+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

режимы, схема, назначение, из чего состоит

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В.

Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной

I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Трансформатор.

Устройство и принцип действия трансформатора.
Простейший трансформатор представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым трансформатором может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке.

Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Устройство и принцип действия трансформатора

С открытием и началом промышленного использования электричества возникла необходимость создания систем его преобразования и доставки к потребителям. Так появились трансформаторы, о принципе действия которых и пойдет речь.

Появлению их на свет предшествовало открытие явления электромагнитной индукции великим английским физиком Майклом Фарадеем почти 200 лет назад. Позже он и его американский коллега Д. Генри нарисовали схему будущего трансформатора.

Трансформатор Фарадея

Первое воплощение идеи в железо состоялось в 1848 году с создания индукционной катушки французским механиком Г. Румкорфом. Свою лепту внесли и российские ученые. В 1872 году профессор Московского университета А. Г. Столетов открыл петлю гистерезиса и описал структуру ферромагнетика, а 4 года спустя, выдающийся российский изобретатель П. Н. Яблочков получил патент на изобретение первого трансформатора переменного тока.

Как устроен и как работает трансформатор

Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

Принцип работы трансформатора

Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

Трансформаторы напряжения

Это, пожалуй, наиболее многочисленная разновидность семейства трансформаторов. В двух словах, их основная функция – сделать произведенную на электростанциях энергию доступной для потребления различными устройствами. Для этого существует система передачи электроэнергии, состоящая из повышающих и понижающих трансформаторных подстанций и линий электропередач.

Вначале электроэнергия, произведенная электростанцией, подается на повышающую трансформаторную подстанцию (к примеру, с 12 до 500 кВ). Это необходимо для того, чтобы компенсировать неизбежные потери электроэнергии при передаче на большие расстояния.

Следующий этап – понижающая подстанция, откуда электроэнергия уже по низковольтной линии подается на понижающий трансформатор и далее к потребителю в виде напряжения 220 в.

Но на этом работа трансформаторов не заканчивается. В большинстве окружающих нас бытовых электроприборов — в ПК, телевизорах, принтерах, стиральных машинах-автоматах, холодильниках, микроволновых печах, DVD и даже в энергосберегающих лампочках установлены понижающие трансформаторы. Пример индивидуального «карманного» трансформатора – зарядное устройство мобильного телефона (смартфона).

Гигантскому разнообразию современных электронных устройств и выполняемых ими функций соответствует множество различных типов трансформаторов. Это далеко не полный их список: силовые, импульсные, сварочные, разделительные, согласующие, вращающиеся, трехфазные, пик-трансформаторы, трансформаторы тока, тороидальные, стержневые и броневые.

Какие они, трансформаторы будущего

Считается, что трансформаторная отрасль весьма консервативна. Тем не менее и ей приходится считаться с революционными изменениями в области электротехники, где все громче о себе заявляют нанотехнологии. Как и множество других устройств, они постепенно «умнеют».

Элегазовые трансформаторы

Активно ведется поиск новых конструкционных материалов – изоляционных и магнитных, способных обеспечить более высокую надежность трансформаторного оборудования. Одним из направлений может стать использование аморфных материалов, что значительно повысит его пожарную безопасность и надежность.

Появятся взрыво- и пожаробезопасные трансформаторы, в которых хлордифенилы, используемые для пропитки электроизоляционных материалов, будут заменены нетоксичными жидкими, экологически безопасными диэлектриками.

Элегазовые трансформаторы

Примером тому — элегазовые силовые трансформаторы, где функцию хладагента выполняет негорючий элегаз гексафторид серы, вместо далеко не безопасного трансформаторного масла.

Вопрос времени – создание «умных» электросетей, оснащенных полупроводниковыми твердотельными трансформаторами с электронным управлением, с помощью которых появится возможность регулировать напряжение в зависимости от потребностей потребителей, в частности, подключать к домашней сети возобновляемые и промышленные источники питания, или наоборот отключать лишние, когда в них нет необходимости.

Еще одно перспективное направление – низкотемпературные сверхпроводимые трансформаторы. Работа по их созданию началась еще в 60-е годы. Главная проблема, с которой столкнулись ученые – огромные размеры криогенных систем, необходимых для изготовления жидкого гелия. Все изменилось в 1986 году, когда были открыты сверхпроводниковые высокотемпературные материалы. Благодаря им, появилась возможность отказаться от громоздких охлаждающих устройств.

Трансформатор с полупроводниковым преобразователем

Сверхпроводимые трансформаторы обладают уникальным качеством: при высокой плотности тока потери в них минимальны, зато, когда ток достигает критических значений, сопротивление от нулевого уровня резко увеличивается.

Трансформатор — устройство и принцип работы

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.                                        

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины — вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k.  Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым. 

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.         

Читайте также — Приведение обмоток трансформатора                                                                                                                      

  • Просмотров: 19178
  • §63.

    Назначение и принцип действия трансформатора

    Назначение трансформатора.

    Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

    Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

    В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

    Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

    Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Трансформаторы бывают однофазные и трехфазные, двух- и многообмоточные.

    Принцип действия трансформатора.

    Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3.

    Рис. 212. Схема включения однофазного трансформатора

    Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

    При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

    Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

    Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков N1 и N2 этих обмоток, т. е.

    E1/E2 = N1/ N2.

    Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

    n = Евн / Eнн = Kвн / Kнн.

    Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.

    U1/U2 ≈ N1/ N2

    Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

    В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

    Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

    При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке.

    Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

    Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ≠ U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ≠ N2/N1.

    Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной.

    Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.


    Устройство трансформатора | Электротехника

    Устройство трансформатора. Магнитопровод. Трансформаторы в зависимости от конфигурации магнитопровода подразделяют на стержневые, броневые и тороидальные.

    В стержневом трансформаторе (рис. 213, а) обмотки 2 охватывают стержни магнитопровода 1; в броневом (рис. 213,б), наоборот, магнитопровод 1 охватывает частично обмотки 2 и как бы

    Рис. 213. Устройство стержневого (а), броневого (б) и тороидального (в) трансформаторов

    бронирует их; в тороидальном (рис. 213, в) обмотки 2 намотаны на магнитопровод 1 равномерно по всей окружности.

    Трансформаторы большой и средней мощности обычно выполняют стержневыми. Их конструкция более простая и позволяет легче осуществлять изоляцию и ремонт обмоток. Достоинством их являются также лучшие условия охлаждения, поэтому они требуют меньшего расхода обмоточных проводов. Однофазные трансформаторы малой мощности чаще всего выполняют броневыми и тороидальными, так как они имеют меньшую массу и стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения процесса сборки и изготовления. Тяговые трансформаторы с регулированием напряжения на стороне низшего напряжения — стержневого типа, а с регулированием на стороне высшего напряжения — броневого типа.
    Магнитопроводы трансформаторов (рис. 214) для уменьшения потерь от вихревых токов собирают из листов электротехнической

    Рис. 214. Магнитопроводы однофазного тягового (а) и силового трехфазного (б) трансформаторов: 1 — стержень; 2 — ярмовые балки; 3 — стяжные шпильки; 4 — основание для установки катушек; 5 — ярмо

    стали толщиной 0,35 или 0,5 мм. Обычно применяют горячекатаную сталь с высоким содержанием кремния или холоднокатаную сталь. Листы изолируют один от другого тонкой бумагой или лаком. Стержни магнитопровода трансформатора средней мощности имеют квадратное или крестовидное сечение, а у более мощных трансформаторов — ступенчатое, по форме приближающееся к кругу (рис. 215, а). При такой форме обеспечивается минимальный периметр стержня при заданной площади поперечного сечения, что позволяет уменьшить длину витков обмоток, а следовательно, и расход обмоточных проводов. В мощных трансформаторах между отдельными стальными пакетами из которых собираются стержни, устраивают каналы шириной 5—6 мм для циркуляции охлаждающего масла. Ярмо, соединяющее стержни, имеет обычно прямоугольное сечение, площадь которого на 10—15% больше площади сечения стержней. Это уменьшает нагрев стали и потери мощности в ней.

    В силовых трансформаторах магнитопровод собирают из прямоугольных листов. Сочленение стержней и ярма обычно выполняют с взаимным перекрытием их листов внахлестку. Для этого листы в двух смежных слоях сердечника располагают, как показано на рис. 215, б, г, т. е. листы стержней 1, 3 и ярма 2, 4 каждого последующего слоя перекрывают стык в соответствующих листах предыдущего слоя, существенно уменьшая магнитное сопротивление в месте сочленения. Окончательную сборку магнитопровода осуществляют после установки катушек на стержни (рис. 215, в).

    В трансформаторах малой мощности магнитопроводы собирают из штампованных листов П- и Ш-образной формы или из штампованных колец (рис. 216, а—в).

    Большое распространение получили также магнитопроводы (рис. 216,г—ж), навитые из узкой ленты электротехнической стали (обычно из холоднокатаной стали) или из специальных железо-никелевых сплавов.

    Обмотки. Первичную и вторичную обмотки для лучшей магнитной связи располагают как можно ближе друг к другу: на каждом стержне 1магнитопровода размещают либо обе обмотки 2 и 3

    Рис. 215 Формы поперечного сечения (а) и последовательность сборки магнитопровода (б — г)

    Рис. 216. Сердечники однофазных трансформаторов малой мощности, собранные из штампованных листов (о, б), колец (в) и стальной ленты (г—ж)

    концентрически одну поверх другой (рис. 217,а), либо обмотки 2 и 3 выполняют в виде чередующихся дисковых секций — катушек (рис. 217,б). В первом случае обмотки называют концентрическими, во втором — чередующимися, или дисковыми. В силовых трансформаторах обычно применяют концентрические обмотки, причем ближе к стержням обычно располагают обмотку низшего напряжения, требующую меньшей изоляции относительно магнито-провода трансформатора, снаружи — обмотку высшего напряжения.

    В трансформаторах броневого типа иногда применяют дисковые обмотки. По краям стержня устанавливают катушки, принадлежащие обмотке низшего напряжения. Отдельные катушки соединяют последовательно или параллельно. В трансформаторах э. п. с, у которых вторичная обмотка имеет ряд выводов для изменения напряжения, подаваемого к тяговым двигателям, на каждом стержне располагают по три концентрических обмотки (рис. 217, в). Ближе к стержню размещают нерегулируемую часть 4 вторичной обмотки, в середине — первичную обмотку 5 высшего напряжения и поверх нее — регулируемую часть 6 вторичной обмотки. Размещение регулируемой части этой обмотки снаружи упрощает выполнение выводов от отдельных ее витков.

