в контактный ATX коннектор – одним концом, куда выходит единственный зеленый провод, а другим, куда выходит любой черный провод. Мультиметр нужно вставить в любой другой разъем – черный щуп к черному проводу, а красный щуп к одному из трех цветных проводов – желтому, красному или оранжевому. При соединении с желтым проводом мультиметр должен показывать напряжение 12 V, с красным – 5 V, с оранжевым – 3.3 V.
При исправном блоке питания запустятся вентиляторы, а на разъёмах появится напряжение, что говорит нам о полной исправности устройства.


Но в нашем случае блок не запустился, напряжения нет.

Ремонт блока
Придется разбирать блок питания. Для этого нужно снять 4 винта на верхней крышке.
Открываем крышку и видим плату.

На плате нужно найти неисправные конденсаторы. В большинстве случаев их можно определить по внешнему виду – неисправные вздуваются сверху, там, где у них имеется специальная штамповка. В данном случае обнаружено 4 неисправных конденсатора. Зачастую именно они и становятся причиной выхода блока питания из строя.

Отсоединяем разъём питания.

Откручиваем плату от корпуса. Плата прикручена 4 винтами по краям.

Аккуратно вынимаем плату. Будьте бдительны, конденсаторы могут быть заряжены. Для безопасности желательно надеть резиновые перчатки.

Как видите, плата вся в пыли – очищаем ее кисточкой или сжатым воздухом.

Выпаиваем неисправные конденсаторы. Для этого понадобится паяльник и флюс. О том, как правильно выпаивать конденсаторы с платы, мы рассказывали в отдельной статье.

После окончания пайки не забываем стереть флюс

Если мощности паяльника не хватает, можно воспользоваться паяльным феном.

После выпаивания конденсаторов надо определить их емкость и рабочее напряжение. В данном случае у нас 4 конденсатора на 2200МкФ 10V.

Покупаем новые или ищем на платах-донорах аналогичные конденсаторы.

В данном случае конденсаторы сняты с платы-донора.

Припаиваем конденсаторы, строго соблюдая полярность.

На плате полярность обозначается так:
После запайки всех конденсаторов устанавливаем плату на место.

После установки платы проверяем блок питания мультиметром. Черный щуп к черному проводу, красный к цветному. Я присоединил щуп к желтому проводу. Как помним, напряжение должно составлять 12 V.

