Принцип работы термопары: описание, устройство, схема
Принцип действия и устройство термопары предельно просты. Это обусловило популярность данного прибора и широкое применение во всех отраслях науки и техники. Термопара предназначается для измерения температур в широком диапазоне – от -270 до 2500 градусов по Цельсию. Устройство вот уже не одно десятилетие является незаменимым помощником инженеров и ученых. Работает надежно и безотказно, а показания температуры всегда правдивые. Более совершенного и точного прибора просто не существует. Все современные устройства функционируют по принципу термопары. Работают в тяжелых условиях.
Назначение термопары
Данное устройство преобразовывает тепловую энергию в электрический ток и позволяет измерять температуру. В отличие от традиционных ртутных градусников, способно работать в условиях как экстремально низких, так и экстремально высоких температур. Данная особенность обусловила широкое применение термопары в самых разнообразных установках: промышленные металлургические печи, газовые котлы, вакуумные камеры для химико-термической обработки, духовой шкаф бытовой газовой плиты. Принцип работы термопары всегда остается неизменным и не зависит от того, в каком устройстве она монтируется.
От надежной и бесперебойной работы термопары зависит работа системы аварийного отключения приборов в случае превышения допустимых лимитов температур. Поэтому данное устройство должно быть надежным и давать точные показания, чтобы не подвергать риску жизнь людей.
Принцип действия термопары
Термопара имеет три основных элемента. Это два проводника электричества из разных материалов, а также защитная трубка. Два конца проводников (их еще называют термоэлектродами) спаяны, а два других подключаются к потенциометру (прибор для измерения температуры).
Если говорить простым языком, принцип работы термопары заключается в том, что спай термоэлектродов помещается в среду, температуру которой необходимо измерить. В соответствии с правилом Зеебека, возникает разность потенциалов на проводниках (иначе – термоэлектричество). Чем больше температура среды – тем более значимой является разница потенциалов. Соответственно, стрелка прибора отклоняется больше.
В современных комплексах измерения на смену механическому устройству пришли цифровые индикаторы температуры. Однако далеко не всегда новый прибор превосходит по своим характеристикам старые аппараты еще советских времен. В технических вузах, да и в научно-исследовательских учреждениях, и по сей день пользуются потенциометрами 20-30-летней давности. И они демонстрируют поразительную точность и стабильность измерений.
Эффект Зеебека
На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.
Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.
В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.
Схема подключения термопары
Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.
Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.
Материалы проводников
Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.
Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов. Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными. Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.
В настоящее время наиболее распространены термопары следующих видов: E, J, K.
Термопара типа E
В качестве материалов для проводников используются константан и хромель. Изделия данного типа хорошо зарекомендовали себя по части надежности и точности показаний. Свидетельств тому – многочисленные положительные отзывы специалистов. Однако данный состав демонстрирует точность измерений лишь в положительном диапазоне температур до 600 градусов по Цельсию включительно.
Термопара типа J
По принципу работы термопара не отличается от предыдущей. Однако хромель уступил место технически чистому железу, что позволило существенно расширить диапазон рабочей температуры с сохранением стабильности показаний. Он составляет от -100 до 1200 градусов по Цельсию.
Термопара типа K
Это, пожалуй, самый распространенный и применяемый повсюду тип термопары. Пара хромель — алюминий отлично работает при температурах от -200 до 1350 градусов по Цельсию. Данный тип термопары отличается большой чувствительностью и фиксирует даже незначительный скачок температуры. Благодаря такому набору параметров, термопара применяется и на производстве, и для научных исследований. Но есть у нее и существенный недостаток – влияние состава рабочей атмосферы. Так, если данный вид термопары будет работать в среде CO2, то термопара будет давать некорректные показания. Данная особенность ограничивает применение устройств такого типа. Схема и принцип работы термопары остаются неизменными. Разница лишь в химическом составе электродов.
Проверка работы термопары
В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.
Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.
Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.
Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.
В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.
Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.
Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.
Преимущества термопары
Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.
Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.
Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.
Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.
Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.
Недостатки термопары
Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.
Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры.
принцип работы, как проверить работает ли мультиметром, ремонт своими руками, для чего нужна, замена
Во многих домах центральным элементом системы отопления является газовый котёл. Однако для поддержания исправности прибора необходимо принимать во внимание особенности функционирования оборудования.
Например, в процессе работы котельной установки внутри камеры сгорания температура воздуха повышается, поэтому важно контролировать
Специально для этого используется термопара — термоэлектрический прибор, который является практически единственным устройством для точного измерения повышенных температур. Сегодня применяют оборудование, функционирующее вместе с автоматическими клапанами.
Особенности регулировки температуры в газовых котлах термопарой
Широкое применение оборудования обуславливается тем, что этот прибор считается главным способом измерить температуру воздуха, а также контролировать уровень пламени.
Ведь устройство не подвергается воздействию повышенных температур и функционирует по специальному принципу, позволяющему получать точные показатели и быстро реагировать даже на незначительные изменения.
Для чего нужна
Термопара — прибор, который устанавливается в отопительном оборудовании и предназначен, чтобы преобразовать термическую энергию в электрический ток для электромагнитных катушек и выполняет функцию главной составляющей защиты газо-контроля. Прибор работает в комплексе со специальным отсекающим газовым клапаном, перекрывающим подачу потока топлива.
Принцип работы
Для изготовления прибора используется сплав из металлов. Он выдерживает воздействие высокими температурами. Однако если в оборудовании произойдёт сбой, то работа газового котла будет остановлена.
Фото 1. Термопара для газового котла с автоматикой 345-1000 мм, производитель — «Арбат», Россия.
Ведь этот термоэлемент функционирует в комплексе со специальным электромагнитным отсекающим клапаном, регулирующим поступление газа в топливный тракт, который закрывается сразу же после поломки термопары.
Принцип работы прибора, построен на таком физическом явлении: два металла соединяются и при нагреве в точках крепления (рабочая зона, которая помещается в пламя) на холодных концах появляется напряжение. Это называется эффектом «Зеебека».
Внимание! Многие модели электромагнитных клапанов чувствительны, поэтому остаются открытыми до того момента, как напряжение на входе не снизится до 20 мВ.
Технические характеристики
У термопары следующие технические параметры:
- широкий диапазон температур;
- высокая точность измерения;
- повышенная устойчивость к коррозии;
- электронный механизм управления.
Разновидности
Термопара характеризуется несложным строением. При наличии соответствующих навыков это устройство можно даже сделать собственными руками в домашних условиях. Однако лучше приобрести промышленный прибор, прежде изучив технические характеристики, а также особенности всех типов устройств.
Специализированные компании производят термопару трёх видов:
- Типа Е — для изготовления используются две пластины: константан и хромель. Этот прибор отличается повышенной производительностью. Кроме того, он контролирует процесс, протекающий в диапазоне температур от —5°С до 74°С.
- Типа J — в приборе вместо хромеля установлена железная пластинка, которая ничуть не ухудшает технические характеристики устройства. Имеет повышенную чувствительность к изменениям, а температурный диапазон — от —4°С до 74°С.
Типа К — такие термопары пользуются наибольшей популярностью. Они оснащены пластинами, сделанными из алюминия и хромеля.
Рабочий диапазон изменяется в пределах от —20°С до 135°С, а саму чувствительность производителям удалось повысить на несколько позиций.
Продолжительность срока эксплуатации этого прибора определяется средой использования: так, в углекислом газе пластина из хромеля покрывается ржавчиной в виде зелёной гнили, сплав быстро портится и устройство теряет немагнитные свойства.
Существуют и другие типы термопар, однако, они не подходят для применения в газовых котлах по причинам:
- сплавы содержат дорогие металлы, поэтому у них высокая стоимость;
- такие модели ничем не лучше, чем типы К, Е или J.
Вам также будет интересно:
Как проверить, исправно ли работает устройство с помощью мультиметра
Если возникло подозрение на поломку, то выполняют диагностику исправности терморегулятора. Она проводится следующими способами:
- Один конец прибора соединяется с мультиметром, а противоположный нагревается газовой горелкой либо зажигалкой. Если устройство исправно, то напряжение ниже 50 мВ.
- Нужно тщательно проверить состояние проводников на наличие загрязнений или окисленных участков. Они также свидетельствуют о поломке.
Как правильно выбрать
Чтобы прибор исправно работал и не привёл к сбою всю систему, необходимо внимательно выбирать устройство. Для этого учитываются такие особенности:
- Технические параметры термопары должны полностью соответствовать характеристикам газового котла.
- На устройстве не должно быть видимых повреждений (микротрещины, сколы, потёртости).
- Маркировки должны быть видны.
- Предпочтение отдают продукции только проверенных компаний, которые несут ответственность за качество изделий.
Замена, если нельзя отремонтировать своими руками
Устройство вызывает сбои по разным причинам. Заменить сломанный прибор на новый можно самостоятельно. Для этого необходимо выполнить поэтапную инструкцию:
- Сначала ключом откручивается специальная гайка, которой термопара прикреплена к патрубку.
- Откручивается компенсационный винт, фиксирующий прибор к месту (он находится непосредственно под монтажным кронштейном).