    В трансформаторах малой мощности используют многослойные обмотки из провода круглого сечения с эмалевой или хлопчатобумажной изоляцией, который наматывают на каркас из электрокартона; между слоями проводов прокладывают изоляцию из специальной бумаги или ткани, пропитанной лаком.

    В мощных трансформаторах, устанавливаемых на э. п. с, тяговых подстанциях и пр., применяют непрерывные спиральные

    Рис. 217. Расположение концентрических (а), дисковых (б) и концентрических трехслойных (в) обмоток трансформатора

    (рис. 218, а) и винтовые параллельные (рис. 218,б) обмотки, обладающие высокой механической прочностью и надежностью. Непрерывную спиральную обмотку используют в качестве первичной (высшего напряжения) и регулируемой части вторичной обмотки (низшего напряжения). Эта обмотка состоит из ряда последовательно соединенных плоских катушек, имеющих одинаковые размеры. Катушки расположены друг над другом. Между ними устанавливают прокладки и рейки из электрокартона, которые образуют горизонтальные и вертикальные каналы для прохода охлаждающей жидкости (масла).

    Для повышения электрической прочности при воздействии атмосферных напряжений две первые и две последние катушки первичной (высоковольтной) обмотки обычно выполняют с усиленной изоляцией. Усиление изоляции ухудшает охлаждение, поэтому площадь сечения проводов этих катушек берут большей, чем для остальных катушек первичной обмотки.

    Винтовую параллельную обмотку используют в качестве нерегулируемой части вторичной обмотки. Ее витки наматывают по винтовой линии в осевом направлении подобно резьбе винта. Обмотку выполняют из нескольких параллельных проводов прямоугольного сечения, прилегающих друг к другу в радиальном направлении. Между отдельными витками и группами проводов располагают каналы для прохода охлаждающей жидкости.

    Рис. 218. Непрерывная спиральная (а) и винтовая (б) обмотки мощных трансформаторов электрического подвижного состава: 1 — выводы; 2,6 — каналы для прохода охлаждающей жидкости; 3 — катушки; 4 — опорные кольца; 5 — рейки; 7 — бакелитовый цилиндр; 8 — проводники обмотки

    Рис. 219. Устройство трансформаторов общего назначения (а) и тягового (б) с масляным охлаждением: 1— термометр; 2 — выводы обмотки высшего напряжения; 3—выводы обмотки низшего напряжения; 4, 6 — пробки для заливки масла; 5 — масломерное стекло; 7 — расширитель; 8 — сердечник; 9, 10 — обмотки высшего и низшего напряжений; 11 — пробка для спуска масла; 12 —бак для охлаждения масла; 13 — трубы для охлаждения масла; 14 — теплообменник; 15 — воздуховоды; 16, 18 — стойки для установки переключателя выводов трансформатора; 17 — заводской щиток; 19 — насос для циркуляции масла; 20 — опорные балки

    Число параллельных проводов определяется током, проходящим по обмотке.

    Система охлаждения. Способ охлаждения трансформатора зависит от его номинальной мощности. При увеличении мощности трансформатора необходимо увеличивать и интенсивность его охлаждения.

    Трансформаторы малой мощности обычно выполняют с естественным воздушным охлаждением и называют «сухими». Отвод тепла в них происходит путем непосредственной теплоотдачи от нагретых поверхностей обмотки и магнитопровода к окружающему воздуху. В некоторых случаях трансформаторы малой мощности помещают в корпус, залитый термореактивными компаундами на основе эпоксидных смол или других подобных материалов.

    В трансформаторах средней и большой мощности сердечник с обмотками целиком погружают в бак, наполненный тщательно очищенным минеральным (трансформаторным) маслом (рис. 219, а). Такой способ отвода тепла называют естественным масляным охлаждением. Трансформаторное масло обладает более высокой теплопроводностью, чем воздух, и хорошо отводит тепло от обмоток и сердечника трансформатора к стенкам бака, имеющего большую площадь охлаждения, чем сам трансформатор. Погружение трансформатора в бак с маслом обеспечивает также повышение электрической прочности изоляции его обмоток и предотвращает ее старение под влиянием атмосферных воздействий. Баки трансформаторов мощностью 20—30 кВ*А имеют гладкие стенки. В более мощных трансформаторах (например, в трансформаторах, устанавливаемых на тяговых подстанциях) для повышения теплоотдачи поверхность охлаждения увеличивают, применяя баки с ребристыми стенками или трубчатые. Нагревающееся внутри бака масло поднимается кверху, а охлаждающееся в трубах опускается вниз, создавая, таким образом, естественную циркуляцию, способствующую охлаждению трансформатора.

    На э. п. с. переменного тока применяют трансформаторы с масляным охлаждением и принудительной циркуляцией масла через теплообменник, охлаждаемый воздухом (рис. 219,б). Такая система охлаждения позволяет существенно повысить индукцию в сердечнике и плотность тока в обмотках, т. е. уменьшить массу и габаритные размеры трансформатора.

    В систему охлаждения обычно вводят струйное реле, которое не допускает включения трансформатора, если через него не циркулирует масло.