Теперь блок работает исправно. Напряжение находится в допустимых пределах. Собираем блок и подключаем его к компьютеру.
Ремонт завершён.
Источник: httрs://tehnichка.рro/change-capacitors-in-a-computer-power-supply/
Конденсаторы Блок питания Ремонт
Добрый день, друзья!
В первой части статьи мы с вами начали знакомиться с искусством врачевания компьютерных блоков питания. Продолжим же это увлекательно дело и посмотрим внимательно на высоковольтную их часть.
Проверка высоковольтной части блока питания
После осмотра платы и восстановления паек следует проверить мультиметром (в режиме измерения сопротивления) предохранитель.
Надеюсь, вы хорошо уяснили и запомнили правила техники безопасности, изложенные ранее!
Если он перегорел, то это свидетельствует, как правило, о неисправностях в высоковольтной части.
Чаще всего неисправность предохранителя видна (если стеклянный) визуально: он внутри «грязный» («грязь» — это испарившаяся свинцовая нить).
Иногда стеклянная трубка разлетается на куски.
В этом случае надо проверить (тем же тестером) исправность высоковольтных диодов, силовых ключевых транзисторов и силового транзистора источника дежурного напряжения. Силовые транзисторы высоковольтной части находятся, как правило, на общем радиаторе.
При сгоревшем предохранителе нередко выводы коллектор-эмиттер «звонятся» накоротко, и удостовериться в этом можно и не выпаивая транзистор. С полевыми же транзисторами дело обстоит несколько сложнее.
Как проверять полевые и биполярные транзисторы, можно почитать здесь и здесь.
Высоковольтная часть находится в той части платы, где расположены высоковольтные конденсаторы (они больше по объему, чем низковольтные). На этих конденсаторах указывается их емкость (330 – 820 мкФ) и рабочее напряжение (200 – 400 В).
Пусть вас не удивляет, что рабочее напряжение может быть равным 200 В. В большинстве схем эти конденсаторы включены последовательно, так что их общее рабочее напряжение будет равным 400 В. Но существуют и схемы с одним конденсатором на рабочее напряжение 400 В (или даже больше).
Нередко бывает, что вместе с силовыми элементами выходят из строя электролитические конденсаторы – как низковольтные, так и высоковольтные (высоковольтные – реже).
В большинстве случаев это видно явно – конденсаторы вздуваются, верхняя крышка их лопается.
В наиболее тяжелых случаях из них вытекает электролит. Лопается она не просто так, а по местам, где ее толщина меньше.
Это сделано специально, чтобы обойтись «малой кровью». Раньше так не делали, и конденсатор при взрыве разбрасывал свои внутренности далеко вокруг. А монолитной алюминиевой оболочкой можно было и сильно в лоб получить.
Все такие конденсаторы надо заменить аналогичными. Следы электролита на плате следует тщательно удалить.
Электролитические конденсаторы блока питания и ESR
Напоминаем, что в блоках питания используются специальные низковольтные конденсаторы с низким ESR (эквивалентным последовательным сопротивлением, ЭПС).
Подобные устанавливают и на материнских платах компьютеров.
Узнать их можно по маркировке.
Например, конденсатор с низким ESR фирмы «СapXon» имеет маркировку «LZ». У «обычного» конденсатора букв LZ нет. Каждой фирмой выпускается большое количество различных типов конденсаторов. Точное значение ESR конкретного типа конденсатора можно узнать на сайте фирмы-производителя.
Производители блоков питания часто экономят на конденсаторах, ставя обычные, у которых ЭПС выше (и стоят они дешевле). Иногда даже пишут на корпусах конденсаторов «Low ESR» (низкое ЭПС).
Это обман, и такие лучше конденсаторы лучше сразу заменить.
В наиболее тяжелом режиме работают конденсаторы фильтра по шинам +3,3 В, +5 В, +12 В, так как по ним циркулируют большие токи.
Встречаются еще «подлые» случаи, когда со временем подсыхает конденсаторы небольшой емкости в источнике дежурного напряжения. При этом их емкость падает, а ESR растет.
Или емкость падает незначительно, а ESR растет сильно. При этом никаких внешних изменений формы может и не быть, так как их габариты и емкость невелики.
Это может привести к тому, что изменится величина напряжения дежурного источника. Если оно будет меньше нормы, основной инвертор блока питания вообще не включится.
Если оно будет больше, компьютер будет сбоить и «подвисать», так как часть компонентов материнской платы находится под именно этим напряжением.
Емкость можно измерить цифровым тестером.
Впрочем, большинство тестеров может измерять емкости только до 20 мкФ, чего явно недостаточно.
Отметим, что ESR измерить штатным тестером невозможно.
Нужен специальный измеритель ESR!
У конденсаторов большой емкости ESR может иметь величину десятых и сотых долей Ома, у конденсаторов малой емкости – десятых долей или единиц Ом.
Если оно больше – такой конденсатор необходимо заменить.
Если такого измерителя нет, «подозрительный» конденсатор необходимо заменить новым (или заведомо исправным).
Отсюда мораль – не оставлять включенным источник дежурного напряжения в блоке питания. Чем меньшее время он будет работать, тем дольше будут подсыхать конденсаторы в нем.
Необходимо после окончания работы либо снимать напряжение выключателем фильтра, либо вынимать вилку кабеля питания из сетевой розетки.
В заключение скажем еще несколько слов
Об элементах высоковольтной части блока питания
В недорогих блоках питания небольшой мощности (до 400 Вт) в качестве ключевых часто применяют силовые биполярные транзисторы 13007 или 13009 с токами коллектора соответственно 8 и 12 А и напряжением между эмиттером и коллектором 400 В.
В источнике дежурного напряжения может быть использован силовой полевой транзистор 2N60 с током стока 2А и напряжением сток-исток 600 В.
Впрочем, в качестве ключевых могут быть использованы полевые транзисторы, а в источнике дежурного режима – биполярный.
При отсутствии необходимых транзисторов их можно заменить аналогами.
Аналоги биполярных транзисторов должны иметь рабочее напряжение между эмиттером и коллектором и ток коллектора не ниже, чем у заменяемых.
Аналоги полевых транзисторов должны иметь рабочее напряжение сток-исток и ток стока не ниже, чем у заменяемого, а сопротивление открытого канала «сток-исток» не выше, чем у заменяемого.
Внимательный читатель может спросить: «А почему это сопротивление канала должно быть не выше? Ведь чем больше значения параметров, тем, как бы, лучше?»
Отвечаю – при одном и том же рабочем токе на канале с бОльшим сопротивлением будет, в соответствии с законом Джоуля-Ленца, рассеиваться бОльшая мощность. И, значит, он (т.е. и весь транзистор) будет сильнее греться.
Лишний нагрев нам ни к чему!
У нас блок питания, а не отопительный радиатор!
На этом, друзья, мы сегодня закончим. Нам осталось еще ознакомиться с лечением низковольтной части, чем мы займемся в следующей статье.
До встречи на блоге!
Сегодня я расскажу, как провести диагностику блока питания стационарного компьютера, а затем заменить неисправные конденсаторы в блоке питания ПК.
Блок питания отвечает за поступление электричества к остальным комплектующим компьютера. Поэтому важно быть уверенным в том, что он исправен. В противном случае можно получить сгоревший системник, восстановление которого потребует намного больше денег, чем покупка нового БП.
Прежде чем переходить к проверке блока питания, нужно посмотреть таблицу значений по напряжению. В ней указаны минимальные, нормальные и максимальные показатели.
Если значение напряжения выходит за установленные рамки в любую сторону, то блок питания необходимо заменить. Или попытаться отремонтировать — об этом мы поговорим далее.
Информация о напряжении есть в BIOS. Чтобы попасть в него, нажимаем на клавишу Del при запуске системы. Это самый распространённый вариант, но могут быть и другие клавиши. Узнать точное значение можно на одном из стартовых экранов.
В BIOS нужно открыть вкладку Power и перейти в раздел Hardware Monitor. В зависимости от версии BIOS названия могут меняться. Внутри мы увидим значения напряжения по 12В, 5В и 3,3В.
Если на компьютере используется не BIOS, а UEFI, то всё ещё проще. Информация о напряжении блока питания отображается на главном экране.
Узнать значение напряжения можно и в среде Windows. Для этого нужна утилита для мониторинга состояния системы. Мы возьмём программу AIDA64. В течение 30 дней ей можно пользоваться бесплатно.
- Открываем AIDA64.
- В левом меню раскрываем раздел «Компьютер» и выбираем пункт «Датчики».
- В правой части окна смотрим внизу значения напряжения БП.
Этот способ хорош тем, что мы можем посмотреть на работу блока питания под нагрузкой. Например, запустить ресурсоёмкие программы и проверить, как БП справляется с возросшей активностью системы.
Программная диагностика актуальна, если блок питания включается. Однако часто на блок питания мы обращаем внимание только тогда, когда он перестаёт работать. И здесь уже придётся использовать другие инструменты, чтобы проверить его состояние. Например, нам точно понадобится мультмиметр.
Итак, у нас есть нерабочий блок питания. Теперь нужно выяснить, точно ли виноваты конденсаторы.
Первым делом нужно попробовать включить блок питания без компьютера. Для этого надо подключить его в сеть и замкнуть 20 или 24-пиновый коннекторы (в зависимости от модели). Возьмите пинцет, скрепку или кусочек провода и поместите предмет в контактный ATX коннектор – одним концом, куда выходит единственный зеленый провод, а другим, куда выходит любой черный провод. Мультиметр нужно вставить в любой другой разъем – черный щуп к черному проводу, а красный щуп к одному из трех цветных проводов – желтому, красному или оранжевому. При соединении с желтым проводом мультиметр должен показывать напряжение 12 V, с красным – 5 V, с оранжевым – 3.3 V.
При исправном блоке питания запустятся вентиляторы, а на разъёмах появится напряжение, что говорит нам о полной исправности устройства.
Но в нашем случае блок не запустился, напряжения нет.
Придется разбирать блок питания. Для этого нужно снять 4 винта на верхней крышке.
Открываем крышку и видим плату.
На плате нужно найти неисправные конденсаторы. В большинстве случаев их можно определить по внешнему виду – неисправные вздуваются сверху, там, где у них имеется специальная штамповка. В данном случае обнаружено 4 неисправных конденсатора. Зачастую именно они и становятся причиной выхода блока питания из строя.
Отсоединяем разъём питания.
Откручиваем плату от корпуса. Плата прикручена 4 винтами по краям.
Аккуратно вынимаем плату. Будьте бдительны, конденсаторы могут быть заряжены. Для безопасности желательно надеть резиновые перчатки.
Как видите, плата вся в пыли – очищаем ее кисточкой или сжатым воздухом.
Выпаиваем неисправные конденсаторы. Для этого понадобится паяльник и флюс. О том, как правильно выпаивать конденсаторы с платы, мы рассказывали в отдельной статье.