- Аккуратно снимается старое устройство.
- В освободившееся отверстие вставляется новый прибор.
- Все фиксируется компенсационным винтом, а затем гайкой.
- Выполняется проверка на герметичность. При необходимости используется уплотнитель — полимер либо керамика.
При проведении процедуры следует помнить, что недотянутое, как и перетянутое резьбовое соединение будет опасным для исправности системы.
Полезное видео
Ознакомьтесь с видео, в котором рассказывается, как устроена и работает термопара.
Можно ли гнуть во время ремонта
Термопара — один из элементов отопительной системы, который отличается довольно простой конструкцией. Устройством оснащены все современные модели отопительного оборудования, работающего на газу. Оно является датчиком измерения температуры воздуха внутри камеры сгорания, а также проверки наличия пламени.
Благодаря этому обеспечивается безопасная эксплуатация отопительной системы.
При затухании запальника либо превышении температуры устройство мгновенно реагирует, изменяя напряжение, а также активизирует работу отсекающего клапана.
Однако для бесперебойного функционирования термопары необходимо правильно выполнить установку, строго следуя правилам инструкции. А также нужно регулярно проверять исправность прибора и ни в коем случае не сгибать его, чтобы не нарушить точность работы.
что это такое и как работает прибор для АОГВ
Технические характеристики
Согласно ГОСТу P 8.585-2001, термопара представляет собой контролирующий температуру прибор, состоящий из 2-х проводников, изготовленных из разных сплавов. Каждый сплав отличается своим сопротивлением и электрическим потенциалом. Контакт между проводниками происходит как в одной, так и в нескольких точках, причём в некоторых моделях он возможен благодаря наличию компенсационной проволоки. Для изготовления термопар используются неблагородные металлы.
Термопара выглядит очень просто и состоит из литого корпуса головки, оснащённого крышкой и фосфорными колодками, благодаря которым происходит компенсация линейного расширения электродов. Наконечник изделия служит для надёжной изоляции рабочего спая, а защитная трубка состоит из рабочего и нерабочего участков. Все соединительные провода проводятся через штуцер, имеющий уплотнитель из асбеста. В случае если электроды изготовлены из благородных металлов, в качестве защитных труб могут быть использованы изделия из фосфора или кварца.
Погрешность показаний приборов составляет один градус, что считается довольно значимым показателем в работе газового отопительного оборудования, и не позволяет считать устройства приборами высокой точности. Неточность измерения температур объясняется конструктивными особенностями термопары. Дело в том, что соединение пластин-проводников между собой происходит по-разному. В одних моделях соединение происходит с помощью точечной сварки, в других – посредством пайки или обжима.
В случае если стык двух проводников выполнен некачественно, то погрешность будет составлять один или более градусов. Это является критической величиной погрешности, увеличение которой может негативно сказаться на работе и безопасности котла. Поэтому при выборе термопары необходимо ориентироваться на продукцию известных и проверенных производителей, так как для АОГВ погрешность в один градус является непозволительной роскошью.
Принцип действия
В результате газ подаётся к запальнику и он начинает гореть, нагревая своим пламенем термопару, расположенную рядом. По прошествии 15 секунд кнопка подачи топлива отпускается и подача топлива осуществляется благодаря тому, что термопара начала выработку напряжения, удерживающего шток топливного клапана. Среднее напряжение, которое способна выработать термопара, благодаря разности потенциалов на холодных окончаниях, находится в диапазоне 40-50 мВ. В некоторых высокотехнологичных моделях клапаны отличаются максимальной чувствительностью и удерживаются в открытом положении до тех пор, пока показатель напряжения на входе не опустится ниже 20 мВ.
Термопары являются главным звеном системы безопасности газового котла. При любых неисправностях или поломках элементов, а также внезапном погасании факела, что в котлах с открытой камерой сгорания может произойти по причине сильного сквозняка, мгновенно происходит срабатывание электромагнитных клапанов, и подача топлива прекращается.
Плюсы и минусы
Разновидности
Современный рынок отопительных систем предлагает четыре вида термопар, устанавливаемых в газовых котлах.
- Модели типа Е отличает высокая производительность и широкий диапазон измеряемых температур, который варьируется от -50 до +740 градусов. Пластины-проводники изготовлены из константа и хромеля. Заводская маркировка изделий представлена буквенным обозначением ТХКн.
- Модели типа J отличается более низкой, в сравнении с первым типом, стоимостью и представлена маркировкой ТЖК. Контактные пластины изготовлены из железа и константа, а диапазон рабочих температур составляет от -40 до +600 градусов.
- Модели типа К являются наиболее распространёнными и способны работать при температуре от -200 до +1350 градусов. Пластины изготовлены из алюминия и хромеля, что требует некоторых ограничений в их применении. Дело в том, что в условиях повышенного содержания углекислого газа, хромель склонен к образованию зелёной гнили, быстро разъедающей сплав и выводящей прибор из строя. Изделие имеет маркировку ТХА и отличается повышенной чувствительностью к малейшим колебаниям температуры.
- Модели типа N являются модификацией модели Е и способны работать при температуре до +1200 градусов. Для изготовления пластин используется нихросил и нисил. Модели данного вида считаются самыми точными устройствами, используемыми в котельном оборудовании.
Кроме перечисленных типов термопар, существуют модели, для изготовления которых используются дорогие виды металлов. Это значительно увеличивает себестоимость и делает их установку в газовые котлы нерентабельной. Например, пластины особо точных устройств типа М изготавливаются из никеля и молибдена. Такое устройство устанавливается в дорогие вакуумные котлы и в газовом оборудовании не применяется.
Термопары для газовых котлов являются важным защитным устройством. Они полностью регулируют работу электромагнитного клапана, отвечают за подачу топлива и делают работу котла стабильной и безопасной.
О том, как проверить термопару для газового котла, смотрите в следующем видео.
Термопара: принцип действия, устройство
Существует множество разнообразных устройств и механизмов, позволяющих измерять температуру. Некоторые из них применяются в повседневной жизни, какие-то — для различных физических исследований, в производственных процессах и других отраслях.
Одним из таких устройств является термопара. Принцип действия и схему данного устройства мы рассмотрим в последующих разделах.
Физическая основа работы термопары
Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.
Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.
Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.
При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим». Второй контакт, другими словами — «холодный», — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.
Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.
Виды термопар
В каждой отрасли промышленности, где необходимы измерения температуры, в основном применяется термопара. Устройство и принцип работы различных видов данного агрегата приведены ниже.
Хромель-алюминиевые термопары
Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.
Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.
Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.
Хромель-копелевые термопары
Принцип действия термопары, контактная группа которой состоит из этих сплавов, такой же. Но эти устройства работают в основном в жидкости либо газообразной среде, обладающей нейтральными, неагрессивными свойствами. Верхний температурный показатель не превышает +8000 градусов Цельсия.
Применяется подобная термопара, принцип действия которой позволяет использовать ее для установления степени нагрева каких-либо поверхностей, например, для определения температуры мартеновских печей либо иных подобных конструкций.
Железо-константановые термопары
Данное сочетание контактов в термопаре не настолько распространено, как первая из рассматриваемых разновидностей. Принцип работы термопары такой же, однако подобная комбинация хорошо показала себя в разреженной атмосфере. Максимальный уровень замеряемой температуры не должен превышать +12500 градусов Цельсия.
Однако, если температура начинает подниматься выше +7000 градусов, существует опасность нарушения точности измерений в связи с изменением физико-химических свойств железа. Имеют место даже случаи коррозии железного контакта термопары при наличии в окружающем воздухе водных паров.
Платинородий-платиновые термопары
Наиболее дорогая в изготовлении термопара. Принцип действия такой же, однако отличается она от своих собратьев очень стабильными и достоверными показаниями температуры. Имеет пониженную чувствительность.
Основная область применения данных устройств — измерение высоких температур.
Вольфрам-рениевые термопары
Также применяются для измерения сверхвысоких температур. Максимальный предел, который можно зафиксировать с помощью данной схемы, достигает 25 тысяч градусов по шкале Цельсия.
Их применение требует соблюдения некоторых условий. Так, в процессе измерения температуры нужно полностью устранить окружающую атмосферу, которая оказывает негативное воздействие на контакты в результате процесса окисления.
Для термопары обычно помещают в защитные кожухи, заполненные инертным газом, защищающим их элементы.
Выше была рассмотрена каждая существующая термопара, устройство, принцип работы ее в зависимости от применяемых сплавов. Теперь рассмотрим некоторые конструктивные особенности.
Конструкции термопар
Существует две основные разновидности конструкций термопар.
с открытым спаем;
с изолированным спаем;
с заземленным спаем.
С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.
Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.
Бегущая термопара и ее применение
Существует отдельная разновидность данного устройства, именуемая «бегущей». Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.
Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.
Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.
При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит» по контактам.
Этот эффект повсеместно применяется в металлообрабатывающей промышленности.
Технологические особенности конструкций термопар
При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай».
Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.
Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.
Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.
Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.
Разновидности спаев термопар
Современная индустрия производит несколько конструкций, которые применяются при изготовлении термопар:
Особенностью термопар с открытым спаем является плохая сопротивляемость внешнему воздействию.