    Масло в трансформаторе во время работы нагревается и расширяется. При уменьшении нагрузки оно, охлаждаясь, возвращается к первоначальному объему. Поэтому масляные трансформаторы снабжают дополнительным баком — расширителем, соединенным с внутренней полостью бака.При нагревании трансформатора масло переходит в расширитель. Применение расширителя позволяет значительно сократить поверхность соприкосновения масла с воздухом, что уменьшает его загрязнение и увлажнение.

    При работе трансформатора масло, нагреваясь, разлагается и загрязняется, поэтому его периодически очищают или заменяют. Масляные трансформаторы во избежание опасности пожара и взрыва устанавливают в специально огражденных помещениях. Наибольшая температура обмоток трансформатора не должна превышать 105 °С, сердечника — 110 °С, верхних слоев масла — 95 °С.

    Для защиты от возможной аварии трансформаторы средней и большой мощности снабжают специальными газовыми реле. Газовое реле устанавливают в трубопроводе между основным баком и расширителем. При значительном выделении взрывоопасных газов, образующихся в результате разложения масла, газовое реле автоматически выключает трансформатор, предупреждая развитие аварии. В трансформаторах мощностью более 1000 кВ*А устанавливают также выхлопную трубу, закрытую стеклянной мембраной. При образовании большого количества газов они выдавливают мембрану и выходят в атмосферу — этим предотвращается деформация бака.

    Многообмоточные трансформаторы. Наиболее распространены двухобмоточные однофазные трансформаторы (рис. 220, а). При необходимости получения от одного трансформатора нескольких различных напряжений u21, u22, u23 (рис. 220, б) используют многообмоточные трансформаторы, у которых на магнитопроводе расположено несколько вторичных обмоток с различным числом витков. Например, тяговые трансформаторы электровозов имеют обычно четыре обмотки: первичную (высшего напряжения) и три вторичные (низшего напряжения). Одна из них (тяговая) служит для питания через выпрямитель цепи тяговых двигателей, вторая — для питания электрических потребителей собственных нужд (цепей вспомогательных машин, управления, освещения и пр. ) и третья — для питания электрических печей отопления пассажирских вагонов. Если на электровозе предусмотрено рекуперативное торможение, то в ряде случаев применяют специальную вторичную обмотку для питания обмоток возбуждения тяговых двигателей в этом режиме. На некоторых электровозах каждый тяговый двигатель питается от собственного выпрямительного блока и в трансформаторе предусматривают соответствующее число вторичных обмоток.

    Рис. 220. Схемы двухобмоточного (а) и многообмоточного (б) трансформаторов

    Трансформатор

    — Energy Education

    Рис. 1. Трансформатор, устанавливаемый на площадку для распределения электроэнергии. [1]

    Трансформатор — электрическое устройство, которое использует электромагнитную индукцию для передачи сигнала переменного тока от одной электрической цепи к другой, часто изменяя (или «преобразуя») напряжение и электрический ток. Трансформаторы не пропускают постоянный ток (DC) и могут использоваться для снятия постоянного напряжения (постоянного напряжения) из сигнала, сохраняя при этом изменяющуюся часть (переменное напряжение). В электрической сети трансформаторы играют ключевую роль в изменении напряжения, чтобы уменьшить потери энергии при передаче электроэнергии.

    Трансформаторы изменяют напряжение электрического сигнала, исходящего от электростанции, обычно увеличивая (также называемое «повышением») напряжение. Трансформаторы также снижают («понижают») напряжение на подстанциях, а также в распределительных трансформаторах. [2] Трансформаторы также используются в составе устройств, как трансформаторы тока.

    Как работают трансформаторы

    Часто кажется удивительным, что трансформатор сохраняет общую мощность неизменной при повышении или понижении напряжения.Следует иметь в виду, что при повышении напряжения ток падает:

    [математика] P = I_1 V_1 = I_2 V_2 [/ математика]

    Трансформаторы используют электромагнитную индукцию для изменения напряжения и тока. Это изменение называется действием трансформатора и описывает, как трансформатор изменяет сигнал переменного тока с его первичной на вторичную составляющую (как в приведенном выше уравнении). Когда на первичную катушку подается сигнал переменного тока, изменяющийся ток вызывает изменение магнитного поля (становится больше или меньше).Это изменяющееся магнитное поле (и связанный с ним магнитный поток) будет проходить через вторичную катушку, индуцируя напряжение на вторичной катушке, тем самым эффективно связывая вход переменного тока от первичного ко вторичному компоненту трансформатора. Напряжение, приложенное к первичному компоненту, также будет присутствовать во вторичном компоненте.

    Как упоминалось ранее, трансформаторы не пропускают вход постоянного тока. Это известно как изоляция постоянного тока. [2] Это связано с тем, что изменение тока не может быть вызвано постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.

    Рисунок 1. Простой рабочий трансформатор. [3] Ток [math] I_p [/ math] поступает с напряжением [math] V_p [/ math]. Ток проходит через [math] N_p [/ math] обмотки, создавая магнитный поток в железном сердечнике. Этот поток проходит через [math] N_s [/ math] витков провода на другом контуре. Это создает ток [math] I_s [/ math] и разность напряжений во второй цепи [math] V_s [/ math]. Электроэнергия ([математика] V \ умноженная на I [/ математика]) остается прежней.