После окончания пайки не забываем стереть флюс
Если мощности паяльника не хватает, можно воспользоваться паяльным феном.
После выпаивания конденсаторов надо определить их емкость и рабочее напряжение. В данном случае у нас 4 конденсатора на 2200МкФ 10V.
Покупаем новые или ищем на платах-донорах аналогичные конденсаторы.
В данном случае конденсаторы сняты с платы-донора.
Припаиваем конденсаторы, строго соблюдая полярность.
На плате полярность обозначается так:
После запайки всех конденсаторов устанавливаем плату на место.
После установки платы проверяем блок питания мультиметром. Черный щуп к черному проводу, красный к цветному. Я присоединил щуп к желтому проводу. Как помним, напряжение должно составлять 12 V.
Теперь наш блок работает исправно. Напряжение находится в допустимых пределах. Собираем блок и подключаем его к компьютеру.
Ремонт завершён.
Post Views: 135
Конденсаторы — слово, по-видимому, предлагает идею емкостью , что, согласно словарю, означает «способность удерживать что-то». Это ровно , что делает конденсатор — он держит электрический заряд. Но что делает его общим компонентом почти во всех электронных схемах? Давайте разберем материал за конденсаторами, чтобы понять, что он делает и как их можно использовать в этой статье.
Что такое конденсатор?
Конденсатор в своей наиболее примитивной форме состоит из двух проводящих пластин, разделенных диэлектрической средой. Термин диэлектрик — это просто причудливое слово для изолятора, который может быть поляризован, то есть образовывать отрицательные и положительные заряды на противоположных гранях. Когда напряжение подается на эти две пластины, ток проходит через проводящие пластины. Одна сторона получает положительный заряд (недостаток электронов), а другая сторона получает отрицательный заряд (избыток электронов).Мы все знакомы с тем фактом, что в отличие от зарядов притягиваются, поэтому, поскольку пластины заряжены противоположно, заряды на пластинах притягиваются.
Помните, что между пластинами имеется изолятор , поэтому заряды не могут «течь», чтобы уравновесить друг друга, и (в идеале) застряли в состоянии взаимного притяжения и остаются на месте. И именно так конденсаторы выполняют свою основную функцию — удержание или хранение заряда.
Символ конденсаторов
Поскольку конденсаторы имеют две параллельные металлические пластины, как обсуждалось выше, их символьный вид представляет собой то же самое.По крайней мере, легко нарисовать
В практическом случае конденсаторы — это уже не просто две пластины с зазором между ними, в случае алюминиевой электролитики две пластины принимают форму металлической фольги, свернутой с прокладкой между ними в трубке.
Второй набор символов обозначает поляризованные конденсаторы, то есть те, которые определили положительные и отрицательные клеммы внутренней конструкцией. Случайное изменение положения этих терминалов почти наверняка приведет к впечатляющему отказу (особенно для более крупных образцов), выбросу кусков фольги и бумажных счетчиков с места повреждения и в большинстве случаев пахнущему очень плохо.
Емкость и номинальное напряжение для конденсатора
Конденсаторы измеряются в Фарад ; он назван в честь известного британского электрохимика Майкла Фарадея. Единица емкости, обозначающая кулон на вольт. Кулон (произносится как «koo-lom») — это единица S.I. для заряда, а вольт, как мы знаем, это единица измерения напряжения или разности потенциалов. Это делает Фарад количеством заряда, хранимым на вольт разности потенциалов.Этот простой способ математического взгляда на конденсатор предоставляет широкий спектр интерпретаций, что проявляется в множестве смертельно сложных математических уравнений, таких как интегралы, показатели и векторы, которые мы, инженеры, будем использовать при работе с конденсаторами, что выходит далеко за рамки объем этой статьи. Однако в статье
мы немного разберемся с интересной математикой, которая поможет нам проектировать схемы с конденсаторами.Конечно, Фарад (один кулон на вольт) является очень большой единицей для большинства практических целей (поскольку сам кулон является довольно большой величиной заряда, как вы, возможно, уже знаете), поэтому большинство конденсаторов (кроме очень больших) ) измеряются в микрофарадах или в миллионных долях (0.000001) Фарада. Предположим, у вас есть конденсатор, который читает 25V 10uF (префикс «u» означает микро, это искажение греческого символа µ («му»), означающего «микро») на пластиковой наружной крышке. Поскольку колпачок (в электронном мире — это конденсаторы) рассчитан на 10 мкФ, на его клеммах может храниться заряд в десять микрокулонов (то есть десять миллионных долей кулона, 0,000010 С) на вольт напряжения. Это означает, что при максимальном напряжении 25 В конденсатор может удерживать заряд 25 В x 10 мкФ, что составляет 0.000250 кулонов.
Помните, я сказал «максимальное» напряжение. Максимальное напряжение, пожалуй, самый важный показатель на конденсаторе. Он говорит вам, какое напряжение конденсатор может выдержать на своих клеммах, прежде чем он пойдет KABOOM ………!
Работа конденсатора
По сути, внутри конденсатора происходит то, что изолятор между этими пластинами подвергается процессу, называемому «пробой диэлектрика», то есть изолятор больше не может изолировать, поскольку напряжение на изоляторе слишком велико, чтобы он мог оставаться изолятором. ,Основная физика несколько выходит за рамки, но все, что вам нужно знать, чтобы понять, почему это происходит, это то, что ни один изолятор не является префектом, то есть до определенного момента. Даже самый сильный мост разрушается, если он перегружен. То, что здесь происходит, похоже. Чтобы уменьшить пробой, вы можете увеличить зазор между двумя пластинами, но это связано с компромиссом — уменьшенной емкостью, так как пластины находятся дальше друг от друга, и заряды не притягиваются так сильно, как при приближении — во многом как как ведут себя магниты.
Хорошее эмпирическое правило — использовать колпачки, рассчитанные на напряжение, превышающее на 50% то, что может ожидать ваша схема. Это оставляет широкий запас прочности. Например, если вам нужен колпачок для разъединения (не беспокойтесь, разъединение объясняется далее в статье) шины питания 12 В, вы можете избежать использования конденсатора 16 В, но рекомендуется использовать конденсатор 25 В, так как он дает вам широкий запас прочности. Хорошо, вы узнали это !! Да, 25 В, конечно, не на 25% больше, чем 12 В, но 18 В не является стандартным значением конденсатора — вы не найдете ни одного с таким номинальным напряжением.Ближайший 25В.
Различные типы конденсаторов
Причиной диапазонов пробивного напряжения является материал, используемый в качестве диэлектрика, который также является основой для классификации конденсаторов:
Алюминиевые электролитические конденсаторы