Следующие два типа конструкции могут применяться при измерении температур в агрессивных средах, оказывающих разрушительное влияние на контактную пару.
Кроме того, в настоящее время промышленность осваивает схемы производства термопар по полупроводниковым технологиям.
Погрешность измерений
Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.
Состоит из следующих составных частей:
случайная погрешность, вызванная особенностями изготовления термопары;
погрешность, вызванная нарушением температурного режима «холодного» контакта;
погрешность, причиной которой послужили внешние помехи;
погрешность контрольной аппаратуры.
Преимущества использования термопар
К преимуществам использования подобных устройств для контроля температуры, независимо от области применения, можно отнести:
большой промежуток показателей, которые способны быть зафиксированы с помощью термопары;
спайку термопары, которая непосредственно участвует в снятии показаний, можно расположить в непосредственном контакте с точкой измерения;
несложный процесс изготовления термопар, их прочность и долговечность эксплуатации.
Недостатки измерения температуры с помощью термопары
К недостаткам применения термопары следует отнести:
Необходимость в постоянном контроле температуры «холодного» контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.
Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.
В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.
Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.
В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.
Заключение
Несмотря на имеющиеся недостатки, температуры с помощью термопар, который был впервые изобретен и опробован еще в 19 веке, нашел свое широкое применение во всех отраслях современной промышленности.
Кроме того, существуют такие области применения, где использование термопар является единственным способом получения температурных данных. А ознакомившись с данным материалом, вы достаточно полно разобрались в основных принципах их работы.
Термопара для газовой плиты: как устроена, зачем нужна
Такая деталь, как термопара, устанавливается в целях контроля над пламенем газовой плиты. Она перекрывает подачу газа к горелке, если огонь вдруг погаснет. Устройство применяется во многих приборах, в том числе и в плитах. Если термопара повредится, возникнут перебои в подаче газа, пламя перестанет гореть равномерно и начнет пропадать.
Как устроена термопара
Термопары являются чуть ли не единственными приборами, способными измерять высокие температуры, именно поэтому их и используют в конструкции газовых плит. Эта важная деталь имеет следующее устройство.
- Основой являются два провода из разных металлов, которые неразрывно спаяны между собой.
- Под воздействием температуры появляется сопротивление, цифровое значение которого и выводится на экран.
- Конечно, образованное напряжение не сильное, но его хватает, чтобы открыть магнитный клапан.
- Во время работы электрические токи не дают захлопнуться магнитному клапану, что позволяет газу беспрепятственно поступать в конфорку. Это позволяет не заботиться о фиксации ручки плиты. Если огонь по какой-то причине погаснет, то система прекратит подачу газа.
Термопара – это, в первую очередь, забота о вашей безопасности, поэтому при выборе газовой плиты обращайте внимание на наличие этой опции. Существуют элементы, для работы которых хватает и 20 мкВ, но чаще всего требуется напряжение в 40-50 мкВ.
Принцип работы термопар основан на эффекте Зеебека, что в физическом понимании означает, что частицы-транспортировщики изменяют свой заряд при нагревании. В зависимости от выбранных материалов, электроны могут двигаться к холодному полю либо притягиваться к точке нагрева. Для создания термопар используют:
- хромель и константан;
- железо и константан;
- алюминий и хромель;
- нихросил и нисил;
- медь и константан.
В газовых моделях сплавляют алюминий с хромом. Важно учитывать, что именно от качества спайки зависит прочность и работоспособность конструкции.
Положительные и отрицательные стороны
Конечно, производители плит, изготавливая термопару, взвесили все ее достоинства и недостатки. Но как же обычному пользователю понять, для чего нужно это устройство и почему именно оно, а не другое.
Достоинства:
- Его просто и недорого изготавливать, что сказывается на себестоимости техники.
- Это устройство может одновременно контролировать и температуру, и процесс подачи пламени.
- Так как деталь находится в статичном положении, у нее крайне долгий срок службы.
- Она может фиксировать температуру с большим разбросом.
- Данные, полученные при помощи термопары, достаточно точны.
- Ее легко установить и заменить.
Недостатки:
- Так как максимально допустимое напряжение только 50 мкВ, это может вызвать некоторую неточность в измерениях.
- Отремонтировать прибор чаще всего совершенно невозможно. При выходе из строя его придется заменить.
Чистка
Если ваше устройство работает с перебоем, то причина может быть в отходящих контактах. В этом случае их необходимо просто поправить. Иногда термопара может просто засориться, и ее не придется менять. Понять это можно по следующим признакам:
- Нажимаете кнопку электророзжига, конфорка загорается и горит до тех пор, пока вы не отпустите электророзжиг.
- После того как вы уберете руку, пламя тут же гаснет.
Если вы наблюдаете такую систему, то попробуйте прочистить устройство мелкой наждачкой в месте под рассекателем пламени. Подробнее об этих и других неисправностях газовых плит и их устранении можно прочитать здесь.
Советы по безопасности
Необходимо помнить, что от корректной работы термопары может зависеть не только работоспособность плиты, но и ваша безопасность. Ведь если опция контроля не сработает правильно, может произойти утечка, которая приведет к взрыву.
Очень важно регулярно проверять точность показаний прибора, это может предотвратить серьезную катастрофу.
Чтобы показания были максимально точными, следует учитывать, что есть факторы, которые могут снизить качество измерения:
- Некорректно спаяны провода.
- Есть электрический шум.
- Утечка уже произошла.
- Термоэлектрическая неоднородность.
Чтобы избежать вышеупомянутых проблем, рекомендуется соблюдать следующие установки:
- Использовать большую по толщине проволоку.
- Позаботиться об отсутствии температурных перепадов на участке.
- Следить, чтобы проволока не испытывала натяжения и не колебалась.
- Использовать датчики только в рабочем температурном разбросе.
Если на определенном участке вам необходимо применить термопару из тонкой проволоки, в остальных местах необходимо сделать ее максимально прочной и толстой.
Установленные в плитах термопары отвечают не только за качественную работу, но и за безопасность работы техники. В случае ее повреждения необходимо срочно произвести замену. Сделать это можно и самостоятельно, но лучше всего вызвать газовщика. Помните: газовая плита — источник повышенной опасности, и при ее использовании нужно неукоснительно соблюдать правила эксплуатации.
Как работают термопары? Принципы работы термопар
Когда два провода, состоящие из разнородных металлов, соединяются на обоих концах и один из концов нагревается, в термоэлектрической цепи протекает постоянный ток. Если эта цепь разорвана в центре, чистое напряжение холостого хода (напряжение Зеебека) является функцией температуры перехода и состава двух металлов. Это означает, что когда соединение двух металлов нагревается или охлаждается, создается напряжение, которое может обратно соотноситься с температурой.Работа со временем отклика
Постоянная времени была определена как время, необходимое датчику для достижения 63,2% ступенчатого изменения температуры при заданном наборе условий. Чтобы датчик приблизился к 100% значения ступенчатого изменения, требуется пять постоянных времени. Термопара с открытым спаем обеспечивает самый быстрый отклик. Кроме того, чем меньше диаметр оболочки зонда, тем быстрее отклик, но максимальная температура может быть ниже. Однако имейте в виду, что иногда оболочка зонда не может выдерживать полный температурный диапазон типа термопары.Узнайте больше о времени отклика термопар.
В чем разница: термопары, RTD, термисторы и инфракрасные устройства?
Чтобы выбирать между датчиками, указанными выше, вы должны учитывать характеристики и стоимость различных датчиков, а также доступное оборудование. Кроме того, термопары, как правило, могут измерять температуру в широком диапазоне температур, недорого и очень надежны, но они не так точны и стабильны, как термометры сопротивления и термисторы.RTD стабильны и имеют довольно широкий диапазон температур, но не так прочны и недороги, как термопары. Поскольку для проведения измерений требуется использование электрического тока, RTD могут иметь неточности из-за самонагрева. Термисторы имеют тенденцию быть более точными, чем RTD или термопары, но они имеют гораздо более ограниченный диапазон температур. Также они подвержены самонагреву. Инфракрасные датчики можно использовать для измерения температуры выше, чем у других устройств, и делать это без прямого контакта с измеряемыми поверхностями.Однако они, как правило, не так точны и чувствительны к эффективности излучения поверхности (или, точнее, коэффициенту излучения поверхности). Используя оптоволоконные кабели, они могут измерять поверхности, находящиеся вне прямой видимости.
Техническое обучение Техническое обучениеЧто такое термопара и как она работает? Принцип работы термопары
Термопара состоит как минимум из двух металлов, соединенных вместе, чтобы образовать два спая.Один связан с телом, температуру которого нужно измерить; это горячий или измерительный спай. Другой переход связан с телом известной температуры; это холодный или опорный спай. Поэтому термопара измеряет неизвестную температуру тела относительно известной температуры другого тела.
Принцип работы
Принцип работы термопары основан на трех эффектах, открытых Зеебеком, Пельтье и Томсоном. Это следующие:
1) Эффект Зеебека: Эффект Зеебека утверждает, что, когда два разных или непохожих металла соединяются вместе на двух стыках, в двух стыках возникает электродвижущая сила (ЭДС).Количество генерируемой ЭДС различается для разных комбинаций металлов.
2) Эффект Пельтье: В соответствии с эффектом Пельтье, когда два разнородных металла соединяются вместе, образуя два перехода, внутри цепи генерируется ЭДС из-за различных температур двух переходов цепи.
3) Эффект Томсона: Согласно эффекту Томсона, когда два разнородных металла соединяются вместе, образуя два перехода, в цепи существует потенциал из-за градиента температуры по всей длине проводников в цепи.
В большинстве случаев ЭДС, предполагаемая эффектом Томсона, очень мала, и ею можно пренебречь, правильно подобрав металлы. Эффект Пельтье играет важную роль в принципе работы термопары.
Диаграммы
Как это работает
Общая схема работы термопары показана на рисунке 1 выше. Он состоит из двух разнородных металлов, A и B. Они соединены вместе, образуя два перехода, p и q, которые поддерживаются при температурах T1 и T2 соответственно.Помните, что термопара не может образоваться, если не будет двух спаев. Поскольку два перехода поддерживаются при разных температурах, в цепи генерируется ЭДС Пельтье, которая является функцией температур двух переходов.
Если температура обоих переходов одинакова, на обоих переходах будет генерироваться равная и противоположная ЭДС, а общий ток, протекающий через переход, равен нулю. Если поддерживать разные температуры в переходах, ЭДС не станет равной нулю, и по цепи будет протекать чистый ток.Полная ЭДС, протекающая через этот контур, зависит от металлов, используемых в контуре, а также от температуры двух переходов. Полная ЭДС или ток, протекающий по цепи, можно легко измерить с помощью подходящего устройства.
Устройство для измерения тока или ЭДС включается в цепь термопары. Он измеряет количество ЭДС, протекающей через цепь из-за двух стыков двух разнородных металлов, поддерживаемых при разных температурах.На рисунке 2 показаны два спая термопары и устройство, используемое для измерения ЭДС (потенциометр).
Теперь температура эталонных спаев уже известна, а температура измерительных спаев неизвестна. Выходной сигнал цепи термопары калибруется непосредственно по неизвестной температуре. Таким образом, выходное напряжение или ток, полученное от цепи термопары, напрямую дает значение неизвестной температуры.
Устройства, используемые для измерения ЭДС
Величина ЭДС, развиваемая в цепи термопары, очень мала, обычно в милливольтах, поэтому для измерения ЭДС, генерируемой в цепи термопары, следует использовать высокочувствительные приборы.Обычно используются два устройства: обычный гальванометр и потенциометр для выравнивания напряжения. Из этих двух чаще всего используется балансирующий потенциометр вручную или автоматически.
На рисунке 2 показан потенциометр, подключенный к цепи термопары. Переход p соединен с телом, температуру которого необходимо измерить. Спай q является эталонным спаем, температуру которого можно измерить термометром. В некоторых случаях эталонные спаи также можно поддерживать при температуре льда, подключив их к ледяной бане (см. Рисунок 3).Это устройство может быть откалибровано с точки зрения входной температуры, так что его шкала может давать значение непосредственно с точки зрения температуры.
Ссылка
Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака
Изображения предоставлены
Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака
https: // www .tpub.com / content / doe / h2013v1 / css / h2013v1_24.htm
Этот пост является частью серии: Что такое термопары? Как работают термопары?
Это серия статей, описывающих, что такое термопары, как работают термопары, материалы, используемые для термопар, а также различные формы и формы термопар.
- Что такое термопара и как она работает?
- Материалы, используемые для термопар и их формы
Что такое термопара? — Определение, принцип работы, конструкция, преимущества и недостатки
Определение: Термопара — это устройство для измерения температуры. Он используется для измерения температуры в одной конкретной точке. Другими словами, это тип датчика, который используется для измерения температуры в виде электрического тока или ЭДС.
Термопара состоит из двух проволок из разных металлов, сваренных на концах. Сваренная часть создавала стык, где обычно измеряют температуру. Изменение температуры провода вызывает появление напряжения.
Принцип работы термопары
Принцип работы термопары зависит от трех эффектов.
Обратный эффект — Обратный эффект возникает между двумя разными металлами.Когда тепло поступает к любому из металлов, электроны начинают переходить от горячего металла к холодному. Таким образом, в цепи возникает постоянный ток.
Короче говоря, — это явление, при котором разница температур между двумя разными металлами вызывает разность потенциалов между ними . Эффект Зее-Бека производит небольшие напряжения на один градус Кельвина температуры.
Эффект Пельтье — Эффект Пельтье является обратным эффекту Зеебека.Эффект Пельтье утверждает, что разница температур может быть создана между любыми двумя разными проводниками путем приложения разности потенциалов между ними.
Эффект Томпсона — эффект Томпсона утверждает, что , когда два разнородных металла соединяются вместе, и если они создают два соединения, тогда напряжение индуцирует всю длину проводника из-за градиента температуры . Температурный градиент — это физический термин, который показывает направление и скорость изменения температуры в определенном месте.
Конструкция термопары
Термопара состоит из двух разнородных металлов. Эти металлы свариваются в месте соединения. Это соединение считается точкой измерения. Точки соединения подразделяются на три типа.
- Незаземленный переход — В незаземленном переходе проводники полностью изолированы от защитной оболочки . Используется для работ с высоким давлением. Основное преимущество использования такого типа перехода заключается в том, что он снижает влияние паразитного магнитного поля.
- Заземленный переход — В таком переходе металл и защитная оболочка свариваются друг с другом. Заземленный переход используется для измерения температуры в агрессивной среде. Этот переход обеспечивает устойчивость к шуму.
- Открытое соединение — Такой тип соединения используется там, где требуется быстрое срабатывание. Открытый спай используется для измерения температуры газа.
Материал, из которого изготовлена термопара, зависит от диапазона измерения температуры.
Работа термопары
Схема термопары показана на рисунке ниже. Схема состоит из двух разнородных металлов. Эти металлы соединены вместе таким образом, что образуют два соединения. Металлы прикрепляются к стыку посредством сварки.
Пусть P и Q — два спая термопары. T 1 и T 2 — температуры на стыках. Поскольку температуры переходов отличаются друг от друга, в цепи генерируется ЭДС.
Если температура в переходе становится равной, в цепи генерируется равная и противоположная ЭДС, и через нее протекает нулевой ток. Если температуры соединения становятся неравными, в цепи индуцируется разность потенциалов. Величина индукции ЭДС в цепи зависит от типа материала, из которого изготовлена термопара. Полный ток, протекающий по цепи, измеряется измерительными приборами.
ЭДС, наводимая в цепи термопары, определяется уравнением где Δθ — разность температур между горячим спаем термопары и эталонным спаем термопары.
а, б — константы
Измерение выхода термопары
Выходная ЭДС, полученная от термопар, может быть измерена следующими методами.
- Мультиметр — это более простой метод измерения выходной ЭДС термопары. Мультиметр подключается к холодным спаям термопары . Отклонение стрелки мультиметра равно току, протекающему через счетчик.
- Потенциометр — Выходной сигнал термопары также можно измерить с помощью потенциометра постоянного тока.
- Усилитель с устройствами вывода — Выходной сигнал, получаемый от термопар, усиливается через усилитель и затем подается на регистрирующий или индикаторный прибор.
Преимущества термопары
Ниже приведены преимущества термопар.
- Термопара дешевле других приборов для измерения температуры.
- Термопара имеет быстрое время отклика.
- Имеет широкий температурный диапазон.
Недостатки термопар
- Термопара имеет низкую точность.
- Повторная калибровка термопары затруднена.
Никелевый сплав, сплав платина / родий, сплав вольфрама / рения, хромель-золото, сплав железа — это названия сплавов, используемых для изготовления термопары.
Датчик термопары: подробный обзор | Принцип работы термопары
Датчик термопары — один из многих типов датчиков температуры, используемых для измерения различных переменных в промышленных приложениях.Они часто используются для измерения и регулирования температуры выхлопных газов газовых турбин, дизельных двигателей, высокотемпературных печей и т. Д. Термопары используются не только в промышленности, но и в нескольких бытовых и коммерческих применениях. В термостатах датчики пламени и дыма, приборы, работающие на газе или жидком топливе, и т. Д. Объединены в пары с датчиками термопар для контроля повышения рабочей температуры. Поскольку датчики термопар имеют большое значение и являются широко используемыми типами датчиков температуры, важно знать об этом.В этом посте обсуждается, что такое термопары и как они работают.
Обзор термопар
Датчик термопары — это чувствительное к температуре устройство, состоящее из двух проводов из разнородного материала. Из-за разного состава эти провода обладают разной электропроводностью. Разница в электропроводности порождает дифференциальное электрическое соединение, между которым дополнительно создается зависящее от температуры напряжение. Эта активность называется термоэлектрическим эффектом.Это измеренное напряжение дополнительно используется для интерпретации температуры.
Датчики термопары доступны в различных моделях и сборках. Они производятся в виде зондов термопар, термопар с переходным соединением, термопар с разъемами, термопар с неизолированным проводом и т. Д. Хотя термопары обеспечивают универсальность, функциональность или принцип работы остаются неизменными.
Обсудим принцип работы термопар.
Знать о принципе работы термопар
Термопара работает согласно эффекту Зеебека.
Эффект Зеебека можно описать как генерацию дифференциального напряжения из-за разницы в электропроводности двух разных материалов. Названный в честь французского ученого Томаса Йохана Зеебека, который подтвердил, что если два разнородных металла соединяются и нагреваются, разница в повышении температуры этих двух металлов приводит к возникновению электродвижущей силы (ЭДС). Та же самая концепция перевернута в применении термопары.
Когда электрический ток проходит через два сваренных разнородных металла, возникает разница напряжений, которая проецируется в обратном направлении для расчета разницы температур.Когда электрический ток проходит через переход, из-за ограничений проводимости и сопротивления металлов происходит повышение температуры. Оба материала нагреваются при разных температурах, и разница в проводимости дает два разных напряжения для двух разных металлов.
Хотя принцип работы датчиков термопары несложен, он все же зависит от нескольких различных факторов. Для точного измерения недостаточно измерения разности напряжений.
Одним из наиболее важных факторов для точного измерения температуры датчиком термопары является эталонная температура на стыке (Tref). Важно знать точное значение Tref, чтобы избежать поправочного коэффициента при вычислении напряжения и температуры. Есть два конкретных метода, используемых для определения и идентификации Tref. Ниже приведены методы, которые способствуют точности показаний датчика термопары.
- Ледяная баня Метод: В этом методе соединительный блок погружается в ванну с полузамороженной дистиллированной водой, чтобы заморозить температуру соединения.После погружения Tref устанавливается на 0 ° C для справки по расчетам.
- Метод компенсации холодного спая: В этом методе температура точки стыка будет изменяться, но она постоянно измеряется с помощью второго датчика температуры. Измеряется Tref в точке соединения, а затем точный Tref на момент считывания используется в качестве поправочного коэффициента.
Компенсация показаний температуры выполняется одним из этих двух методов для безошибочной работы датчиков термопар.
Хотя введение и принцип работы термопар убедительны, важно также обратить внимание на качество этого датчика. Качество сборки датчиков термопар обеспечивает точность считывания. Следовательно, необходимо покупать термопары у проверенных производителей или поставщиков, таких как The Transmitter Shop. Компания уже несколько лет поставляет промышленное технологическое оборудование, такое как термопары, преобразователи, датчики и т. Д. Можно найти продукцию премиального качества от таких ведущих брендов, как Rosemount, Foxboro, Honeywell и т. Д.
Похожие сообщения
Конструкция, работа, типы, преимущества и применение термопары — Датчики и преобразователи
Термопара — это активный преобразователь, который измеряет температуру. Работает по принципу эффекта обратной видимости. Они широко используются для измерения температуры в промышленных приложениях.
Конструкция и типы термопары
Термопара состоит из двух разных типов металлов, соединенных вместе на одном конце (горячий спай) и оканчивающихся на другом конце (холодный спай).Когда горячий спай нагревается или охлаждается, создаваемое напряжение может быть снова соотнесено с температурой.
Теоретически для изготовления термопары можно использовать любую пару разнородных материалов. Но практически только несколько материалов оказались пригодными для измерения температуры. В следующей таблице показаны распространенные типы материалов термопар с указанием их температурного диапазона.
Тип | Положительный вывод | Отрицательный вывод | Температурный диапазон |
---|---|---|---|
R | Платина-родий (87% Pt, 13% Rh) | 1500-902 oC Platinum||
S | Платина-родий (90% Pt, 10% Rh) | Платина | 0-1500 oC |
K | Хромель (90% Ni, 10% Cr) | Алюмель (Ni394Si2M) | -200 — 1300 oC |
E | Хромель (90% Ni, 10% Cr) | Константин (57% Cu, 43% Ni) | -200-1000 oC |
T | Медь | Константан (57% Cu, 43% Ni) | -200-350 oC |
J | Железо | Константан (57% Cu, 43% Ni) | -150-750 oC |
Принцип работы термопары
Термопара работает по принципу увидеть обратный эффект.Томас Йохан Зеебек обнаружил, что разница температур (тепловая энергия) может производить электрическую энергию. В термопаре два проводника из разных металлов соединены, образуя два общих спая. Когда эти два перехода подвергаются воздействию двух разных температур, возникает чистая термоэдс. Значение также зависит от используемых материалов и пропорционально разнице температур между горячим и холодным спаем.
Выход термопары можно измерить напрямую милливольтметром.Его также можно измерить с помощью потенциометра постоянного тока или с помощью усилителей с выходным устройством.
Преимущества термопары
- Дешевле термометров сопротивления.
- Может измерять быстрые изменения температуры.
- Широкий температурный диапазон.
- Обеспечивает хорошую воспроизводимость.
- Удобен для измерения температуры в одной конкретной точке.
Недостатки термопары
- Более низкая точность.
- Характеристики наведенной эдс-температуры нелинейны.
- Усиление сигнала требуется во многих приложениях.
Дополнительная литература
Два способа измерения температуры с помощью термопар Простота, точность и гибкость
Введение
Термопара — это простой и широко используемый компонент для измерения температуры. В этой статье представлен базовый обзор термопар, описаны общие проблемы, возникающие при их проектировании, и предложены два решения по преобразованию сигналов.Первое решение сочетает в себе компенсацию холодного спая и преобразование сигнала в одной аналоговой ИС для удобства и простоты использования; Второе решение отделяет компенсацию холодного спая от обработки сигнала, чтобы обеспечить измерение температуры на цифровом выходе с большей гибкостью и точностью.
Теория термопар
Термопара, показанная на Рисунке 1, состоит из двух проводов из разнородных металлов, соединенных вместе на одном конце, называемых измерительным («горячим») спаем.Другой конец, где провода не соединены, подключается к дорожкам схемы преобразования сигнала, обычно сделанным из меди. Этот спай между металлами термопары и медными дорожками называется опорным спаем («холодный»). *
Рисунок 1. Термопара.* Мы используем термины «измерительный спай» и «эталонный спай», а не более традиционные «горячий спай» и «холодный спай». Традиционная система именования может сбивать с толку, потому что во многих приложениях измерительный спай может быть холоднее эталонного спая.
Напряжение, создаваемое на эталонном спаях, зависит от температуры как на измерительном, так и в эталонном спайах. Поскольку термопара является дифференциальным устройством, а не устройством для измерения абсолютной температуры, для получения точных абсолютных показаний температуры необходимо знать температуру эталонного спая. Этот процесс известен как компенсация холодного спая (компенсация холодного спая).
Термопарыстали промышленным стандартом для экономичного измерения широкого диапазона температур с разумной точностью.Они используются во множестве применений при температуре примерно до + 2500 ° C в котлах, водонагревателях, духовках и авиационных двигателях — и это лишь некоторые из них. Самой популярной термопарой является термопара типа K , состоящая из Chromel ® и Alumel ® (никелевые сплавы с товарным знаком, содержащие хрома и алюминия , марганец и кремний, соответственно), с диапазоном измерения — От 200 ° C до + 1250 ° C.
Зачем нужна термопара?
Преимущества
- Температурный диапазон: Большинство практических температурных диапазонов, от криогенных до выхлопа реактивных двигателей, можно обслуживать с помощью термопар.В зависимости от используемой металлической проволоки термопара может измерять температуру в диапазоне от –200 ° C до + 2500 ° C.
- Надежность: термопары — это надежные устройства, невосприимчивые к ударам и вибрации и пригодные для использования во взрывоопасных средах.
- Быстрый отклик. Поскольку термопары маленькие и обладают низкой теплоемкостью, они быстро реагируют на изменения температуры, особенно если чувствительный спай обнажен. Они могут реагировать на быстро меняющиеся температуры в течение нескольких сотен миллисекунд.
- Без самонагрева: поскольку термопарам не требуется мощность возбуждения, они не склонны к самонагреву и искробезопасны.
Недостатки
- Комплексное преобразование сигнала: требуется существенное преобразование сигнала для преобразования напряжения термопары в пригодное для использования значение температуры. Традиционно преобразование сигнала требовало больших затрат времени на разработку, чтобы избежать ошибок, снижающих точность.
- Точность: в дополнение к присущей термопарам неточности из-за их металлургических свойств, измерение термопары является настолько точным, насколько может быть измерена температура эталонного спая, обычно в пределах от 1 ° C до 2 ° C.
- Восприимчивость к коррозии: поскольку термопары состоят из двух разнородных металлов, в некоторых средах коррозия со временем может привести к снижению точности. Следовательно, им может потребоваться защита; и уход и обслуживание имеют важное значение.
- Восприимчивость к шуму: при измерении изменений сигнала микровольтного уровня могут возникнуть проблемы с шумом от паразитных электрических и магнитных полей. Скручивание пары проводов термопары может значительно уменьшить наводку магнитного поля. Использование экранированного кабеля или прокладки проводов в металлическом кабелепроводе и ограждении может уменьшить наводку электрического поля.Измерительный прибор должен обеспечивать фильтрацию сигнала аппаратно или программно с сильным подавлением частоты сети (50 Гц / 60 Гц) и ее гармоник.
Трудности измерения с помощью термопар
Преобразовать напряжение, генерируемое термопарой, в точное показание температуры непросто по многим причинам: сигнал напряжения мал, зависимость температуры от напряжения нелинейная, требуется компенсация холодного спая, а термопары могут создавать проблемы с заземлением.Давайте рассмотрим эти вопросы по порядку.
Сигнал напряжения мал: Наиболее распространенными типами термопар являются J, K и T. При комнатной температуре их напряжение изменяется на 52 мкВ / ° C, 41 мкВ / ° C и 41 мкВ / ° C соответственно. Другие, менее распространенные типы имеют еще меньшее изменение напряжения с температурой. Этот слабый сигнал требует каскада с высоким коэффициентом усиления перед аналого-цифровым преобразованием. В таблице 1 сравниваются чувствительности различных типов термопар.
Таблица 1. Изменение напряжения в зависимости отПовышение температуры
(коэффициент Зеебека) для различных типов термопар при 25 ° C.
Термопара Тип | Коэффициент Зеебека (мкВ / ° C) |
E | 61 |
Дж | 52 |
К | 41 |
№ | 27 |
R | 9 |
S | 6 |
т | 41 |
Поскольку сигнал напряжения мал, схема преобразования сигнала обычно требует усиления около 100 или около того — довольно простое преобразование сигнала.Что может быть труднее, так это отличить реальный сигнал от шума, улавливаемого выводами термопары. Провода термопары длинные и часто проходят в среде с электрическими помехами. Шум, улавливаемый проводами, может легко подавить крошечный сигнал термопары.
Для выделения сигнала из шума обычно комбинируют два подхода. Первый заключается в использовании усилителя с дифференциальным входом, такого как инструментальный усилитель, для усиления сигнала. Поскольку большая часть шума возникает на обоих проводах (, синфазный, ), дифференциальное измерение устраняет его.Второй — это фильтрация нижних частот, которая удаляет внеполосный шум. Фильтр нижних частот должен устранять как радиочастотные помехи (выше 1 МГц), которые могут вызвать выпрямление в усилителе, так и 50 Гц / 60 Гц (источник питания) фон . Важно установить фильтр радиопомех перед усилителем (или использовать усилитель с фильтрами на входах). Расположение фильтра 50/60 Гц часто не имеет решающего значения — его можно комбинировать с фильтром радиочастотных помех, помещенным между усилителем и АЦП, встроенным как часть сигма-дельта АЦП, или его можно запрограммировать в программном обеспечении. как усредняющий фильтр.
Компенсация холодного спая: Температура холодного спая термопары должна быть известна для получения точных показаний абсолютной температуры. Когда термопары были впервые использованы, это было сделано путем выдерживания эталонного спая в ледяной бане. На рисунке 2 изображена схема термопары, один конец которой находится при неизвестной температуре, а другой конец находится в ледяной бане (0 ° C). Этот метод использовался для исчерпывающей характеристики различных типов термопар, поэтому почти во всех таблицах термопар используется 0 ° C в качестве эталонной температуры.
Рис. 2. Базовая схема железо-константановой термопары.Но держать эталонный спай термопары в ледяной бане нецелесообразно для большинства измерительных систем. Вместо этого в большинстве систем используется метод, называемый компенсацией холодного спая (также известный как компенсация холодного спая ). Температура эталонного спая измеряется другим термочувствительным устройством — обычно ИС, термистором, диодом или RTD (резистивным датчиком температуры). Затем значение напряжения термопары компенсируется, чтобы отразить температуру холодного спая.Важно, чтобы эталонный спай считывался как можно точнее — с помощью точного датчика температуры, поддерживающего ту же температуру, что и эталонный спай. Любая ошибка в считывании температуры холодного спая будет отображаться непосредственно в окончательном показании термопары.
Для измерения эталонной температуры доступны различные датчики:
- Термисторы: они имеют быстрый отклик и небольшой корпус; но они требуют линеаризации и имеют ограниченную точность, особенно в широком диапазоне температур.Им также требуется ток для возбуждения, который может вызвать саморазогрев, что приведет к дрейфу. Общая точность системы в сочетании с формированием сигнала может быть низкой.
- Резистивные датчики температуры (RTD): RTD являются точными, стабильными и достаточно линейными, однако размер корпуса и стоимость ограничивают их использование для приложений управления технологическим процессом.
- Дистанционные термодиоды: диод используется для измерения температуры рядом с разъемом термопары. Микросхема кондиционирования преобразует напряжение на диоде, пропорциональное температуре, в аналоговый или цифровой выход.Его точность ограничена примерно ± 1 ° C.
- Встроенный датчик температуры: Встроенный датчик температуры, автономная ИС, которая измеряет температуру локально, должна быть осторожно установлена рядом с эталонным спаем и может сочетать компенсацию холодного спая и формирование сигнала. Может быть достигнута точность с точностью до малых долей в 1 ° C.
Сигнал напряжения нелинейный: Наклон кривой отклика термопары изменяется в зависимости от температуры.Например, при 0 ° C выходной сигнал термопары типа T изменяется на 39 мкВ / ° C, но при 100 ° C крутизна увеличивается до 47 мкВ / ° C.
Есть три распространенных способа компенсации нелинейности термопары.
Выберите относительно плоский участок кривой и аппроксимируйте наклон как линейный в этой области — подход, который особенно хорошо работает для измерений в ограниченном диапазоне температур. Никаких сложных вычислений не требуется. Одна из причин популярности термопар K- и J-типа заключается в том, что они обе имеют большие диапазоны температур, для которых наклон приращения чувствительности (коэффициент Зеебека) остается довольно постоянным (см. Рисунок 3).
Рисунок 3. Изменение чувствительности термопары в зависимости от температуры. Обратите внимание, что коэффициент Зеебека K-типа примерно постоянен и составляет около 41 мкВ / ° C от 0 ° C до 1000 ° C.Другой подход — сохранить в памяти справочную таблицу, которая сопоставляет каждый из набора напряжений термопары с соответствующей температурой. Затем используйте линейную интерполяцию между двумя ближайшими точками в таблице, чтобы получить другие значения температуры.
Третий подход заключается в использовании уравнений более высокого порядка, которые моделируют поведение термопары.Хотя этот метод является наиболее точным, он также требует больших вычислительных ресурсов. Для каждой термопары существует две системы уравнений. Один набор преобразует температуру в напряжение термопары (полезно для компенсации холодного спая). Другой набор преобразует напряжение термопары в температуру. Таблицы термопар и уравнения термопар более высокого порядка можно найти на http://srdata.nist.gov/its90/main/. Все таблицы и уравнения основаны на температуре холодного спая 0 ° C. Компенсацию холодного спая необходимо использовать, если он имеет любую другую температуру.
Требования к заземлению: Производители термопар изготавливают термопары как с изолированными, так и с заземленными наконечниками для измерительного спая (рисунок 4).
Рисунок 4. Типы измерительного спая термопары.Устройство преобразования сигнала термопары должно быть спроектировано таким образом, чтобы исключить контуры заземления при измерении заземленной термопары, но также иметь путь для входных токов смещения усилителя при измерении изолированной термопары. Кроме того, если наконечник термопары заземлен, диапазон входного сигнала усилителя должен быть рассчитан на обработку любых разностей потенциалов земли между наконечником термопары и землей измерительной системы (рисунок 5).
Рисунок 5. Варианты заземления при использовании наконечников разных типов.Для неизолированных систем система формирования сигнала с двумя источниками питания обычно будет более надежной для типов заземленных и открытых наконечников. Благодаря широкому входному синфазному диапазону усилитель с двумя источниками питания может справиться с большим перепадом напряжения между землей печатной платы и землей на наконечнике термопары. Системы с однополярным питанием могут удовлетворительно работать во всех трех случаях, если синфазный диапазон усилителя имеет некоторую способность измерять под землей в конфигурации с однополярным питанием.Чтобы справиться с ограничением синфазного сигнала в некоторых системах с однополярным питанием, полезно смещение термопары до среднего напряжения. Это хорошо работает для изолированных наконечников термопар или если вся измерительная система изолирована. Однако это не рекомендуется для неизолированных систем, предназначенных для измерения заземленных или открытых термопар.
Практические решения с термопарами: Преобразование сигнала термопары сложнее, чем в других системах измерения температуры.Время, необходимое для разработки и отладки системы формирования сигнала, может увеличить время вывода продукта на рынок. Ошибки в формировании сигнала, особенно в секции компенсации холодного спая, могут привести к снижению точности. Следующие два решения устраняют эти проблемы.
В первом описывается простое аналоговое интегрированное аппаратное решение, сочетающее прямое измерение термопарой с компенсацией холодного спая с использованием одной ИС. Второе решение представляет собой программную схему компенсации холодного спая, обеспечивающую повышенную точность измерения термопар и гибкость в использовании многих типов термопар.
Измерительное решение 1: оптимизировано для простоты
На рисунке 6 показана схема измерения термопары К-типа. Он основан на использовании усилителя термопары AD8495, который разработан специально для измерения термопар типа K. Это аналоговое решение оптимизировано для минимального времени разработки: оно имеет прямую сигнальную цепочку и не требует программного кодирования.
Рис. 6. Измерительное решение 1: оптимизировано для простоты.Как эта простая сигнальная цепочка удовлетворяет требованиям к формированию сигнала для термопар K-типа?
Масштабный коэффициент усиления и выхода: Малый сигнал термопары усиливается коэффициентом усиления AD8495, равным 122, в результате чего чувствительность выходного сигнала составляет 5 мВ / ° C (200 ° C / В).
Подавление шума: Высокочастотный синфазный и дифференциальный шум удаляется внешним фильтром радиопомех. Низкочастотный синфазный шум подавляется инструментальным усилителем AD8495. Любой оставшийся шум устраняется внешним постфильтром.
Компенсация холодного спая: AD8495, который включает в себя датчик температуры для компенсации изменений температуры окружающей среды, должен быть размещен рядом с холодным спаем, чтобы поддерживать одинаковую температуру для точной компенсации холодного спая.
Коррекция нелинейности: AD8495 откалиброван так, чтобы выдавать выходной сигнал 5 мВ / ° C на линейном участке кривой термопары типа K с погрешностью линейности менее 2 ° C в диапазоне от –25 ° C до + 400 ° Температурный диапазон C. Если требуются температуры за пределами этого диапазона, в примечании к применению AN-1087 компании Analog Devices описано, как можно использовать справочную таблицу или уравнение в микропроцессоре для расширения диапазона температур.
Работа с изолированными, заземленными и незащищенными термопарами: На рисунке 5 показан резистор 1 МОм, подключенный к земле, что позволяет использовать все типы наконечников термопар.AD8495 был специально разработан, чтобы иметь возможность измерять несколько сотен милливольт под землей при использовании с одним источником питания, как показано на рисунке. Если ожидается больший перепад заземления, AD8495 также может работать с двумя источниками питания.
Подробнее об AD8495: На рисунке 7 показана блок-схема усилителя термопары AD8495. Усилители A1, A2 и A3 — и показанные резисторы — образуют инструментальный усилитель, который усиливает выходной сигнал термопары K-типа с коэффициентом усиления, подходящим для создания выходного напряжения 5 мВ / ° C.Внутри коробки с надписью «Компенсация реф. Перехода» находится датчик температуры окружающей среды. При постоянной температуре измерительного спая дифференциальное напряжение на термопаре будет уменьшаться, если температура опорного спая повысится по какой-либо причине. Если крошечный (3,2 мм × 3,2 мм × 1,2 мм) AD8495 находится в непосредственной близости от опорного спая, схема компенсации опорного спая подает дополнительное напряжение в усилитель, так что выходное напряжение остается постоянным, таким образом компенсируя опорное напряжение. изменение температуры.
Рисунок 7. Функциональная блок-схема AD8495.В таблице 2 приведены характеристики интегрированного аппаратного решения с использованием AD8495:
Таблица 2. Решение 1 (Рисунок 6) Сводная информация о производительности
Термопара Тип | Диапазон измерения температуры спая | Диапазон температур холодного спая | Точность при 25 ° C | Потребляемая мощность |
К | от –25 ° C до + 400 ° C | от 0 ° C до 50 ° C | ± 3 ° C (класс А) ± 1 ° C (класс C) | 1.25 мВт |
Измерительное решение 2: оптимизировано для обеспечения точности и гибкости
На рисунке 8 показана схема измерения термопары J-, K- или T-типа с высокой степенью точности. Эта схема включает высокоточный АЦП для измерения напряжения малосигнальной термопары и высокоточный датчик температуры для измерения температуры холодного спая. Оба устройства управляются через интерфейс SPI от внешнего микроконтроллера.
Рис. 8. Измерительное решение 2: оптимизировано для обеспечения точности и гибкости.Как эта конфигурация учитывает упомянутые ранее требования к формированию сигнала?
Удаление шума и усиление напряжения: AD7793, подробно показанный на рисунке 9 — высокоточный маломощный аналоговый входной каскад, — используется для измерения напряжения термопары. Выход термопары фильтруется извне и подключается к набору дифференциальных входов AIN1 (+) и AIN1 (-). Затем сигнал направляется через мультиплексор, буфер и инструментальный усилитель, который усиливает небольшой сигнал термопары, и на АЦП, который преобразует сигнал в цифровой.
Рисунок 9. Функциональная блок-схема AD7793.Компенсация температуры холодного спая: ADT7320 (подробно на Рисунке 10), если он расположен достаточно близко к опорному спайу, может точно измерять температуру холодного спая с точностью до ± 0,2 ° C, от –10 ° C до +85 ° C. Встроенный датчик температуры генерирует напряжение, пропорциональное абсолютной температуре, которое сравнивается с внутренним опорным напряжением и подается на прецизионный цифровой модулятор. Оцифрованный результат модулятора обновляет 16-битный регистр значения температуры.Затем регистр значения температуры может быть считан с микроконтроллера с использованием интерфейса SPI и объединен со считыванием температуры с АЦП для осуществления компенсации.
Рисунок 10. Функциональная блок-схема ADT7320.Правильная нелинейность: ADT7320 обеспечивает отличную линейность во всем номинальном температурном диапазоне (от –40 ° C до + 125 ° C), не требуя корректировки или калибровки пользователем. Таким образом, его цифровой выход можно считать точным представлением состояния холодного спая.
Чтобы определить фактическую температуру термопары, это эталонное измерение температуры должно быть преобразовано в эквивалентное термоэлектрическое напряжение с помощью уравнений, предоставленных Национальным институтом стандартов и технологий (NIST). Затем это напряжение добавляется к напряжению термопары, измеренному AD7793; и суммирование затем переводится обратно в температуру термопары, снова с использованием уравнений NIST.
Ручка с изолированными и заземленными термопарами: На рисунке 8 показана термопара с оголенным наконечником.Это обеспечивает лучшее время отклика, но такая же конфигурация может также использоваться с термопарой с изолированным наконечником.
В таблице 3 приведены характеристики программного решения для измерения холодного спая с использованием данных NIST:
Таблица 3. Решение 2 (Рисунок 8) Сводная информация о производительности
Термопара Тип | Диапазон измерения температуры спая | Диапазон температур холодного спая | Точность | Потребляемая мощность |
Дж, К, Т | Полный диапазон | от –10 ° C до + 85 ° C от –20 ° C до + 105 ° C | ± 0.2 ° С ± 0,25 ° С | 3 мВт 3 мВт |
Заключение
Термопары обеспечивают надежное измерение температуры в довольно широком диапазоне температур, но они часто не являются первым выбором для измерения температуры из-за необходимого компромисса между расчетным временем и точностью. В этой статье предлагаются рентабельные способы решения этих проблем.
Первое решение концентрируется на уменьшении сложности измерения с помощью аппаратного метода компенсации аналогового эталонного спая. В результате получается прямая сигнальная цепочка без необходимости программирования программного обеспечения, основанная на интеграции, обеспечиваемой усилителем термопары AD8495, который выдает выходной сигнал 5 мВ / ° C, который может подаваться на аналоговый вход большого количества микроконтроллеров.
Второе решение обеспечивает высочайшую точность измерения, а также позволяет использовать различные типы термопар.Программный метод компенсации эталонного спая, он основан на высокоточном цифровом датчике температуры ADT7320, который обеспечивает гораздо более точное измерение компенсации эталонного спая, чем это было возможно до сих пор. ADT7320 поставляется полностью откалиброванным и рассчитанным на диапазон температур от –40 ° C до + 125 ° C. Полностью прозрачный, в отличие от традиционного измерения термистора или датчика RTD, он не требует дорогостоящего этапа калибровки после сборки платы и не потребляет ресурсы процессора или памяти с коэффициентами калибровки или процедурами линеаризации.Потребляя только микроватты энергии, он позволяет избежать проблем с саморазогревом, которые снижают точность традиционных резистивных датчиков.
Приложение
Использование уравнения NIST для преобразования температуры ADT7320 в напряжение
Компенсация холодного спая термопары основана на соотношении:
(1) |
где:
Δ В = выходное напряжение термопары
В @ Дж 1 = напряжение, генерируемое на спайе термопары
В @ Дж 2 = напряжение, генерируемое на опорном спайе
Чтобы это соотношение компенсации было действительным, обе клеммы холодного спая должны поддерживаться при одинаковой температуре.Выравнивание температуры достигается с помощью изотермической клеммной колодки, которая позволяет выравнивать температуру обоих клемм при сохранении гальванической развязки.