    Основным принципом, который позволяет трансформаторам изменять напряжение переменного тока, является прямая зависимость между соотношением витков провода в первичной обмотке и вторичной обмотке и отношением первичного напряжения к выходному напряжению.Отношение числа витков (или петель) первичной обмотки к числу витков вторичной обмотки известно как отношение витков . Соотношение витков устанавливает следующее соотношение с напряжением:

    [математика] \ frac {N_p} {N_s} = \ frac {V_p} {V_s} = \ frac {I_s} {I_p} [/ math]
    • [math] N_p [/ math] = Количество витков в первичной катушке
    • [math] N_s [/ math] = Количество витков вторичной катушки
    • [math] V_p [/ math] = напряжение на первичной обмотке
    • [math] V_s [/ math] = Напряжение на вторичной обмотке
    • [math] I_p [/ math] = Ток через первичный
    • [math] I_s [/ math] = Ток через вторичную обмотку

    Из этого уравнения, если количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке ([math] N_p \ gt N_s [/ math]), то напряжение на вторичной катушке будет на меньше, чем на первичной катушке. Это известно как понижающий трансформатор, потому что он понижает или понижает напряжение. В таблице ниже показаны распространенные типы трансформаторов, используемых в электрической сети.

    Тип трансформатора Напряжение Передаточное число Текущий Мощность
    Понизить входное (первичное) напряжение> выходное (вторичное) напряжение [math] N [/ math] p > [math] N [/ math] s [math] I [/ math] p <[math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
    Шаг вверх входное (первичное) напряжение <выходное (вторичное) напряжение [math] N [/ math] p <[math] N [/ math] s [math] I [/ math] p > [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
    Один к одному входное (первичное) напряжение = выходное (вторичное) напряжение [math] N [/ math] p = [math] N [/ math] s [math] I [/ math] p = [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s

    Преобразователь один к одному будет иметь равных значений для всего и используется в основном для цель обеспечения изоляции постоянного тока.

    Понижающий трансформатор будет иметь на более высокое первичное напряжение на , чем вторичное напряжение, но на более низкое значение первичного тока на , чем его вторичный компонент.

    В случае повышающего трансформатора , первичное напряжение будет ниже на , чем вторичное напряжение, что означает на больший первичный ток , чем вторичный компонент.

    КПД

    В идеальных условиях напряжение и ток изменяются с одинаковым коэффициентом для любого трансформатора, что объясняет, почему значение первичной мощности равно значению вторичной мощности для каждого случая в приведенной выше таблице.По мере того, как одно значение уменьшается, другое увеличивается, чтобы поддерживать постоянный равновесный уровень мощности. [2]

    Трансформаторы могут быть чрезвычайно эффективными. Трансформаторы большой мощности могут достигать отметки КПД 99% в результате успехов в минимизации потерь в трансформаторе. Однако трансформатор всегда будет выдавать немного меньшую мощность, чем его входная мощность, поскольку полностью исключить потери невозможно. Есть некоторое сопротивление трансформатора.

    Чтобы узнать больше о трансформаторах, см. Гиперфизику.

    Для дальнейшего чтения

    Для получения дополнительной информации см. Соответствующие страницы ниже:

    Список литературы

    Основы электрических трансформаторов

    Что такое электрические трансформаторы?

    Электрические трансформаторы — это машины, передающие электричество из одной цепи в другую с изменением уровня напряжения, но без изменения частоты. Сегодня они рассчитаны на использование источника переменного тока, а это означает, что колебания напряжения питания зависят от колебаний тока.Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.

    Трансформаторы

    помогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре жилых и промышленных применений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.

    Строительство электрического трансформатора

    Три важных компонента электрического трансформатора — это магнитный сердечник, первичная обмотка и вторичная обмотка.Первичная обмотка — это часть, которая подключена к источнику электричества, откуда первоначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитный сердечник и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.

    Сердечник передает поток во вторичную обмотку, чтобы создать магнитную цепь, которая замыкает поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление.Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне, и с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна набирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитный сердечник собирается путем укладки многослойных стальных листов, оставляя минимально необходимый воздушный зазор между ними для обеспечения непрерывности магнитного пути.

    Как работают трансформаторы?

    В электрическом трансформаторе для работы используется закон электромагнитной индукции Фарадея: «Скорость изменения магнитной индукции во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».

    Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, которые связаны общим магнитным потоком. Обычно он имеет 2 обмотки: первичную и вторичную. Эти обмотки имеют общий магнитный сердечник, который является ламинированным, и взаимная индукция, возникающая между этими цепями, помогает передавать электричество из одной точки в другую.

    В зависимости от количества связанного магнитного потока между первичной и вторичной обмотками будут разные скорости изменения магнитного потока.Чтобы обеспечить максимальную потокосцепление, то есть максимальный поток, проходящий через вторичную обмотку и связанный с ней от первичной обмотки, для обеих обмоток размещен путь с низким сопротивлением. Это приводит к повышению эффективности работы и образует сердечник трансформатора.

    Приложение переменного напряжения к обмоткам первичной обмотки создает переменный поток в сердечнике. Это связывает обе обмотки, чтобы навести ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной части подключена нагрузка.

    Таким образом электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.