Это, пожалуй, самые узнаваемые типов конденсаторов . Они поставляются в отличительных металлических банках с пластиковой оболочкой, с четко обозначенными значениями напряжения и емкости и белой полосой для обозначения катода.Название происходит от того факта, что, как упомянуто выше, «пластины» сделаны из химически травленой алюминиевой фольги. Процесс травления делает алюминий пористым (почти как губка) и значительно увеличивает площадь его поверхности, что увеличивает емкость. Диэлектрик представляет собой тонкий слой оксида алюминия. Эти конденсаторы заполнены маслом, которое действует как электролит, отсюда и название. Электролитические конденсаторы поляризованы из-за их внутренней конструкции. Они имеют большую емкость по сравнению с другими членами семейства конденсаторов, но гораздо более низкие напряжения.Вы можете ожидать, что электролитический электролит от 0,1 мкФ до монстров, таких как 100 мФ, и с номинальным напряжением от нескольких вольт до примерно 500 В. Их внутренние сопротивления, однако, имеют тенденцию быть высокими.
СТОРОНА ПРИМЕЧАНИЕ: Внутреннее сопротивление в конденсаторах обусловлено материалами, из которых изготовлен колпачок — например, сопротивлением алюминиевой фольги или сопротивлением выводов.
Керамические конденсаторы
Это колпачки с керамическим диэлектриком.Поскольку предел пробоя керамического диэлектрика достаточно высок, вы можете ожидать появления керамических колпачков с невероятными напряжениями пробоя, такими как 10 кВ. Однако емкость имеет тенденцию быть низкой, в диапазоне от пикофарад (0,000000000001F) до нескольких десятков микрофарад. Как правило, они намного меньше, чем других типов конденсаторов , как показано на рисунке. Они также имеют очень маленькие внутренние сопротивления.
Идентификация керамических конденсаторов
Значение керамической емкости не будет прямо упомянуто на керамическом конденсаторе.0 равно 0.
Номинальное напряжение конденсатора можно найти с помощью строки под этим кодом. Если есть линия, то значение напряжения составляет 50/100 В, если линии нет, то оно составляет 500 В.
Ниже приведены наиболее часто используемые значения конденсаторов и их преобразование в Пико Фарад, Нано Фарад и Микрофарад.
код | Picofarad (pF) | Нанофарад (нФ) | Микрофарад (мкФ) |
100 | 10 | 0.01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0.033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
331 | 330 | 0,33 | 0,00033 |
821 | 820 | 0.82 | 0,00082 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
202 | 2000 | 2.0 | 0,002 |
502 | 5000 | 5,0 | 0,005 |
103 | 10000 | 10 | 0,01 |
683 | 68000 | 68 | 0.068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
334 | 330000 | 330 | 0.33 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
335 | 3300000 | 3300 | 3.3 |
Пленочные конденсаторы
Как следует из названия, диэлектрик в этих конденсаторах представляет собой пластиковую пленку, часто знакомую пластику, такую как майлар и полиэстер. Они имеют те же свойства, что и керамические колпачки, высокие пробивные напряжения (из-за поведения пластиковых полимеров) и низкие емкости. Разница лишь в том, что они имеют тенденцию быть немного больше, хотя внешне они похожи на керамические колпачки. Внутреннее сопротивление сравнимо с керамическими крышками.
Танталовые и ниобиевые конденсаторы
Эти крышки технически подпадают под категорию электролитических конденсаторов. Здесь электролит представляет собой твердый материал, изготовленный из оксидов тантала или ниобия. У них очень низкое внутреннее сопротивление для данной емкости, однако они менее защищены от перенапряжения по сравнению с другими типами (керамика имеет лучшие характеристики) и имеют тенденцию капать без особого предупреждения и с большим количеством неприятного черного дыма.
Конденсаторы специального назначения
К ним относятся серебристо-слюдяные колпачки, колпачки X и Y и т. Д.Конденсаторы с номиналами X и Y, например, предназначены для линейной фильтрации — более прочная конструкция и более высокие номинальные напряжения, а также низкие емкости, для уменьшения тока, проходящего через него при подаче переменного напряжения, и для ограничения энергии, хранящейся в крышке, если постоянный ток напряжение приложено.
Суперконденсаторы и ультраконденсаторы
Они выводят конденсаторы на совершенно новый уровень, со значительно увеличенными емкостями, иногда в диапазоне сотен Фарад! Это возможно из-за какой-то умной химии.Суперконденсаторы и ультраконденсаторы ликвидируют разрыв между конденсаторами и химическими батареями. Однако они приходят в очень низком напряжении.
И это почти все распространенных типов конденсаторов , с которыми вы обычно можете столкнуться в мире электроники.
Как конденсаторы ведут себя в цепях
Первой полезной задачей было бы узнать, как рассчитать запасы энергии в конденсаторе, который задается формулой
.E = 1 / 2CV 2
Где E — энергия, запасенная в джоулях, C — емкость в Фарадах, а V — напряжение в вольтах.Обратите внимание, что это уравнение принимает форму многих других ньютоновских уравнений для энергии, аккуратного пасхального яйца!
Предположим, что у вас есть крышка, рассчитанная на напряжение 50 В и емкостью 1000 мкФ, накопленная энергия при полных 50 В будет:
1/2 * 0,001000F * 50В * 50В
, который получается жалкими 1,25 Дж накопленной энергии.
Это выявляет существенный недостаток конденсаторов в качестве устройств накопления энергии — запас энергии для заданного размера очень низкий, аккумулятор такого же размера будет иметь как минимум в тысячу раз больше накопленной энергии! Тем не менее, колпачки имеют значительно более низкое внутреннее сопротивление, чем химические батареи, что позволяет им быстро сбрасывать всю накопленную энергию.Короткое замыкание батареи может привести к ее нагреву только из-за мощности, рассеиваемой внутренним сопротивлением, но короткое замыкание конденсатора вызовет только несколько искр, поскольку весь заряд сбрасывается сразу без повреждения конденсатора.
Во-вторых, есть еще одна аккуратная формула, которая связывает напряжение, ток и емкость:
I / C = DV / DT
Где I — ток, подаваемый на конденсатор в амперах, C — емкость в Фарадах, а dV / dt — скорость изменения напряжения на клеммах конденсатора.Думайте об этом с точки зрения его единицы — вольт в секунду для данного тока и емкости. Не беспокойтесь о маленьком «d», это просто математический способ сказать «до предела ноль».
Допустим, у вас есть источник питания, который выдает постоянное напряжение 5 В при постоянном токе 1 мА, а затем, переставив уравнение, мы можем найти время, необходимое для зарядки конденсатора 100 мкФ до 5 В:
дт = CdV / I
dt = (0,000100F * 5 В) / 0,001A
dt = 0,5 секунды
Таким образом, конденсатор будет заряжаться до 5 В в 0.5 секунд. (Помните, что конденсатор может заряжать только до максимального напряжения, подаваемого на него, и никогда больше, они не могут волшебным образом «создавать» напряжение.)
Такое предсказуемое поведение конденсатора делает его очень полезным для генерации временных задержек, например, с небольшими дополнительными схемами. Вы можете изменить уравнение, чтобы получить время.
Теперь для хороших вещей — фактические конденсаторные цепи!
Конденсаторное поведение в цепях
Давайте начнем с простого — различные способы соединения конденсаторов.Это почти то же самое, что подключить два резистора — вы можете подключить их последовательно или параллельно.
Параллельно Конденсаторы
На рисунке ниже показаны три конденсатора, соединенных параллельно, со всеми соответствующими положительными и отрицательными клеммами, соединенными вместе (при условии, что крышки поляризованы). Общая емкость этого устройства является просто суммой всех емкостей всех конденсаторов в цепи. Это имеет смысл, поскольку параллельное соединение пластин конденсатора увеличивает площадь поверхности, увеличивая емкость.