После измерения температуры холодного спая ее необходимо преобразовать в эквивалентное термоэлектрическое напряжение, которое будет генерироваться переходом при измеренной температуре. В одном методе используется многочлен степенного ряда. Рассчитано термоэлектрическое напряжение:
(2) |
где:
E = термоэлектрическое напряжение (микровольты)
a n = коэффициенты полинома, зависящие от типа термопары
T = температура (° C)
n = порядок полинома
NIST публикует таблицы полиномиальных коэффициентов для каждого типа термопар.В этих таблицах приведены списки коэффициентов, порядок (количество членов в полиноме), допустимые диапазоны температур для каждого списка коэффициентов и диапазон ошибок. Для некоторых типов термопар требуется более одной таблицы коэффициентов, чтобы охватить весь рабочий температурный диапазон. Таблицы полиномов степенных рядов перечислены в основном тексте.
Что такое термопара? — Определение, конструкция, работа, плюсы и минусы
В этой статье описаны определение, конструкция, принцип работы, выбор материала, преимущества и недостатки термопары.
Определение:Термопара — это комбинация двух разных металлических полос, соединенных вместе таким образом, чтобы образовать петлю. Когда два перехода поддерживаются при разных температурах, в контуре возникает электрический ток и развивается ЭДС. Величина развиваемой ЭДС зависит от металлов и разницы температур горячего и холодного спая. Такая комбинация двух металлов широко известна как термопара.
Термопара используется в качестве датчика температуры в промышленности.Термочувствительный датчик представляет собой модифицированную версию, в которой два разных металла соединены на одном конце, а другой конец подключен к считывающему устройству или милливольтметру. Когда переход нагревается или охлаждается, на открытом конце металла возникает ЭДС, которая очень мала по величине. По этой причине для измерения этой генерируемой ЭДС подключен мили-вольтметр. Измеренная ЭДС прямо пропорциональна температуре перехода, поэтому температуру можно откалибровать с помощью измеренной ЭДС.Термопара — это активный преобразователь.
Строительство:Термопара в основном состоит из проводов (называемых термоэлементами), изоляции, оболочки и средств для внешнего подключения. Один конец термоэлемента, состоящий из двух разных металлов, сварен вместе, образуя соединение. Это соединение фактически является точкой измерения.
На рисунке ниже показана конструкция термопары.
Термоэлемент заключен в жесткую металлическую оболочку, обычно изготовленную из инконеля.Измерительный узел образован в нижней части корпуса. Наполнитель из оксида магния окружает термоэлемент. Это наполнение действует как амортизатор и предотвращает повреждение проволоки от вибрации. Он также действует как рассеивающая тепло среда горячего спая.
Использование оболочки значительно замедляет отклик по мере увеличения массы термопары. Однако в приложениях, где время отклика является основным фактором, используются термопары в голой или тонкой оболочке. Чувствительность термопары можно увеличить за счет уменьшения массы измерительного спая.Один из методов уменьшения массы — это стыковая сварка двух проводов термопар. В случаях, когда механическая прочность стыкового шва недостаточна, две проволоки скручивают вместе, а концы сваривают.
Измерительный переход может быть присоединен к оболочке или нет. В зависимости от соединения точки соединения с оболочкой существует три различных типа конструкции термопары: незаземленная, заземленная и открытая термопара.
Заземленная термопара:В заземленной термопаре спай соединен с металлической оболочкой.Этот тип термопары используется для измерения температуры в агрессивной среде. Однако в измерении отсутствуют помехи.
Незаземленная термопара:В незаземленной термопаре спай не соединен с металлической оболочкой. Он широко используется в системах высокого давления. В этом типе датчика измерения не подвержены влиянию паразитного магнитного поля.
Открытая термопара:Открытая термопара имеет самый быстрый отклик и поэтому используется в приложениях, требующих быстрого отклика.Используется для измерения температуры газа. Но основным недостатком является то, что термоэлемент очень подвержен коррозии, поскольку он остается открытым и, следовательно, не рекомендуется.
Выбор материала провода термопары:В промышленных приложениях выбор материалов, используемых для изготовления термопары, зависит от диапазона измеряемых температур, типа атмосферы, в которой будет находиться материал, выходной ЭДС и ее стабильности, механической прочности и точности, необходимой для измерения. .Материалы термопар делятся на две категории: тип редкого металла с использованием платины, родия и т. Д. И тип основного металла.
Из нескольких комбинаций разнородных металлов получается хорошая термопара для промышленного использования. Эти комбинации, помимо линейного отклика и высокой чувствительности, должны быть физически прочными, чтобы выдерживать высокую температуру, быстрые изменения температуры, а также влияние коррозии и восстановительной атмосферы.
Материал для обычных типов термопар указан в таблице ниже.
Основной металл Тип | |||
Положительный провод: | Медь | Утюг | хромель |
Отрицательный провод: | Константан | Константан | Константан |
Темп. Диапазон (° C): | -250 до 400 | от -200 до 850 | от -200 до 850 |
Характеристики: | Устойчив к окислительной и восстановительной атмосфере до 350 ° C. Требуется защита от кислотных паров | Низкая стоимость. Корродирует в присутствии влаги, кислорода и серосодержащих газов. Подходит для восстановительной атмосферы. | Подходит для окислительной, но не для восстановительной атмосферы. |
Редкий металл Тип | |||
Положительный провод: | Платина 90% и родий 10% | Вольфрам 95% и Рений 5% | Фодий |
Отрицательный провод: | Платина | Вольфрам 72% и рений 26% | Иридий |
Темп.Диапазон (° C): | 0 до 1400 | 0 до 2600 | 0 до 2100 |
Характеристики: | Низкая ЭДС. Хорошо для окислительной атмосферы, но плохо для восстановительной атмосферы. | Только для использования в неокислительной атмосфере. | Низкая ЭДС. Хорошо для окислительной атмосферы, но плохо для восстановительной атмосферы. |
Термопара работает на эффекте Бека.Эффект Бека говорит о том, что, когда два разнородных металла соединяются вместе, чтобы сформировать соединение, и если разница температур между переходом сохраняется между переходами, в нем индуцируется ЭДС. Эта ЭДС называется термоэлектрической ЭДС. Если соединение образует замкнутый контур, то эта ЭДС вызовет ток через контур. Это свойство используется для измерения температуры системы.
В датчике термопары один конец двух разнородных металлов соединен вместе, а другой конец подключен к милливольтметру.Это показано на рисунке ниже.
Два разных типа металлических проводов A и B соединены на одном конце, образуя соединение. На этом переходе измеряется температура и называется детекторным переходом . Другой конец подсоединен к мили-вольтметру для измерения ЭДС E. ЭДС, создаваемая термопарой, определяется как
.E = а (ΔƟ) + b (ΔƟ) 2
где (ΔƟ) = разница между температурой горячего спая и эталонного спая в ° C, а a и b являются константами.
Поскольку термоэлектрическая ЭДС зависит от разницы температур между горячим и эталонным спаями, температура последнего должна оставаться абсолютно постоянной, чтобы калибровка между температурой и измеренным напряжением оставалась правильной и не было ошибок, связанных с изменением температуры окружающей среды. . Для этого контролируется температура холодного спая. Эталонный спай обычно составляет 0 ° C при использовании ледяной бани. Здесь следует отметить, что комбинация металлов должна быть выбрана таким образом, чтобы повышение температуры всегда приводило к линейному увеличению ЭДС i.е. значение «b» должно быть незначительным.
Измерение выхода термопары:ЭДС на выходе термопары в результате разницы температур между горячим и холодным спаем может быть легко измерена с помощью мили-вольтметра. Миливольтметр подключается к холодной ноге. Отклонение пропорционально току, протекающему в цепи. Если сопротивление счетчика Rm, а сопротивление внешней цепи Re, ток в цепи I = E / (Rm + Re).
Чтобы обеспечить ток, достаточный для отклонения движения, сопротивление измерителя должно быть небольшим, поскольку чувствительность термопары довольно мала, и они создают выходное напряжение, которое составляет несколько мВ / 100 ° C.
Компенсация за свинец:Во многих промышленных приложениях желательно размещать эталонный спай в точке, удаленной от детектирующего спая. Следовательно, соединительный провод от головки термопары к счетчику очень длинный и обычно имеет разную температуру по всей длине.Это вызывает ошибку, которой можно избежать, используя соединительные провода, изготовленные из того же материала, что и провода термопары. Реализация такой схемы может оказаться невозможной из-за стоимости. В этом случае материалы выбираются таким образом, чтобы соотношение между ЭДС и температурой было таким же или почти таким же, как для проводов термопар. Затем эти провода назывались Compensating Leads .
Преимущество:Ниже приведены преимущества термопары:
- Термопары дешевле RTD.
- Он отслеживает изменения температуры с небольшой задержкой по времени и поэтому подходит для регистрации сравнительно быстрых изменений температуры.
- Термопары очень удобны для измерения температуры в одной конкретной точке прибора.
- Они имеют меньшую точность и поэтому не могут использоваться для точных работ.
- Для обеспечения длительного срока службы термопар в условиях их эксплуатации их следует защищать металлической защитной трубкой с открытым или закрытым концом или колодцем.Чтобы предотвратить загрязнение термопары, при использовании драгоценных металлов, таких как платина или ее сплав, защитная трубка / лунка должна быть химически инертной и герметичной.
- Термопара размещена на удалении от измерительного прибора.