    Видео кредит: Инженерное мышление

    Как работает трансформатор — Принцип работы электротехники

    Электрический трансформатор — КПД и потери

    В электрическом трансформаторе не используются движущиеся части для передачи энергии, что означает отсутствие трения и, следовательно, потерь на ветер.Однако электрические трансформаторы страдают от незначительных потерь меди и железа. Потери меди возникают из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электроэнергии. Это самые большие потери в работе электрического трансформатора. Потери в железе вызваны запаздыванием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, которое приводит к трению, и это трение производит тепло, которое приводит к потере мощности в сердечнике. Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.

    Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в потерях мощности между первичной и вторичной обмотками. Результирующий КПД затем рассчитывается как отношение выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой. В идеале КПД электрического трансформатора составляет от 94% до 96%

    Типы трансформаторов

    Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.

    На основе проектирования
    • Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном плече трансформатора сердечника.
    • Корпус типа Трансформатор Трансформатор кожухового типа имеет двойную магнитную цепь и центральную ветвь с двумя внешними ветвями.

    На основе поставки
    • Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток.Отдельные однофазные блоки могут дать те же результаты, что и трехфазные передачи, когда они соединены внешне.
    • Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичных и вторичных обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.

    По основанию назначения
    • Повышающий трансформатор
      Этот тип определяется количеством витков провода.Таким образом, если вторичный набор имеет большее количество витков, чем первичный, это означает, что напряжение будет соответствовать тому, которое образует базу повышающего трансформатора.
    • Понижающий трансформатор
      Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.

    На основании использования
    • Силовой трансформатор
      Обычно используется для передачи электроэнергии и имеет высокий рейтинг.
    • Распределение трансформатор Этот электрический трансформатор имеет сравнительно более низкие характеристики и используется для распределения электроэнергии.
    • Приборный трансформатор Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения.
      • Трансформатор тока
      • Трансформатор потенциала

    Эти трансформаторы используются для реле и защиты приборов одновременно.

    На основе охлаждения
    • Самоохлаждающиеся масляные трансформаторы Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для самоохлаждения за счет окружающего воздушного потока.
    • Масляные трансформаторы с водяным охлаждением В этом типе электрических трансформаторов используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
    • С воздушным охлаждением (воздушное охлаждение) Трансформаторы В трансформаторах этого типа выделяемое тепло охлаждается с помощью нагнетателей и вентиляторов, которые заставляют циркулировать воздух по обмоткам и сердечнику.

    Основные характеристики трансформатора

    Все трансформаторы имеют общие черты, независимо от их типа:

    • Частота входной и выходной мощности одинаковая
    • Все трансформаторы используют законы электромагнитной индукции
    • Первичная и вторичная катушки не имеют электрического соединения (за исключением автотрансформаторов). Передача энергии осуществляется посредством магнитного потока.
    • Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или ветер, как в других электрических устройствах.
    • Потери, которые происходят в трансформаторах, меньше, чем в других электрических устройствах, и включают:
      • Потери в меди (потеря электроэнергии из-за тепла, создаваемого циркуляцией токов вокруг медных обмоток, считается самой большой потерей в трансформаторах)
      • Потери в сердечнике (потери на вихревые токи и гистерезис, вызванные запаздыванием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)

    Большинство трансформаторов очень эффективны, вырабатывая от 94% до 96% энергии при полной нагрузке.Трансформаторы очень большой мощности могут выдавать до 98%, особенно если они работают с постоянным напряжением и частотой.

    Применение электрического трансформатора

    Основные области применения электрического трансформатора:

    • Повышение или понижение уровня напряжения в цепи переменного тока.
    • Увеличение или уменьшение значения индуктивности или конденсатора в цепи переменного тока.
    • Предотвращение прохождения постоянного тока из одной цепи в другую.
    • Изоляция двух электрических цепей.
    • Повышение уровня напряжения на объекте выработки электроэнергии перед передачей и распределением электроэнергии.

    Общие применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и энергоблоки.

    Советы по поиску и устранению неисправностей электрического трансформатора

    Использование мультиметра — лучший способ проверить и устранить неисправности в электрической цепи.

    1. Начните с проверки напряжения цепи, которую необходимо проверить.Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
    2. Вырежьте 2 полосы из провода AWG 16 калибра , убедившись, что каждая из них имеет длину не менее 12 дюймов.
    3. С помощью инструмента для зачистки удалите четверть внешнего пластика с обоих концов проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенную проволоку, чтобы пряди соединялись.
    4. Присоедините два конца, с которых вы сняли 1/4 дюйма пластмассы, к клеммам патрона лампы.
    5. Вставьте лампочку в патрон и прикрепите два оставшихся конца провода к клеммам, которые вы хотите проверить.

    D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она занимает уникальное положение, предлагая конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

    Как это работает Jameco Electronics

    Автор: Меган Тунг

    Трансформаторы — это электрические устройства, состоящие из двух или более катушек провода, которые используются для передачи электрической энергии посредством магнитного поля.Трансформаторы — это очень простые статические электромагнитные пассивные электрические устройства, которые работают по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое. Две электрические цепи связаны посредством взаимной индукции, которая представляет собой процесс, посредством которого катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости. Электрическая энергия более эффективно передается от одной катушки к другой за счет наматывания катушек вокруг сердечника. Уровни напряжения и тока увеличиваются или уменьшаются без изменения частоты.Более высокие напряжения и токи передачи переменного тока могут быть снижены до гораздо более низкого, более безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в домах и на рабочих местах.


