Современные типы литиевых батарей и их использование
С момента изобретения аккумуляторных батарей литиевого типа, они снискали огромную популярность в мире. Практичные, износоустойчивые, рассчитанные на длительный период эксплуатации, эти элементы питания с успехом поддерживают работоспособность не только различной электроники, но и большинства современных индивидуальных транспортных средств с электродвигателями: от складных электровелосипедов и самокатов до гироскутеров, моноколес и сигвеев. Постепенно их берут на вооружение и автомобилестроительные компании, создающие более габаритную технику.Способствует росту спроса на эту продукцию и тот факт, что в мире постоянно создаются новые виды Li-ion аккумуляторов, возникают более совершенные конструкции, а инженеры постоянно бьются над решением проблемы изобретения долговечной, легкой, экономно расходующей заряд и, в то же время, достаточно мощной батареи.
Самый популярный формат мощного литиевого аккумулятора – литий-ионные. Они поставляются на рынок с разным объемом, с разными токами разряда. Чтобы добиться изменения характеристик батареи, производители прибегают к различным манипуляциям. Например, наращивают слой электродной массы на фольге, чтобы увеличить удельные показатели устройства. Также с этой целью могут корректироваться толщина электрода или сепаратора,
изменяться размеры элементов в составе активной массы, выбираться разные материалы для производства электродов.
Традиционно, те из Li-батарей, которые рассчитаны на работу со стартерами, выполняются с максимальной мощностью, в то время как элементы питания мобильных девайсов и всевозможной электроники делаются с упором на большую емкость.
Типы литиевых батарей
Говоря о классификациях Li-аккумуляторов, в первую очередь стараются разделить их на классы в зависимости от основного активного вещества. Как правило, каждая такая категория разработок имеет собственную формулу и сокращенное название:
- Сложные литий-никель-кобальт-алюминий-оксидные батареи, также известные как NCA, изначально были популярны у создателей медицинского оборудования, силовых агрегатов, промышленных установок. Сегодня их активно включают в свои разработки и создатели электрического транспорта.. Данные элементы питания демонстрируют высокую энергоемкость наряду с показательной долговечностью, однако они не выбились еще пока в лидеры по причине своей высокой стоимости и сомнительной безопасности.
Литий-марганцевая разработка (в основе – литий-ионная ячейка, дополненная катодом в виде шинели Li-Mn) представляет собой продукт высокой
мощности, достаточно безопасный, однако характеризующийся не слишком большой емкостью. Их чаще всего поставляют в качестве комплектующих электровелосипедов: как горных, так и складывающихся. Подобные решения имеют небольшой вес, демонстрируют отличную скорость зарядки, но отличаются не слишком большой долговечностью. Впрочем, совсем недавно ученые сумели совместить литий-марганцевые конструкции с литий-никель-марганец-кобальтовыми, получив, в результате, более продвинутую батарею с хорошей энергоемкостью и продленным сроком службы.
- Литий-кобальтовые решения актуальны для техники, потребляющей небольшие токи.. В основе этих конструкций лежит анод графитового типа и катод на основе оксида кобальта. Среди достоинств таких АКБ — хорошие показатели удельной энергоемкости и отличная стоимость, в то время как среди минусов числятся малый эксплуатационный период, неустойчивость к пограничным температурам, скромная удельная мощность.
- АКБ с фосфатом железа, ожидаемо именуемые литий-железо-фосфатными, демонстрируют отменные электрохимические свойства, высокую силу тока, малое внутреннее сопротивление, термоустойчивость. Они не портятся от неправильной эксплуатации, что обеспечивает им длительный срок службы. LiFePo-модули встречаются, преимущественно, в установках, где необходима крайняя выносливость техники, способность переносить большие токи. В частности, они отлично зарекомендовали себя в качестве элемента мощных электровелосипедов. Эти АКБ работают очень долго и отлично выдерживают нагрузки, предоставляя пользователю нужную мощность при сравнительно небольшом весе.
- Литий-титанатные структуры имеют анод, выполненный из нанокристаллов титаната лития, плюс катод, сделанный из графита. Такое приспособление отличается от аналогов повышенной безопасностью, способностью эксплуатироваться при критичных температурах. Его крайне быстро можно зарядить и несколько дольше использовать, чем классический Li-Ion. Некоторые производители электромобилей уже положили глаз на эти аккумуляторы. Литий титанат актуален для транспорта, который используется в странах с холодным климатом или же в холодное/жаркое время года. Данные АКБ возможно заряжать и разряжать как при -50, так и при +50 градусах Цельсия.
Литий-полимерные аккумуляторы задействуют в роли электролита полимерный материал. Сегодня их очень часто можно встретить в конструкциях скутеров, моноколес и велосипедов с электродвигателями, а также в отдельных электромобилях! Данный вид АКБ считается одним из революционных, поскольку он отдает в десятки раз больше тока по сравнению со значением его емкости в ампер-часах. Малый вес, возможность работать в большом диапазоне температур — главные плюсы разработки. Срок ее службы составляет порядка 500 циклов.
Особняком сегодня идут литий-кислородные аккумуляторы, противопоставляемые литий-воздушным. Их называют инновацией на рынке универсальных элементов питания. Это приспособления с небольшим весом, но высокой производительностью, которые базируются на использовании наночастиц, содержащих Li и O2. Эта разработка в одной из последних ее модификаций была избавлена от недостатка быстрой потери энергии, защищена от избыточного заряда, а также продемонстрировала хорошую устойчивость к влаге и внешним воздействиям.