Максимальное напряжение, с которым может работать этот тип устройства, — это напряжение наименьшего конденсатора, поскольку напряжение является общим для всех колпачков.
Пример должен прояснить это. Предположим, у вас есть два конденсатора, один с номиналом 25 В 470 мкФ, а другой 35 В 1000 мкФ. Общая емкость будет 470 мкФ + 1000 мкФ = 1470 мкФ. Тем не менее, максимальное напряжение, которое вы можете подать на этот блок (пучок конденсаторов, соединенных вместе, можно назвать конденсатором «банк»), составляет всего 25 В.Если вы положите что-нибудь выше этого банка, искры полетят, так как вы превысите макс. напряжение на конденсаторе 25 В.
Конденсаторы серии
Подключение конденсаторов параллельно особенно полезно, когда вы хотите большую емкость, и у вас есть только небольшие значения. Параллельно соединяя эти меньшие значения, вы в конечном итоге получите большее значение и сделаете свою работу, предполагая, что вы помните о напряжении.
Теперь поставить конденсаторы в ряд немного сложнее.Емкость дается по формуле:
1 / Ctotal = 1 / C1 + 1 / C2 +… + 1 / Cn
Где C1, C2… Cn — емкости каждого конденсатора, используемого в цепи.
Напряжение, которое теперь может выдерживать банк, является суммой всех номинальных напряжений.
Если вы получили колпачок, рассчитанный на 10 В 1 мкФ, и колпачок, рассчитанный на 50 В 10 мкФ, то напряжение, которое банк может выдерживать последовательно, составляет 10 В + 50 В = 60 В. Емкость составляет 0,9091 мкФ.
Напряжение на конденсаторе против времени
Что если мы хотим зарядить конденсатор? Мы могли бы просто подключить его к источнику напряжения, как показано на рисунке ниже.Здесь произошло бы то, что в тот момент, когда источник напряжения подключен, предполагая, что крышка полностью разряжена, заряды стремительно накапливаются на пластинах, что приводит к очень большому (теоретически бесконечному!) Всплеску тока, ограниченному только внутренним сопротивлением конденсатор. Конечно, это нежелательно, если в вашем блоке питания есть что-то вроде аккумулятора. Разумной идеей было бы добавить последовательно резистор с конденсатором и источником напряжения, чтобы ограничить ток, как на рисунке, и вуаля! У вас есть что-то, что инженеры называют RC-цепью, «R» для резистора и «C» для конденсатора!
Эта схема показывает интересное поведение.Когда напряжение подключено к стороне резистора с маркировкой «I», напряжение на конденсаторе медленно увеличивается, поскольку ток ограничен. График выглядит примерно так:
Более математически склонные мои зрители распознали бы форму наклона — это похоже на экспоненциальную функцию!
Помните, как я сказал, что ограничения могут быть использованы для создания задержек? Это один из способов сделать это без источника постоянного тока (который требует дополнительной схемы).Поскольку время, необходимое для достижения определенного напряжения, предсказуемо, если мы знаем емкость, напряжение и сопротивление, мы можем создать схемы задержки.
Произведение сопротивления и емкости, RC, известно как постоянная времени цепи. Этот параметр становится полезным для точного определения времени достижения заданного напряжения, как показано на рисунке ниже.
Из графика видно, что конденсатор достигает 63% от приложенного напряжения за одну постоянную времени и так далее.
Это принцип, который использует всесезонный таймер 555, хотя расчетные уравнения немного другие.
Другим интересным применением RC-схем является фильтрация сигналов, то есть удаление электрического сигнала нежелательной частоты из схемы. RC-цепь требует определенного количества времени для зарядки и разрядки от источника. Если мы применяем периодическую волну с периодом времени больше, чем RC, то тот же сигнал появится на выходе с очень небольшим искажением.Однако при увеличении частоты сигнал продолжает менять полярность быстрее, чем цепь может заряжаться и разряжаться, и в конце концов после определенной точки сигнал исчезает, и все, что у вас остается, это чистый постоянный ток! Это называется ослаблением сигнала. Как вы можете видеть, RC-схема действует как фильтр, который блокирует сигналы переменного тока (даже сигналы, наложенные на постоянный ток, то есть имеющие смещение постоянного тока) за пределы определенной частоты. Этот вид фильтра называется фильтром нижних частот, то есть он пропускает низкие частоты, но не пропускает высокие частоты.
Конденсаторы в цепях переменного тока
Конденсаторы ведут себя интересным образом при установке в цепи переменного тока. С точки зрения сигнала их можно рассматривать как частотно-зависимые резисторы. Как видно выше, RC-цепь блокирует все переменные сигналы, но что происходит, когда конденсатор соединен последовательно с источником переменного напряжения? С точностью до наоборот!
Поскольку конденсатор представляет собой всего лишь две металлические пластины, разделенные изолятором, он не пропускает постоянный ток через него.Однако сигнал переменного тока имеет постоянно меняющиеся напряжения, поэтому одна пластина видит изменяющееся напряжение и вызывает противоположный заряд на другой пластине, как показано на рисунке:
Это дает общий эффект пропускания тока через конденсатор на относительно высоких частотах. Добавление резистора параллельно с выходом создает фильтр верхних частот, то есть фильтр, который пропускает только высокие частоты и блокирует все сигналы постоянного тока.
«Сопротивление переменному току» или полное сопротивление конденсатора определяется по формуле:
XC = 1 / (2 * π * f * C)
Где XC — емкостное реактивное сопротивление или импеданс, f — частота, а C — емкость.Вы можете использовать эту формулу для расчета виртуального «сопротивления» конденсатора в цепи переменного тока.
Где конденсаторы найдены в дикой природе
Хорошо, этого было достаточно, теория. Давайте посмотрим на многие использования конденсаторов .
Первое место, которое вы могли бы ожидать увидеть конденсаторы, — это всевозможные источники питания в качестве фильтров и для развязки. Они действуют как зарядные резервуары, обеспечивая быстрый ток, когда нагрузка в этом нуждается.
Вот два снимка осциллографа, которые показывают эффект отсутствия и наличия конденсатора на выводах блока питания.Как вы можете видеть, наличие конденсаторов значительно снижает «шум» на шинах электропитания, тем самым защищая чувствительные детали от внезапных скачков напряжения.
Их также называют «развязывающими» конденсаторами , поскольку они «развязывают» участки цепи, на которой они смонтированы, от источника питания. Иногда силовые провода на плате могут быть довольно длинными и иметь высокую индуктивность и сопротивление. Это может привести к тому, что они обеспечат меньший ток, чем обычно.Наличие конденсатора на конце линии электропитания похоже на наличие меньшей временной «батареи» на устройстве, обеспечивающей выбросы тока при необходимости и зарядку, когда устройство потребляет низкую мощность.
Вы можете использовать формулу I / C = dV / dt, чтобы рассчитать необходимую емкость для снятия «пульсирующего» напряжения с клемм источника питания.
Предположим, у вас есть источник питания , напряжение которого изменяется от 11,5 В до 12 В (пульсация) каждые 10 мс, что является обычным явлением в устройствах с питанием от сети из-за частоты 50 Гц, и вам необходимо поместить крышку на клеммы, чтобы сгладить напряжение.Если ток нагрузки в этом случае равен 1А, то мы можем изменить формулу таким образом, чтобы определить емкость:
(I * DT) / DV
Где I — ток нагрузки, dt — период времени шума, а dV — пульсирующее напряжение. Подставляя значения, мы находим, что нам нужна емкость 20000 мкФ. Теперь это может показаться много, но вы могли бы сойти с рук гораздо меньше. Полученное значение служит только ориентиром.
В реальной жизни вы можете найти несколько типов и значений конденсаторов на разных линиях электропередачи, чтобы снизить уровень шума на многих частотах и получить максимально плавное напряжение.
Другое использование конденсаторов в сложных фильтрах, подобных этому:
Но более простым фильтром будет RC-фильтр , здесь описан один интересный фильтр.
Всем известна плата микроконтроллера Arduino. Универсальный инструмент, но вы никогда не задумывались, почему аналоговые выходы излучают цифровой сигнал ШИМ? Это потому, что они были разработаны для использования с внешней сетью фильтрации для сглаживания напряжения ШИМ до действительно аналогового напряжения.Это можно сделать с помощью таких простых деталей, как резистор 1 кОм и конденсатор 10 мкФ. Попытайся!
Другое использование, как упомянуто выше, является временем. Простой генератор может быть построен с использованием вентиля NAND (попробуйте выяснить, почему вентили AND не будут работать), резистором и конденсатором.
Предполагая, что изначально на конденсаторе нет напряжения, входы NAND (которые связаны вместе) видят около 0 В на них и включают выход. Крышка теперь заряжается через резистор.Когда он достигает «высокого» порога затвора, выходной сигнал мигает низко, и крышка теперь разряжается. Этот цикл продолжает производить прямоугольный выходной сигнал с частотой, зависящей от значений R и C.
Наконец, еще одним интересным применением конденсаторов является накопление энергии. Конечно, конденсаторы не подходят для батарей, но для некоторых применений, которым требуется быстрая энергия, крышки лучше всего подходят для работы.
Устройства, такие как ружья (больше можно найти в сети), нуждаются в большом импульсе тока для ускорения снаряда, поэтому для таких целей используются конденсаторы высокого напряжения, часто с такими характеристиками, как 450 В 1500 мкФ, которые могут хранить значительные количества энергии.
Заключение
Вот и все! Теперь вы знаете о конденсаторах гораздо больше, чем то, с чего начинали. Теперь вы можете создавать простые конденсаторные схемы. Помните, что есть чему поучиться, и не переключайте клеммы блока питания!
рано или поздно выходят из строя
Подобно жестким дискам в компьютерах, все блоки питания (или сокращенно блоки питания) в конечном итоге выходят из строя. Как и в случае с жесткими дисками, это не вопрос того, когда и почему. В этой статье вы узнаете, как они терпят неудачу, каковы некоторые из распространенных симптомов и как диагностировать проблему.
Так что же такое блок питания?
Внутри компьютера блок питания — это устройство, которое преобразует переменное электричество (электричество от вашей розетки, обычно 110 В) в постоянный ток для компонентов внутри корпуса.Если смотреть со стороны, это трехконтактная вилка, которая подключается к вашей розетке. Ноутбуки практически одинаковы, за исключением того, что они внешние: блок и шнур, который крепится к задней панели и вставляется в стену.
Каждый блок питания отличается. Некоторые (обычно для ноутбуков) могут иметь низкую выходную мощность 65 Вт, в то время как другие могут выдавать 1000 Вт или более. Некоторые могут иметь только 10 ампер, в то время как другие выдают 65 ампер.
Когда блок питания больше не обеспечивает электропитание, необходимое для вашего компьютера, все начинает становиться непонятным: признаки см. Ниже.
Симптомы сбоя блока питания
Чаще всего вы просто не получаете никаких предупреждений о том, что блок питания у вас выйдет. Однако иногда он может выполнить одно (или несколько) из следующих действий, прежде чем пнуть ведро:
- Из задней части корпуса компьютера, где расположен шнур, могут издавать странные шумы.
- Когда компьютер включен, ничего не происходит. Иногда это может совпадать с мигающей лампой на передней панели компьютера или индикатором на задней панели блока питания (если имеется).
- Компьютер включается на пару секунд, а затем снова выключается. Хотя это может быть проблемой с источником питания, это также может указывать на сбои материнской платы.
- Компьютер включен некоторое время, но, возможно, когда вы играете в игру или используете другое приложение, он просто случайно отключается без предупреждения. Также может отображаться синий экран смерти.
Когда речь идет об играх, нужно понимать, что видеокарты в наши дни требуют много энергии и ампер для правильной работы.При покупке блока питания убедитесь, что у вас есть мощность и усилители, необходимые для оборудования вашего компьютера, особенно для видеокарт.
Итак, почему блоки питания выходят из строя?
Блоки питания просто выходят из строя. Неудачи могут быть спровоцированы тем, что вы сделали, но иногда устройство просто сдается. Ниже приведен список общих факторов, которые отправляют юнит в могилу.
- Возраст: Срок действия большинства гарантий составляет 5-10 лет, но это не гарантия. Его жизнь также зависит от того, как часто вы используете компьютер.
- Электрические помехи (молнии, скачки напряжения и т. Д.).
- Грязь / инородное вещество (сигаретный дым, домашняя пыль и т. Д.).
- Отключения: Преднамеренные или непреднамеренные падения напряжения. Эти сокращения нагрузки иногда используются в чрезвычайных ситуациях, например, во время жары, когда все используют свои кондиционеры.
- Перегрев и / или отказы вентиляции.
Наиболее распространенные причины перегрева и молнии.Однако, если вы курите сигарету или компьютер находится в пыльной среде, будьте уверены, что вы будете заменять свой блок питания раньше, чем позже.
Можно ли что-нибудь сделать, чтобы продлить жизнь БП?
Да, есть несколько вещей, которые помогут вам максимально использовать возможности блока питания. Вы должны быть в состоянии продлить срок его службы за пределы гарантии производителя. Просто помните, что это не будет длиться вечно.
- Убедитесь, что вы не увеличиваете мощность при установке дополнительного оборудования.Блок питания должен превышать требования вашей системы минимум на 20%.
- Не стоит покупать дешево. Хороший будет стоить немного дороже, но пройдёт долгий путь.
- Держите его как можно беспыльным.
- Держите его вместе с остальной частью компьютера под 80 градусами.
В некоторых случаях поддержание качества воздуха в чистоте может быть затруднено, поэтому было бы полезно получить воздушный фильтр. Иногда очистка системы также продлит срок ее службы.Компьютер должен дышать, иначе он перегреется и умрет.
True Story
Я был в доме клиента, чтобы взглянуть на ее компьютер. Она сказала, что это не начнется. Я уже предполагал, что БП был плохим, но я не ожидал найти еще больше, когда приехал. Оказалось, что блок питания отключил все компоненты компьютера, кроме одного привода DVD-ROM в верхней части корпуса. Ни на одном из компонентов (материнской плате, процессоре, жестком диске и т. Д.) Не было признаков скачка напряжения, таких как сгоревшие микросхемы или даже запах их сгорания.