    Трансформатор напряжения
    Однофазный трансформатор напряжения состоит из двух электрических катушек с проволокой, первичной обмотки и вторичной обмотки. Первичная обмотка потребляет энергию, а вторичная обмотка выдает энергию. Две катушки не связаны электрически, а связаны магнитно.Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток во второй катушке будет практически такого же размера, как и в первой катушке. Понижающий трансформатор — это когда первая катушка (первичная обмотка) имеет больше витков, чем вторая катушка (вторичная обмотка), поэтому вторичное напряжение меньше первичного напряжения. Повышающий трансформатор — это когда первая катушка имеет меньше витков, чем вторая катушка, в результате чего вторичное напряжение выше первичного.
    Трансформатор с железным сердечником
    Как упоминалось ранее, катушки намотаны вокруг сердечника. Сердечник может быть изготовлен из нескольких различных материалов. Во-первых, это трансформатор с железным сердечником, в котором в качестве материала сердечника используются пластины из мягкого железа. Железо обладает превосходными магнитными свойствами, что приводит к высокой магнитной связи трансформатора с железным сердечником, поэтому эффективность также высока. В трансформаторе с ферритовым сердечником используется ферритовый сердечник, который имеет высокую магнитную проницаемость и предлагает очень низкие потери в высокочастотных приложениях.Часто трансформаторы с ферритовым сердечником используются в импульсных источниках питания или в приложениях, связанных с радиочастотами. В трансформаторе с тороидальным сердечником используется материал сердечника тороидальной формы (кольцевой или кольцевой), такой как железный сердечник или ферритовый сердечник. Форма кольца обеспечивает очень низкую индуктивность рассеяния. В трансформаторе с воздушным сердечником потокосцепление полностью выполнено с использованием воздуха; однако они создают низкую взаимную индуктивность по сравнению с трансформатором с физическим сердечником.

    Вам также может быть интересно прочитать: Что такое переменный ток?


    Меган Тунг — стажер на летний период в Jameco Electronics , посещает Калифорнийский университет , Санта-Барбара (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

    Кредиты на фотографии: Учебники по электронике

    Как работают электрические трансформаторы?

    Как работают электрические трансформаторы? — Объясни это Рекламное объявление

    Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт. Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами.Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее рассмотрим, как это работает!

    Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси. Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

    Почему мы используем высокое напряжение?

    Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает электроэнергией маленькую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

    Ваш первый вопрос, вероятно, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

    Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом. Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

    Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам могут потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой. )

    На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

    Рекламные ссылки

    Как работает трансформатор?

    Трансформатор основан на очень простом факте об электричестве: когда по проводу течет колеблющийся электрический ток, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг стержня из мягкого железа (иногда называемого сердечником):

    Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

    Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

    Понижающие трансформаторы

    Если у первой катушки больше витков, чем у второй катушки, вторичная напряжение меньше, чем первичное напряжение:

    Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше поворачивает, он имеет одну десятую напряжения.Всего:

    Вторичное напряжение ÷ Первичное напряжение = Количество витков во вторичной обмотке ÷ Количество витков в начальной

    Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

    Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

    Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке снизят напряжение в 10 раз, но одновременно умножьте ток в 10 раз. Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), поэтому вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что некоторая часть «магнитного потока» просачивается наружу сердечника часть энергии теряется из-за его нагрева и т. д.)

    Повышающие трансформаторы

    Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

    На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

    Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

    и

    Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного

    В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

    Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

    Трансформаторы в вашем доме

    Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

    Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередач. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор. Таким образом, электронные устройства, подобные этим, имеют небольшие размеры. встроенные в них трансформаторы (часто устанавливаются в конце силового свинец) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

    Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

    Зарядные устройства индукционные

    Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

    Трансформаторы на практике

    Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. В небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашей верхней фотографии, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (интенсивность его использования), сезонный диапазон наружных (окружающих) температур и даже высоту (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

    На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отработанного тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

    Иллюстрация: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый). Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

    Что такое твердотельные трансформаторы?

    Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

    В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

    Рекламные ссылки

    Узнать больше

    На сайте

    На других сайтах

    Книги

    Для читателей постарше
    • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
    • Справочник по проектированию трансформаторов и индукторов, составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
    • Электрические трансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
    • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
    • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
    Книги общего характера для младших читателей
    • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
    • Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.

    Патенты

    Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

    • Патент США 351 589: Система распределения электроэнергии Люсьена Голарда и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система по всему миру.
    • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
    • Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
    • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения подаваемого тока, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.

    Новостные статьи

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.

    Следуйте за нами

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

    Цитировать эту страницу

    Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

    Подробнее на нашем сайте…

    Для чего нужен трансформатор?

    Трансформаторы можно найти везде, где используется электрическая энергия переменного тока. Трансформатор — это электрическое устройство, которое меняет напряжение на ток в цепи, не влияя при этом на общую электрическую мощность. Это означает, что он принимает электричество высокого напряжения с небольшим током и преобразует его в электричество низкого напряжения с большим током, или наоборот. Одна вещь, которую следует знать о трансформаторах, заключается в том, что они работают только с переменным током (AC), который вы получаете от розеток, а не с постоянным током (DC).