Форматы и размеры литиевых аккумуляторов
В зависимости от конструкции электрода выделяют рулонные системы (скрученные вокруг пластины) и цилиндрические, составленные из набора элементов (традиционная основа призматических батарей). Рулоны просто собирать, но они максимально эффективны только там, где требуются малая емкость и мощность.
Цилиндрические батарейки оснащаются винтовыми борнами или стандартными контактными площадками (в качестве токовыводов). Среди мелкогабаритных наиболее распространены форматы аккумуляторов Li-ion 18650, напоминающие обычные пальчиковые батарейки.
В зависимости от конструкции корпуса различают цилиндрические, призматические устройства, а также оснащенные фольговой оболочкой.
Цилиндрический корпус выгоден за счет того, что он обеспечивает минимальное изменение объема элемента питания в ходе его продолжительного использования. Электроды в таких АКБ всего представлены в виде рулонов.
- Призматические системы могут снабжаться винтовыми борнами или контактными площадками под лепестки. Их очень часто задействуют при сборке электротранспорта, особенно – на заводах компаний азиатского региона.
- Ламинированная фольга в качестве корпуса стала популярна после широкого распространения литий-полимерных АКБ. В них применяется особый электролит на полимерах с гелем и ионами лития. Это мягкий и гибкий материал, который мало весит и его удобно запаивать в фольгу. Токовыводы у таких аккумуляторов могут быть как на одной стороне, так и на разных.
В зависимости от конкретных задач, которые ставятся перед аккумуляторами, они могут принимать различные формы. Например, для электровелосипедов часто закупается литий ионный аккумулятор тип бутылка – его удобно монтировать на двухколесном транспортном средстве, встраивать в раму.
Размеры литий ионных батарей
Для определения формата аккумулятора литий-ион была разработана универсальная система маркировки АКБ. Каждый элемент питания, попадающий на рынок, обозначается буквенно-циферной комбинацией, в которую закладываются данные о его габаритах, составе, форме. Читать маркировку цилиндрических батарей следует таким образом:
- первая пара цифр говорит о диаметре изделия, указанном в миллиметрах;
- вторая пара цифр указывает на длину батареи;
- последнее значение является ссылкой на форму элемента питания (в случае с наиболее распространенными цилиндрическими устройствами их форма будет обозначена как 0).
Обозначение аккумуляторов класса; таблетка несколько иное. На их тип указывают буквы CR, вводимые в начале маркировки, далее следует две цифры – ссылка на диаметр в миллиметрах и еще две последующие – высота изделия (в десятых долях миллиметров).
Для нужд отрасли и упрощения подбора аккумуляторов производителями и покупателями были разработаны специальные сводные таблицы типоразмеров. Заглядывая в них можно увидеть тип, маркировку каждого аккумулятора и схожие с ним типоразмеры. Читая данные таблицы, стоит, однако, принимать во внимание, что указанные в них параметры только примерно отражают характеристики изделий. Например, толщина защитной платы может быть 3 миллиметра, а наружное покрытие значительно больше, чем на стандартных батарейках.
Дополнительно в маркировках производители часто указывают химические элементы, входящие в состав аккумуляторных батарей. Например, согласно общепринятому стандарту, ICR является обозначением кобальта, NCR – никеля и кобальта, IMR – марганца, INR – никеля и марганца.
Например, значение IMR22650, обнаруживаемое на батарейке, указывает на цилиндрическую перезаряжаемую батарею, выполненную на базе марганца, имеющую диаметр 22 миллиметра, а длину – 65 миллиметров.
Если тема литий-ионных АКБ и их разновидностей заинтересовала вас, рекомендуем посмотреть видео, посвященное сравнению видов различных исполнений аккумуляторов:
Перейти в раздел Li-ion аккумуляторовelectric-wheels.ru
Типы литиевых аккумуляторов
Литиевые аккумуляторы на современном рынке прочно заняли несколько различных ниш. В основном они используются во всевозможной потребительской электронике, портативном инструменте и мобильных устройствах, бытовой технике и т. п. Существуют даже литиевые аккумуляторы 12 вольт для авто. Хотя широкого распространения в автомобилестроении они пока не получили. Использование литиевых аккумуляторов в различных отраслях народного хозяйства привело к тому, что на рынке появилось много разновидностей этих аккумуляторных батарей. Основные типы литиевых АКБ мы рассмотрим в сегодняшней статье.
Содержание статьи
Разновидности литиевых аккумуляторов в зависимости от мощности и ёмкости
Мы здесь не будем писать о принципе работы Li аккумуляторных батарей и истории их возникновения. Подробно о литиевых аккумуляторах можно прочитать в статье по указанной ссылке. Также можете прочитать материалы отдельно про литий-полимерный и литий-ионный аккумулятор. А в этом материале хотелось бы рассмотреть именно различные типы Li аккумуляторов в зависимости от их характеристик и назначения.
Литиевый аккумулятор
Итак, что касается мощности и ёмкости литиевых батарей. Деление здесь достаточно условное. Для того чтобы выпускать аккумуляторы различной ёмкости, с разными токами разряда, производители изменяют ряд параметров. Например, они регулируют толщину слоя электродной массы на фольге (в случае рулонной конструкции). В большинстве случаев этот электродный слой наносится медную (минусовой электрод) и алюминиевую (плюсовой) фольгу. Благодаря такому увеличению электродного слоя растут удельные параметры аккумулятора.
