Резисторы
Резистор (или сопротивление) — пассивный элемент электрической цепи. Он может обладать конкретным значением сопротивления или переменным. Резисторы используются практически во всех электронных и электрических устройствах. В электрических цепях резисторы используют в разных целях:
- Для преобразования силы тока в напряжение
- Для преобразования напряжения в силу тока
- Для ограничения тока
- Для поглощения эл. энергии
Их основные технические параметры — номинальное сопротивление (номинал) в Омах, максимальная рассеиваемая мощность, максимальное рабочее напряжение и класс точности. Есть и другие параметры, такие как температурный коэффициент, термостойкость, влагоустойчивость и другие. Так же имеются паразитные параметры — емкость и индуктивность. Эти параметры важно учитывать при разработке устройств, предназначенных для работы в сложных условиях или требующих высокой точности, но можно опустить при небольших самоделках на Arduino.
Обозначение резисторов
В мире есть несколько общепринятых условных графических обозначений резисторов на схемах. В США рисунок резистора похож на зигзаг, а в России и Европе он выглядит как прямоугольник.
Пример рисунка резисторов в России и Европе (а), и в США (б)В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:
Обозначения постоянных резисторов по ГОСТ 2.728-74По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:
Обозначение переменных резисторов по ГОСТ 2.728-74Маркировка резисторов
Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.
Резистор большой мощностиДля удобства обозначения основных параметров мелких постоянных резисторов используют цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица цветовой маркировки постоянных резисторов либо онлайн калькуляторы.
Виды резисторов
Классификаций резисторов очень много:
- По области применения:
- Высокоомные (обладающие сопротивление более 10 МОм)
- Высокочастотные (с уменьшенной паразитарной индуктивностью и емкостью)
- Высоковольтные (способные пропускать через себя тысячи вольт)
- Прецизионные (повышенной точности с допуском менее 1%)
- По способности изменять сопротивление
- Переменные подстроечные
- Постоянные
- Переменные регулировочные
- По влагозащищенности
- Обычные незащищенные
- Покрытые лаком
- Залитые компаундом
- Впрессованные в пластмассу
- Вакуумные
- По способу монтажа
- Для навесного монтажа
- Для монтажа на печатных платах
- Для микромодулей и микросхем
- По виду ВАХ (вольт-амперной характеристики)
- Линейные
- Нелинейные (фоторезисторы, терморезисторы, варисторы и другие)
- В зависимости от используемых проводящих элементов
- Проволочные
- Непроволочные
- По виду используемых материалов
- Углеродистые
- Металлопленочные
- Интегральные
- Проволочные
Далее рассмотрим несколько видов резисторов такие как постоянные, переменные и некоторые нелинейные резисторы.
Постоянный резистор
Постоянный резистор — это тот резистор, характеристики которого предопределены и не изменяются. Иначе говоря это элемент электрической цепи с фиксированным сопротивлением, предельным напряжением, классом точности. Такие резисторы изображены на картинках выше.
Расчет постоянного резистора для светодиода
Постоянные резисторы мы использовали во многих проектах. Например в проекте с подключением светодиода к Ардуино. Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.
Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.
Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. Источником питания для нашего светодиода выступает плата Arduino Uno. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.
- Vps — напряжение источника питания (5 Вольт)
- Vdf — падение напряжения на светодиоде (2 Вольта)
- If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)
Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом
Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).
Подключение светодиода к ArduinoПеременный резистор
Переменный резистор — это электротехническое устройство, используемое для регулирования параметров электрической цепи (напряжение, сила тока) за счет заданного изменения сопротивления.
У переменного резистора есть множество названий и подвидов: реостат, потенциометр, переменное сопротивление, подстроечный резистор, регулировочный резистор. Попробуем разобраться в чем отличия. Переменное сопротивление, переменный резистор и реостат — это всё названия одного класса резисторов. «Потенциометр» — это жаргонное название переменного резистора, подключенного как делитель напряжения (о резисторных сборках и делителях напряжения мы расскажем в отдельной статье).
Реостат, потенциометр, переменный резистор, переменное сопротивление- Регулировочный резистор — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
- Подстроечный резистор — это тоже переменный резистор, который используется для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора.
Нелинейные резисторы
Нелинейные резисторы — это резисторы сопротивление которых изменяется в зависимости от внешних факторов. Внешними факторами могут быть: температура, количество света, магнитное поле, напряжение в электрической цепи и другие. Вот некоторые примеры нелинейных резисторов, подробнее о которых вы сможете почитать по ссылкам в википедии:
- терморезисторы — сопротивление меняется в зависимости от температуры;
- варисторы — сопротивление меняется в зависимости от приложенного напряжения;
- фоторезисторы — сопротивление меняется в зависимости от освещённости;
- тензорезисторы — сопротивление меняется в зависимости от деформации резистора;
- магниторезисторы — сопротивление меняется в зависимости от величины магнитного поля.
Не путайте такие резисторы с датчиками, они не показывают реальные величины, воздействующих на них сил. Изменяется лишь сопротивление. Можно откалибровать данные и привязать значение сопротивления, например терморезистора, к определенной температуре, но это не лучший вариант.
На сегодня это всё. В отдельной статье мы поговорим о соединении резисторов в разных комбинациях, таких как делители напряжения, подключение резисторов последовательно и параллельно.
Как проверить резисторы. Обучающее видео
Смотрите также обзоры и статьи:
Здравствуйте!
В новой серии видеороликов мы разберем все виды электронных компонентов, расскажем, что они из себя представляют, зачем нужны и как с ними работать. Изучение будет происходит от самых простых пассивных элементов — резисторов, конденсаторов и индуктивностей, до относительно сложных активных деталей: транзисторов, тиристоров и других заумных названий.
Начнем с самой популярной в мире радиоэлектроники штуки – резистора. Узнаем, какая бывает цветовая маркировка резисторов, какие существуют виды и как проверить резистор.
Резистор — наиболее универсальный и часто используемый компонент. Его можно найти в любой схеме, независимо от ее сложности. Принцип работы у него простой, а вот применений множество.
Резистор имеет определенное сопротивление — это его основная характеристика. Что первое приходит в голову при понимании «сопротивления»? Правильно, что-то чему-то сопротивляется. Резистор дает сопротивление силе тока — он его ограничивает, контролирует, не дает стать слишком большим и неуправляемым. Это и есть самое частое применение — резистор ограничивает ток в цепи. Чем больше сопротивление резистора, тем сильнее он сопротивляется проходящему через него току, и тем меньше этот ток становится.
Все резисторы делятся на постоянные и переменные. Сначала пройдемся по постоянным.
Одной из главных характеристик резистора есть его максимальная рассеиваемая мощность. Этот параметр показывает, какую мощность резистор может «поглотить», рассеять на себе. Стандартные выводные резисторы существуют такой мощности: 0.125, 0.25, 0.5, 1, 2, и 3 Вт. Более мощные резисторы (5, 10 и больше ватт) обычно идут в керамическом (цементном) корпусе. Есть еще SMD-резисторы, которые имеют свою рассеиваемую мощность в зависимости от типоразмера. Самые большие, 2512, рассеивают до 1 Вт.
Определить сопротивление резистора можно несколькими способами. Самый очевидный — измерить его мультиметром. Если прикоснуться щупами к двум сторонам резистора — мультиметр покажет точное значение его сопротивления. Но есть несколько уловок.
Например, на резисторах советского производства значение указано цифрами и буквами. Иногда оно написано целиком, как здесь — 10 Ом. Если стоит просто цифра — это тоже значение в омах. 300 — 300 Ом. Если после цифры стоит буква, это указание величины (размерности). Например, 2R, или 2R0 — это два ома, 2K — два килоома, 2М — два мегаома. Если сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой. 2R2 — 2.2 Ома, 10К5 — 10.5 килоом.
На современных резисторах нанесена цветовая маркировка, где каждый цвет отвечает за определенную цифру в номинале. Узнать сопротивление таких резисторов можно при помощи таблиц, которые можно найти в интернете, или с помощью специального приложения на телефон, что очень облегчает задачу.
На мощных цементных резисторах обычно пишут мощность резистора и само значение сопротивления в явном виде.
Маркировка SMD-резисторов тоже довольно простая: все цифры, кроме последней — это значение сопротивления, а последняя цифра означает, сколько раз это число нужно умножить на 10. Например, 220 — 22 Ома.
Переменные резисторы, или потенциометры, позволяют изменять свое сопротивление при помощи поворота ручки. Они делятся на однооборотные, многооборотные и подстроечные, а также моно и стерео. Большинство переменных резисторов рассчитано на маленькую мощность, в пределах 0.1-0.2 Ватта. Многооборотистые резисторы следующего типа, как правило, могут рассеять 1-2 Ватта.
Также переменные резисторы различаются графиком изменения сопротивления:
- A — логарифм, в них сопротивление изменяется по логарифмическому графику;
- B — линейная, где сопротивление изменяется плавно, по прямой;
- С — обратный логарифм, действует как обычный логарифм, только в обратную сторону.
Для того, чтобы проверить резистор можно просто измерить его сопротивление. Если мультиметр показывает результат, существенно отличающийся от номинала элемента, или не показывает вообще ничего (бесконечное сопротивление), значит резистор неисправен. И наоборот.
Небольшое задание. Давайте применим полученные знания на практике и попробуем решить простую задачку.
У нас есть светодиод. Максимальный ток, который стандартный светодиод выдерживает, равен 20 миллиамперам. Обычно этот ток достигается при напряжении около 3 вольт. Но у нас нет блока питания на 3 вольта! Что же делать?
Хотя светодиод – это полупроводник со сложным перечнем характеристик, но в данном примере мы задачу упростим и посчитаем его за простую пассивную нагрузку (резистор). Если при 3 вольтах через светодиод проходит 20 мА, по закону Ома его сопротивление (R = U / I, или 3 / 0.02) – 150 Ом. Что будет, если мы захотим включить его в розетку? Снова-таки, по закону Ома получается, что при 220 вольтах через сопротивление 150 Ом пройдет ток (I = U / R, или 220 / 150) целых 1. 46 Ампер! А наш светодиод выдерживает всего 20 миллампер — в 70 раз меньше. От такой большой силы тока он сразу же испортится.
А теперь посчитаем, при каком сопротивлении и напряжении 220 Вольт в цепи будет ток 20 мА. Используем закон Ома, (R = U / I, или 220 / 0.02). Вышло значение 11 кОм. Готово! Если мы подключим светодиод через резистор 11 кОм, наш ток ограничится до 20 мА, которые нужны светодиоду.
Рассчитать, какую мощность будет рассеивать резистор в этом случае, достаточно легко по тому же закону Ома. Через резистор номиналом 11 кОм течет сила тока, равная 0.02 Ампера. Мощность, которая на нем рассеивается, равна (P = I2R, или (0.02)2 х 11000) = 4.4 Вт. Значит, ближайший нужный нам резистор — мощностью 5 Вт.
Вот и все! Мы разобрались с основными видами резисторов, а заодно поняли, как можно узнать о его работоспособности.
В следующей части будем следовать дальше по перечню электронных компонентов, и на очереди у нас проверка конденсаторов.
А если вам необходимы резисторы, или вы нашли в видео то, что давно искали — просмотрите наш полный каталог резисторов.
Все актуальные ценовые предложения, акции и специальные цены вы можете первыми узнавать на канале Electronoff в Telegram
Значения сопротивлений резисторов. Все о резисторах. Определение, типы резисторов и их номинал
Большинство людей приходят в радиолюбительство из-за желания сделать что-то своими руками, чего-то неповторимого, что несомненно принесет пользу себе и окружающим… Но выбрав конструкцию для самостоятельной сборки зачастую возникает масса проблем связанная со скудным запасом знаний в области радиоэлектроники. Конечно сразу начинается повальное чтение книг соответствующей тематики и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и прочих приборов.
Пассивные компоненты
Резисторы
Самым часто встречающимся элементом является резистор , без него невозможно построить ни одну схему. Встретить его можно практически в любом электронном устройстве, резистор представляет из себя цилиндр с двумя диаметрально-противоположными выводами. Служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Омах. Обозначается прямоугольником с двумя черточками с противоположных сторон, внутри прямоугольника обычно указывают мощность(рис.1).
В бытовой аппаратуре применяются резисторы с номиналами, расположенными по ряду Е24 , это значит, что в диапазоне от 1 до 10 имеется 24 номинала сопротивления. Существует множество типов резисторов, вот наиболее часто встречающиеся:
Рис. 1. Обозначение резисторов. Тип МЛТ
Резисторы типа МЛТ (металлический лакированный теплостойкий) – часто встречаются в ламповой аппаратуре(обычно не меньше 0,5 Вт), и в советской аппаратуре 80 годов. В зависимости от габаритов имеют различную мощность, если на схеме мощность не указана, то как правило, можно применять резисторы 0,125 Вт.
На резисторах данного типа ставится маркировка, обозначающая непосредственно сопротивление, далее буква русского или латинского алфавита обозначает множитель, составляющий сопротивление и определяет положение запятой десятичного знака («R(E)»=1; «К(К)»=10^3; «М(М)»=10^6; «G(Г)»=10^9; «Т(Т)» =10^12).
18 – 18 Ом, при обозначениях единиц Ом буква иногда не ставится, в том числе и на схемах.
Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой.
1М5-1,5 МОм.
К51- 510 Ом, если буква стоит перед числом, то это значит, что сопротивление меньше килоома (мегаома), следующая цифра показывает сопротивление.
Дальше в обозначении стоит буква, обозначающая величину допуска в процентах: (Е=±0.001; L=±0.002; R=±0.005; Р=±0.01; U=±0, 02; В(Ж)=±0.1; С(У)=±0.25; D(Д)=±0.5; F(Р)=±1; G(Л)=±2; J(И)=±5; К(С)=±10; М(В)=±20; N(Ф)=±30. Величина допуска может быть нанесена под номиналом сопротивления во второй строке и будет выражена в процентах.
Резисторы типа ВС (водостойкие) можно встретить в ламповой аппаратуре 60-70х годов (рис.2). А именно в радиолах и черно-белых телевизорах. Практической ценности в настоящее время не несут. Маркировка схожа с МЛТ, имеют несколько габаритных размеров в зависимости от мощности.