В конце концов, единственными другими устройствами, которые подключались к компьютеру с работающим блоком питания, были вентиляторы системного блока. Меня не было там, когда подорвался источник питания, но я должен был представить, что он испускает какой-то электромагнитный импульс через всю систему.
Это был странный случай и обоснованное предположение о том, что произошло; однако другого объяснения нет. Жесткий диск даже не вращается. Выжили только устройства, которые производят естественный электромагнитный ток (вентиляторы) и привод DVD (который был выше, чем блок питания).
Урок, который нужно выучить: создайте резервную копию ваших данных!
,: Capacitor Faks blog
Саймон Ндириту из General Dielectrics объясняет некоторые основные рекомендации по выбору конденсаторной технологии в импульсных источниках питания.
Введение
Системы импульсного электропитания (SMPS) широко используются в современных электронных системах. Они популярны в основном благодаря своей впечатляющей эффективности, малому весу и малому объему.Надежность источника питания во многом определяет срок службы электронной системы. В случае персональных компьютеров 90% отказов могут быть связаны с проблемами, связанными с SMPS. Таким образом, системы электропитания должны обеспечивать высокую надежность.
Конденсаторы являются важными компонентами системы электропитания с переключением режимов. И входной, и выходной каскады системы SMPS имеют конденсаторы. На входе выпрямитель и конденсатор используются для преобразования напряжения переменного тока в напряжение постоянного тока. Выходной каскад состоит из LC-фильтра, комбинации конденсатора и индуктора, который удаляет шум и пульсации напряжения.
Типичная система электропитания с переключаемым режимом имеет следующие ключевые компоненты: входной выпрямитель, входной фильтр, силовые переключатели, силовой трансформатор, выходной выпрямитель, выходные фильтры и схему управления. Входные и выходные фильтрующие конденсаторы SMPS выбираются в зависимости от требований к электрическим характеристикам. Эти конденсаторы в значительной степени определяют надежность системы SMPS.
Выбор конденсаторов для фильтрации SMPS
Ключевые факторы, которые следует учитывать при выборе конденсаторов для приложений фильтрации SMPS, включают эквивалентное последовательное сопротивление (ESR), эквивалентную последовательную индуктивность (ESL), плотность емкости, температурные характеристики, диэлектрическую проницаемость, характеристики напряжения, частотные характеристики и стоимость.Типы конденсаторов, которые обычно используются для фильтрации входных и выходных сигналов в системах с импульсным питанием, включают алюминиевые электролитические, танталовые, керамические и пленочные конденсаторы.
Алюминиевые электролитические конденсаторы
В течение длительного времени разработчики энергосистем использовали алюминиевые электролитические конденсаторы для фильтрации входных и выходных сигналов в системах с импульсным питанием. Эти конденсаторы предлагают превосходную емкость на единицу объема, и они недороги. Высокий CV алюминиевых электролитических конденсаторов достигается путем нанесения тонких слоев диэлектрического материала на травленую алюминиевую металлическую фольгу.Превосходная плотность емкости и относительно низкая стоимость этих конденсаторов делают их популярным выбором для приложений фильтрации в SMPS.
С другой стороны, алюминиевые электролитические конденсаторы имеют высокое эквивалентное последовательное сопротивление. Конструкция этих конденсаторов является основной причиной высокого ESR. Эта высокая ESR является основной проблемой в высокочастотных приложениях. Кроме того, на производительность алюминиевых электролитических конденсаторов существенно влияет воздействие высоких температур.
Испарение электролита сокращает срок службы алюминиевых электролитических конденсаторов. Кроме того, эти конденсаторы имеют полярность, и неправильное их подключение может вызвать сбой. Кроме того, при воздействии перенапряжения алюминиевый электролитический конденсатор может взорваться.
Танталовые конденсаторы
Танталовые конденсаторы предлагают высокие уровни емкости, и они обычно используются в приложениях фильтрации SMPS. Танталовый конденсатор имеет высокопористый анод, который обеспечивает большую площадь поверхности диэлектрика, следовательно, чрезвычайно высокую плотность CV.По сравнению с алюминиевыми электролитическими конденсаторами эти конденсаторы имеют лучшие рабочие характеристики для фильтрации в системах с импульсным питанием. Тем не менее, стоимость производства этих конденсаторов выше, чем у алюминиевых электролитических конденсаторов.
На высоких частотах танталовые конденсаторы демонстрируют относительно высокое эквивалентное последовательное сопротивление и значительную потерю емкости. Для некоторых приложений фильтрации требуются конденсаторы с высоким номинальным напряжением. Танталовые конденсаторы менее эффективны для таких применений.Кроме того, на производительность танталовых конденсаторов существенно влияют, когда они подвергаются многочисленным циклам зарядки / разрядки. Кроме того, эти конденсаторы имеют высокие токи утечки и могут содержать токсичные ингредиенты.
Керамические конденсаторы
Для изготовления керамических конденсаторов доступны различные диэлектрические материалы. Выбор материала в основном зависит от желаемых эксплуатационных характеристик. Впечатляющие рабочие характеристики керамических конденсаторов делают их подходящим вариантом для фильтрации входных и выходных сигналов в системах SMPS.В фильтрации SMPS используются как керамические дисковые, так и многослойные керамические конденсаторы (MLCC). Хотя керамические дисковые конденсаторы стабильны в широком диапазоне температур и подходят для применений, требующих высокого номинального напряжения, многие производители переключились на многослойные керамические конденсаторы из-за их плотности CV.
Многослойные керамические конденсаторы способны достигать высоких уровней емкости. Потенциал для высоких уровней емкости является одним из факторов, которые делают эти конденсаторы подходящим вариантом для фильтрации входов и выходов в системах SMPS.Большинство керамических конденсаторов для фильтрации SMPS основаны на диэлектрических материалах класса II. По сравнению с диэлектрическими материалами класса I, материалы класса II имеют более высокую диэлектрическую проницаемость. Свойства диэлектрического материала класса II X7R делают его одним из широко используемых материалов для конструирования конденсаторов для фильтрации импульсных источников питания. Хотя материалы класса II обладают более высокой диэлектрической проницаемостью, они демонстрируют снижение диэлектрической проницаемости при воздействии постоянного напряжения и старения.