Однако при наращивании активной массы приходится уменьшать толщину проводящей основы (фольгу). В результате аккумулятор может пропустить меньший ток, не перегреваясь при этом. Кроме того, увеличение слоя электродной массы приводит к увеличению сопротивления элемента. Чтобы снизить сопротивление, часто для активной массы используют более активные и дисперсные вещества. Этими параметрами производители «играют» при выпуске АКБ с теми или иными параметрами. Аккумуляторный элемент с тонкой фольгой и толстой активной массой показывает высокие значения запасаемой энергии. А его мощность будет низкой, и наоборот. И это можно регулировать, не изменяя типоразмера изделия.
Аккумуляторные батареи с разными значениями ёмкости и разрядного тока получаются при изменении следующих параметров:
- Толщина фольги;
- Толщина сепаратора;
- Материал плюсового и минусового электрода;
- Размер частиц активной массы;
- Толщина электрода.
При этом модели аккумуляторов, рассчитанных на более высокую мощность, оснащаются токовыводами больших размеров и массы. Это делается для предотвращения перегрева. Также для наращивания тока разряда используются всевозможные вещества, добавляемые в электролит или в электродную массу. У аккумуляторов с большой ёмкостью токовыводы, как правило, небольшие. Они рассчитываются на разрядный ток до 2С (обычно ток заряда-разряда аккумулятора указывается от его ёмкости) и зарядный ─ до 0,5С. Для литиевых АКБ большой ёмкости эти значения до 20С и до 40С, соответственно.
Модели литиевых аккумуляторов с высокой мощностью предназначены для питания стартёров, с высокой ёмкостью – для питания различной портативной аппаратуры. Что касается разработки литиевых батарей, то производители всевозможной электроники заказывают их в специальных фирмах. Те разрабатывают их с учётом предложенных условий, а затем размещают их в серийное производство. При разработке современных литиевых аккумуляторов учитываются следующие параметры:
- Ёмкость;
- Штатный и максимальный ток разряда;
- Размеры;
- Условия расположения внутри устройства;
- Рабочая температура;
- Ресурс (количество циклов заряд-разряд) и прочие.
Вернуться к содержанию
Различные конструкции литиевых аккумуляторных батарей
По конструктивным особенностям литиевые аккумуляторы можно разделить по двум признакам:
- Конструкция корпуса;
- Конструкция электродов.
Рассмотрим их подробнее.
Вернуться к содержанию
Конструкция электродов
Рулонного типа
На изображении ниже можно посмотреть Li─Ion аккумулятор с конструкцией рулонного типа.
Литиевый аккумулятор рулонного типа
Элементы рулонной конструкции изготавливаются двух типов:
- Рулон электродов скручивается вокруг виртуальной пластины. В одном корпусе могут размещаться несколько рулонов, подключённых параллельно;
- Цилиндрические. Различной высоты и диаметра.
Рулонная конструкция применяется там, где требуется аккумулятор небольшой ёмкости и мощность. Эта технология имеет небольшую трудоёмкость, поскольку скручивание электродных лент и сепаратора полностью автоматизировано. Недостатком такой конструкции является плохое теплоотведение от электродов. Фактически тепло отводится только через торец элемента.
Вернуться к содержанию
Из набора электродов
Литиевые аккумуляторы со сборкой из отдельных электродов применяются при производстве призматических АКБ.
Литиевый аккумулятор с набором пластин
Тепло здесь также отводится с торца электрода. Производители стараются улучшить теплоотвод посредством регулировки состава и дисперсности активной массы.
Вернуться к содержанию
Конструкция корпуса
Цилиндрические
Стоит уделить внимание цилиндрическим литиевым аккумуляторам. Они широко распространены в различной бытовой технике и электронике. Особенно популярны аккумуляторные элементы 18650.
Цилиндрические литиевые аккумуляторы
В качестве плюсов цилиндрического корпуса специалисты называют отсутствие изменения объёма при длительной эксплуатации. Это происходит за счёт того, что АКБ немного меняет объём в процессе заряда-разряда. Конструкция электродов в таком корпусе всегда рулонного типа. К недостаткам относят плохое теплоотведение.
Цилиндрические литиевые аккумуляторы могут иметь следующие токовыводы:
- Винтовые борны;
- Обычные контактные площадки.
Там, где более высокие требования к съёму тока, используются винтовые борны. Это АКБ с большим разрядным током и большой ёмкостью (более 20 Ач). Многочисленные испытания показывают, что цилиндрические литиевые аккумуляторы с винтовыми борнами выдерживают токи не более 10─15С. И это значения кратковременной нагрузки, при которой элемент быстро перегревается. При длительной работе они выдерживают разрядные токи 2─3С. В основном литиевые батарейки используют в портативном электроинструменте.
Цилиндрический литиевый аккумулятор с винтовыми борнами
Аккумуляторные элементы с контактными площадками обычно используются для объединения в батареи. Для этого их сваривают лентой при помощи контактной сварки. Иногда производители уже выпускают элементы с лепестками под самостоятельную пайку. Причём вид лепестков может быть различным в зависимости от типа пайки.
В обозначении типоразмера цилиндрических литиевых аккумуляторов обычно присутствуют их размеры. Например, литий─ионные элементы 18650 имеют высоту 65, а диаметр ─ 18 мм.
Вернуться к содержанию
Призматические
Призматические литиевые АКБ выпускаются:
- С винтовыми борнами;
- С контактными площадками под приваривание лепестков.
Призматические модели часто используются в азиатских странах для обеспечения питанием электрических велосипедов.
Призматический корпус литиевого аккумулятора
Вне зависимости от формы корпуса, его материал должен быть инертным по отношению к электродам, электролиту, активной массе. Такое же требование выдвигается к соединительным элементам, крепежу, прокладкам и т. п.
Вернуться к содержанию
Оболочка из ламинированной фольги
Такой вид корпуса получил распространение благодаря появлению литий─полимерных аккумуляторов. В их случае для переноса заряда также используются ионы лития и в целом здесь идут аналогичные электрохимические процессы. Но здесь электролит полимерный с добавлением гелевого вещества, содержащего ионы лития. Можете подробнее прочитать о том, в чём отличие литий─полимерного аккумулятора от ионного.
Литий─полимерный аккумулятор в ламинированной фольге
По весу такие аккумуляторные элементы легче цилиндрических и призматических. Поэтому корпус для них не используют, а помещают в пакет из ламинированной фольги, и герметично запаивают. Это тем более удобно, поскольку Li─Pol аккумуляторы имеют самые разные размеры и форму.
Среди минусов таких корпусов специалисты называют небольшую механическую прочность и меньший диапазон рабочих температур, чем у корпусных АКБ. К тому же, чаще возникают проблемы со вздутием аккумуляторного элемента.
По исполнению аккумуляторы в ламинированной фольге бывают:
- С токовыводами на одной стороне;
- На противоположных. Такая конструкция используется в случае высоких разрядных токов. Она позволяет равномерно распределять ток в активной массе электродов.
Вернуться к содержанию
Защита
В заключение стоит сказать несколько слов о защите, устанавливаемой на литиевых аккумуляторах. Контроллер заряда-разряда. Эти печатные платы устанавливаются практически на все аккумуляторы литиевого типа, используемые в потребительской электронике. Те элементы, которые будут работать в составе батареи, такой защиты могут не иметь. Их зарядом и разрядом будет управлять общий контроллер батареи.
Контроллер литиевого аккумулятора
Ещё один вариант защиты устанавливается на многих корпусных литиевых элементах. Это предохранительные клапаны для сброса избыточного давления в корпусе элемента. Тем самым предотвращается разрушение корпуса.
Исполнение такой защиты может быть разным. К примеру, ряд производителей используют фольгу с насечками, рассчитанную на определённое значение давления. В других случаях может быть установлена пружина, которая при достижении критического значения открывается и сбрасывает давление. В цилиндрических корпусах такая защита ставится под токовыводом.
Если статья была для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию нашего сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию
akbinfo.ru
какой тип батарей выбрать, LMO или LFP? / Открытые Технологии corporate blog / Habr
На сегодняшний день практически у каждого в кармане находится телефон (смартфон, камерофон, планшет), способный переплюнуть по производительности ваш домашний десктоп, который вы уже несколько лет не обновляли. В каждом гаджете у вас стоит литий-полимерная батарея. Теперь вопрос: кто из читателей вспомнит точно, когда произошёл безвозвратный переход от «звонилок» к мультифункциональным устройствам?
Сложно… Надо напрягать память, вспоминать год покупки первого «умного» телефона. Для меня это примерно 2008-2010 год. На тот момент ёмкость литиевой батареи для обычного телефона составляла порядка 700 мАч, сейчас ёмкость батарей телефонов достигает 4 тысяч мАч.
Увеличение ёмкости в 6 раз, при том, что, грубо говоря, размер батареи увеличился всего в 2 раза.
Как мы уже рассказывали в нашей статье, литий-ионные решения для ИБП стремительно завоёвывают рынок, обладают рядом неоспоримых преимуществ и достаточно безопасны в эксплуатации (тем более в условиях серверной).
Друзья, сегодня попытаемся разобраться и сравнить решения на железо-литий-фосфатных батареях (LFP) и литий-марганцевых (LMO), изучить их достоинства и недостатки, сравнить между собой по ряду удельных показателей. Напомню, что оба вида батарей относятся к литий-ионным, литий-полимерным аккумуляторам, но отличаются химическим составом. Если вас заинтересовало продолжение, прошу под кат.
Перспективы литиевых технологий в области накопления энергии
Текущая ситуация в РФ на 2017 год представляла следующее.
кликабельно
С использованием источника: «Концепция развития систем хранения электроэнергии в РФ», Минэнерго РФ, 21 августа 2017 года.
Как видим, литий-ионная технология на тот момент находилась в лидерах приближения к промышленной технологии производства (подразумевалась в первую очередь LFP технология).
Далее посмотрим на тенденции в США, точнее, рассмотрим свежую версию документа:
Справка: АББМ – энергетические массивы для источников бесперебойного питания, которые используются в электроэнергетике для:
- Резервирования электроэнергии для особо важных потребителей при перебоях в электроснабжении собственных нужд (СН) 0,4 кВ на подстанции (ПС).
- Как «буферный» накопитель для альтернативных источников.
- Компенсации дефицита мощности в режиме пикового потребления для разгрузки объектов генерации и передачи электричества.
- Накопления энергии в течении суток во время её низкой стоимости (ночное время суток).
кликабельно
Как видим, Li-Ion технологии по состоянию на 2016 год прочно удерживали лидирующее положение и показывали стремительный кратный рост и по мощности (МВт), и по энергии (МВт*ч).
В этом же документе можем прочитать следующее:
«Литий-ионные технологии представляют более чем 80% добавленной мощности и энергии системами АББМ выработанной в США на конец 2016 года. Литий-ионные батареи имеют высокоэффективный цикл (заряда, прим. автора) и быстрее отдают накопленную мощность. В добавок ко всему, они имеют высокую плотность энергии (удельная мощность, прим. автора) и большие токи отдачи, что обусловило выбор их в качестве батарей для портативной электроники и электрических транспортных средств».
Попробуем сравнить две технологии литий-ионных аккумуляторов для ИБП
Сравнивать будем призматические ячейки, построенные на химии LMO и LFP. Именно эти две технологии (с вариациями типа LMO-NMC) сейчас являются основными промышленными образцами для различного электротранспорта, электромобилей. Лирическое отступление по поводу батарей в электромобилях можно прочитать тутСпросите, причём тут электротранспорт? Поясню: активное распространение электротранспорта на Li-Ion технологиях уже давно перешагнуло стадию опытных образцов. А как мы знаем, все новейшие технологии приходят к нам из дорогих, новейших сфер жизни. Например, масса автотехнологий пришла к нам из Формулы-1, множество новейших технологий вошло в нашу жизнь из космической сферы, и так далее… Поэтому, на наш взгляд, сейчас происходит проникновение литий-ионных технологий в промышленные решения.
Рассмотрим таблицу сравнения основных производителей, химии батарей и собственно автомобильных компаний, активно выпускающих электромобили (гибриды).
Выберем исключительно призматические ячейки, которые подходят под форм-фактор использования в ИБП. Как видим, литий-титанат (LTO-NMC) является аутсайдером по удельной запасённой энергии. Остаются три производителя призматических ячеек, пригодных для использования в промышленных решениях, в частности, в батареях для ИБП.
Приведу цитату и перевод из документа «Оценка жизненного цикла и длительности эксплуатации литиевых электродов для батарей электротранспорта — ячейки для LEAF, Tesla и автобусов VOLVO» (Оригинал «Life cycle assessment of long life lithium electrode for electric vehicle batteries- cell for LEAF, Tesla and Volvo bus» от 11 декабря 2017 года от Mats Zackrisson. Здесь исследуются большей частью химические процессы в батареях автотранспорта, влияние вибраций и климатических условий эксплуатации, вред для окружающей среды. Однако имеется одна любопытная фраза на предмет сравнения двух технологий литий-ионных батарей.
В вольном моем переводе выглядит так:
NMC технология показывает меньшее воздействие на окружающую среду в расчёте на километр пробега транспорта, чем LFP технология с металлическим анодом батарейной ячейки, но здесь сложно уменьшить или ликвидировать ошибки. Основной смысл выглядит как: более высокая плотность энергии NMC даёт меньший вес и таким образом меньшее электропотребление.
1) Призматическая ячейка LMO технологии, производитель CPEC, USA, стоимость 400$. Внешний вид ячейки LMO
2) Призматическая ячейка LFP технологии, производитель AA Portable Power Corp, стоимость 160$. Внешний вид ячейки LFP
3) Для сравнения добавим авиационную батарею резервного питания, построенную на технологии LFP и ту самую которая участвовала в нашумевшем скандале возгорания Боинга в 2013 году, производитель True Blue Power.Внешний вид батареи TB44
4) Для объективности добавим стандартную батарею ИБП Lead-acid /Portalac/PXL12090, 12В.
Внешний вид классической батареи для ИБП
Cведём исходные данные в таблицу.
кликабельно
Как видим, действительно, наибольшей энергетической эффективностью обладают LMO ячейки, классический свинец проигрывает по удельной энергии минимум в два раза.
Всем ясно, что система BMS для массива Li-Ion батарей добавит массы этому решению, то есть, снизит удельную энергию примерно на 20 процентов (разница между чистым весом батарей и комплектным решением с учетом систем BMS, оболочки модуля, контроллера батарейного шкафа). Массу перемычек, батарейного выключателя и батарейного шкафа принимаем условно равной для литий-ионных батарей и батарейного массива свинцово-кислотных батарей.
Теперь попробуем сравнить расчётные параметры. При этом примем глубину разряда для свинца – 70%, а для Li-Ion – 90%.
кликабельно
Отметим, что низкая удельная энергия для авиационной батареи связана с тем, что сама батарея (которую можно рассматривать как модуль) заключена в металлический противопожарный кожух, обладает разъёмами и системой обогрева для эксплуатации в условиях низких температур. Для сравнения приведён расчёт для одной ячейки в составе батареи TB44, откуда можно сделать вывод о близких характеристиках с обычной LFP ячейкой. Кроме того, авиационная батарея рассчитана на большие токи заряда/разряда, что связано с необходимостью быстрой подготовки воздушного судна к новому полёту на земле и большим током разрядки в случае аварийной ситуации на борту, например, пропадании бортового питания
Кстати вот как сравнивает разные типы авиационных батарей сам производитель
Как видим из таблиц:
1) Мощность батарейного шкафа в случае LMO технологии выше.
2) Количество циклов работы батарей для LFP больше.
3) Удельный вес для LFP меньше, соответственно, при той же ёмкости батарейный шкаф на железо-литий-фосфатной технологии больше.
4) Склонность к тепловому разгону у технологии LFP меньше, что связано с его химической структурой. Как следствие, он считается относительно безопасным.
кликабельно
Или схема для LFP 160S2P, где чистая масса батарей будет 512 кг, а ёмкость — 200 ампер-часов.
кликабельно
ВЫВОД: Несмотря на то, что батареи с химией железо-литий-фосфат (LiFeO4, LFP) используются большей частью в электротранспорте, их характеристики обладают рядом преимуществ перед химической формулой LMO, позволяют заряжать большим током, менее подвержены риску теплового разгона. Какой тип батарей выбрать, остаётся на усмотрении поставщика готового комплексного решения, который определяет это по ряду критериев, и не в последнюю очередь это стоимость батарейного массива в составе ИБП. В данный момент любой тип литий-ионных батарей всё ещё проигрывает по стоимости классическим решениям, но большая удельная мощность литиевых батарей на единицу массы и меньшие габарита всё чаще будет определять выбор в сторону новых накопителей энергии. В ряде случаев меньшая полная масса ИБП определяет выбор в сторону новых технологий. Этот процесс будет проходить совершенно незаметно, и в данный момент сдерживается высокой стоимостью в низком ценовом сегменте (бытовые решения) и инертностью мышления в отношении пожарной безопасности лития у заказчиков, которые ищут лучшие варианты ИБП в промышленном сегменте ИБП мощностью более 100 кВА. Уровень среднего сегмента мощностей ИБП от 3кВА до 100 кВА возможен к реализации на литий-ионных технологиях, но ввиду мелкосерийного производства достаточно дорог и проигрывает готовым серийным образцам ИБП на VRLA батареях.
Узнать подробности и обсудить конкретное решение с использованием литий-ионных батарей для вашей серверной или ЦОД можно, направив запрос на электронную почту [email protected], либо сделав запрос на сайте компании www.ot.ru.
ОТКРЫТЫЕ ТЕХНОЛОГИИ – надёжные комплексные решения от мировых лидеров, адаптированные именно под ваши цели и задачи.
Автор: Куликов Олег
Ведущий инженер конструктор
Департамент интеграционных решений
Компания Открытые Технологии
habr.com
Разновидности литий-ионных аккумуляторов — Об электровелосипедах подробно — Блог — Статьи
Существует несколько типов литий-ионных аккумуляторов, которые имеют существенное отличие друг от друга. Все разновидности литий ионных аккумуляторов содержат литий и различные добавки прочих химических элементов. Рассмотрим подробнее каждый из этих типов.
Литий-ионные аккумуляторы уже стали классикой, они представляют собой перезаряжаемые источники энергии, где ионы лития при зарядке перемещаются от положительного электрода к отрицательному, а при разряде (т.е. в процессе работы) – от отрицательного электрода к положительному. АКБ литий-ионного типа широко используются в бытовой технике, электронике и электротранспорте. У них отличная энергетическая плотность, низкий саморазряд и отсутствует эффект памяти.
Типы литиевых аккумуляторов
- Одним из новых разновидностей литий-ионных АКБ являются LTO (литий-титанат). Эти аккумуляторы характеризуются большим жизненным циклом (порядка нескольких десятков тысяч циклов заряд-разряд). LTO аккумуляторы отличаются высокой степенью безопасности, имеют номинальное напряжение 2.4 В, но их энергетическая плотность несколько ниже, чем у классических литий-ионных АКБ. LTO батареи используются в наручных часах и электрокарах, а также в мобильных медицинских устройствах.
- Литий-полимерные аккумуляторы – еще один тип литиевых аккумуляторов. Тонкие ячейки Li-Polymer АКБ обеспечивают высокую и объемную плотность энергии. Такие аккумуляторы стабильны при высоких температурах и перепадах напряжения. Чаще всего литий-полимерные аккумуляторы применяются в беспроводных устройствах, портативных плеерах, цифровых камерах, ноутбуках, электронных книгах и электровелосипедах.
- Аккумуляторы LiFePO4 — это батареи с высокой степенью безопасности, большим жизненным циклом (до 2000) и достаточно невысокой себестоимостью при производстве. Батареи LiFePO4 идеально подходят для высоких токов разрядки, и широко используются в военной технике, солнечных энергосистемах, источниках бесперебойного питания, электроинструментах и электрических велосипедах. Магазин ВольтБайкс принимает заявки на изготовление литиевых АКБ.
- Батареи Li-SO2 (диоксид серы) – это аккумуляторы с высокой плотностью энергии и хорошей устойчивости к разряду на высоких мощностях. Аккумуляторы такого типа находят свое применение в военной отрасли, метеорологии и космонавтике. Они обладают очень низким саморазрядом и способны работать в самых экстремальных условиях.
- Аккумуляторы Li-MnO2 (литий-диоксид марганец) – это источники питания с легким литиевым анодом и твердым катодом, погруженным в нетоксичный органический электролит. Такие АКБ применяются электронных системах контроля доступа, медицинском оборудовании, пожарных сигнализациях, современной цифровой технике, а также аварийных радиобуях и резервных источниках питания.
Как видим, типы литий-ионных батарей достаточно многочисленны, причем мы перечислили лишь наиболее распространенные разновидности этих АКБ. Каждый тип аккумуляторов имеет свои плюсы и минусы, и находит применение в цифровых устройствах и современной технике.
Обратите внимание на наш другой материал – о различиях между литий-ионными и литий-ферро-фосфатными батареями.
www.voltbikes.ru
Виды и типы аккумуляторных батарей — подробно!
- Категория: Поддержка по аккумуляторным батареям
- Опубликовано 25.06.2015 19:00
- Автор: Abramova Olesya
Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.
Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.
Рисунок 1. Вольтов столб из шести элементов. |
Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта |
Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.
Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.
Основные виды аккумуляторов приведены в таблице №1.