Рис. 2. Тип ВС
В середине 80-х годов появилась цветовая маркировка резисторов (рис.3, рис.4), которая существует и по сей день, что позволило быстро определять номинал без выпайки из схемы (нам это тоже на руку, поиск нужного резистора значительно ускоряется). Резисторов с такого рода маркировкой производит множество отечественных и зарубежных фирм, поэтому определить конкретный тип резистора весьма сложно, да зачастую и не нужно.
Рис. 3. Резисторы с цветовой кодовой маркировкой
Рис. 4. Расшифровка цветовой маркировки резисторов
В таблице показана методика определения номинала резистора и класса точности. Класс точности показывает на сколько процентов может отличаться сопротивление от заявленного номинала.
Определить сопротивление по цветовым полосам можно с помощью: .
В последнее время появилась тенденция к минимизации и стали появляться компоненты для поверхностного монтажа(SMD). Вот так называемые чип-резисторы (рис.5). 3 =12000 Ом =12 кОм. Часто встречаются чип резисторы с обозначением 0, это резистор нулевого сопротивления или попросту перемычка.
Для построения усилителей, а вернее их выходных каскадов часто требуются мощные резисторы более 2-х ватт с сопротивлением не более 1 ома, это как правило резисторы марки ПЭ или ПЭВ — резисторы проволочные, бывают от 1 до нескольких сотен ватт (рис.7). Также наиболее современные различных фирм производителей (рис.8). Встретить можно в старых ламповых телевизорах, радиолах и устройствах промышленной автоматики. В случае отсутствия необходимого резистора, его можно изготовить самостоятельно из спирали от электронагревателя, отрезав необходимую длину, подобрав сопротивление при помощи омметра.
Рис. 7. Резисторы ПЭВ
Рис. 8
Отдельное место среди постоянных резисторов занимают резисторные сборки (рис.9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.
Рис. 9. Резисторные сборки dip и smd
Сборки имеют два типа соединения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом. Встретить можно во многих цифровых устройствах, там они, как правило применяются, как подтягивающие.
В электронных устройствах часто применяются резисторы с изменяемым сопротивлением, их можно разделить на переменные — применяются для оперативного изменения параметров устройства в процессе эксплуатации, таких как громкость, тембр, яркость, контраст, и подстроечные – используются для настройки прибора во время сборки и наладки.
Резисторы переменные:
Рис. 10. Переменные резисторы
Резисторы переменные рис.10:
1.Со встроенным тумблером, можно встретить в ламповых телевизорах и радиолах 70-х годов
2. Резистор типа СП3-30а можно встретить в телевизорах, приемниках, абонентских громкоговорителях до 90-х годов выпуска.
3. Резистор Сп-04, встречаются в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а во всей технике конца 80-х начала 90-х.
5. Специализированный счетверенный с тумблером СП3-33-30, обычно встречается в разного типа магнитолах.
Рис. 11. Ползунковые переменные резисторы
Ползунковые резисторы (рис.11) часто встречаются в магнитофонах 80-90х годов в качестве регуляторов звука и тембра.
Рис. 12. Современные переменные резисторы
Более современные резисторы(рис. 12), можно встретить в любой импортной технике с начала 90-х годов, от кассетных плееров и автомагнитол, до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу по двум каналам (стерео). Очень интересен последний резистор (на рисунке), так называемый 3D – резистор или же джойстик, представляет из себя несколько сочлененных резисторов и отслеживает перемещение рукоятки влево-вправо, вверх- вниз и вращение вокруг своей оси. Встретить такой экземпляр можно в джойстиках от игровых консолей.
Для всех переменных резисторов помимо сопротивления есть очень важный параметр – зависимость сопротивления от угла поворота вала (линейного перемещения), обозначается буквой после значения сопротивления:
Советские:
А — линейная зависимость
Б — логарифмическая зависимость
В — обратно-логарифмическая зависимость
Импортные:
A — логарифм
B — линейная
С — обратный логарифм
Для регулировки громкости как правило используют резисторы с логарифмической зависимостью.
Подстроечные резисторы:
Рис. 13. Подстроечные резисторы СССР
Подстроечные резисторы рис.13:
1,2,3 – как правило встречаются в старых ламповых телевизорах.
4,7 (РП1-64Б), 8 (СП3-29А) — в полупроводниковых цветных телевизорах
5 – во всей советской технике 80-х годов
6 – СП5-50МА мощный проволочный резистор, в цветных ламповых телевизорах.
9 – СП3-36 многооборотный подстроечный резистор, встречается как правило в блоке настройки каналов телевизоров.
Рис. 14
Рис. 15. Многооборотные резисторы
Многооборотный подстроечный, применяется в усилительной аппаратуре для установки тока покоя и во всех системах, где нужна точная настройка.
Все переменные и подстроечные резисторы, также различаются по мощности, которая как правило указана на корпусе или в документации на элемент. Для своих конструкций можно применять практически любые из перечисленных исходя из требуемых габаритов и мощности.
Со временем и подстроечные и переменные резисторы портятся и у них появляется нежелательное явление, именуемое шорохом. Вызвано это явление недостаточным прижимом (контактом) ползунка или износом подложки, как правило ремонтировать резисторы смысла нет, хотя иногда встречаются очень редкие и уникальные(например в большинстве микшерных пультов), что найти замену, не представляется возможным. В этом случае резистор нужно аккуратно разобрать, подогнуть контакт, восстановить при помощи твердого карандаша графитовое покрытие и смазав силиконовой смазкой собрать назад. Резистор после такой реанимации сможет еще послужить.
Существуют также резисторы, реагирующие на изменения окружающей среды, в любительских конструкциях используются мало, но все же о них стоит упомянуть: терморезисторы
Рис. 16. Терморезисторы
Применяются для термостабилизации схемы, встречаются очень часто, но в самодельных устройствах применяются мало.
Рис. 17. Фоторезистор
Изменяет свое сопротивление в зависимости от освещенности. Можно вынуть из любительских фотоаппаратов, там они применяются в качестве датчика света.
Тензорезиторы
Рис.18. Тензорезисторы
Изменяют свое сопротивление в зависимости от деформации, их в бытовой аппаратуре встретить можно очень редко и применяются они как правило в виде датчиков в устройствах автоматики.
Варистором называется полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, нарастает.
Рис. 19. Варисторы
Применяются как устройство защиты в импульсных блоках питания бытовой аппаратуры от превышения напряжения питания. Можно встретить в любом современном устройстве.
Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.
Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.
Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.
В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).
Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.
Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.
Так, лучше выбрать резистор необходимого номинала, допустим на те же 100 Ом, но с запасом по максимальной рассеиваемой мощности, скажем, на 10 ватт, который в условиях нормального охлаждения не разогреется выше 100°C — это будет менее опасно для электронного устройства.
SMD резисторы для поверхностного монтажа
с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.
Проволочные и непроволочные резисторы, точность резисторов
Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.
Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.
Изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).
Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.
Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.
Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.
Номиналы резисторов и их маркировка
Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.
Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.
Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.
Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.
SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.
Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.
На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.
Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.
Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор? или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.
Маркировка техники и других товаров проводится с целью контроля за их передвижением. Таким образом, маркировку разделяют на два типа – внутреннего и глобального использования.
Современная маркировка резисторов может быть цветовой или кодовой. Последняя отображается с помощью букв и цифр.
Стандартной мощностью устройства называют максимальную величину либо постоянного, либо переменного тока, при которой прибор может функционировать без перебоев на протяжении длительного периода времени в том случае, если температурный режим не выше допустимых значений.
Если же из-за значительного выделения тепла радиодеталями, которые находятся внутри оборудования, температурный показатель будет заметно выше номинального, то необходимо, чтобы мощность, распределяемая по прибору, была значительно ниже допустимой.
Таким образом, характерная мощность должна снижаться согласно закономерностям линейного закона.
Кодовая маркировка отечественных резисторов
Согласно стандартам ГОСТа 11076-69, а также нормам из Публикаций 62 или 115-2 IЕС, первые несколько обозначений в кодовой маркировки резисторов отечественного производителя — это значения допустимых сопротивлений элементов, которые можно определить по базовому значению из ряда Е3…Е192, а также множитель.
Символ, находящийся в конце кодовой маркировки, указывает допуск-класс степени точности оборудования. Стандарты данного ГОСТа с требованиями IЕС практически никаким образом не отличаются от стандартов из BS1852 — British Standart.
Перед тем, следует разобраться с помощью индикаторной отвертки, где фаза, ноль и заземление. Также для установки такого блока рекомендуется использовать более толстый провод — это повысит безопасность при использовании мощных электроприборов.
Необходимо отметить, что в большинстве случаев на корпусе отечественных резисторов в качестве дополнения, помимо значений основного кода, добавляют символ, который содержит данные о виде прибора, допустимых мощностях, а также о других его характеристиках.
Маркировка импортных резисторов
Большое количество зарубежных компаний-производителей для кодовой маркировки данного прибора выбирают номинал, соответствующий известным европейским нормам. Таким образом, несколько первых цифр отражают номинал, измеряющийся в Омах, а последние символы представляют собой множитель, то есть количество нулей.
В зависимости от степени точности оборудования кодировка может быть в форме 3-х либо 4-х знаков. От стандартных способов кодовой маркировки импортных переменных резисторов могут быть отличия, выражающиеся в трактовке цифровых символов 7,8, 9, использующихся, как значение в конце кода.
Зарубежные заводы-изготовители используют букву R с целью обозначения десятичной запятой либо же, если она находится в конце, то она может указывать на такую характеристику, как диапазон.
Для резисторов, которые имеют нулевое сопротивление, применяется единичное значение «0».
Видео ролик с полезной информацией о резисторах
В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.
Типы резисторов
Резистор ‒ это устройство, которое имеет его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:
- Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
- Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки.
По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
- Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.
Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.
Классификация компонентов по способу монтажа
Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.
Для печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.
Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.
Номинальное сопротивление и рассеваемая мощность резисторов
Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.
Вторая важнейшая характеристика резистора — это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.
Допуск номинального сопротивления и его зависимость от температуры
Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.
Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.
Условное графическое обозначение резистора на схеме
При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа — это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.
Ниже на фотографии изображены постоянные резисторы разной мощности.
Условное графическое обозначение переменных резисторов
УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.
На фотографии ниже изображены переменные и подстроечные резисторы.
Стандартное обозначение сопротивления резисторов
Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.
Полное обозначение | Сокращённое обозначение | ||||||
Единица измерения | Обозн. ед. изм. | Предел номин. сопротивления | на схеме | на корпусе | Предел номин. сопротивления | ||
Ом | Ом | 999,9 | 0,51 | E51 или R51 | 99,9 | ||
5,1 | 5E1; 5R1 | ||||||
51 | 51E | ||||||
510 | 510E; K51 | ||||||
Килоом | кОм | 999,9 | 5,1k | 5K1 | 99,9 | ||
51k | 51K | ||||||
510k | 510K; M51 | ||||||
Мегаом | МОм | 999,9 | 5,1M | 5M1 | 99,9 | ||
51M | 51M | ||||||
510M | 510M |
Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.
Цветовая маркировка резисторов
Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.
При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я — температурному коэффициету.
Для расшифровки цветовых кодов резисторов существуют справочные таблицы.
Резисторы для поверхностного монтажа
Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.
При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.
- Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
- Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.
Стандартное обозначение smd-резисторов
В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше — 0603. Самый ходовой типоразмер smd-резистора — 0805, и побольше — 1008, следующий типоразмер 1206 и самый большой — 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.
Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья — множительный коэффициент. Например, код 473 читается так R=47∙10 3 Ом=47 кОм.
Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙10 1 =1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.
Простейшая принципиальная схема
Правильное обозначение на схемах резисторов и других элементов — основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов — рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.
Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.
Из чего состоит резистор и принцип его работы в электрической цепи
Чайники, лампы накаливания, электрооборудование машины и многие другие электроприборы содержат резисторы. Они настолько видоизменились, что без знания отличительных признаков их порой трудно определить. В справочниках дается определение: резистор — это элемент с заданным постоянным или переменным сопротивлением. На практике — это множество элементов, которые используются в самых неожиданных конструкциях. Чтобы понять из чего состоит резистор, необходимо узнать, из какого материала он изготавливается.
Устройство резистора изнутри
Самый простой резистор — это реостат. На каркас наматывается проволока с большим сопротивлением и подключается к источнику питания. Исходя из этого можно сделать вывод: первое требование для этого элемента — высокоомный проводник. Для производства этого элемента используют:
- проволоку;
- металлическую пленку, металлическую фольгу;
- композитный материал;
- полупроводник.
Проволочные сопротивления просты в изготовлении, способны рассеивать максимальную мощность, но имеют существенный недостаток: у них самая большая индуктивность. Диаметр проволоки колеблется от нескольких микрон до нескольких миллиметров.
Металлическую фольгу из высокоомного материала наматывают на каркас. При необходимости увеличить сопротивление ее разрезают на дорожку, тем самым увеличивая длину, и соответственно, сопротивление. Металлопленочный резистор получают напылением металла на основу.
В качестве композитного материала используют графит с органическими или неорганическими добавками. Резистор может полностью состоять из такого материала или из дорожки, на которую нанесен этот материал.
С началом производства микросхем появились новые резисторы, которые называются интегральные. Производство выполняется на молекулярном уровне. На высоколегированный полупроводник напыляют тонкий слой высокоомного металла, что и выполняет функцию резистора.
Разделение по видам
Поскольку сопротивление — одна из самых используемых форм деталей, то и применение его очень разнообразно. В зависимости от назначения резистора его можно разделить на три категории:
- постоянные;
- подстроечные;
- регулирующие.
Первая категория — постоянные резисторы — имеют заданное сопротивление и больше остальных используются в электрических схемах. Тем не менее сопротивление все равно зависит от внешних факторов. По этому признаку их квалифицируют на следующие виды:
- линейные;
- нелинейные.
Линейные названы так, потому что их сопротивление меняется плавно, то есть линейно, в зависимости от внешнего влияния. У нелинейных такой плавности нет. Например, если измерить сопротивление лампы накаливания в холодном состоянии, то оно будет одно, а в горячем — совсем другое, причем в 10—15 раз больше.
Если существует такое многообразие, то возникает закономерный вопрос — как понять где резистор? На самом деле резистор может выглядеть как круг, трубка или квадрат. Они выпускаются различных форм, размеров, окрасок. Порой чтобы определить, что это резистор, необходимо посмотреть электрическую принципиальную схему.
Вторая категория — подстроечные. Имеют регулирующий механизм, который плавно меняет сопротивление. Используется для точной настройки аппаратуры.
Следующая категория — регулировочные. Название здесь говорит само за себя. Они предназначены для регулировок, а значит, должны менять свое сопротивление. В отличие от постоянных, у которых два вывода, у этих имеется три вывода. Два из них подключаются к самому резистору, а третий — к подвижному контакту, который соединен с вращающимся элементом. Если подключить питание к двум выводам, то на подвижном контакте будет другое напряжение, которое будет отличаться от напряжения на выводах этого элемента.
Если подключить регулировочный (переменный) резистор последовательно с батарейкой, соединить лампочку одним выводом с минусовой клеммой батарейки, а другой с выводом подвижного контакта, то при вращении рукоятки переменного резистора будет заметно, как меняется яркость лампочки. Почему такое происходит можно понять, если разобраться что делает резистор.
Использование в электрической схеме
Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.
Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом. Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом). В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.
В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.
Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.
Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.
Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания. Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока. Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.
Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.
При последовательном подключении, чтобы отключить лампочку — нужно отключить питание, а при использовании делителя достаточно отключить цепь лампочки. Если необходимо к источнику подключить несколько нагрузок с разным напряжением, то без делителя (его еще называют делитель напряжения) не обойтись.
Области применения
Кроме своего обычного назначения — оказывать влияние на ток и напряжение, резисторы при использовании различных материалов приобретают совершенно другие свойства и название. Зачем они нужны, видно из следующего списка:
- зависит от напряжения, — это варистор;
- от температуры — терморезистор, термистор;
- от освещенности — фоторезистор;
- от деформации — тензорезистор;
- от действия магнитного поля — магниторезистор;
- разрабатывается новый, называется мемристор, сопротивление зависит от количества, проходящего через него заряда.
Варисторы чаще всего используют в качестве защиты от перенапряжения. В виде датчиков температуры используют терморезисторы. Если необходимо автоматизировать включение уличного освещения, то без фоторезистора это будет сделать сложно. Остальные указанные приборы используются в узкой специализации.
Обозначение на схеме
На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:
- одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
- одна косая линия говорит о мощности в 0,25 Вт;
- две косых — 0,125 Вт;
- три косых — 0,05 Вт.
Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:
- постоянный резистор обозначается только прямоугольником;
- регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
- переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
- подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
- подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
- термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
- варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
- фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.
Виды маркировок
На больших постоянных резисторах в сокращенной форме пишутся мощность, сопротивление и допуск (на сколько процентов может отклоняться указанная величина). Детали малого размера имеют цветовую, буквенную или цифровую маркировку, причем буквы и цифры могут дополнять друг друга. Каждый производитель сам выбирает способ маркировки.
Тормозной резистор для корректной работы ПЧ — ТД «ЦАЙШЕНЬ»
Тормозной резистор для корректной работы ПЧ
Для корректной работы Преобразователей Частоты, не только лифтовых, но и общепромышленного назначения с режимом остановки с замедлением, необходимо подключение внешнего тормозного резистора или его наличие в составе самого преобразователя.
При работе электродвигателя в генераторном режиме, в звене постоянного тока Преобразователя Частоты происходит накопление излишней энергии. Напряжение в звене постоянного тока может превышать допустимые значения, но только в определенных пределах, поэтому в подобных случаях необходимо использовать тормозной резистор.
Основная задача тормозного резистора заключается в выделении мощности, которую нагрузка передает через двигатель в Преобразователь Частоты. В зависимости от номинальной мощности и типа ПЧ меняется требуемое сопротивление и мощность тормозного резистора.
К примеру, для Преобразователей Частоты STEP были разработаны современные Тормозные резисторы серии FR61. Рассеивание мощности в резисторах FR61 происходит на медных трубках, помещенных в отдельном защитном металлическом, естественно вентилируемом корпусе. Комплектация включает в себя кабели, длинной 1400мм, для подключения к преобразователю частоты.
Обычно Преобразователи частоты поставляются в комплекте с тормозным резистором и EMI фильтром. Однако на объектах часто возникает ситуация: при смене Преобразователя частоты разных производителей остается комплект из EMI Фильтра и резистора, в связи с чем возникает вопрос:
Можно ли сменить только сам ПЧ, оставив комплектацию от предыдущей модели?Как уже отмечалось ранее, все тормозные резисторы, в том числе и FR61, отличаются по мощности и номинальному сопротивлению. Ниже приведена таблица параметров тормозных резисторов (диапазон сопротивлений и мощность) для подключения к ПЧ STEP моделей AS320 и AS620.
Мощность ПЧ STEP, кВт |
Минимальное значение сопротивления, Ом |
Максимальное значение сопротивления, Ом |
Рекомендуемое сопротивление, Ом |
Полная мощность при рекомендуемом сопротивлении, Вт |
5,5 |
56 |
100 |
70 |
2000 |
7,5 |
56 |
72 |
64 |
3200 |
11 |
34 |
48 |
40 |
4000 |
15 |
34 |
41 |
36 |
5000 |
18,5 |
17 |
31 |
24 |
6400 |
22 |
17 |
27 |
20 |
8000 |
Проверка возможности подключения EMI Фильтра более проста и заключается в сравнении номинальных токов устройств.
Значение номинального тока EMI фильтра должно быть больше или равно значению номинального тока Преобразователя частоты.
Автор статьи — Руководитель отдела Сервиса, Ведущий инженер
Роман Пимкин
Про резисторы для начинающих заниматься электроникой
Радиолюбители в 21 веке занимаются не столько созданием различных передатчиков, приемников, сколько усовершенствованием уже промышленно изготовленных устройств. Создание систем «умного дома», различных зарядных устройств, регуляторов скорости, преобразователей напряжения и других физических величин – вот основное направление в конструировании и разработке в наше время. Основой для большинства современных схем уже служат не радиоэлектронные компоненты, а различные электронные устройства (контроллеры, датчики, преобразователи). Однако развитие радиотехники начиналось именно с простейших компонентов и термин «радиолюбитель» уже нечем не заменить.Компоненты электронных схем
Практически все компоненты радиоэлектронных схем можно разделить на активные и пассивные элементы. Активные компоненты способны усиливать электрические сигналы, а одной из основных характеристик для них является коэффициент усиления. К элементам такого типа относятся микроконтроллеры, логические микросхемы, операционные усилители. К пассивным элементам относятся резисторы, конденсаторы, диоды, т.е. элементы с коэффициентом усиления в пределах от 0 до 1. Основные характеристики и назначение резисторов рассмотрим в данной статье.
Резисторы
Назначение резистора: ограничение максимального значения тока в электрической цепи. В простейшем случае резистор включается в цепь светодиода для ограничения максимального тока (рисунок 1).
Рисунок 1
Резистор представляет собой простой проводник. Основной параметр любого резистора – его сопротивление. Сопротивление проводников определяется удельным сопротивлением (зависит от материала) и линейных размеров проводника. Для определения сопротивления применяется формула:
[size=16]R = ρ*L/S
где ρ — удельное сопротивление материала, L длина в метрах, S площадь сечения в кв. мм.
Сопротивление, как физический параметр, препятствует прохождению электрического тока. При этом при прохождении тока через резистор выделяется тепловая энергия, равная произведению сопротивления на квадрат силы тока – рассеиваемая мощность резистора.
Как и любой элемент электрической схемы, резистор имеет свое собственное условное графической обозначение (УГО). Внутри УГО резистора нанесены черточки, обозначающие мощность рассеяния резистора. Для буквенного обозначения резистора используется латинская буква «R» с порядковым номером резистора в схеме. Рядом с резистором может указываться его номинальное сопротивление (R3 1,2K).
Рисунок 2.
Для обозначения основных параметров резисторов используется маркировка с помощью цветных полос (рисунок 3). Впервые на просторах бывшего СССР о цветной маркировке резисторов было упомянуто в журнале «Радио» в 1946 году.
Рисунок 3.
Современные электронные схемы предъявляют определенные условия к размерам элементов. Поэтому для поверхностного монтажа SMD применяются специальные «чип-резисторы» (рисунок 4). Для маркировки SMD компонентов применяется цифровой шифр из трех цифр (первые две цифры – номинальное сопротивление, третья – множитель в виде показателя степени 10).
Рисунок 4
Все резисторы выпускаются согласно номинальному ряду значений сопротивлений (Е6, Е12, Е24). Для каждого из рядов существует свой допуск (±5, ±10, ±20%), однако существуют резисторы с допуском в 1%.
Рисунок 5
Схемы соединения резисторов
Ввиду достаточно ограниченного числа номинальных значений сопротивлений для резисторов часто для настройки схем приходится подбирать необходимое сопротивление, соединяя несколько элементов. Существует два способа соединения резисторов – последовательное и параллельное. Зная зависимости при параллельном и последовательном соединении резисторов можно достаточно точно подобрать требуемое значение сопротивления.
Рисунок 6
Стоит отметить, что при параллельном соединении резисторов в каждой из параллельных ветвей протекает ток, а его суммарное значение разделяется на количество ветвей. Поэтому мощность подбираемых резисторов можно занижать прямо пропорционально количеству параллельных ветвей.
Про резисторы для начинающих заниматься электроникой
При сборке любого устройства, даже самого простейшего, у радиолюбителей часто возникают проблемы с радиодеталями, бывает что не удается достать какой то резистор определенного номинала, конденсатор или транзистор… в данной статье я хочу рассказать про замену радиодеталей в схемах, какие радиоэлементы на что можно заменять и какие нельзя, чем они различаются, какие типы элементов в каких узлах применяют и многое другое. Большинство радиодеталей могут быть заменены на аналогичные, близкие по параметрам.
Начнем пожалуй с резисторов.
Итак, вам наверное уже известно, что резисторы являются самыми основными элементами любой схемы. Без них не может быть построена ни одна схема, но что же делать, если у вас не оказалось нужных сопротивлений для вашей схемы? Рассмотрим конкретный пример, возьмем к примеру схему светодиодной мигалки, вот она перед вами:
Для того чтобы понять, какие резисторы здесь в каких пределах можно менять, нам нужно понять, на что вообще они влияют. Начнем с резисторов R2 и R3 – они влияют (совместно с конденсаторами) на частоту мигания светодиодов, т.е.
можно догадаться, что меняя сопротивления в большую или меньшую сторону, мы будем менять частоту мигания светодиодов. Следовательно, данные резисторы в этой схеме можно заменить на близкие по номиналу, если у вас не окажется указанных на схеме. Если быть точнее, то в данной схеме можно применить резисторы ну скажем от 10кОм до 50кОм.
Что касается резисторов R1 и R4, в некоторой степени и от них тоже зависит частота работы генератора, в данной схеме их можно поставить от 250 до 470Ом.
Тут есть еще один момент, светодиоды ведь бывают на разное напряжение, если в данной схеме применяются светодиоды на напряжение 1,5вольт, а мы поставим туда светодиод на большее напряжение – они у нас будут гореть очень тускло, следовательно, резисторы R1 и R4 нам нужно будет поставить на меньшее сопротивление.
Как видите, резисторы в данной схеме можно заменить на другие, близкие номиналы.
Вообще говоря, это касается не только данной схемы, но и многих других, если у вас при сборке схемы скажем не оказалось резистора на 100кОм, вы можете заменить его на 90 или 110кОм, чем меньше будет разница – тем лучше ставить вместо 100кОм 10кОм не стоит, иначе схема будет работать некорректно или вовсе, какой либо элемент может выйти из строя. Кстати, не стоит забывать что у резисторов допустимо отклонение номинала. Прежде чем резистор менять на другой, прочитайте внимательно описание и принцип работы схемы. В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов.
- Теперь что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем — просто сгорит.
- А заменить маломощный резистор более мощным – всегда пожалуйста, от этого ничего не будет, только мощные резисторы они более крупные, понадобится больше места на плате, или придется его поставить вертикально.
- Не забывайте про параллельное и последовательное соединение резисторов, если вам нужен резистор на 30кОм, вы можете его сделать из двух резисторов по 15кОм, соединив последовательно.
В схеме что я дал выше, присутствует подстроечный резистор. Его конечно же можно заменить переменным, разницы никакой нет, единственное, подстроечный придется крутить отверткой.
Можно ли подстроечные и переменные резисторы в схемах менять на близкие по номиналу? В общем то да, в нашей схеме его можно поставить почти любого номинала, хоть 10кОм, хоть 100кОм – просто изменятся пределы регулирования, если поставим 10кОм, вращая его мы быстрее будем менять частоту мигания светодиодов, а если поставим 100кОм.
, регулировка частоты мигания будет производиться плавнее и «длиннее» нежели с 10к. Иначе говоря, при 100кОм диапазон регулировки будет шире, чем при 10кОм.
А вот заменять переменные резисторы более дешевыми подстроечными не стоит. У них движок грубее и при частом использовании сильно царапается токопроводящий слой, после чего при вращении движка сопротивление резистора может меняться скачкообразно. Пример тому хрип в динамиках при изменении громкости.
Подробнее про виды и типы резисторов можно почитать .
Теперь поговорим про конденсаторы, они бывают разных видов, типов и конечно же емкостей. Все конденсаторы различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск. В радиоэлектронике применяют два типа конденсаторов, это полярные, и неполярные.
Отличие полярных конденсаторов от неполярных заключается в том, что полярные конденсаторы нужно включать в схему строго соблюдая полярность. Конденсаторы по форме бывают радиальные, аксиальные (выводы у таких конденсаторов находятся сбоку), с резьбовыми выводами (обычно это конденсаторы большой емкости или высоковольтные), плоские и так далее.
Различают импульсные, помехоподавляющие, силовые, аудио конденсаторы, общего назначения и др.
- Где какие конденсаторы применяют?
- В фильтрах блоков питания применяют обычные электролитические, иногда еще ставят керамику (служат для фильтрации и сглаживания выпрямленного напряжения), в фильтрах импульсных блоков питания применяют высокочастотные электролиты, в цепях питания — керамику, в некритичных цепях тоже керамику.
- На заметку!
У электролитических конденсаторов обычно большой ток утечки, а погрешность емкости может составлять 30-40%, т.е. емкость указанная на банке, в реальности может сильно отличаться.
Номинальная ёмкость таких конденсаторов уменьшается по мере их срока эксплуатации.
Самый распространённый дефект старых электролитических конденсаторов – это потеря ёмкости и повышенная утечка, такие конденсаторы не стоит эксплуатировать дальше.
Вернемся мы к нашей схеме мультивибратора (мигалки), как видите там присутствуют два электролитических полярных конденсатора, они так же влияют на частоту мигания светодиодов, чем больше емкость, тем медленнее они будут мигать, чем меньше емкость, тем быстрее будут мигать.
Во многих устройствах и приборах нельзя так «играть» емкостями конденсаторов, к примеру если в схеме стоит 470 мкФ – то надо стараться поставить 470 мкФ, или же параллельно 2 конденсатора 220 мкФ. Но опять же, смотря в каком узле стоит конденсатор и какую роль он выполняет.
Рассмотрим пример на усилителе низкой частоты:
Как видите, в схеме присутствует три конденсатора, два из которых не полярные. Начнем с конденсаторов С1 и С2, они стоят на входе усилителя, через эти конденсаторы проходит/подается источник звука. Что будет если вместо 0.22 мкФ мы поставим 0.
01 мкФ? Во первых немного ухудшится качество звучания, во вторых звук в динамиках станет заметно тише. А если мы вместо 0.
22 мкФ поставим 1 мкФ – то на больших громкостях у нас появятся хрипы в динамиках, усилитель будет перегружаться, будет сильнее нагреваться, да и качество звука снова может ухудшиться.
Если вы глянете на схему какого нибудь другого усилителя, можете заметить, что конденсатор на входе может стоять и 1 мкФ, и даже 10 мкФ. Все зависит от каждого конкретного случая. Но в нашем случае конденсаторы 0.22 мкФ можно заменять на близкие по значению, например 0.15 мкФ или лучше 0.33 мкФ.
Итак, дошли мы до третьего конденсатора, он у нас полярный, имеет плюс и минус, путать полярность при подключении таких конденсаторов нельзя, иначе они нагреются, что еще хуже, взорвутся.
А бабахают они очень и очень сильно, может уши заложить.
Конденсатор С3 емкостью 470 мкФ у нас стоит по цепи питания, если вы еще не в курсе, то скажу, что в таких цепях, и например в блоках питания чем больше емкость, тем лучше.
Сейчас у каждого дома имеются компьютерные колонки, может быть вы замечали, что если громко слушать музыку, колонки хрипят, а еще мигает светодиод в колонке.
Это обычно говорит как раз о том, что емкость конденсатора в цепи фильтра блока питания маленькая (+ трансформаторы слабенькие, но об этом я не буду). Теперь вернемся к нашему усилителю, если мы вместо 470 мкФ поставим 10 мкФ – это почти то же самое что конденсатор не поставить вообще.
Как я уже говорил, в таких цепях чем больше емкость, тем лучше, честно говоря в данной схеме 470 мкФ это очень мало, можно все 2000 мкФ поставить.
Ставить конденсатор на меньшее напряжение чем стоит в схеме нельзя, от этого он нагреется и взорвется, если схема работает от 12 вольт, то нужно ставить конденсатор на 16 вольт, если схема работает от 15-16 вольт, то конденсатор лучше поставить на 25 вольт.
Что делать, если в собираемой вами схеме стоит неполярный конденсатор? Неполярный конденсатор можно заменить двумя полярными, включив их последовательно в схему, плюсы соединяются вместе, при этом емкость конденсаторов должна быть в два раза больше чем указано на схеме.
Никогда не разряжайте конденсаторы замыкая их вывода! Всегда нужно разряжать через высокоомный резистор, при этом не касайтесь выводов конденсатора, особенно если он высоковольтный.
Практически на всех полярных электролитических конденсаторах на верхней части вдавлен крест, это своеобразная защитная насечка (часто называют клапаном).
Если на такой конденсатор подать переменное напряжение или превысить допустимое напряжение, то конденсатор начнет сильно греться, а жидкий электролит внутри него начнет расширяться, после чего конденсатор лопается.
Таким образом часто предотвращается взрыв конденсатора, при этом электролит вытекает наружу.
В связи с этим хочу дать небольшой совет, если после ремонта какой либо техники, после замены конденсаторов вы впервые включаете его в сеть (например в старых усилителях меняются все подряд электролитические конденсаторы), закрывайте крышку и держитесь на расстоянии, не дай бог что бабахнет.
Теперь вопрос на засыпку: можно ли включать в сеть 220вольт неполярный конденсатор на 230 вольт? А на 240? Только пожалуйста, сходу не хватайте такой конденсатор и не втыкайте его в розетку!
У диодов основными параметрами являются допустимый прямой ток, обратное напряжение и прямое падение напряжения, иногда еще нужно обратить внимание на обратный ток. Такие параметры заменяющих диодов должны быть не меньше, чем у заменяемых.
У маломощных германиевых диодов обратный ток значительно больше, чем у кремниевых. Прямое падение напряжения у большинства германиевых диодов примерно в два раза меньше чем у похожих кремниевых. Поэтому в цепях, где используется это напряжение для стабилизации режима работы схемы, например в некоторых оконечных усилителях звука, замена диодов на другой тип проводимости не допустима.
Для выпрямителей в блоках питания главными параметрами являются обратное напряжение и предельно допустимый ток. Например, при токах 10А можно применять диоды Д242…Д247 и похожие, для тока 1 ампер можно КД202, КД213, из импортных это диоды серии 1N4xxx. Ставить вместо 5 амперного диода 1 амперный конечно же нельзя, наоборот можно.
В некоторых схемах, например в импульсных блоках питания нередко применяют диоды Шоттки, они работают на более высоких частотах чем обычные диоды, обычными диодами такие заменять не стоит, они быстро выйдут из строя.
Во многих простеньких схемах в качестве замены можно поставить любой другой диод, единственное, не спутайте вывода, с осторожностью стоит к этому относиться, т.к. диоды так же могут лопнуть или задымиться (в тех же блоках питания) если спутать анод с катодом.
Можно ли диоды (в т.ч.
диоды Шоттки) включать параллельно? Да можно, если два диода включить параллельно, протекающий через них ток может быть увеличен, сопротивление, падение напряжения на открытом диоде и рассеиваемая мощность уменьшаются, следовательно – диоды меньше будут греться. Параллелить диоды можно только с одинаковыми параметрами, с одной коробки или партии. Для маломощных диодов рекомендую ставить так называемый «токоуравнивающий» резистор.
Транзисторы делятся на маломощные, средней мощности, мощные, низкочастотные, высокочастотные и т.д. При замене нужно учитывать максимально допустимое напряжение эмиттер-коллектор, ток коллектора, рассеиваемая мощность, ну и коэффициент усиления.
Заменяющий транзистор, во первых, должен относиться к той же группе, что и заменяемый. Например, малой мощности низкой частоты или большой мощности средней частоты.
Затем подбирают транзистор той же структуры: р-п-р или п-р-п, полевой транзистор с р-каналом или n-каналом. Далее проверяют значения предельных параметров, у заменяющего транзистора они должны быть не меньше, чем у заменяемого.
Кремниевые транзисторы рекомендуется заменять только кремниевыми, германиевые — германиевыми, биполярные – биполярными и т.д.
Давайте вернемся к схеме нашей мигалки, там применены два транзистора структуры n-p-n, а именно КТ315, данные транзисторы спокойно можно заменить на КТ3102, или даже на старенький МП37, вдруг завалялся у кого Транзисторов, способных работать в данной схеме очень и очень много.
Как вы думаете, будут ли работать в этой схеме транзисторы КТ361? Конечно же нет, транзисторы КТ361 другой структуры, p-n-p. Кстати, аналогом транзистора КТ361 является КТ3107.
В устройствах, где транзисторы используются в ключевых режимах, например в каскадах управления реле, светодиодов, в логических схемах и пр… выбор транзистора не имеет большого значения, выбирайте аналогичной мощности, и близкий по параметрам.
В некоторых схемах между собой можно заменять например КТ814, КТ816, КТ818 или КТ837. Возьмем для примера транзисторный усилитель, схема его ниже.
Выходной каскад построен на транзисторах КТ837, их можно заменить на КТ818, а вот на КТ816 уже не стоит менять, он будет очень сильно нагреваться, и быстро выйдет из строя. Кроме того, уменьшится выходная мощность усилителя. Транзистор КТ315 как вы уже наверное догадались меняется на КТ3102, а КТ361 на КТ3107.
Мощный транзистор можно заменить двумя маломощными того же типа, их соединяют параллельно.
При параллельном соединении, транзисторы должны применяться с близкими значениями коэффициента усиления, рекомендуется ставить выравнивающие резисторы в эмиттерной цепи каждого, в зависимости от тока: от десятых долей ома при больших токах, до единиц ом при малых токах и мощностях. В полевых транзисторах такие резисторы обычно не ставятся, т.к. у них положительный ТКС канала.
Про резисторы для начинающих заниматься электроникой | Инвертор, преобразователь напряжения, частотный преобразователь
Продолжение статьи о начале занятий электроникой. Для тех, кто отважился начать. Рассказ о деталях.
Радиолюбительство до сего времени является одним из часто встречающихся увлечений, хобби. Если сначала собственного славного пути радиолюбительство затрагивало в главном конструирование приемников и передатчиков, то с развитием электрической техники расширялся спектр электрических устройств и круг радиолюбительских интересов.
Естественно, такие сложные устройства, как, к примеру, видеомагнитофон, проигрыватель компакт-дисков, телек либо домашний кинозал у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, при этом довольно удачно.
Другим направлением является конструирование электрических схем либо доработка «до класса люкс» промышленных устройств.
Спектр в данном случае довольно велик.
Это устройства для сотворения «умного дома», зарядные устройства для аккумов, регуляторы оборотов электродвигателей, частотные преобразователи для трехфазных движков, преобразователи 12…220В для питания телевизоров либо звуковоспроизводящих устройств от авто аккума, разные терморегуляторы. Также очень популярны схемы фотореле для включения освещения, охранные устройства и сигнализация, также почти все другое.
Передатчики и приемники отошли на последний план, а вся техника именуется сейчас просто электроникой. И сейчас, пожалуй, следовало бы именовать радиолюбителей как-то по другому. Но исторически сложилось так, что другого наименования просто не выдумали. Потому пусть будут радиолюбители.
Составляющие электрических схем
При всем многообразии электрических устройств они состоят из радиодеталей. Все составляющие электрических схем можно поделить на два класса: активные и пассивные элементы.
Активными числятся радиодетали, которые владеют свойством усиливать электронные сигналы, т.е. владеющие коэффициентом усиления. Несложно додуматься, что это транзисторы и все, что из их делается: операционные усилители, логические микросхемы, микроконтроллеры и почти все другое.
Одним словом все те элементы, у каких маломощный входной сигнал управляет довольно массивным выходным. В таких случаях молвят, что коэффициент усиления (Кус) у их больше единицы.
К пассивным относятся такие детали, как резисторы, конденсаторы, катушки индуктивности, диоды и т.п. Одним словом все те радиоэлементы, которые имеют Кус в границах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот поначалу и разглядим пассивные элементы.
Резисторы
Являются самыми ординарными пассивными элементами. Основное их предназначение ограничить ток в электронной цепи. Простым примером является включение светодиода, показанное на рисунке 1. При помощи резисторов также подбирается режим работы усилительных каскадов при разных схемах включения транзисторов.
Набросок 1. Схемы включения свтодиода
Характеристики резисторов
Ранее резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтоб не путать деталь с ее свойством сопротивления переименовали в резисторы.
Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, приблизительно так же, как в механике удельный вес и объем.
Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Несложно узреть, что чем длиннее и тоньше провод, тем больше сопротивление.
Можно поразмыслить, что сопротивление не наилучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде всевозможных случаев как раз это препятствие является полезным.
Дело в том, что при прохождении тока через проводник на нем выделяется термическая мощность P = I2 * R. Тут P, I, R соответственно мощность, ток и сопротивление.
Эта мощность употребляется в разных нагревательных устройствах и лампах накаливания.
Резисторы на схемах
Все детали на электронных схемах показываются при помощи УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.
Набросок 2. УГО резисторов
Черточки снутри УГО обозначают мощность рассеяния резистора. Сходу следует сказать, что если мощность будет меньше требуемой, то резистор будет нагреваться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а поточнее даже 3-мя: P = U * I, P = I2 * R, P = U2 / R.
1-ая формула гласит о том, что мощность, выделяемая на участке электронной цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.
Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буковка К либо М может ставиться заместо запятой), R5 — 5,1МОм.
Современная маркировка резисторов
В текущее время маркировка резисторов делается при помощи цветных полос. Самое увлекательное, что цветовая маркировка упоминалась в первом послевоенном журнальчике «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новенькая южноамериканская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.
Набросок 3. Маркировка резисторов
На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также именуют «чип — резистор». Для любительских целей более подходят резисторы типоразмера 1206. Они довольно большие и имеют благопристойную мощность, целых 0,25Вт.
На этом же рисунке обозначено, что наибольшим напряжением для чип резисторов является 200В. Таковой же максимум имеют и резисторы для обыденного монтажа. Потому, когда предвидится напряжение, к примеру 500В лучше поставить два резистора, соединенных поочередно.
Набросок 4. Резисторы для поверхностного монтажа SMD
Чип резисторы самых малеханьких размеров выпускаются без маркировки, так как ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из 3-х цифр.
1-ые две представляют собой номинал, а 3-я множитель, в виде показателя степени числа 10.
Потому если написано, к примеру, 100, то это будет 10 * 1Ом = 10Ом, так как хоть какое число в нулевой степени равно единице 1-ые две числа нужно множить конкретно на единицу.
Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 говорит, что пред нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и найти номинал можно только пользуясь таблицей, которую можно найти в вебе.
Зависимо от допуска на сопротивление номиналы резисторов делятся на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.
Набросок 5.
Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответственном ряду. Если ряд E6 имеет допуск 20%, то в нем всего только 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего внедрения. Есть резисторы с допуском в один процент и меньше, потому посреди их может быть отыскать хоть какой номинал.
Не считая мощности и номинального сопротивления резисторы имеют еще несколько характеристик, но о их пока гласить не будем.
Соединение резисторов
Невзирая на то, что номиналов резисторов довольно много, время от времени приходится их соединять, чтоб получить требуемую величину.
Обстоятельств этому несколько: четкий подбор при настройке схемы либо просто отсутствие подходящего номинала. В главном употребляется две схемы соединения резисторов: последовательное и параллельное.
Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.
Набросок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления
В случае поочередного соединения общее сопротивление равно просто сумме 2-ух сопротивлений. Это как показано на рисунке. По сути резисторов может быть и больше. Такое включение бывает в делителях напряжения. Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.
При параллельном соединении все как раз напротив: общее сопротивление 2-ух (и поболее резисторов) будет меньше наименьшего.
Если оба резистора имеют однообразный номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала.
К примеру, соединили в параллель 10 резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.
Необходимо подчеркнуть, что ток при параллельном соединении согласно закону Кирхгофа разделится на 10 резисторов. Потому мощность каждого из их будет нужно в 10 раз ниже, чем для 1-го резистора.
Продолжение читайте в последующей статье.
Борис Аладышкин
P. S. Если вам нравятся наши статьи, вы сможете подписаться на нашу рассылку и все новые статьи, размещенные на веб-сайте Электрик Инфо придут на ваш электрический почтовый ящик!
Подписаться на почтовую рассылку Вы сможете перейдя по этой ссылке: /subscribe2.htm
Про резисторы для начинающих заниматься электроникой
Радиолюбители в 21 веке занимаются не столько созданием различных передатчиков, приемников, сколько усовершенствованием уже промышленно изготовленных устройств.
Создание систем «умного дома», различных зарядных устройств, регуляторов скорости, преобразователей напряжения и других физических величин – вот основное направление в конструировании и разработке в наше время.
Основой для большинства современных схем уже служат не радиоэлектронные компоненты, а различные электронные устройства (контроллеры, датчики, преобразователи). Однако развитие радиотехники начиналось именно с простейших компонентов и термин «радиолюбитель» уже нечем не заменить.
Компоненты электронных схем
Практически все компоненты радиоэлектронных схем можно разделить на активные и пассивные элементы. Активные компоненты способны усиливать электрические сигналы, а одной из основных характеристик для них является коэффициент усиления. К элементам такого типа относятся микроконтроллеры, логические микросхемы, операционные усилители. К пассивным элементам относятся резисторы, конденсаторы, диоды, т.е. элементы с коэффициентом усиления в пределах от 0 до 1. Основные характеристики и назначение резисторов рассмотрим в данной статье.
Резисторы
Назначение резистора: ограничение максимального значения тока в электрической цепи. В простейшем случае резистор включается в цепь светодиода для ограничения максимального тока (рисунок 1). Резистор представляет собой простой проводник. Основной параметр любого резистора – его сопротивление. Сопротивление проводников определяется удельным сопротивлением (зависит от материала) и линейных размеров проводника. Для определения сопротивления применяется формула:
[size=16]R = ρ*L/S
где ρ — удельное сопротивление материала, L длина в метрах, S площадь сечения в кв. мм. Сопротивление, как физический параметр, препятствует прохождению электрического тока. При этом при прохождении тока через резистор выделяется тепловая энергия, равная произведению сопротивления на квадрат силы тока – рассеиваемая мощность резистора. Как и любой элемент электрической схемы, резистор имеет свое собственное условное графической обозначение (УГО). Внутри УГО резистора нанесены черточки, обозначающие мощность рассеяния резистора. Для буквенного обозначения резистора используется латинская буква «R» с порядковым номером резистора в схеме. Рядом с резистором может указываться его номинальное сопротивление (R3 1,2K). Для обозначения основных параметров резисторов используется маркировка с помощью цветных полос (рисунок 3). Впервые на просторах бывшего СССР о цветной маркировке резисторов было упомянуто в журнале «Радио» в 1946 году. Современные электронные схемы предъявляют определенные условия к размерам элементов. Поэтому для поверхностного монтажа SMD применяются специальные «чип-резисторы» (рисунок 4). Для маркировки SMD компонентов применяется цифровой шифр из трех цифр (первые две цифры – номинальное сопротивление, третья – множитель в виде показателя степени 10). Все резисторы выпускаются согласно номинальному ряду значений сопротивлений (Е6, Е12, Е24). Для каждого из рядов существует свой допуск (±5, ±10, ±20%), однако существуют резисторы с допуском в 1%.
Схемы соединения резисторов
Ввиду достаточно ограниченного числа номинальных значений сопротивлений для резисторов часто для настройки схем приходится подбирать необходимое сопротивление, соединяя несколько элементов. Существует два способа соединения резисторов – последовательное и параллельное. Зная зависимости при параллельном и последовательном соединении резисторов можно достаточно точно подобрать требуемое значение сопротивления. Рисунок 6 Стоит отметить, что при параллельном соединении резисторов в каждой из параллельных ветвей протекает ток, а его суммарное значение разделяется на количество ветвей. Поэтому мощность подбираемых резисторов можно занижать прямо пропорционально количеству параллельных ветвей. Добавлять комментарии могут только зарегистрированные пользователи.[ Регистрация | Вход ]
Новости сайта ukrelektrik.com
Последние статьи ukrelektrik.com
Последние ответы на форуме ukrelektrik.com
Заземление, зануление rashpilek1975 Alexzhuk / 37 Электроотопление IusCoin Multiki / 68 Всё обо всём — общение 2alpilip Наде4ка / 29
Резистор
Резисторы разных размеров, типов, мощности с проволочными выводами
Почтовая марка Германии 1994 года
Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления[1], предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.[2]. Весьма широко используемый компонент практически всех электрических и электронных устройств.
Схема замещения резистора чаще всего имеет вид параллельно соединённых сопротивления и ёмкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, ёмкость и индуктивность — паразитные параметры.
Линейные и нелинейные резисторы
Все резисторы делятся на линейные и нелинейные.
Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.
Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.
Основные характеристики и параметры резисторов
- Номинальное сопротивление — основной параметр.
- Предельная рассеиваемая мощность.
- Температурный коэффициент сопротивления.
- Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
- Предельное рабочее напряжение.
- Избыточный шум.
- Максимальная температура окружающей среды для номинальной мощности рассеивания.
- Влагоустойчивость и термостойкость.
- Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.
Определяется по формуле:
K
U
=
R
1
−
R
2
R
1
∗
100
%
{displaystyle K_{U}={frac {R_{1}-R_{2}}{R_{1}}}*100\%}
, где
R
1
{displaystyle R_{1}}
и
R
2
{displaystyle R_{2}}
— сопротивления, измеренные при напряжениях, соответствующих
10
%
{displaystyle 10\%}
-ной и
100
%
{displaystyle 100\%}
-ной номинальной мощности рассеяния резистора.[3]
Некоторые характеристики существенны при проектировании устройств, работающих на высоких и сверхвысоких частотах, это:
- Паразитная ёмкость.
- Паразитная индуктивность.
Обозначение резисторов на схемах
Понимание резисторов Для чего они нужны?
Теория предыстории: что делает резистор?
Каждое электронное устройство, которое у вас есть, содержит как минимум один резистор. Резистор — это пассивный электронный компонент, который предназначен для приложения электрического сопротивления, уменьшающего ток через цепь. В зависимости от того, насколько велико или мало значение сопротивления, резисторы регулируют разную величину тока. Чрезмерное количество тока приводит к сильному нагреву, который может привести к возгоранию или необратимому повреждению.Чтобы понять поведение резистора, давайте посмотрим на закон Ома. Закон Ома: V = I x R. Он гласит, что напряжение (V) на резисторе пропорционально току (I), умноженному на его значение сопротивления (R). Итак, сколько R обеспечит любой данный резистор? Вы можете использовать мультиметр, но все резисторы используют систему кодирования, чтобы их было легко читать. См. Таблицу цветов резисторов Jameco.
Резисторы можно подключать последовательно или параллельно. Значение сопротивления можно регулировать в зависимости от того, как резисторы соединены вместе.Резисторы, соединенные последовательно и имеющие один общий общий узел, просто складываются, чтобы найти общее сопротивление. Параллельно подключенные резисторы немного сложнее найти общее сопротивление. Формула является суммой обратных величин всех резисторов, включенных параллельно. Req = (1 / [(1 / R1 + 1 / R2 + … + 1 / Rn)] Выбрав правильные резисторы, а затем спроектировав их последовательно или параллельно, вы можете приблизиться к точному сопротивлению, требуемому вашей конструкцией.
Давайте приступим к образовательному проекту резисторов, построив силовую резистивную декадную нагрузочную коробку.
Загрузочная коробка Проект:
Резистивная декада нагрузки средней мощности — это промежуточный комплект, который требует большого количества пайки и пробивки отверстий в корпусе. Конечный продукт используется в лабораториях электроники в качестве переменного резистора для создания и отладки схем или в качестве нагрузки высокой мощности для проверки способности схемы управлять резистивными нагрузками.
Вам понадобится:
(4) Поворотный переключатель, SP, 12-позиционный
(1) Корпус, металл, 7.5 дюймов x 9,8 дюймов x 3,2 дюйма
(7) Резистор 5 Вт 0,1 Ом
(7) Резистор 5 Вт 1 Ом
(7) Резистор 5 Вт 10 Ом
(100) Плоская шайба, # 4, 9/32 OD
(100 ) Шестигранная гайка, 4-40
(1) Сплошной монтажный провод, 22AWG, черный, 100 футов
(4) Ручка, вал 1/4 «, JK-902A
(1) Изолированный банановый домкрат, красный
(1) ) Изолированный домкрат-банан, черный
(100) Винт с цилиндрической головкой, 4-40 x 1/4 «
Сверла, от 1/8″ до 7/16 «
Маленький серповидный гаечный ключ
Крестообразная отвертка
Паяльник
Металлический напильник или ножницы
Шестигранный ключ
Инструмент для зачистки проводов
Резистор 5 Вт 100 Ом (7 шт.)
Резистор 10 Вт 0.1 Ом (2 шт.)
Резистор 10 Вт 1 Ом (2 шт.)
Резистор 10 Вт 10 Ом (2 шт.)
Резистор 10 Вт 100 Ом (2 шт.)
Инструкции
Возьмите основание коробки и поместите все резисторы 5 Вт или 10 Вт с резистором наименьшего номинала с правой стороны коробки. Поместите резистор 0,1 Ом в ряд, равномерно распределенный вдоль правой стороны основания коробки. Затем разместите резисторы 1 Ом на прямой линии на равном расстоянии от резисторов 0,1 Ом, не позволяя им соприкасаться. Затем поместите резисторы 10 Ом в линию, а резисторы 100 Ом в линию с левой стороны основания коробки, как показано ниже:
Тщательно, не мешая другим резисторам, отметьте внутреннюю часть каждого отверстия в алюминиевых корпусах (монтажные отверстия) каждого резистора фломастером.Удалите резисторы и, используя дырокол, сделайте каждую отметку маркера. Пробойник следует поместить в центр каждого отмеченного монтажного отверстия. Просверлите отверстия в коробке в каждом месте прорези, используя сверло 1/8 дюйма.
Шаблон набора номера (Нажмите, чтобы увеличить)Используйте шаблон циферблата и проделайте небольшое отверстие в центре каждого отверстия, не разрывая бумагу. Возьмите боковую стенку коробки с резисторами 10 Вт, удерживайте циферблат над внешней стороной лицевой стороны, на которой есть зазор для упрощения проводки.Удерживая циферблат в центре боковой стороны, отметьте центральное отверстие каждого маркера фломастером.
Убедитесь, что бумага ровная, чтобы переключатели были установлены на одном уровне относительно друг друга и коробки. Сделайте отметки с помощью керна. Просверлите четыре отверстия в передней части коробки, постепенно увеличивая размер сверла для четырех переключателей и этикетки, используя сверло не более 7/16 дюйма.
Частично вставьте выключатели питания с небольшой неповоротной проушиной прямо под отверстием и отметьте положение упора поворота (проушины).Просверлите одну сторону зоны неповоротного выступа и с помощью ножа или напильника откройте прорезь, достаточно большую, чтобы не поворачивающуюся проушину можно было вставить, но достаточно маленькую, чтобы не допускать люфта в неповоротной проушине. чтобы переключатель не поворачивался, когда он вставлен в коробку и работает после сборки.Установите каждый резистор на место и припаяйте пары резисторов вместе с проводом к каждой паре, чередуя стороны по мере продвижения по линиям (100, 10, 1, 0,1), как показано, пока провод не соединится с каждым резистором в каждом ряду.
- Измерьте ширину коробки без крышки. Вычтите 3/4 дюйма из измерения и разделите на два. Это расстояние от каждого края коробки, на котором будут установлены банановые домкраты (по длине). Отметьте вертикальную линию на этом расстоянии с каждой стороны коробки.
- Измерьте высоту коробки без крышки. Разделите на два. Отметьте это расстояние горизонтально через вертикальные линии, проведенные на предыдущем шаге.
- Используйте дырокол, чтобы сделать углубления в местах пересечения линий.Перемычки должны быть на одном уровне и на расстоянии 3/4 дюйма в центре задней стороны коробки.
- Просверлите отверстия для банановых домкратов, вставьте банановые домкраты и прикрутите болты, которые крепят каждый банановый домкрат к стенке коробки.
Подключите провода к банановым разъемам, добавив два провода, показанные на схеме, привязанные к банановым разъемам. Ряд 100 Ом должен быть привязан к черному разъему, а ряд 0,1 Ом должен быть привязан к красному разъему. Накрутите крышку на основание ящика. Создайте кривые для кривой безопасной работы резистора 0,1, 1, 10 и 100 Ом.
Вырежьте отверстия диаметром 1/2 дюйма в центре индикаторной бумаги сопротивления в центре каждого круга. Ламинируйте индикаторную бумагу сопротивления и вырежьте отверстия диаметром 7/16 дюйма в каждом ранее вырезанном отверстии на полдюйма.Поместите индикаторную бумагу на каждый переключатель и прикрепите к коробке под гайками, удерживающими переключатели на месте. Добавьте каждую ручку к переключателям и затяните их. Теперь поставьте коробку в эксплуатацию.
Вопросы для обсуждения
Что происходит, когда сопротивление слишком велико?
Какие преимущества и недостатки использования резисторов последовательно или параллельно?
Как температура подключенного в цепь резистора повлияет на производительность устройства?
Факты о резисторах для детей
Два резистора в последовательной цепи Два резистора в параллельной цепиРезистор ограничивает электрический ток, протекающий по цепи.Сопротивление — это ограничение тока. В резисторе энергия электронов, проходящих через резистор, изменяется на тепло и / или свет. Например, в лампочке есть резистор из вольфрама, который преобразует электроны в свет.
Серияи параллельная
Резисторы могут быть соединены в различных комбинациях для создания цепи:
- Серия
- — где резисторы соединены один за другим .
- Параллельно — резисторы соединены друг с другом .
Есть много разных типов резисторов. Резисторы имеют разные номиналы, чтобы сообщить электрикам, с какой мощностью они могут выдержать до того, как сломаются, и насколько точно они могут замедлить поток электричества. Последовательное соединение двух резисторов приводит к более высокому сопротивлению, чем при параллельном подключении тех же двух резисторов. Чтобы резистор не достиг своей емкости, разместите резисторы параллельно, чтобы общее сопротивление было ниже. В настоящее время в электротехнической промышленности во многих случаях используются резисторы на основе так называемой технологии поверхностного монтажа, которые могут быть очень маленькими.
Расчет сопротивления
- Последовательная цепь: Rt = R1 + R2 + R3 + R4 … Rn
- Параллельная цепь: 1 / Rt = 1 / R1 + 1 / R2 + 1 / R3 … 1 / Rn
Где R — номинал резистора
Закон Ома
Формула закона Ома, V = I * R, утверждает, что падение напряжения на компоненте равно произведению тока, протекающего в компоненте, на сопротивление компонента. Используя закон Ома, вы можете изменить формулу, если необходимо, чтобы найти другой результат: I = V / R или R = V / I
Код цвета
Номиналы резисторауказаны по цветам, указанным на его стороне.Цветные полосы, которые используются на сторонах резистора, являются черными, коричневыми, красными, оранжевыми, желтыми, зелеными, синими, пурпурными, серыми и белыми. Каждый цвет представляет собой разное число. Черная полоса представляет собой цифру 0, коричневая полоса представляет собой цифру 1, красная — 2 и так далее, вплоть до белой, которая представляет собой цифру 9. Эти числа очень важны в электронной сфере.
На стороне резистора может быть несколько цветных полос. У наиболее распространенных — четыре, но их может быть до 6 на резистор.На четырехполосном резисторе последняя полоса золотая или серебряная. Золотая полоса представляет собой положительный или отрицательный 5% допуск. Серебряная полоса на резисторе соответствует положительному или отрицательному допуску в 10%. Держите эту полосу с правой стороны и читайте цвета слева направо. Первые две полосы читаются как числа, которые они представляют в цветовом коде. Третья полоса действует как множитель для других полос, поэтому, например, если третья полоса была оранжевой полосой, которая равна 3, это будет означать, что вы умножаете два числа на 1000.Короче говоря, вы добавляете значение цвета нулями в конце, поэтому добавляете три нуля.
Приложения
Резисторыиспользуются по-разному. Прежде всего, они вставлены в цепи, чтобы защитить компоненты от повреждений, например светодиоды. Они также контролируют количество тока, протекающего в цепи, например, если вы хотите, чтобы ток был замедлен, вы должны добавить больше резисторов, чтобы создать большее сопротивление в цепи. Резисторы также могут распределять напряжение между различными частями цепи и управлять временной задержкой.
Материалы резисторов
Вы можете найти множество различных типов резисторов. Все они изготовлены из резистивного материала, заключенного в корпус из непроводящего материала, например из пластика. Постоянные резисторы обычно изготавливаются из углерода, заключенного в пластиковый цилиндр, с соединительным проводом на обоих концах. Большинство резисторов, используемых сегодня в электронике, представляют собой углеродные резисторы. Старые резисторы были сделаны из металла с плохой проводимостью, чтобы ограничить прохождение электричества.
Картинки для детей
Резисторы осевые на ленте.Компонент вырезается из ленты во время сборки, и деталь вставляется в плату.
Силовой резистор в алюминиевом корпусе мощностью 50 Вт с теплоотводом
Резистор мощности ВЗР 1,5кОм 12Вт, изготовлен в 1963 году в Советском Союзе
Комплект одинарных резисторов (SIL) с 8 отдельными резисторами по 47 Ом. Один конец каждого резистора подключен к отдельному выводу, а другие концы все вместе соединены с оставшимся (общим) выводом — выводом 1, конец которого обозначен белой точкой.
Резисторы с выводами для сквозного монтажа
Три резистора углеродного состава в лампе 1960-х годов радиоприемника
Углеродный пленочный резистор с открытой углеродной спиралью (Tesla TR-212 1 кОм)
Угольный резистор, напечатанный непосредственно на контактных площадках SMD на печатной плате. Внутри органайзера Psion II
урожая 1989 годаПрецизионная сеть тонкопленочных резисторов с лазерной обрезкой от Fluke, используемая в мультиметре Keithley DMM7510.Керамическая основа со стеклянной герметичной крышкой.
Проволочные резисторы большой мощности для динамического торможения вагонов с электроприводом. Такие резисторы могут рассеивать много киловатт в течение длительного периода времени.
Типовой потенциометр для монтажа на панели
Чертеж потенциометра с вырезом корпуса, показывающий детали: ( A ) вал, ( B ) неподвижный резистивный элемент из углеродной композиции, ( C ) грязесъемник из фосфористой бронзы, ( D ) вал, прикрепленный к дворнику, ( E, G ) клеммы, подключенные к концам резистивного элемента, клеммы ( F ), подключенные к дворнику.
Десятилетний ящик сопротивления «Kurbelwiderstand», произведенный в бывшей Восточной Германии.
На этом изображении показаны четыре резистора для поверхностного монтажа (компонент в верхнем левом углу — конденсатор), включая два резистора с нулевым сопротивлением. Вместо перемычек часто используются перемычки с нулевым сопротивлением, поэтому их можно вставить с помощью машины для вставки резисторов. Их сопротивление ненулевое, но незначительное.
Применение резисторов | Sciencing
Обновлено 3 ноября 2020 г.
Автор: Kim Lewis
Резисторы — это электрические компоненты, которые помогают контролировать протекание тока в цепи.Высокое сопротивление означает, что для данного напряжения доступен меньший ток. Внутри резистора электроны сталкиваются с ионами, замедляя электрический ток и уменьшая ток, выделяя тепло.
Транзисторы и светодиоды
Транзисторы и светодиоды — это устройства, чувствительные к электрическому току; слишком большой ток разрушит их, но слишком маленький мешает им работать должным образом. Резистор правильного номинала, помещенный в схему, позволяет транзисторам, светодиодам и другим полупроводниковым компонентам работать в наиболее подходящем для них диапазоне тока.
Синхронизация и частота
Во многих схемах используется резистор, подключенный к конденсатору, для обеспечения источника синхронизации; световые мигалки, электронные сирены и многие другие схемы зависят от этой функции. Конденсатору, который удерживает электрический заряд, как чашка держит воду, требуется определенное время, чтобы заполниться током, а резистор определяет, насколько быстро конденсатор заполняется. Если вы умножите значение сопротивления резистора на значение конденсатора в фарадах, вы получите значение времени, измеряемое в секундах; по мере увеличения сопротивления временной период схемы также увеличивается.
Делитель напряжения
Делитель напряжения представляет собой «гирляндную цепь» резисторов, соединенных вместе, один за другим, образующих последовательную цепь. Если все резисторы имеют одинаковое значение, падение напряжения на каждом из них будет одинаковым; в противном случае это пропорция, определяемая сопротивлением каждого резистора и общим сопротивлением всех резисторов в делителе. Делители напряжения полезны для компонентов, которым необходимо работать при меньшем напряжении, чем подаваемое на вход.2R
, где P — мощность нагрева в ваттах, I — ток в амперах, а R — сопротивление в омах, определяет количество тепла, выделяемого резистором.
Пользовательское управление функциями схемы
Некоторые типы резисторов являются переменными, что позволяет вам устанавливать их сопротивление, перемещая ползунок или вращая ручку. Изменяющееся сопротивление изменяет количество тока, протекающего в цепи. Вы можете, например, использовать переменный резистор для управления громкостью усилителя, высотой музыкального тона или скоростью двигателя.
Как выбрать правильный резистор
Все, что вам нужно знать, чтобы выбрать правильный резистор для вашего первого проекта разработки печатной платыПланируете ли вы приступить к разработке своей первой печатной платы? Существует так много типов компонентов, которые вы в конечном итоге будете использовать, но ни один из них не может превзойти печально известный из них — простой резистор. Если вы когда-либо смотрели на печатную плату, вы обнаружите, что резисторы повсюду, они контролируют ток и заставляют светиться светодиоды.Но что такое резистор, как он работает и как выбрать подходящий резистор для своей первой конструкции печатной платы?
Не бойтесь, мы предоставим вам все, что вам может понадобиться.
Итак… Что такое резистор? Резисторыявляются одним из нескольких пассивных электрических компонентов, и то, что они делают, относительно простое, но жизненно важное — создание сопротивления в потоке электрического тока.Вы когда-нибудь видели, как загорается светодиод? Это стало возможным благодаря надежному резистору. Поместив резистор позади светодиода в цепи, вы получите яркий свет, но ничего не перегорят!
Значение резистора — это его сопротивление, измеряемое в Ом (Ом). Если вы когда-либо проходили базовый курс электроники, то ваш инструктор, вероятно, вбил вам в голову закон Ома. При работе с резисторами вы будете снова и снова использовать закон Ома. Больше об этом:
Найти символ резистора на схеме очень просто.Международный символ имеет стандартную прямоугольную форму, но в стандарте США есть зигзагообразная линия, которая упрощает идентификацию. Независимо от формы, оба стиля имеют набор клемм, соединяющих концы.
Обозначение резистора как в американской, так и в международной версиях.
Какие бывают типы резисторов?Вокруг плавает тонна резисторов, разделенных на две категории — конструктивный тип и резистивный материал .Давайте рассмотрим оба:
Конструкция Тип- Фиксированные резисторы — Как следует из названия, эти резисторы имеют фиксированное сопротивление и допуск независимо от любых изменений внешних факторов, таких как температура, свет и т. Д.
- Переменные резисторы — Эти детали имеют изменяемое сопротивление. Потенциометр — отличный пример, у которого есть циферблат, который можно поворачивать, чтобы увеличивать или уменьшать сопротивление. К другим переменным резисторам относятся подстроечный резистор и реостат.
- Резисторы физического качества — Эти резисторы похожи на хамелеонов и могут изменять свое сопротивление в зависимости от множества физических свойств, включая температуру, уровень освещенности и даже магнитные поля. К резисторам физического качества относятся термистор, фоторезистор, варистор и магниторезистор.
также можно разделить на материал, из которого они сделаны, что оказывает огромное влияние на их сопротивление току.Эти материалы включают:
- Состав углерода
- Карбоновая пленка
- Металлическая пленка
- Толстая и тонкая пленка
- Фольга
- Проволочная обмотка
Углеродный состав — это более старая технология, которая существует уже некоторое время и позволяет производить резисторы с низкой степенью точности. Вы по-прежнему найдете их для использования в приложениях, где возникают импульсы высокой энергии.
Из всех типов материалов резисторов проволочные обмотки являются самыми старыми из всех, и вы все равно найдете их, когда вам понадобится точное сопротивление для приложений с большой мощностью.Эти древние резисторы широко известны своей надежностью даже при низких значениях сопротивления.
Сегодня резисторы из металлов и оксидов металлов являются наиболее широко используемыми, они лучше обеспечивают стабильные допуски и сопротивление, а также меньше подвержены влиянию изменений температуры.
Как использовать резисторы?Вы найдете резисторы, которые используются во многих приложениях, помимо сопротивления току.Другие приложения включают разделение напряжения, генерирование тепла, согласование и нагрузку цепей, управление усилением и фиксацию временных ограничений. В более практических приложениях вы обнаружите, что большие резисторы используются для питания электрических тормозов в поездах, что помогает высвободить всю накопленную кинетическую энергию.
Вот еще несколько интересных приложений, для которых используется универсальный резистор:
- Измерение электрического тока — Вы можете измерить падение напряжения на прецизионном резисторе с известным сопротивлением, когда он подключен к цепи.Это рассчитывается по закону Ома.
- Питание светодиодов — Подача на светодиод слишком большого тока приведет к сгоранию этого прекрасного света. Подключив резистор за светодиодом, вы можете контролировать, какой ток получает светодиод, чтобы свет продолжал светиться.
- Электродвигатели вентилятора — Эта система вентиляции в вашем автомобиле приводится в действие электродвигателем вентилятора, а специальный резистор используется для управления скоростью вентилятора. Этот тип резистора, что неудивительно, называется резистором двигателя вентилятора!
Значение, которое вы будете видеть снова и снова, — это сопротивление (R).Это значение отображается по-разному, и в настоящее время существует два стандарта для измерения того, как сопротивление отображается с помощью цветных маркеров или SMD-кодов.
Цветовое кодированиеВозможно, вы знакомы с системой цветового кодирования, если когда-либо возились с макетной платой. Этот метод был изобретен в 1920-х годах, и значения сопротивления и допуска отображаются несколькими цветными полосами, нарисованными на корпусе резистора.
Большинство резисторов, которые вы видите, имеют четыре цветных полосы.Вот как они распадаются:
- Первые две полосы определяют основные цифры значения сопротивления.
- Третья полоса определяет коэффициент умножения, который дает значение сопротивления.
- И, наконец, четвертая полоса предоставляет вам значение допуска.
Все разные цвета на резисторе соответствуют разным номерам. Вы можете использовать удобный калькулятор цветового кода резистора, чтобы быстро определить эти значения в будущем.Если вы в большей степени визуально обучаетесь, то вот отличное видео, которое мы нашли, показывает вам, как разобраться в цветовой кодировке:
Резисторы SMD
Не каждый резистор достаточно велик, чтобы его можно было идентифицировать по цветовой кодировке, особенно при использовании устройств поверхностного монтажа или SMD. Чтобы компенсировать меньшее пространство, резисторам SMD присваивается числовой код. Если вы посмотрите на современную печатную плату, вы заметите, что резисторы SMD также примерно одинакового размера.Это помогает стандартизировать производственный процесс с помощью этих быстросъемных машин.
Как выбрать подходящий резистор?Хорошо, время для самой важной части — научиться точно определять, какой резистор вам нужен для вашей первой конструкции печатной платы. Мы разбили это на три простых шага, которые включают:
- Расчет необходимого сопротивления
- Расчет номинальной мощности
- И, наконец, выбор резистора на основе этих двух значений.
Здесь вы будете использовать закон Ома для расчета сопротивления. Вы можете использовать одну из стандартных формул ниже, когда известны ваше напряжение (В) и ток (I).
Шаг 2 — Расчет номинальной мощностиЗатем вам нужно выяснить, сколько мощности потребуется вашему резистору для рассеивания. Это можно рассчитать по следующей формуле:
В этой формуле P — ваша мощность в ваттах, V, — падение напряжения на резисторе, а R — сопротивление резистора в Ом.Вот краткий пример того, как эта формула будет работать в действии:
В приведенной выше схеме у нас есть светодиод с напряжением 2 В, , резистор со значением 350 Ом (Ом), и блок питания, дающий нам 9 В . Итак, сколько мощности будет рассеиваться на этом резисторе? Подведем итоги. Сначала нам нужно найти падение напряжения на резисторе, которое составляет 9 В от батареи и 2 В от светодиода, поэтому:
9В — 2В = 7В
Затем вы можете вставить всю эту информацию в формулу:
P = 7V * 7V / 350 Ом = 0.14 Вт
Шаг 3 — Выбор резистораТеперь, когда у вас есть значения сопротивления и номинальной мощности, пора выбрать настоящий резистор у поставщика компонентов. Мы всегда рекомендуем использовать стандартные резисторы, которые есть в наличии у каждого дистрибьютора. Использование стандартных типов резисторов значительно упростит вашу жизнь, когда придет время их производить. Три надежных поставщика компонентов, у которых вы можете найти качественные детали, включают Digikey, Mouser и Farnell / Newark.
Сопротивление сильное в этомИтак, вот и все, что вам может понадобиться знать о резисторах для вашего первого проекта по разработке печатной платы. Резисторы обладают такой универсальностью, что вы будете использовать их снова и снова в каждом проекте электроники, который вы завершаете. В следующий раз, когда вам нужно будет выбрать резистор, запомните простой трехэтапный процесс: 1. рассчитайте сопротивление, 2. затем номинальную мощность, 3. а затем найдите поставщика!
Теперь, прежде чем вы начнете создавать свои собственные символы резисторов и посадочные места в программном обеспечении для проектирования печатных плат, не было бы проще, если бы они уже были сделаны для вас? Они уже есть! Ознакомьтесь с огромным количеством бесплатных библиотек деталей, доступных только в Fusion 360.Попробуйте электронику Fusion 360 бесплатно сегодня.
Все о резисторах — Electronics Projects Hub
Резисторы— это не только самый распространенный тип компонентов, используемых в проектах по конструированию электроники, но и самый простой в использовании. Резистор можно распознать как небольшой компонент трубчатой формы с проводом, идущим с каждого конца, и серией цветных полос на корпусе. Электрическое сопротивление измеряется в единицах Ом, при этом более высоким значениям предшествует слово кило для тысяч Ом, таким образом, 10 кОм эквивалентны 10 000 Ом.
Цветовой код резистора
Значение сопротивления резистора обозначается цветовым кодом, показанным ниже. Каждому цвету соответствует определенный номер. Желательно потратить время на изучение цветового кода.
Обычно для обозначения номинала резистора используются три цветные полосы. Например, резистор на 100 Ом имеет цветные полосы коричневый, черный, коричневый. Первый цвет полосы (коричневый) имеет значение 1, второй цвет полосы (черный) имеет значение 0, а последний цвет (коричневый) имеет значение 1.
Первые два цвета всегда представляют первое и второе числа номинала резистора, а третий цвет указывает количество нулей, необходимых после второго числа. Таким образом имеем коричневый, черный, коричневый = 100 Ом.
Рассмотрев еще несколько примеров, вы вскоре увидите, как возникает закономерность. Резистор сопротивлением 27 кОм представлен цветовым кодом: красный, фиолетовый, оранжевый = 27000 Ом = 27 кОм
Резистор 47 кОм имеет цветные полосы: желтый, фиолетовый, оранжевый = 47000 Ом = 47 кОм
Одна тысяча Ом обозначается буквой k; то есть 1000 Ом равно 1 кОм, а 27 000 Ом равно 27 кОм.С (+ или -) D
Допуск резистора
Вы должны быть знакомы с преобразованием цветовых кодов в значения резисторов и, наоборот, значений резисторов в цветовые коды. На этом этапе нам нужно ввести четвертую цветовую полосу. Эта полоса, обычно золотая или серебряная, представляет собой допуск резистора, золото — резистор с допуском 5 процентов, а серебро — резистор с допуском 10 процентов.
Допуск относится к допустимому разбросу значений сопротивления. Предположим, что у нас есть резистор на 100 Ом, поэтому цветные полосы коричневые, черные, коричневые, с четвертой золотой (5 процентов) полосой.Это означает, что фактическое значение сопротивления может составлять 100 Ом плюс 5 процентов или 100 Ом минус 5 процентов. Пять процентов от 100 Ом — это 5 Ом.
Следовательно, этот резистор, отмеченный значением 100 Ом, в действительности может иметь значение между 100 Ом плюс 5 Ом или 100 Ом минус 5 Ом; то есть между 105 Ом и 95 Ом.
Резистор должен быть ориентирован так, чтобы золотая или серебряная полоса находилась справа, а значение сопротивления считывалось слева направо. Вместо золотой (5 процентов) или серебряной (10 процентов) полосы резисторы также могут не иметь цвета, что соответствует 20-процентному допуску.
Номинальная мощность резистора
Еще одна особенность резистора — его номинальная мощность. Как правило, чаще всего используется небольшой резистор мощностью 1/4 Вт, особенно для проектов, описанных в этой книге. Физический размер резистора дает представление о его номинальной мощности. Если резисторы покупаются по несколько штук, то номинальная мощность будет указана на упаковке.
Следующий больший номинал мощности, резистор на 1/2 Вт, может использоваться вместо резистора на 1/4 Вт, но он физически больше и, следовательно, занимает больше места на плате.Это бесполезная трата, потому что в большинстве случаев используется меньший и более компактный резистор на 1/4 Вт. Одним из распространенных применений резистора является ограничение тока, протекающего через цепь.
Резистор малого номинала позволяет протекать большему току, а резистор высокого номинала пропускает меньший ток. Хорошим примером этого свойства может быть случай, когда батарея подает ток на лампу накаливания. Поместив резистор между батареей и лампочкой, можно уменьшить ток и приглушить свет.
Доступен широкий диапазон резисторов от 1 Ом до 1 МОм. На практике, однако, я считаю, что следующий диапазон значительно меньше и, следовательно, более управляем. Возможно, вы захотите использовать это в качестве стартового диапазона при покупке компонентов.
За прошедшие годы эти 12 значений покрыли более 90 процентов потребностей в резисторах в моем проекте, все с номинальной мощностью 1/4 ватта.
Резисторы надежны и маловероятны. У них есть дополнительное преимущество перед другими электронными компонентами, поскольку они наиболее просты в использовании в электронных схемах.При изгибе выводов резистора (для пайки, как объяснено ниже) всегда следите за тем, чтобы провод не перегибался в направлении корпуса резистора. Оставьте небольшой зазор (около 1/16 дюйма), чтобы корпус резистора не сломался при изгибе.
Подключение серии резисторов
Номинал резисторовможно увеличить, просто подключив их последовательно, то есть один вывод первого резистора подключается ко второму резистору. Увеличенное значение измеряется на двух свободных концах.Например, два резистора с индивидуальным номиналом 10 кОм в сумме дают 20 кОм при последовательном соединении. Это полезный совет, когда вам нужен резистор определенного номинала, который больше, чем может быть у вас под рукой. Окончательное значение резистора можно рассчитать из
.Rtotal = R1 + R2
Параллельное соединение резистора
Другой способ подключения резисторов — параллельно. В этом случае один конец первого резистора идет к одному концу второго резистора, и два свободных конца также соединяются вместе.Общее сопротивление на этот раз вычислить немного сложнее, оно равно
.1 / Rtotal = 1 / R1 + 1 / R2
Например, если два резистора имеют одинаковое значение, скажем, 10 кОм, то общее параллельное сопротивление будет 5 кОм. Если два резистора были неравными по номиналу, то общая параллельная комбинация всегда меньше меньшего из двух резисторов. Например, параллельное соединение резисторов 4,7 кОм и 10 кОм дает резистор 3,2 кОм.Это еще один совет по созданию резистора меньшего номинала, чем у вас.
Связанные Резистори типы резисторов
Различные типы резисторов — постоянные, переменные, линейные и нелинейные резисторы и их применение Что такое электрическое сопротивление?Свойство вещества, которое препятствует прохождению электрического тока (или электричества) через него, называется Сопротивление ИЛИ Сопротивление — это способность цепи противодействовать току.
Слюда, стекло, резина, дерево и т. Д. — это примеры резистивных материалов . Единица измерения сопротивления — ОМ (Ом) , где 1 Ом = 1 В / 1 А. который выводится из основного электрического закона Ома = V = IR.
Прочие определения Ом «Ω» следующие;
Если между двумя концами проводника существует разность потенциалов в 1 вольт и ток, протекающий через него, составляет 1 ампер, то сопротивление этого проводника будет 1 Ом (Ом).OR
Если через сопротивление протекает ток 1 ампер и генерируется энергия (в виде тепла) 1 джоуль в секунду (1 Вт), то измерение этого сопротивления составляет 1 Ом.
Ом — это величина измерения сопротивления, которая производит один джоуль энергии (в виде тепла) за одну секунду, когда через него протекает ток в один ампер.
Сопротивление, обратное сопротивлению, называется проводимостью.
Что такое эклектичный резистор?
Резистор — это компонент или устройство, рассчитанное на известное значение сопротивления.OR,
Те компоненты и устройства, которые специально разработаны для обеспечения определенного сопротивления и используются для противодействия или ограничения электрического тока, протекающего через них, называются резисторами.
Полезная информация : Сопротивление резистора зависит от его длины (l), удельного сопротивления (ρ) и его площади поперечного сечения (a), которая также известна как законы сопротивления … R = ρ (l / а) .
IEEE и IEC символы резисторов IEEE и IEC символы различных типов резисторов.Типы резисторов:
Резисторыдоступны в различных размерах, формах и материалах. Мы обсудим все возможные типы резисторов один за другим подробно, с плюсами, минусами и применением, как показано ниже.
Таблица / дерево различных типов резисторов.Есть два основных типа резисторов.
- Линейные резисторы
- Нелинейные резисторы
Те резисторы, значения которых меняются в зависимости от приложенного напряжения и температуры, называются линейными резисторами.Другими словами, резистор, значение тока которого прямо пропорционально приложенному напряжению, называется линейным резистором.
Как правило, существует два типа резисторов с линейными свойствами.
- Постоянные резисторы
- Переменные резисторы
Как видно из названия, постоянный резистор — это резистор, который имеет определенное значение, и мы не можем изменить значение постоянных резисторов.
Типы постоянных резисторов.
- Резисторы углеродного состава
- Резисторы с проволочной обмоткой
- Тонкопленочные резисторы
- Толстопленочные резисторы
Типичный постоянный резистор сделан из смеси гранулированных или порошкообразный углерод или графит, изоляционный наполнитель или связующее на основе смолы. Соотношение изоляционного материала определяет фактическое сопротивление резистора.Изолирующий порошок (связующее) выполнен в виде стержней и на обоих концах стержня имеются две металлические заглушки.
На обоих концах резистора есть два проводника для упрощения подключения к цепи с помощью пайки. Пластиковое покрытие покрывает стержни с различными цветовыми кодами (напечатанными), которые обозначают значение сопротивления. Они доступны с сопротивлением от 1 Ом до 25 МОм и номинальной мощностью от Вт до 5 Вт.
Конструкция и номинальная мощность резисторов из углеродного состава.Характеристика постоянных резисторов
Как правило, они очень дешевые и маленькие по размеру, следовательно, занимают меньше места. Они надежны и доступны в различных номинальных значениях сопротивления и мощности. Кроме того, постоянный резистор можно легко подключить к цепи и выдержать большее напряжение.
С другой стороны, они менее стабильны, что означает очень высокий температурный коэффициент. Кроме того, они создают небольшой шум по сравнению с резисторами других типов.
Связанные сообщения:
Резисторы с проволочной обмоткойРезистор с проволочной обмоткой изготавливается из изолирующего сердечника или стержня путем наматывания вокруг резистивного провода.Проволока сопротивления обычно изготавливается из вольфрама, манганина, нихрома или никеля или никель-хромового сплава, а изолирующий сердечник изготавливается из фарфора, бакелита, прессованной бумаги или керамической глины.
Манганиновые резисторы с проволочной обмоткой очень дороги и используются с чувствительным испытательным оборудованием, например Мост Уитстона и т. Д. Они доступны в диапазоне от 2 Вт до 100 Вт и более. Сопротивление резисторов этих типов составляет от 1 Ом до 200 кОм или более, и их можно безопасно эксплуатировать при температуре до 350 ° C.
кроме того, номинальная мощность резистора с проволочной обмоткой большой мощности составляет 500 Вт, а доступное значение сопротивления этих резисторов составляет 0,1 Ом — 100 кОм.
Конструкция резисторов с проволочной обмоткойПреимущества и недостатки резисторов с проволочной обмоткой
Резисторы с проволочной обмоткой производят меньше шума, чем резисторы из углеродистой композиции. Их характеристики хорошо работают в условиях перегрузки. Они надежны и универсальны и могут использоваться с диапазоном частот постоянного тока и звука.Недостатком резисторов с проволочной обмоткой является то, что они дороги и не могут использоваться в высокочастотном оборудовании.
Применение резисторов с проволочной обмоткой
Резисторы с проволочной обмоткой используются там, где требуется высокая чувствительность, точное измерение и сбалансированный контроль тока, например как шунт с амперметром. Кроме того, резисторы с проволочной обмоткой обычно используются в устройствах и оборудовании с высокой номинальной мощностью, контрольно-измерительных приборах, промышленных предприятиях и контрольном оборудовании.
Тонкопленочные резисторыВ основном все тонкопленочные резисторы изготавливаются из керамического стержня с высокой сеткой и резистивного материала.Очень тонкий слой проводящего материала, нанесенный на изолирующий стержень, пластину или трубку из высококачественного керамического материала или стекла. Есть еще два типа тонкопленочных резисторов.
- Углеродные пленочные резисторы
- Металлопленочные резисторы
Углеродные пленочные резисторы содержат стержень или сердечник из изоляционного материала из высококачественного керамического материала, который называется подложкой. Очень тонкий резистивный углеродный слой или пленка, наложенная вокруг стержня.Эти типы резисторов широко используются в электронных схемах из-за незначительного шума, широкого рабочего диапазона и стабильности по сравнению с твердотельными углеродными резисторами.
Конструкция углеродных пленочных резисторов и этикетки для них. Металлопленочные резисторыМеталлопленочные резисторы аналогичны по конструкции углеродным пленочным резисторам, но главное отличие состоит в том, что они содержат металл (или смесь оксидов металлов, никель, хром или смесь металлов и стекла, которая называется металлом). глазурь, которая используется как резистивная пленка) вместо угля.Металлопленочные резисторы очень малы, дешевы и надежны в эксплуатации. Их температурный коэффициент очень низкий (± 2 ppm / ° C) и используется там, где важны стабильность и низкий уровень шума.
Конструкция и внутренние части металлопленочного резистора. . Толстопленочные резисторыМетод производства толстопленочных резисторов такой же, как и тонкопленочных резисторов, но разница в том, что вокруг толстая пленка вместо тонкой пленки или слоя резистивного материала. Вот почему они называются толстопленочными резисторами.Есть два дополнительных типа толстопленочных резисторов.
- Металлооксидные резисторы
- Металлооксидные резисторы
- Плавкие резисторы
Окисление толстой пленки хлорида олова на нагретом стеклянном стержне (подложке) является простым метод изготовления металлооксидного резистора. Эти резисторы доступны в широком диапазоне сопротивлений с высокой температурной стабильностью. Кроме того, уровень рабочего шума очень низкий и может использоваться при высоких напряжениях.
Резисторы из оксида кермета (сетевые резисторы)В резисторах из оксида кермета внутренняя поверхность покрыта керамическими изоляционными материалами. А затем пленку или слой из углеродного или металлического сплава оборачивают вокруг резистора, а затем закрепляют в металлокерамике (которая известна как металлокерамика). Они имеют квадратную или прямоугольную форму, а выводы и контакты находятся под резисторами, что упрощает установку на печатных платах. Они обеспечивают стабильную работу при высоких температурах, поскольку их значения не меняются при изменении температуры.
Конструкция сети пленочного резистора из кермета Плавкие резисторыЭти типы резисторов аналогичны резисторам с проволочной обмоткой. Когда номинальная мощность цепи превышает указанное значение, этот резистор срабатывает, т.е. он размыкает или размыкает цепь. Вот почему они называются плавкими резисторами. Плавкие предохранители выполняют двойную работу: они ограничивают ток, а также могут использоваться в качестве предохранителя.
Они широко используются в телевизорах, усилителях и других дорогих электронных схемах.Обычно омическое сопротивление плавких резисторов составляет менее 10 Ом.
Переменные резисторыКак видно из названия, те резисторы, значения которых можно изменять с помощью шкалы, ручки и винта или вручную подходящим способом. В этих типах резисторов есть скользящий рычаг, который соединен с валом, и значение сопротивления может быть изменено путем вращения рычага. Они используются в радиоприемнике для регулировки громкости и сопротивления регулировки тембра.
Ниже приведены другие типы переменных резисторов
- Потенциометры
- Реостаты
- Подстроечные резисторы
Потенциометр представляет собой трехконтактное устройство контроля уровня, которое используется для управления уровнемером. напряжение в цепи.Сопротивление между двумя внешними клеммами постоянно, в то время как третья клемма соединена с подвижным контактом (Wiper), который может изменяться. Величину сопротивления можно изменить, вращая стеклоочиститель, соединенный с валом управления.
Конструкция потенциометраТаким образом, потенциометры можно использовать в качестве делителя напряжения, и эти резисторы называются резисторами переменного состава. Они доступны до 10 МОм.
Различные типы потенциометров РеостатыРеостаты представляют собой двух- или трехконтактное устройство, которое используется для ограничения тока вручную или вручную.Реостаты также известны как резисторы с отводами или переменные резисторы с обмоткой с проволочной обмоткой.
Типы резисторов реостатов и конструкция реостата с винтовым приводомДля изготовления реостатов они обмотаны проволокой из нихромового сопротивления вокруг керамического сердечника, а затем собраны в защитную оболочку. Металлическая полоса обернута вокруг резистивного элемента, и его можно использовать в качестве потенциометра или реостата (см. Примечание ниже для разницы между реостатом и потенциометром ).
Конструкция реостата с отводамиПеременные проволочные резисторы доступны в диапазоне от 1 до 150 Ом. Доступная номинальная мощность этих резисторов составляет от 3 до 200 Вт. В то время как наиболее часто используемые реостаты в зависимости от номинальной мощности составляют от 5 до 50 Вт.
Конструкция реостата с проволочной обмоткойПолезно знать:
В чем основное отличие потенциометра от реостата?
В принципе, между потенциометром и реостатом нет разницы.Оба являются переменными резисторами. Основное различие заключается в использовании и работе схемы, то есть для какой цели мы используем этот переменный резистор?
Например, если мы подключаем цепь между выводами резистивного элемента (где один вывод является общим концом резистивного элемента, а другой — скользящим контактом или стеклоочистителем) в качестве переменного резистора для управления током схемы, то это реостаты. .
С другой стороны, если мы сделаем то же самое, что упомянуто выше, для контроля уровня напряжения, то этот переменный резистор будет называться потенциометром.Вот и все.
ТриммерыЕсть дополнительный винт с потенциометром или переменными резисторами для повышения эффективности и работы, они известны как триммеры. Величину сопротивления можно изменить, изменив положение винта на вращение с помощью небольшой отвертки.
Конструкция различных типов подстроечных резисторов и подстроечных резисторов.Они изготовлены из углеродной композиции, углеродной пленки, металлокерамики и проволоки и доступны в диапазоне от 50 Ом до 5 мегаом.Номинальная мощность потенциометров Trimmers составляет от 1/3 до Вт.
Похожие сообщения:
Нелинейные резисторыМы знаем, что нелинейные резисторы — это те резисторы, в которых ток, протекающий через них, не изменяется в соответствии с законом Ома, но изменяется с изменением температуры или приложенного напряжения.
Кроме того, если ток, протекающий через резистор, изменяется с изменением температуры тела, такие резисторы называются термисторами.Если ток, протекающий через резистор, изменяется в зависимости от приложенного напряжения, он называется варисторами или VDR (резисторы, зависящие от напряжения).
Ниже приведены дополнительные типы нелинейных резисторов.
- Термисторы
- Варистеры (VDR)
- Фоторезистор или фотопроводящая ячейка или LDR
Термисторы — это двухполюсные устройства, которые очень чувствительны к температуре.Другими словами, термисторы — это тип переменного резистора, который замечает изменение температуры. Термисторы изготавливаются из кобальта, никеля, стронция и оксидов металлов марганца. Сопротивление термистора обратно пропорционально температуре, то есть сопротивление увеличивается при понижении температуры и наоборот.
Типы термисторов и их конструкцияЭто означает, что термисторы имеют отрицательный температурный коэффициент (NTC), но есть также PTC (положительный температурный коэффициент), который сделан из полупроводниковых материалов на основе титаната бария, и их сопротивление увеличивается при повышении температуры.
Варистеры (VDR) Варистеры — это резисторы, зависящие от напряжения (VDR), которые используются для устранения переходных процессов высокого напряжения. Другими словами, специальный тип переменных резисторов, используемых для защиты цепей от деструктивных скачков напряжения, называется варистерами.
Когда напряжение увеличивается (из-за освещения или неисправности линии) на подключенном чувствительном устройстве или системе, оно снижает уровень напряжения до безопасного уровня, то есть меняет уровень напряжений.
Фоторезистор или LDR (светозависимые резисторы) — это резистор, конечное значение сопротивления которого изменяется в зависимости от интенсивности света.Другими словами, те резисторы, значения сопротивления которых меняются при падающем на их поверхность свете, называются фоторезистором, или фотопроводящей ячейкой, или LDR (светозависимым резистором). Материал, который используется для изготовления таких резисторов, называется фотопроводниками, например сульфид кадмия, сульфид свинца и т. д.
Конструкция LDR (светозависимого резистора), фоторезистора или фотопроводящего элементаКогда свет падает на фотопроводящие элементы (LDR или фоторезистор), то количество свободных носителей (электронов) увеличивается. пары дырок) из-за световой энергии, которые уменьшают сопротивление полупроводникового материала (т.е.е. количество световой энергии обратно пропорционально материалу полупроводника). Это означает, что фоторезисторы имеют отрицательный температурный коэффициент.
Типы фотоэлементов и резисторы LDR SMD (технология поверхностного монтажа)Вы можете прочитать более подробную информацию о специальных резисторах, например, резисторе SMD с методами цветовой кодировки, которые мы уже обсуждали ранее.
Применение и применение фоторезисторов / фотопроводящих элементов или LDR
Эти типы резисторов используются в охранной сигнализации, открывателях дверей, детекторах пламени, детекторах дыма, световых счетчиках, схемах управления реле с активацией света, в промышленных и коммерческих целях. автоматическое управление уличным освещением и фотографические приборы и оборудование.
Связанное сообщение:
Применение резисторовПрактически оба типа резисторов (фиксированные и переменные) обычно используются для следующих целей.
Используются резисторы :
- Для контроля и ограничения тока
- Для изменения электрической энергии в виде тепловой энергии
- В качестве шунта в амперметрах
- В качестве множителя в вольтметре
- Для контроля температуры
- Для управления напряжением или падением
- В целях защиты e.г. Плавкие резисторы
- В лабораториях
- В бытовых электроприборах, таких как обогреватель, утюг, погружной стержень и т. Д.
- Широко используется в электронной промышленности
Полезно знать : Характеристики различных типов резисторов одинаковы для переменного тока и постоянный ток, но есть разница между сопротивлением переменному и постоянному току.
Похожие сообщения:
Постоянный резистор — Типы постоянных резисторов, определение и символ
Постоянные резисторы — наиболее часто используемые резисторы в электронные схемы.Эти резисторы имеют фиксированное сопротивление стоимость. Следовательно, невозможно изменить сопротивление постоянный резистор.
Сопротивление определение
Процесс ограничения потока электрический ток до определенного уровня называется сопротивлением. В устройство или компонент, используемый для ограничения потока электрического ток до определенного уровня называется резистором.
Устройство, ограничивающее только поток электрический ток до определенного уровня, но не изменяется и не контролируется поток электрического тока называется постоянным резистором.
Фиксированный определение резистора
Постоянные резисторы — это резисторы, сопротивление не меняется при изменении напряжение или температура. Постоянные резисторы доступны в различных форм и размеров.
Идеальный фиксированный резистор обеспечивает постоянное устойчивость во всех средах. Однако сопротивление практические резисторы немного изменяются с увеличением температура.
Наиболее часто используемые значения сопротивления постоянные резисторы включают 100 кОм, 10 кОм, 100 Ом, 10 Ом.
стоимость постоянных резисторов высока по сравнению со стоимостью переменные резисторы, потому что каждый раз изменить сопротивление нам нужно купить новый фиксированный резистор.В случае переменных резисторов мы используем одиночный резистор для разные значения сопротивления. Сопротивление фиксированной резистор измеряется с помощью амперметра.
Символ постоянного резистора
Стандарт IEC (Международная электротехническая комиссия) и Обозначение американского стандартного фиксированного резистора приведено ниже. фигура.
А Постоянный резистор состоит из двух выводов. Это два терминала используются для соединения с другими компонентами в Электронная схема.
Типы постоянных резисторов
Различные типы постоянных резисторов включают:
Проволока обмотанный резистор — это тип пассивного компонента, который изготавливается путем наматывания металлической проволоки на металлический сердечник.Металл провод действует как резистивный элемент для электрического тока. Следовательно, металлический провод ограничивает электрический ток до определенного уровень. Металлический сердечник действует как непроводящий материал. Следовательно, он не пропускает через себя электрический ток.
Манганин или нихром обычно используются в качестве металлические провода, потому что они обеспечивают высокое сопротивление электрический ток.
Углерод сочинение резистор
Углерод Составной резистор — это тип пассивного компонента, который ограничивает прохождение электрического тока до определенного уровня.
Резисторы из углеродистой композиции изготавливаются из цилиндрического резистивного элемента со встроенным металлическим концом шапки.Цилиндрический резистивный элемент из угля состав резистора изготовлен из смеси угольного порошка и керамические. Угольный порошок действует как хороший проводник электрический ток.
Резисторы из углеродного состава самые часто используемые резисторы в 1960-х годах и ранее. Однако, в наши дни эти резисторы используются редко из-за их высокой стоимость и невысокая стабильность.
Углерод пленочные резисторы являются наиболее широко используемыми резисторами в электронные схемы. Углеродные пленочные резисторы производятся размещение углеродной пленки на керамической подложке. Углеродная пленка действует как резистивный элемент для электрического тока и керамическая подложка действует как изоляционный материал для электрический ток.
Металлические заглушки установлены с обоих концов. резистивного элемента.Провода из меди соединяются на два конца этих заглушек. Резисторы из углеродной пленки производят меньше шума, чем резистор углеродного состава.
Металл Пленочный резистор — это тип пассивного компонента, в котором металлическая пленка используется для ограничения прохождения электрического тока до определенный уровень. Конструкция металлопленочного резистора почти аналогичен углеродному пленочному резистору.Единственный разница — это материал, из которого построена пленка. В углеродные пленочные резисторы, пленка построена с использованием углерода тогда как в резисторах с металлической пленкой пленка создается с использованием никель, хром или олово и сурьма.
Металлопленочные резисторыимеют низкий TCR. (Температурный коэффициент сопротивления). Скорость, с которой сопротивление материала изменяется при повышении температуры называется TCR.
Металл оксидно-пленочный резистор
Металл оксидно-пленочный резистор — это тип пассивного компонента в какая пленка оксида металла используется в качестве резистивного элемента для ограничить прохождение электрического тока до определенного уровня.
Конструкция металлооксидного пленочного резистора практически аналогичен металлопленочному резистору.Единственный разница — это материал, из которого построена пленка. В металлический пленочный резистор, пленка построена с использованием металлов такие как никель-хром, тогда как в металлооксидных пленочных резисторах, пленка построена с использованием оксида металла, такого как олово окись.
Стоимость металлооксидного пленочного резистора невысока. по сравнению с резистором из углеродного состава.Эти резисторы работают при высоких температурах.
Металл резистор глазури — это тип пассивного компонента, в котором смесь стеклянного порошка и металлических частиц используется для ограничения протекание электрического тока до определенного уровня.
Металлические резисторы для глазури имеют низкий TCR. (Температурный коэффициент сопротивления). Скорость, с которой сопротивление материала изменяется при повышении температуры называется TCR.
Фольга резисторы — самые точные и стабильные используемые компоненты ограничить прохождение электрического тока до определенного уровня. Фольга резисторы производят низкий уровень шума по сравнению с другими типами резисторы.