По сравнению с алюминиевыми электролитическими конденсаторами, танталовыми конденсаторами и пленочными конденсаторами многослойные керамические конденсаторы имеют меньшее эквивалентное последовательное сопротивление. Это свойство помогает минимизировать потери мощности в фильтрах SMPS. Кроме того, низкое ESR помогает снизить пульсации выходного напряжения, и это делает многослойные керамические конденсаторы лучшим вариантом для фильтрации выходного сигнала в SMPS. По сравнению с другими конденсаторами, используемыми для фильтрации SMPS, многослойные керамические конденсаторы предлагают лучшую ESL. Они также лучше справляются с пульсациями тока.Кроме того, MLCC выпускаются во множестве физических форматов и в широком диапазоне температурных оценок, обычно до 250oC. Это свойство делает их подходящим вариантом для фильтрации SMPS в автомобильной, военной, скважинных скважинах и других высокотемпературных применениях.
Процесс изготовления керамических конденсаторов включает в себя обжиг их при высоких температурах. Обожженный керамический материал является сильным при сжатии, но слабым при растяжении. Таким образом, воздействие на эти конденсаторы механических напряжений может привести к выходу компонентов из строя.Более того, конструкция керамических конденсаторов повышает их восприимчивость к тепловым ударам. Поэтому важно учитывать рабочие условия при выборе конденсатора для приложений фильтрации SMPS. Кроме того, по сравнению с алюминиевыми электролитическими и танталовыми конденсаторами, MLCC имеют более низкую плотность CV.
Пленочные конденсаторы
Пленочные / фольговые и металлизированные пленочные конденсаторы обладают впечатляющими свойствами самовосстановления. Большинство пленочных конденсаторов используют полипропиленовый или полиэфирный диэлектрический материал.Полиэстер легко доступен и обладает высокой диэлектрической проницаемостью. С другой стороны, полипропилен имеет относительно низкий коэффициент рассеяния. Пленочные конденсаторы на основе полиэстера в основном используются в приложениях, требующих высокой объемной эффективности, в то время как конденсаторы на основе полипропилена в основном используются для применений с высоким током постоянного тока и высоким напряжением / высокой частотой переменного тока. Конструкция пленочных конденсаторов позволяет им выдерживать экстремальные переходные процессы, что делает их лучшим вариантом для фильтрации SMPS в приложениях с большим током.Кроме того, пленочные конденсаторы легкие, небольшие по размеру и относительно недорогие в производстве.
Хотя пленочные конденсаторы обладают впечатляющими характеристиками, которые делают их подходящим вариантом для многих приложений фильтрации SMPS, они имеют ограничения. Начнем с того, что эти конденсаторы имеют более высокие значения ESR и ESL по сравнению с керамическими конденсаторами. Кроме того, пленочные конденсаторы не подходят для высокотемпературных применений. Хотя некоторые пленочные конденсаторы рассчитаны на 125 ° C, большинство из них не подходят для температур выше 105 ° C.В применениях переменного тока пленочные конденсаторы могут выйти из строя, если они подвергаются перенапряжению. Эта ошибка вызвана короной.
Заключение
Производительность и надежность системы импульсного питания в значительной степени определяются входными и выходными фильтрующими конденсаторами. Типы конденсаторов, которые обычно используются для фильтрации в SMPS, включают алюминиевые электролитические конденсаторы, танталовые конденсаторы, пленочные конденсаторы и керамические конденсаторы. Тип и количество конденсаторов, которые будут использоваться для конкретного применения, в основном зависят от условий работы источника питания.Выбор подходящих фильтрующих конденсаторов помогает максимизировать надежность системы электропитания с переключением режимов.
Что такое блок питания?
Обновлено: 10/07/2019 от Computer Hope
Сокращенный как PS или P / S , блок питания или блок питания (блок питания ) является аппаратным компонентом компьютера, который обеспечивает питание всех других компонентов. Блок питания преобразует переменный ток 110-115 или 220-230 В (переменный ток) в постоянный низковольтный постоянный ток (постоянный ток), используемый компьютером и рассчитываемый по количеству ватт, которые он генерирует.На изображении показан Antec True 330, блок питания 330 Вт.
предосторожностьНикогда не открывайте корпус блока питания. Он содержит конденсаторы, способные удерживать сильный электрический заряд, даже если компьютер выключен и отсоединен от сети в течение длительного периода времени.
НаконечникВы можете защитить свой блок питания и компьютер от скачков и падений напряжения, инвестируя в ИБП (источник бесперебойного питания). Если вы не можете позволить себе ИБП, убедитесь, что компьютер хотя бы подключен к сетевому фильтру.
Где находится блок питания в компьютере?
Блок питания расположен на задней панели компьютера, обычно сверху. Тем не менее, во многих современных корпусах башенных компьютеров в нижней части корпуса находится блок питания. В корпусе настольного компьютера (все в одном) блок питания расположен сзади слева или сзади справа.
Детали, найденные на задней панели блока питания
Ниже приведен список деталей, которые вы можете найти на задней панели блока питания.
- Подключение кабеля питания к компьютеру.
- Вентилятор открывается, чтобы нагреться из источника питания.
- Красный выключатель для изменения напряжения питания.
- Кулисный переключатель для включения и выключения блока питания.
На передней панели блока питания, который не виден, если компьютер не открыт, вы найдете несколько кабелей. Эти кабели подключаются к материнской плате компьютера и другим внутренним компонентам. Блок питания подключается к материнской плате с помощью разъема в стиле ATX и может иметь один или несколько из следующих кабелей для подключения питания к другим устройствам.
запасных частей внутри блока питания
Ниже приведен список деталей внутри блока питания.
- Выпрямитель, преобразующий переменный ток (переменный ток) в постоянный.
- Фильтр, сглаживающий постоянный ток (постоянный ток), поступающий от выпрямителя.
- Трансформатор, который контролирует входящее напряжение, повышая или понижая его.
- Регулятор напряжения, который управляет выходом постоянного тока, обеспечивая правильное количество энергии, вольт или ватт, для подачи на компьютерное оборудование.
Порядок работы этих внутренних компонентов источника питания следующий.
- Трансформатор
- Выпрямитель
- Фильтр
- Регулятор напряжения
Какие элементы питаются от блока питания компьютера?
Все содержимое корпуса компьютера питается от источника питания. Например, материнская плата, ОЗУ, ЦП, жесткий диск, дисководы и большинство видеокарт (если они установлены на компьютере) питаются от источника питания.Любые другие внешние устройства и периферийные устройства, такие как монитор компьютера и принтер, имеют источник питания или подают питание через кабель передачи данных, как некоторые USB-устройства.
Вентилятор всегда работает от источника питания?
Когда компьютер работает от вентиляторов, источник питания должен всегда работать. Если вентилятор не работает (вращается), либо компьютер не работает, либо вентилятор в блоке питания вышел из строя, и блок питания следует заменить.
ЗаметкаНекоторые блоки питания имеют регулируемые элементы управления, которые могут увеличивать или уменьшать скорость вентилятора в зависимости от его температуры.Тем не менее, он всегда должен вращаться.
Адаптер переменного тока, Компьютерные сокращения, Термины аппаратного обеспечения, Питание, Шнур питания, Выключатель питания, Термины питания, Резервный источник питания, SMPS
,