Тип |
Применение |
Обозначение |
Рабочая температура, ºC |
Напряжение элемента, В |
Удельная энергия, Вт∙ч/кг |
Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный) |
Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д. |
Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S) |
-20 … +40 |
3,2-4,2 |
280 |
никель-солевой |
Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии |
Na/NiCl |
-50 … +70 |
2,58 |
140 |
никель-кадмиевый |
Электрокары, речные и морские суда, авиация |
Ni-Cd |
–50 … +40 |
1,2-1,35 |
40 – 80 |
железо-никелевый |
Резервное электропитание, тяговые для электротранспорта, цепи управления |
Ni-Fe |
–40 … +46 |
1,2 |
100 |
никель-водородный |
Космос |
Ni-h3 |
|
1,5 |
75 |
никель-металл-гидридный |
электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника. |
Ni-MH |
–60 … +55 |
1,2-1,25 |
60 – 72 |
никель-цинковый |
Фотоаппараты |
Ni-Zn |
–30 … +40 |
1,65 |
60 |
свинцово-кислотный |
Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д. |
Pb |
–40 … +40 |
2, 11-2,17 |
30 – 60 |
серебряно-цинковый |
Военная сфера |
Ag-Zn |
–40 … +50 |
1,85 |
<150 |
серебряно-кадмиевый |
Космос, связь, военные технологии |
Ag-Cd |
–30 … +50 |
1,6 |
45 – 90 |
цинк-бромный |
|
Zn-Br |
|
1,82 |
70 – 145 |
цинк-хлорный |
|
Zn-Cl |
–20 … +30 |
1,98-2,2 |
160 – 250 |
Таблица №1. Классификация аккумуляторных батарей.
Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.
Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.
Свинцово-кислотные аккумуляторные батареи
Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.
Принцип действия свинцово-кислотных батарей
Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.
Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.
Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.
Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).
Типы свинцово-кислотных батарей
-
Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.
-
Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.
-
Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.
Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.
Рисунок №4. AGM VRLA аккумуляторы EverExceed.
-
GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.
Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.
Рисунок №5. GEL VRLA аккумулятор EverExceed.
-
OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.
Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.
Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.
Рисунок №6. Строение OPzV аккумулятора EverExceed. -
OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.
Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.
Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.
Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.
Рисунок №7. OPzS аккумулятор Victron Energy.
Характеристики свинцово-кислотных аккумуляторов
Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.
Тип |
LA |
VRLA |
AGM VRLA |
GEL VRLA |
OPzV |
OPzS |
Емкость, Ампер/час |
10 – 300 |
1 – 300 |
1 – 3000 |
1 – 3000 |
50 – 3500 |
50 – 3500 |
Напряжение, Вольт |
6, 12 |
4, 6, 12 |
2, 4, 6, 12 |
2, 6, 12 |
2 |
2 |
Оптимальная глубина разряда, % |
|
30 |
<40 |
<50 |
<60 |
<60 |
Допустимая глубина разряда, % |
|
<75 |
<80 |
<90 |
<90 |
<100 |
Циклический ресурс, D.O.D.=50% |
|
<250-300 |
<1000 |
<1400 |
<3200 |
<3300 |
Оптимальная температура, °С |
0 … +45 |
+15 … +25 |
+10 … +25 |
+10 … +25 |
0 … +30 |
0 … +30 |
Диапазон рабочих температур, °С |
–50 … +70 |
–35 … +60 |
–40 … +70 |
–40 … +70 |
–40 … +70 |
–40 … +70 |
Срок службы, лет при +20°С |
<7 |
<7 |
5 – 15 |
8 – 15 |
15 – 20 |
17 – 25 |
Саморазряд, % |
3 – 5 |
2 – 3 |
1 – 2 |
1 – 2 |
1 – 2 |
1 – 2 |
Макс. ток заряда, % от емкости |
10 – 20 |
20 – 25 |
20 – 30 |
15 – 20 |
15 – 20 |
10 – 15 |
Минимальное время заряда, ч |
8 – 12 |
6 – 10 |
6 – 10 |
8 – 12 |
10 – 14 |
10 – 15 |
Требования к обслуживанию |
3 – 6 мес. |
нет |
нет |
нет |
нет |
1 – 2 года |
Средняя стоимость, $, 12В/100Ач. |
70 – 150 |
200 – 250 |
250 – 380 |
350 – 500 |
1000 – 1400 |
1500 – 3500 |
Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.
Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).
Литий-ионные (литиевые) аккумуляторные батареи
История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.
Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.
Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.
Принцип действия литиевых (литий-ионных) батарей
Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.
Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.
Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.
Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.
Типы литий-ионных аккумуляторов
Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.
Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.
-
Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно к
best-energy.com.ua
Типы и размеры современных аккумуляторов Li-ion — технические характеристики
От начала работ по созданию аккумуляторных батарей на основе чистого лития до появления первой партии литий-ионных перезаряжающихся элементов прошло более 80 лет. В 1991 году компанией Sony была выпущена Li-ion батарея. Литий – металл легкий, активный и энергоемкий, но его создатели источников энергии не смогли приручить, пока. Все типы литиевых батареек и аккумуляторы работают с ионами LI в составе сложных солей. По видам активного элемента названы типы батарей, от состава зависит их напряжение на одну ячейку и уровень саморазряда. Удельная энергия гальванических элементов с Li в несколько раз выше, чем Ni-Cd.
Типы литиевых аккумуляторов, размеры
Батарея состоит из положительного и отрицательного электродов из алюминиевой или медной фольги. На поверхность катода тонким слоем нанесен оксид лития, а анод представляет пористый углерод. Между ними сепаратор. Электролит представляет раствор соли лития. При зарядке анод теряет электроды, катод притягивает. Разрядка сопровождается обратной реакцией.
На катод наносят:
- литий- оксид кобальт или литий-кобальт;
- литий- оксид марганца, именуемый шпиндель, литий- марганец;
- литий-фосфат железа, LEP;
- литий никель-марганец-кобальт, сокращенно НКМ;
- Литий- никель-кобальт-оксид алюминия или НКА.
Анод выполнен из графитовой пластины – чистый углерод. Но уже ведутся работы по замене его кремниевым.
Подбирая состав ионных компонентов, производители улучшают отдельные свойства батарей. В зависимости от агрегатного состояния электролита литиевые аккумуляторы могут быть ионными или полимерными. Какой тип выбрать зависит от суммы технических показателей.
Получили известность и используются в различных приборах и технике следующие типы литиевых батарей.
- Литий-ионные, с номинальным напряжением 3,6 В. В них в необслуживаемой батарее залит жидкий электролит.
- Литий-полимерные – номинальное напряжение 3,7 В, электролит заполняет свободное пространство в виде геля.
- Литий- железо фосфатные – номинальное напряжение 3,3 В, характеризуется устойчивостью к морозу, не страшна глубокая разрядка, вариант для транспорта.
Характеристики батарей зависят от толщины фольги, % состава компонентов в активной обмазке. Производители создают модели с большей емкостью или мощностью, подбирая состав, технологию нанесения, вид токопроводящих пластин.
Конструкция литий-ионных аккумуляторов
По конструкции батареи li-ion бывают рулонного типа и с набором пластин. Рулонный тип предполагает, что сложенные пластины закручивают в цилиндр или полоса сматывается так, как будто внутри установлена пластина, рулон получается плоским. В корпусе может разместиться несколько таких рулонов. Как отдельные банки, они подключаются в общий вывод параллельно.
Именно из набора литиевых пластин состит призматический АКБ.
Цилиндрические литиевые аккумуляторы используются отдельно батареей или комплектом, в общем корпусе. Токовыводы представляют контактные площадки или винтовые борны. За счет высоких борнов можно самостоятельно собрать батарею нужной емкости, соединяя контакты с помощью токопроводящей ленты. Размеры цилиндрических батарей унифицированы. Так 18650 означает, высота цилиндра 65 мм, диаметр 18 мм.
В оболочке из ламинированой фольги могут быть только литий-полимерные аккумуляторы. Они легкие, компактные, принимают нужную форму. Но непрочный корпус сокращает срок службы батареи.
Видео
Интересует, из каких компонентов собрана литий-ионная батарейка – посмотрите видео.
batts.pro
Литий-ионные аккумуляторы. Устройство и виды.Работа и применение
Сегодня именно литий-ионные аккумуляторы наиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.
Устройство
В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.
- Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
- Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
- Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
- Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
- Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.
Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.
Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.
Принцип действия
- В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
- Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
- Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
- После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.
При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.
- Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.
Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.
Стандартная зарядка аккумулятора выглядит следующим образом:
- Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
- Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
- В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.
Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.
Разновидности и применение
Существуют два форм-фактора литий-ионных аккумуляторов:
- Цилиндрические литий-ионные аккумуляторы.
- Таблеточные литий-ионные аккумуляторы.
Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.
Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
- Литий-кобальтовый аккумулятор. Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.
Области применения; мобильная электроника.
- Литий-марганцевый аккумулятор. Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.
Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.
- Литий-никель-марганец-кобальт-оксидный аккумулятор. В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.
Области применения; для частного и промышленного использования (источники бесперебойного питания, системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).
- Литий-железо-фосфатный аккумулятор. Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.
Области применения; стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.
- Литий-никель-кобальт-алюминий-оксидный аккумулятор. Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.
Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.
- Литий-титанатный аккумулятор. Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.
Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.
Области применения; уличное освещение на солнечных элементах, электрические силовые агрегаты автомобилей (Honda Fit-EV, Mitsubishi i-MiEV), ИБП.
Типичные характеристики
В целом литий-ионные аккумуляторы имеют следующие типичные характеристики:
- Минимальное напряжение — не ниже 2,2-2,5В.
- Максимальное напряжение – не выше 4,25-4,35В.
- Время заряда: 2-4 часа.
- Саморазряд при комнатной температуре – порядка 7 % в год.
- Диапазон рабочих температур, начиная от −20 °C и заканчивая +60 °C.
- Число циклов заряд/разряд до достижения потери 20% емкости составляет 500-1000.
Достоинства и недостатки
К преимуществам можно отнести:
- Высокая энергетическая плотность при сравнении с щелочными аккумуляторами с применением никеля.
- Достаточно высокое напряжение одного аккумуляторного элемента.
- Отсутствие «эффекта памяти», что обеспечивает простую эксплуатацию.
- Значительное число циклов заряда-разряда.
- Длительный срок эксплуатации.
- Широкий температурный диапазон, обеспечивающий неизменные рабочие характеристики.
- Относительная экологическая безопасность.
Среди недостатков можно выделить:
- Умеренный ток разряда.
- Относительно быстрое старение.
- Сравнительно высокая стоимость.
- Невозможность работы без встроенного контроллера.
- Вероятность самовозгорания при высоких нагрузках и при слишком глубоком разряде.
- Конструкция требует существенных доработок, ведь она не доведена до совершенства.
Похожие темы:
electrosam.ru