    Трансформаторы

    могут использоваться либо для увеличения напряжения, также известного как повышение напряжения, либо они могут уменьшать напряжение, также известное как понижение напряжения. В трансформаторах используются две катушки с проволокой, каждая с сотнями или тысячами витков, намотанных на металлический сердечник. Одна катушка предназначена для входящего электричества, а другая — для исходящего электричества. Переменный ток во входящей катушке создает переменное магнитное поле в сердечнике, которое затем генерирует переменный ток в исходящей катушке.

    Энергия теряется в процессе передачи электричества на большие расстояния, например, во время поездки от электростанции к вашему дому. При очень высоком напряжении теряется меньше энергии. Обычно электрические компании используют высокое напряжение в проводах для передачи на большие расстояния. Однако такое высокое напряжение слишком опасно для домашнего использования. В случае с электрическими сетями в домах они используют трансформаторы для изменения напряжения электричества, когда оно движется от электростанции к вашему дому.

    Сначала с помощью трансформатора напряжение электричества, поступающего от электростанции, «повышается» до нужного уровня для передачи на большие расстояния.Поскольку ток высокого напряжения может вызвать дугу, повышающие трансформаторы, называемые катушками зажигания, используются для питания свечей зажигания. Динамо на электростанциях генерирует большие токи, но не большое напряжение. Это электричество повышается до высокого напряжения для передачи по проводам, поскольку электричество более эффективно распространяется при высоком напряжении.

    Позже напряжение понижается, прежде чем оно попадет в ваш дом — снова с помощью трансформаторов. «Понижающий» трансформатор преобразует 440-вольтовое электричество в линиях электропередачи на 120-вольтовое электричество, которое вы используете в своем доме.Затем ток либо используется на этом уровне для таких устройств, как лампочки, либо преобразуется в постоянный ток с помощью адаптера переменного / постоянного тока для таких устройств, как портативные компьютеры.

    С момента появления первых трансформаторов постоянного напряжения в 1885 году трансформаторы стали незаменимыми для передачи, распределения и использования электрической энергии переменного тока во всех сферах применения энергии. В Power Temp Systems мы специализируемся на производстве инновационного оборудования, которое эффективно и безопасно распределяет и использует энергию для любого проекта.

    Функциональные устройства

    Трансформатор TR50VA016, 50 ВА, 240/208/120 до 24 В перем.


    • Убедитесь, что это подходит введя номер вашей модели.
    • Цена за: Рейтинг каждого шкафа: Не номинальные Стандарты: UL5085-2 или UL5085-3; США и Канада Гц: 50/60 Вторичное соединение: 8-дюймовые выводы Первичное соединение: косички Тип корпуса: открытый Экологический атрибут: продукт способствует снижению температуры энергопотребления. Повышение температуры: без номинальных характеристик Отделка корпуса: без отделки Элемент: Класс 2 Фаза трансформатора: 1 Выходное напряжение: 24 В переменного тока
    • Глубина: 2,51 дюйма Защитное устройство: автоматический выключатель Номинальная мощность в ВА: 50 Монтаж: на ножках или ступице с резьбой 1/2 дюйма Входное напряжение: 120/208/240 В переменного тока Ширина: 3.Инструкция по эксплуатации Вес изделия 3,02 фунта Номер модели TR50VA016 Номер детали TR50VA016 Код КПСС ООН 23260000 UPC 696333730754

      Трансформатор


      2

      Исследования могут снизить экономические потери электростанций после землетрясений

      Октябрь1 января 2020 г. — На силовых трансформаторах установлены системы вводов, которые играют решающую роль в снабжении населенных пунктов электричеством. Однако эти объекты также подвержены разрушению во время землетрясений. …


      Без привязки: максимальная эффективность беспроводной зарядки с использованием нескольких передатчиков

      5 декабря 2020 г. — Ученые разработали стратегию управления, которая позволяет передавать энергию по беспроводной сети через несколько катушек передатчика с максимальной эффективностью.В отличие от традиционных подходов, в которых только …


      Ученые связывают намагниченность со сверхпроводимостью для квантовых открытий

      6 сентября 2019 г. — В недавнем исследовании ученые создали миниатюрную сверхпроводящую схему на основе микросхемы, которая связывает квантовые волны магнитных спинов, называемые магнонами, с фотонами эквивалентного …


      Использование возможностей спин-орбитальной связи в кремнии: масштабирование квантовых вычислений

      Декабрь7, 2018 — Исследовательские группы изучают несколько способов масштабирования вычислительных архитектур на основе атома с использованием спин-орбитальной связи, продвигаясь к своей цели создания квантового устройства на основе кремния …


      Спины электронов в медленно движущихся квантовых точках могут управляться электрическими полями

      15 января 2020 г. — В новой статье представлен теоретический анализ электронных спинов в движущихся полупроводниковых квантовых точках, показывающий, как ими можно управлять с помощью электрических полей, что предполагает их применимость…


      Физики открыли новый магнитоэлектрический эффект

      14 сентября 2020 г. — Обнаружен специальный материал, который демонстрирует новый удивительный эффект: его электрические свойства можно контролировать с помощью магнитного поля. Этот эффект работает совершенно иначе, чем обычно. Это может быть …


      Повышение коэффициента магнитосопротивления открывает дверь в высокочувствительные датчики магнитного поля

      20 декабря 2018 г. — Создав новую многослойную структуру с улучшенным коэффициентом магнитосопротивления, исследователи показывают, что можно повысить чувствительность к магнитному полю.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *