+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор  поможет вам найти нужный номинал резистора  для светодиода, подключенного по следующей схеме:

примечание: разделителем  десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора  = (U UF)/ I

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание:   Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются  в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то  выберите ближайшее  бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то   возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

Расчет резистора (сопротивления) для светодиода

Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации)  или его поломке.

Зачем резистор перед светодиодом.

В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Математический расчет.

Для подбора сопротивления придется вспомнить школьный курс физики.

На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

  • U – входное напряжение блока питания;
  • R – резистор с падением напряжения UR;
  • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

По второму закону Кирхгофа: 

U =  UR + ULED.   (1)

 Одновременно используем закон Ома:

U=I*R.   (2)

Подставим формулу (2) в формулу (1) и получим:

U = I*R + I*RLED.   (3)

Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

R = (U — ULED) / I.   (4)

Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

Р = U*I.   (5)

Примем напряжение блока питания U = 10 В.

Характеристики диода: ULED  = 2В, I = 40 мА = 0,04A.

Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).

Стоит учесть, что если полученной величины нет в стандартном ряду сопротивлений, то следует выбирать более высокоомный элемент.

Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом.

Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX  примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

Возьмем напряжение источника питания U = 12 В.

Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

Преобразуем формулу (4), учитывая три LED элемента.

R = (U – 3*ULED) / I.

R = (12 – 3* 2) / 0,01 = 600 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах  ULED  = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (U – ULED) /3* I.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

Напряжение блока питания U = 12 В.

Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

Максимальное количество LED элементов n для одной ветки рассчитывается так:

n = (U — ULED) / ULED   (6)

В нашем случае n = (12 — 2) / 2 = 5 (шт).

Сопротивление резистора для одной ветки:

R = (U — n* ULED) / ILED .    (7)

Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).


 

Расчет сопротивления резистора для светодиода

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (Uист — Uн) / Iн

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн)2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15)2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Пример правильного подключения резистора

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Зачем нужен резистор для светодиода – АвтоТоп

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Светодиодное освещение и индикация, за счёт этого полупроводникового прибора считается одной из самых надёжных. При организации освещения светодиодные светильники производят качественный световой поток, при этом являются экологически чистыми источниками света не требующими утилизацию и не потребляющими много электроэнергии. Светодиод работает только от постоянного напряжения и пропускает ток только в одном направлении, как и обыкновенный диод.

Диод излучающий свет является прибором с определённым, чётко регламентированным, протекающим током как максимальным, так и минимальным. Если превысить максимальный допускаемый прямой ток или подводящее к нему напряжение, то он обязательно выйдет из строя, простыми словами «сгорит». Данные о светодиоде можно найти:

  1. В справочнике или технической литературе;
  2. На страницах интернета;
  3. При покупке у продавца-консультанта.

Не зная рабочего напряжения и максимального прямого тока подобрать сопротивление резистора для ограничения тока достаточно проблематично. Разве что имея ли автотрансформатор, или переменный резистор. При этом можно спалить несколько таких полупроводниковых элементов. Этот способ скорее теоретический, чем практический, и применяется он может только в экстренных ситуациях. Резистор — это пассивный элемент, применяющийся в электрических цепях, он обладает определённым значением сопротивления. Выпускается переменный, с регулировочной ручкой, или постоянный резистор. Для резистора характерно понятие мощности, которое тоже стоит учитывать при его расчете в электрических цепях.

Итак, каждый светодиод имеет рабочее напряжение и прямой проходящий и засвечивающий его ток. Если U источника питания, допустим, 1,5 вольта, и по паспорту диод должен подключаться именно к такому напряжению, то ограничивающий резистор не требуется. Или же есть возможность подключить три светодиода с рабочим напряжением 0,5 вольта, последовательно источнику питания. При этом все эти полупроводниковые элементы должны быть одинакового типа и марки. Однако такая ситуация случается крайне редко, а зачастую величина питания значительно больше, чем рабочее напряжение одного светодиода.

Как произвести расчет сопротивления для светодиодов, которое не только ограничивает ток в цепи, но и создаёт падение напряжения. Токоограничивающий резистор для светодиода рассчитывается на основе всем известного закона Ома I=U/R. Отсюда можно выделить и значение сопротивления R=U/I. Где U — напряжение, I — величина постоянного тока.

Вот простейшая схема подключения одного светодиода.

Сила тока при последовательном соединении будет одинакова, а напряжение питания светодиода должно быть определённой величины, зачастую оно значительно ниже питающего всю цепь. Поэтому резистор должен погасить часть напряжения, чтобы приложенное к светодиоду уже было определённого значения, указанного в его паспорте как рабочее напряжение. То, есть I (ток) в цепи известна и будет равна I, потребляющему диодом, а U падения на сопротивлении будет равно разности U питания и U светодиода. Зная U на резисторе и I, который через него проходит, согласно тому же закону Ома можно найти его сопротивление. Для этого напряжение падения на резисторе разделить на протекающий по цепи ток.

После расчета резистора светодиода, он ещё должен соответствовать мощности, для этого U на нём нужно умножить на известный I всей цепи. Ток в любом участке цепи будет одинаковым и поэтому максимальная сила тока, проходящая через светодиод, не будет превышать проходящий через ограничивающий резистор. При этом рекомендуется подбирать резистор с немного большим номиналом, нежели с меньшим, это касается и сопротивления, и его мощности. Зная закон Ома можно также рассчитать сопротивление через R светодиода.

Если нет подходящего резистора с нужным сопротивлением его можно получить подключив несколько таких элементов последовательно или параллельно. При этом для последовательного соединения, всеобщее сопротивление всех резисторов будет равно сумме всех входящих в эту цепь.

А при параллельном рассчитывается по такой вот формуле

Нужно учесть, что всё это рассчитывается исходя из напряжения питания, так как при его увеличении увеличится и сила тока во всей цепи. Так что источник питания, должен выдавать не только качественно выпрямленное, но и стабилизированное напряжение.

Шунтирование светодиода резистором

О таком подключении светодиода и резистора стоит рассуждать при последовательном соединении двух и более излучающих свет элементов. Даже с одинаковой маркировкой и типом характеристики каждого светодиода могут немножко отличаться. Если через него протекает I, то он имеет своё внутреннее R. При этом в режиме когда вентиль (диод) проводит его, и не проводит, сопротивление внутреннее будет значительно отличаться. То есть при обратном включении вентиля именно в таком режиме сопротивление будет отличаться уже значительно. Соответственно и обратное напряжение тоже будет очень разниться, что может привести к перегоранию (пробою).

Для предотвращения таких ситуаций рекомендуется шунтировать светодиод маломощным резистором с большим R в несколько сотен Ом. Такое подключение обеспечит выравнивание обратного напряжения на соединенных в одну цепь полупроводниковых приборах выдающих световой поток.

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2. 1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

Мигающие светодиоды


Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

Будет интересно➡ SMD резисторы: что это такое и для чего используются?

При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Расчет резистора для светодиода


Программа расчета сопротивления резистора для светодиода
Сделать необходимые вычисления можно в режиме онлайн с помощью специализированного калькулятора. Полноценное использование таких программ предлагается бесплатно.

Однако не всегда имеется доступ к сети Интернет. После изучения достаточно простой методики любой человек сможет оперативно подобрать резистор для светодиода без поиска соответствующего программного обеспечения.

Для наглядной демонстрации алгоритма нужно рассмотреть подключение защитного резистора в цепь питания (5 В) определенного светодиода (Epistar 1W HP).

Технические параметры:

  • мощность рассеивания, Вт – 1;
  • ток, мА – 350;
  • прямое напряжение (типовое/макс.), В – 2,35/2,6.

Для ограничения тока светодиода с учетом рекомендаций производителя подойдет резистор с электрическим сопротивлением R = (5-2,35)/0,35 = 7,57 Ом. По стандарту E24 ближайшие значения – 7,5 и 8,2 Ом. Если воспользоваться стандартными правилами придется выбрать больше значение, которое отличается от расчетного почти на 8,5%. Дополнительную погрешность создаст 5% допуск серийных недорогих изделий. При таком отклонении трудно получить приемлемые по защитным функциям и потребляемой мощности характеристики цепи.

Первый способ решения проблемы – выбор нескольких резисторов с меньшими номиналами. Далее применяют последовательный, параллельный или комбинированный вариант соединения для получения необходимого эквивалентного сопротивления участка цепи. Второй метод – добавление подстроечного резистора.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае), I = ток через резистор. Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Будет интересно➡ Как прочитать обозначение (маркировку) резисторов

Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником. V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются). Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Применение токоограничивающего резистора для светодиода


Резистор применяют для ограничения силы тока
Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.

С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока. Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.

КАК ПОДКЛЮЧИТЬ СВЕТОДИОД

Светодиоды (LED — англ. Light-emitting diode, светящиеся диоды) используются во многих электронных проектах. Но не все могут правильно подключить или выбрать резистор для светодиода, и тогда его можно вывести из строя за доли секунды. Давайте разберёмся в этом и узнаем как всё делается.

Вначале стоит напомнить, что резистор обязательно должен сопровождать светодиод. Независимо от того, подключаете ли вы его к батарейке, Arduino или к чему-то еще, резистор необходим всегда, потому что светоизлучающий диод управляется током! Срок службы питаемого светодиода без резистора невелик, даже если поначалу он вроде бы светится.

Всё потому что LED элементы хотят потреблять как можно больше электроэнергии. Пока не начнет нагреваться, что приведет к перегреву и повреждению его структуры. Следовательно, необходим своеобразный предохранитель в виде резистора, который будет ограничивать количество тока, потребляемого светодиодом.

Какой ток светодиода

По принципу действия светодиоды очень похожи на обычные выпрямительные диоды. Только конструктивное исполнение другое. И первое существенное отличие — это полупроводниковый материал. В случае выпрямительных диодов это чаще кремний. Светодиоды же изготавливаются из разных полупроводников, в зависимости от цвета которым они светятся. Материал определяет прямое напряжение, то есть напряжение, которое прикладывается к светодиоду при прохождении прямого тока через него.

Прямое напряжение — напряжение, равное или превышающее то, при котором ток (прямой ток) начинает течь через диод, и он начинает светиться.

Прямое напряжение и прямой ток

Каждый диод имеет разное прямое напряжение, что важно при выборе ограничительного резистора.

Прямое напряжение зависит от таких факторов, как:

  1. температура окружающей среды,
  2. величина протекающего тока (чем она выше, тем большее напряжение прикладывается к диоду),
  3. используемого производителем полупроводникового материала.

Какой ток может течь через светодиод

Популярные в продаже светодиоды обычно работают с максимальным постоянным током 20-30 мА. Более подробную информацию по этому вопросу можно найти в документации (даташиту) к конкретному LED. Но чаще всего на этих элементах нет маркировки типа и производителя.

К счастью, производимые в настоящее время светодиоды ярко светят даже при гораздо меньшем токе (от 1–3 мА), поэтому нет необходимости подавать на них максимальный ток.

Запитывать типичные 3-5 мм светодиоды (с цветной линзой) током более 10 мА не имеет смысла. Интенсивность их свечения всё-равно существенно не увеличится! Чем больше ток протекает через светодиод (в пределах безопасного диапазона), тем ярче он будет светить. Но во многих случаях разница в яркости не будет иметь большого значения.

Какое напряжение идёт на диод

Производители указывают номинальное прямое напряжение. Это значение будет различным для каждого типа светодиода. Но не нужно каждый раз проверять значения в документации. Достаточно использовать примерную таблицу, содержащую безопасные диапазоны напряжения:

Прямое напряжение LED в зависимости от цвета

Приведенная таблица содержит значения, которые были записаны из даташитов наиболее популярных производителей светодиодов. Конечно есть исключения, например сверх-яркие или мощные светодиоды. Но в случае с обычными, можно смело пользоваться этой таблицей.

А это ещё одна, аналогичная.

Так почему важно контролировать именно ток, протекающий через диод? Правильно задать работу светодиода, задав на нем определенное напряжение, практически невозможно. Придется следить за изменениями температуры и структурными изменениями, что непросто. Поэтому используется постоянный ток.

В общем когда пропускаем через LED ток желаемой интенсивности (например 20 мА), то прямое напряжение на нем устанавливается само. 

Как выбрать резистор для LED

Всё что нужно для питания светодиода, — это источник питания и токоограничивающий элемент, то есть резистор. Предположим, что есть батарея на 9 В и красный светодиод, через который должно протекать 7 мА, или по грамотному говоря 0,007 Ампера. Схема подключения с обозначением напряжения LED и резистора показана далее.

Простейшее светодиодное соединение

Ток течет от «+» клеммы батареи, проходит через резистор, светодиод, а затем возвращается обратно к источнику питания. Подключение резистора последовательно со светодиодом необходимо, чтобы не повредить его протекающим слишком большим током. Можно сказать, что резистор действует как ограничитель тока.

По правилам электроники, напряжение от аккумулятора будет распределяться между резистором и светодиодом:

Нам известен ток протекающий в этой цепи (7 мА), поэтому будем использовать закон Ома:

Приведенная формула позволяет рассчитать номинал резистора, через который следует запитать светодиод.

Какое прямое напряжение на диоде? Известно допустим, что он светится красным цветом, маркировки на нем естественно нет. Значит промежуточное значение из таблицы, которое составляет 1,9 В, будет подходящим.

Расчетное значение резистора:

R = (9 В — 1,9 В) / 0,007 А = 1014 Ом

Сразу замечу, что такого резистора мы не найдем в продаже. Все исходит из определенного стандарта, по которому производятся элементы. Тогда будем использовать ближайший по номиналу доступный резистор в 1000 Ом, то есть 1 кОм.

0.1 Ом 1 Ом 10 Ом 100 Ом 1 кОм 10 кОм 100 кОм 1 МОм 10 МОм
0.11 Ом 1.1 Ом 11 Ом 110 Ом 1.1 кОм 11 кОм 110 кОм 1.1 МОм 11 МОм
0.12 Ом 1.2 Ом 12 Ом 120 Ом 1.2 кОм 12 кОм 120 кОм 1.2 МОм 12 МОм
0.13 Ом 1.3 Ом 13 Ом 130 Ом 1.3 кОм 13 кОм 130 кОм 1.3 МОм 13 МОм
0.15 Ом 1.5 Ом 15 Ом 150 Ом 1.5 кОм 15 кОм 150 кОм 1.5 МОм 15 МОм
0.16 Ом 1.6 Ом 16 Ом 160 Ом 1.6 кОм 16 кОм 160 кОм 1.6 МОм 16 МОм
0.18 Ом 1.8 Ом 18 Ом 180 Ом 1.8 кОм 18 кОм 180 кОм 1.8 МОм 18 МОм
0.2 Ом 2 Ом 20 Ом 200 Ом 2 кОм 20 кОм 200 кОм 2 МОм 20 МОм
0.22 Ом 2.2 Ом 22 Ом 220 Ом 2.2 кОм 22 кОм 220 кОм 2.2 МОм 22 МОм
0.24 Ом 2.4 Ом 24 Ом 240 Ом 2.4 кОм 24 кОм 240 кОм 2.4 МОм 24 МОм
0.27 Ом 2.7 Ом 27 Ом 270 Ом 2.7 кОм 27 кОм 270 кОм 2.7 МОм 27 МОм
0.3 Ом 3 Ом 30 Ом 300 Ом 3 кОм 30 кОм 300 кОм 3 МОм 30 МОм
0.33 Ом 3.3 Ом 33 Ом 330 Ом 3.3 кОм 33 кОм 330 кОм 3.3 МОм 33 МОм
0.36 Ом 3.6 Ом 36 Ом 360 Ом 3.6 кОм 36 кОм 360 кОм 3.6 МОм 36 МОм
0.39 Ом 3.9 Ом 39 Ом 390 Ом 3.9 кОм 39 кОм 390 кОм 3.9 МОм 39 МОм
0.43 Ом 4.3 Ом 43 Ом 430 Ом 4.3 кОм 43 кОм 430 кОм 4.3 МОм 43 МОм
0.47 Ом 4.7 Ом 47 Ом 470 Ом 4.7 кОм 47 кОм 470 кОм 4.7 МОм 47 МОм
0.51 Ом 5.1 Ом 51 Ом 510 Ом 5.1 кОм 51 кОм 510 кОм 5.1 МОм 51 МОм
0.56 Ом 5.6 Ом 56 Ом 560 Ом 5.6 кОм 56 кОм 560 кОм 5.6 МОм 56 МОм
0.62 Ом 6.2 Ом 62 Ом 620 Ом 6.2 кОм 62 кОм 620 кОм 6.2 МОм 62 МОм
0.68 Ом 6.8 Ом 68 Ом 680 Ом 6.8 кОм 68 кОм 680 кОм 6.8 МОм 68 МОм
0.75 Ом 7.5 Ом 75 Ом 750 Ом 7.5 кОм 75 кОм 750 кОм 7.5 МОм 75 МОм
0.82 Ом 8.2 Ом 82 Ом 820 Ом 8.2 кОм 82 кОм 820 кОм 8.2 МОм 82 МОм
0.91 Ом 9.1 Ом 91 Ом 910 Ом 9.1 кОм 91 кОм 910 кОм 9.1 МОм 91 МОм

Таблица номиналов резисторов

Будет ли это иметь большое влияние на источник питания светодиодов? Давайте проверим, рассчитав ток, протекающий через светодиод, предполагая что знаем напряжение питания, напряжение приложенное к диоду, и точное значение резистора используя преобразованный закон Ома:

  • I max1 = (9 В — 1,9 В) / 1014 Ом = 7,0019 мА
  • I max2 = (9 В — 1,9 В) / 1000 Ом = 7,1 мА

Разница настолько мала (0,09 мА), что не о чем беспокоиться!

На самом деле мы даже не знаем точно, какое прямое напряжение на светодиоде. Так давайте проверим, как этот параметр повлияет на ток, протекающий через LED. Предположим, что сопротивление резистора равно 1000 Ом, а напряжение батареи 9 В. Вместо прямого напряжения диода подставим в формулу крайние значения из таблицы.

  • I макс = (9 В — 1,6 В) / 1000 Ом = 0,0074 А = 7,4 мА
  • I мин = (9 В — 2,2 В) / 1000 Ом = 0,0068 А = 6,8 мА

Отклонение от запланированных 7 мА не может превышать 0,4 мА, т.е. всего 6%. Это подтверждает, что нет смысла использовать очень точные данные о прямом напряжении на диоде для расчетов — любое отклонение в любом случае будет минимальным.

Напряжение питания не должно быть слишком низким. Теперь проверим что будет, если запитать тот же красный диод от источника напряжением 2,5 В. Для начала нужно рассчитать резистор. Предположим светодиод U = 1,9 В.

R = (2,5 В — 1,9 В) / 0,007 А = 85 Ом

В этом случае понадобится резистор на 85 Ом, конечно такое значение нигде не найдём. Но оставим это для дальнейших расчетов. Теперь оценим диапазон, в котором будет находиться прямой ток, если прямое напряжение диода достигнет экстремальных значений:

  • I макс = (2,5 В — 1,6 В) / 85 Ом = 10,5 мА
  • I мин = (2,5 В — 2,2 В) / 85 Ом = 3,5 мА

Здесь отклонение может составить 3,5 мА от принятого значения 7 мА, то есть до 50%! Ну и чем вызваны эти несоответствия? Изменилось только напряжение питания: оно уменьшилось с 9 В до 2,5 В. Это и привело к снижению напряжения на резисторе. Затем небольшие колебания прямого напряжения вызывали резкое изменение тока диода.

Поэтому по возможности на токоограничивающем резисторе должно падать максимально возможное напряжение. Это положительно скажется на стабилизации прямого тока диода.

Имейте ввиду, что чем больше напряжения подается на резистор, тем больше энергии потребляемой источником питания теряется. Особенно позаботимся об экономии энергии при работе от батарей. Так что всегда должен быть разумный компромисс.

Допуск точности резисторов

Каждый изготовленный радиоэлемент отличается определенной точностью исполнения, называемой допуском. Чем меньше допуск, выраженный в процентах, тем лучше. Фактическое сопротивление резистора может тогда отличаться меньше от номинального сопротивления, указанного на корпусе. Допуск можно прочитать на корпусе резистора, информация об этом закодирована в виде цвета последней полоски:

На практике, два резистора номиналом 1 кОм при измерении омметром вообще не будут равны 1000 Ом!

После расчета резистора нужно посмотреть в таблицу стандартов номиналов и найти значение, наиболее близкое к искомому. Безопаснее всего выбирать значение выше расчетного.

Вернемся к примеру, где нужно запитать красный светодиод от источника питания 2,5 В. Расчеты показали, что нужен резистор 85 Ом. Меньший резистор 82 Ом будет ближайшим в стандарте. Проверим, можно ли его безопасно использовать:

  • I макс = (2,5 В — 1,6 В) / 82 Ом = 10,9 мА
  • I мин = (2,5 В — 2,2 В) / 82 Ом = 3,6 мА

Даже в худшем случае максимальный ток будет далеко от предельного (20-30 мА), поэтому легко можете использовать этот радиоэлемент с меньшим сопротивлением.

Как питать несколько светодиодов

Предположим, есть 4 светодиода для подключения. Первый и самый простой вариант, — подключить каждый из них через отдельный резистор:

Независимое питание каждого светодиода

С точки зрения стабилизации рабочих параметров диодов это лучший подход: каждый из них запитан отдельно и не влияет на остальные. Проблемы с одним не повлияют на остальных. К сожалению, такой способ питания связан с большими потерями энергии. Вот пример питания 4-х красных светодиодов — каждый из них подключен через отдельный резистор 330 Ом. При таком подключении на каждый резистор подается напряжение, необходимое для правильного питания одного светодиода. С каждым последующим LED и его резистором потребление тока всей схемы соответственно увеличивается/

Параллельное соединение светодиодов

Светодиоды имеют две ножки, поэтому их можно успешно подключать параллельно или последовательно. Если бы все диоды были соединены параллельно, схема выглядела бы так:

Но это недопустимое решение!

Каждый светодиод имеет прямое напряжение, которое может незначительно отличаться от одного светодиода к другому — даже в пределах одной и той же серии. Ток для всех 4 LED течет от резистора и распределяется между диодами. В этом случае на светодиодах будет выставлено одно напряжение, потому что они включены параллельно. Сколько это будет? Неизвестно.

Ведь может оказаться, что на одном светодиоде прямое напряжение будет намного ниже, чем на остальных. Тогда почти весь ток, пропускаемый резистором, будет проходить именно через него. Светодиоды станут светить неравномерно, и со временем могут быть повреждены.

Так что стоит помнить: подключение нескольких светодиодов параллельно с использованием одного резистора недопустимо, потому что нет контроля над током, протекающим через каждый из диодов!

Что еще хуже, когда один из светодиодов выходит из строя и перестает светить, его ток будет распространяться на другие диоды. Таким образом, вместо 4 светодиодов, через которые протекает, например 10 мА (всего 40 мА), в схеме будет уже 3 светодиода, через которые протекает ~ 13 мА (ведь всего 40 мА). А если сразу 3 LED повреждены, весь ток (40 мА) будет проходить через последний, что приведет к его гарантированному повреждению!

Если светодиоды не идентичны, одни светятся ярче, другие — темнее. Этот эффект особенно заметен, когда берем светодиоды разного цвета.

Последовательное соединение светодиодов

Один и тот же по величине ток всегда течет через последовательно соединенные компоненты.

Питание светодиодов, соединенных последовательно

При таком подключении получим такой ток, как если бы питали только один светодиод. А вот количество энергии, затрачиваемой на резистор, будет уменьшено, потому что падение напряжения на светодиодах будет большим.

Но напряжение, подаваемое на резистор — уменьшилось. Из 9 В, обеспечиваемых батареей, около 8 В должны быть выделены на диоды, включенные последовательно. Как мы знаем, меньший ток, подаваемый на резистор, ухудшит стабильность тока светодиода. Посчитаем насколько. Сначала выберем соответствующий токоограничивающий резистор для этих LED элементов. Предположим, надо чтобы в цепи протекало только около 4 мА.

R = (9 В — 4,19 В) / 0,004 А = 350 Ом

Расчетный резистор лучше всего округлить до ближайшего стандартного из серии — 330 Ом. Теперь оценим, какой ток будет протекать в наихудших возможных условиях, то есть когда прямое напряжение всех LED будет самым низким и самым высоким:

  • I макс = (9 В — 4 · 1,6 В) / 330 Ом = ~ 8 мА
  • I мин = (9 В — 4 · 2,2 В) / 330 Ом = ~ 1 мА

Всегда полезно проводить такой анализ наихудшего случая. Благодаря этому можно проверить, будет ли схема работать должным образом во всех возможных условиях.

Расчеты показали, что в зависимости от прямого напряжения на светодиоде ток, протекающий по цепи, может изменяться в широких пределах (1-8 мА). Конечно таких значений достаточно, чтобы светодиоды нормально светились. Но гораздо безопаснее будет их комбинировать следующим образом:

Питание светодиодов соединенных параллельно и последовательно

Давайте подсчитаем, насколько ток может колебаться в каждой ветви приведенной схемы. Предположим, что используем красные светодиоды и резисторы 330 Ом.

Что если подключим последовательно 4 белых светодиода с прямым напряжением 3 В? Это дает в сумме 4 х 3 В = 12 В, что выше чем напряжение источника питания (9 В). Значит такое соединение невозможно. Потребовалось бы найти источник питания с более высоким напряжением или подключить светодиоды в другой конфигурации.

Многие новички в электронике задаются вопросом, можно ли поменять местами компоненты в ряду — например разместить резистор позади светодиода, а не перед ним. Они опасаются что такая замена может повредить компоненты. Так что должно быть первым: светодиод или резистор? Важен ли порядок последовательного подключения?

На самом деле одинаковый ток протекает через последовательно соединенные компоненты. Так что никакой разницы в работе вышеперечисленных схем не будет. Элементы соединенные последовательно, можно перемещать между собой любым способом. Ток, протекающий через такую ??схему, будет одинаковым! Единственное условие — соблюдать полярность таких элементов как диоды, электролитические конденсаторы и так далее.

Простые примеры расчётов

1) Рассчитаем резистор, которым хотим запитать один зеленый светодиод от батареи 9 В. Диод предполагается использовать как сигнализатор, поэтому достаточно, чтобы он светился несильно.

  • U пит = 9 В
  • U диода = 2,85 В
  • I диода = 2 мА

Идеальное значение резистора: (9 — 2,85) / 0,002 = 3075 Ом. Соответствующий резистор по стандарту: 3 кОм.

2) Рассчитаем резисторы, которыми хотим запитать два желтых светодиода, соединенных последовательно. Источник — блок питания 6 В. Светодиоды должны светиться достаточно ярко.

  • U пит = 6 В
  • U диода = 2,15 В, итого 2 х 2,15 = 4,3 В
  • I диода = 7 мА

Идеальное значение резистора: (6 — 4,3) / 0,007 = 242 Ом. Соответствующий резистор: 240 Ом.

Источник питания для схемы

В приведенных рассуждениях специально упущен тот факт, что источник питания является еще одним ограничением. Имейте в виду, что батарейки вообще не обеспечивают стабильного напряжения. Не всегда на выходе батареи Крона мы получим 9 В. Может быть больше у свежей, а может быть меньше у подсевшей. Этот параметр также необходимо учитывать при подробных расчетах.

Выше для наглядности таблица с параметрами напряжения на свинцовой батарее при разной степени разряда.

Подведём итоги

Правильный выбор резистора — дело несложное, всего несколько простых формул и вольт-амперных зависимостей. Помните, что расчеты никогда не покажут идеальное значение, которое обычно недостижимо. Следовательно их результаты необходимо корректировать в зависимости от того, что есть в распоряжении по деталям. Главное, ни в коем случае не подключать светодиод без резистора!

И в дополнение несколько практических материалов о работе со светодиодами:

   Форум по LED

   Форум по обсуждению материала КАК ПОДКЛЮЧИТЬ СВЕТОДИОД

Расчет резистора для светодиода, калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Блок: 1/5 | Кол-во символов: 604
Источник: http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/

Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

Vs В

Прямой ток светодиода

If мА

Выберите тип светодиода

или Прямое напряжение светодиода

Vf В

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

Ns

Поделиться ссылкой на этот калькулятор, включая входные параметры

Выходные данные

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Блок: 2/4 | Кол-во символов: 2014
Источник: https://www.translatorscafe.com/unit-converter/ru-RU/calculator/led-resistor/

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Умный ПДУ для светодиодной ленты

Контроллер для RGBW/RGB/Dual White. Управление по радиоканалу, WIFI…

Светодиодный драйвер на PT4115

Для светодиодов 3 Вт 700mA / 1 Вт 350mA

Инфракрасный включатель для светодиодной ленты

Напряжение: 12/24В, ток: 5А, расстояние срабатыва…

Драйвер для светодиодной ленты

220В/12В, мощность: 18 Вт / 36 Вт / 72 Вт / 100 Вт…

Светодиодный драйвер

Мощность: 3 Вт, 4 Вт, 5 Вт, 7 Вт, Напряжение: 3…12В, выходной ток…

Контроллер светодиодной ленты

Bluetooth — WiFi контроллер для 5050, WS2811, WS2812B сведодиодной ленты…

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Блок: 2/5 | Кол-во символов: 1901
Источник: http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Блок: 3/4 | Кол-во символов: 232
Источник: http://RadioStorage.net/3811-raschyot-rezistora-dlya-svetodioda-formuly-i-kalkulyator.html

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Блок: 3/5 | Кол-во символов: 1356
Источник: https://ledjournal.info/spravochnik/raschet-rezistora-dlya-svetodioda.html

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Блок: 2/4 | Кол-во символов: 1277
Источник: http://led-obzor.ru/raschet-rezistora-dlya-svetodioda-kalkulyator

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.


Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.


Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Блок: 5/5 | Кол-во символов: 980
Источник: https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Электротехнические и радиотехнические калькуляторы

Электроника — область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними.
Радиотехника — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы.
В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Блок: 4/4 | Кол-во символов: 7507
Источник: https://www.translatorscafe.com/unit-converter/ru-RU/calculator/led-resistor/

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

Блок: 7/8 | Кол-во символов: 944
Источник: https://LampaSveta.com/masterskaya/raschet-soprotivleniya-rezistora-dlya-svetodiodov

Кол-во блоков: 12 | Общее кол-во символов: 19660
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://ledjournal.info/spravochnik/raschet-rezistora-dlya-svetodioda.html: использовано 1 блоков из 5, кол-во символов 1356 (7%)
  2. http://led-obzor.ru/raschet-rezistora-dlya-svetodioda-kalkulyator: использовано 2 блоков из 4, кол-во символов 2839 (14%)
  3. https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/: использовано 1 блоков из 5, кол-во символов 980 (5%)
  4. http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/: использовано 3 блоков из 5, кол-во символов 3788 (19%)
  5. https://LampaSveta.com/masterskaya/raschet-soprotivleniya-rezistora-dlya-svetodiodov: использовано 1 блоков из 8, кол-во символов 944 (5%)
  6. http://RadioStorage.net/3811-raschyot-rezistora-dlya-svetodioda-formuly-i-kalkulyator.html: использовано 1 блоков из 4, кол-во символов 232 (1%)
  7. https://www.translatorscafe.com/unit-converter/ru-RU/calculator/led-resistor/: использовано 2 блоков из 4, кол-во символов 9521 (48%)

Токоограничивающий резистор

— Build Electronic Circuits

Токоограничивающий резистор — это резистор, который используется для уменьшения тока в цепи.

Простой пример — резистор, включенный последовательно со светодиодом.

Обычно вам нужно установить токоограничивающий резистор последовательно со светодиодом, чтобы вы могли контролировать количество тока, протекающего через светодиод.

Если через светодиод проходит слишком большой ток, он перегорает слишком быстро. Если через него проходит слишком малый ток, этого может быть недостаточно для включения светодиода.

Расчет необходимого номинала резистора

Проверьте техническое описание вашего компонента, чтобы найти падение напряжения и соответствующий ток для вашего светодиода.

Если вы не можете найти таблицу, попробуйте ее.

Подключите последовательно светодиод и резистор к источнику переменного напряжения. Начните с 0 вольт и постепенно увеличивайте напряжение, пока не загорится светодиод.

Измерьте напряжение на светодиоде и ток, проходящий через него.

Допустим, светодиоду требуется 15 мА, а падение напряжения составляет 2 вольта.У вас есть источник питания 5 В, которым вы хотели бы его запитать. Какой номинал резистора вам нужен?

Чтобы найти номинал резистора, мы начинаем с определения падения напряжения на резисторе. Так как на светодиоде падение напряжения составляет 2 В, на резисторе будет падение напряжения на 3 В.

Хорошо, у нас есть 3 В, и мы хотим, чтобы через резистор и светодиод проходил ток 15 мА.

Чтобы найти необходимое сопротивление резистора, воспользуемся законом Ома.

это дает нам

Итак, необходимое значение резистора ограничения тока составляет 200 Ом.

Выбор подходящего резистора

Итак, вы знаете, что вам нужен резистор на 200 Ом.

Но если вы посмотрите на компоненты, вы обнаружите, что существует несколько различных типов резисторов.

Что ж, единственное, о чем вам нужно знать, — это номинальная мощность компонента. Какой эффект может выдержать резистор?

Итак, вам нужно выяснить, какой эффект будет рассеиваться на вашем резисторе.

Чтобы найти это, воспользуйтесь следующей формулой для расчета мощности

В нем указано, что мощность равна току, умноженному на напряжение.Получаем

Это означает, что ваш резистор должен выдерживать не менее 45 мВт.

Обычно большинство резисторов рассчитаны на мощность от 250 мВт и выше, поэтому будет легко найти подходящий резистор.

Возврат от токоограничивающего резистора к электронной схеме

Когда и зачем светодиодам нужны токоограничивающие резисторы?


Если вы работаете с какой-либо схемой, включающей светодиоды, вы могли столкнуться с предупреждениями или рекомендациями всегда использовать резистор, ограничивающий ток.

Мы составили это руководство, чтобы помочь любому, от новичка, занимающегося самоделкой, до тех, кто занимается проектированием и изготовлением печатных плат для светодиодного освещения, полностью понять, когда, почему и как выбирать соответствующий ограничивающий ток резистор.

Понимание кривой ВАХ светодиодов

Как и в случае с любым пассивным полупроводниковым компонентом, понимание кривой ВАХ (тока в зависимости от напряжения) имеет решающее значение при проектировании схемы вокруг них.

Светодиод, по сути, является диодом и имеет нелинейную кривую ВАХ.Другими словами, соотношение между входным напряжением и входным током не является прямой линией.


Например, давайте посмотрим на прямой ток при 2,7 В — примерно 20 мА. Если мы увеличим напряжение на 0,1 В до 2,8 В, прямой ток увеличится примерно на 30–50 мА. Если мы затем увеличим его еще на 0,1 В до 2,9 В, прямой ток увеличится на 35 мА до 85 мА.

По мере увеличения напряжения скорость увеличения прямого тока также увеличивается. Небольшие изменения прямого напряжения могут привести к очень большим изменениям прямого тока.

Таким образом, драйверы светодиодов с постоянным током являются предпочтительным методом управления светодиодами — они работают с одинарным током и соответственно регулируют свое выходное напряжение, гарантируя, что прямой ток остается стабильным. Когда используется вход постоянного тока, токоограничивающий резистор не требуется.

Что делать, если вы используете источники питания постоянного напряжения

Источники питания постоянного тока, однако, обычно более дороги и имеют ограниченную гибкость.В результате почти все светодиодные ленты и другие модули используют вход постоянного напряжения.

Источники питания постоянного напряжения имеют фиксированный уровень выходного напряжения и могут производить любой уровень выходного тока от 0 мА до его номинального максимума (который вполне может быть выше номинального максимума для светодиодов и светодиодной системы).

Но, как мы видели выше, из-за нелинейной зависимости между прямым током и прямым напряжением входы питания постоянного напряжения нуждаются в дополнительной модификации для безопасного использования со светодиодными системами по следующим причинам:

1) Прямое напряжение светодиодов не соответствует обязательно соответствовать таковому по уровню напряжения блока питания. Например, исходя из той же спецификации светодиода, что и выше, если у вас есть источник питания с постоянным напряжением 3,0 В, прямой ток также будет ограничен 135 мА.


Что, если мы хотим запустить светодиод на 20 мА, используя тот же источник питания? Нам нужно будет предоставить светодиоду только 2,7 В вместо 3,0 В. Однако, поскольку большинство блоков питания не имеют опции выхода переменного напряжения, невозможно достичь 2,7 В на светодиодах с помощью одного только блока питания. .

Что нам делать?

Ответ заключается в том, чтобы подключить резистор последовательно со светодиодом и позволить резистору «понизить» напряжение светодиода на 0.3 В.

Как рассчитать номинал резистора? Мы используем закон Ома, который гласит, что V = IR, и подставляем 0,3 В (падение напряжения) вместо V и 0,02 А (желаемый прямой ток) вместо I. Решение для R дает нам 15 Ом.

Подобные расчеты могут быть выполнены независимо от задействованных напряжений — например, для светодиодных лент 12В и 24В.

В условиях массового производства изменения прямого напряжения светодиодов неизбежны и приводят к появлению нескольких ячеек напряжения. В идеале светодиоды из каждого бункера напряжения имеют разные пары номиналов резисторов, рассчитанные для обеспечения одинакового потребления прямого тока, независимо от бункера напряжения светодиодов.В противном случае могут возникнуть более широкие вариации в потребляемом прямом токе и, следовательно, яркости.


Каждая из вышеперечисленных строк представляет собой отдельную ячейку напряжения. Чтобы получить 60 мА для всех светодиодных бункеров, необходимо использовать резисторы разных спецификаций, чтобы получить разные прямые напряжения, необходимые для достижения одинаковых 60 мА.

2) Токоограничивающие резисторы защищают от повышения напряжения

Мы видели выше, что светодиоды имеют нелинейную зависимость между прямым током и прямым напряжением.В результате небольшое увеличение напряжения может привести к значительному увеличению прямого тока, что приведет к потенциальной перегрузке по току и отказу устройства.

В отличие от диодов, резисторы имеют линейную зависимость между прямым током и прямым напряжением (как показано законом Ома).


Следовательно, увеличение прямого напряжения приведет к такому же пропорциональному увеличению прямого тока независимо от уровня напряжения. Это свойство резисторов, включенных в схему светодиода, может помочь смягчить эффекты повышения напряжения.

Почему должно увеличиваться напряжение?

Первая возможность — нестабильный источник питания со значительным шумом или пульсацией. Если есть проблемы с источником питания постоянного напряжения, обеспечивающим нестабильный постоянный ток, прямое напряжение и периодические всплески, и наличие резисторов, ограничивающих ток, поможет смягчить соответствующий всплеск прямого тока.

Второе, более предсказуемое и распространенное свойство самих светодиодных устройств.

По мере нагрева светодиода его прямое напряжение уменьшается, если прямой ток остается постоянным.Это обычно показано в технических характеристиках светодиодов на следующей диаграмме изменения температуры и прямого напряжения:


Это полезная информация при проектировании цепи постоянного тока, поскольку она дает нам информацию об истинном диапазоне прямых напряжений, которые мы можем увидеть в системе. Но давайте перефразируем тот же принцип с точки зрения постоянного напряжения:

Когда светодиод нагревается, его прямой ток увеличивается, если мы сохраняем постоянное прямое напряжение.

Графически мы можем показать тот же принцип на одной диаграмме (ниже).Если мы используем перспективу постоянного тока, мы можем сказать, что кривая сдвигается влево при повышении температуры. Или, если мы используем перспективу постоянного напряжения, мы можем сказать, что кривая смещается вверх с повышением температуры.


Тепловыделение светодиода в первую очередь зависит от его общего рассеивания мощности. Следовательно, тот факт, что прямой ток увеличивается при повышении его температуры, потенциально катастрофичен, потому что более высокий прямой ток еще больше увеличивает температуру светодиода, в свою очередь, еще больше увеличивает его прямой ток в контуре положительной обратной связи.Это называется тепловым разгоном светодиодной системы и в лучшем случае приведет к катастрофическим сбоям и, возможно, к возгоранию и задымлению.

Токоограничивающий резистор помогает смягчить эффект увеличения напряжения благодаря своей линейной ВАХ. Кроме того, резисторы ведут себя противоположно светодиодам в зависимости от их температуры — с повышением температуры увеличивается и сопротивление.

Эта простая, но полезная особенность резисторов побудила некоторых также называть резисторы, используемые таким образом, балластными резисторами.

Bottom Line

Светодиодные устройства по своей природе управляются током и плохо реагируют на колебания напряжения.

Если вы строите светодиодную систему с использованием источников питания постоянного напряжения, вы должны быть абсолютно готовы использовать токоограничивающие резисторы для обеспечения стабильной и безопасной работы светодиодных устройств.

Нужна помощь в создании светодиодной схемы? Свяжитесь с нами, чтобы обсудить сегодня!

Что произойдет, если не использовать резистор со светодиодом? Важное руководство по светодиодам — ​​Siytek

Допускается использование светодиода без резистора, но необходимо использовать некоторый метод ограничения тока, чтобы предотвратить разрушение устройства.Несоблюдение ограничения тока может привести к перегоранию устройства, преждевременному выходу из строя или даже взрыву.

Я определенно взорвал несколько светодиодов в мои молодые и более неопытные годы, в результате чего часть кожуха поразительно разлетелась по комнате!

Во многих приложениях самый простой способ регулировать ток через светодиод — это использовать резистор, хотя существуют более сложные методы, такие как использование драйвера постоянного тока.

В этом уроке мы рассмотрим , почему необходимо ограничить ток, протекающий через светодиод, и как мы можем выбрать правильный резистор, чтобы вы могли избежать того, чтобы ваш проект превратился в дым.

Что такое светодиод?

Если вы еще не знали, светодиод обозначает светоизлучающий диод . Это полупроводниковое устройство, которое может превращать электрический ток в свет.

Использование различных полупроводниковых материалов позволяет изготавливать светодиоды разных цветов. Однако до середины 90-х светодиоды имели ограниченный диапазон цветов, таких как красный, зеленый и желтый. В частности, было невозможно произвести синий цвет.

Развитие светодиодной технологии и внедрение новых материалов в производственный процесс расширили диапазон доступных цветов.Одним из величайших достижений в светодиодной технологии стало введение нитрида индия-галлия.

Это позволило производить синие светодиоды, дополняющие диапазон доступных основных цветов: красный, зеленый и синий. Тогда стало возможно производить светодиоды RGB, которые могут воспроизводить весь цветовой спектр. Это открыло множество приложений, с которыми мы уже знакомы.

Вслед за этой разработкой последовали улучшения в яркости, а также в использовании белого светодиода. Как только технология зашла так далеко, светодиодные лампы стали реальностью, и вместо лампы накаливания было установлено светодиодное освещение.

Сейчас доступен широкий спектр различных типов светодиодов, содержащих различные типы материалов. Поскольку в них используются разные материалы, некоторые электрические характеристики отличаются.

Важно понимать основные характеристики, чтобы рассчитать номинал токоограничивающего резистора и разработать схему, которая будет правильно питать ваш светодиод.

Характеристики светодиода

Светодиод — это красивый простой компонент, требующий минимальных знаний в области электроники для использования, и в то же время дает впечатляющие конечные результаты для самых простых проектов в области электроники.

Одноцветный вариант имеет только два контакта и для работы требуется только один другой компонент, токоограничивающий резистор. Он также выглядит круто, потому что … это светодиод!

Каждый светодиод имеет два контакта: положительный вывод анода и отрицательный вывод катода. Поскольку светодиод представляет собой диод , полярность должна быть правильной для протекания тока. Схематический символ светодиода из Википедии

Есть три фундаментальных момента, которые нам необходимо понять, чтобы рассчитать размер резистора ограничения тока.

  1. Закон Ома
  2. Закон Ватта
  3. Прямое напряжение и ток

Когда мы поймем эти принципы и сможем рассчитать размер нашего ограничивающего резистора, мы сможем понять , почему необходимо использовать резистор (при условии, что простая схема, в которой не используется драйвер постоянного тока).

Закон Ома

Закон Ома, вероятно, является наиболее фундаментальным принципом в электронике. Он описывает соотношение между напряжением, током и сопротивлением.

Если вы новичок в электронике, иногда бывает трудно представить себе, что именно происходит «внутри проводов», но этот хорошо известный рисунок в карикатуре прекрасно резюмирует это.

Мы можем описать этот принцип в основных математических терминах, напряжение равно току, умноженному на сопротивление.

 напряжение (В) = ток (I) x сопротивление (R) 

В случае нашей светодиодной схемы мы можем использовать Ом для расчета значения нашего токоограничивающего резистора с использованием известных значений напряжения и тока.

Закон Ватта

Закон Ватта описывает взаимосвязь между мощностью, напряжением и током. Это измерение количества энергии, используемой с течением времени.

 1 Вт = 1 Джоуль в секунду 

Простыми математическими терминами мы можем сказать, что мощность равна напряжению, умноженному на ток.

 мощность (Вт) = напряжение (В) x ток (I) 

Обратите внимание, что можно заменить закон Ома на закон Ватта. Вы заметите, что оба закона имеют ток (I) и напряжение (V).Например, вы можете заменить напряжение в законе Ватта на ток, умноженный на сопротивление из закона Ома, так как ток, умноженный на сопротивление, равняется напряжению .

 В = I x R
P = I x  В  

, следовательно,

 P = I x  (I x R)  

В случае нашей светодиодной схемы нам нужно использовать закон Ватта для расчета мощности, рассеиваемой резистором.

Когда ток течет через резистор, мощность рассеивается в виде тепла, поэтому мы должны убедиться, что наш резистор способен рассеивать достаточно большое количество энергии в виде тепла, не разрушаясь и не становясь чрезмерно горячим.

Прямое напряжение и ток

Прямое напряжение и прямой ток светодиода — это два свойства, которые нам нужны для расчета необходимого сопротивления.

При подаче напряжения на светодиод, часть напряжения «теряется» из-за характеристик светодиода. Мы называем это падением напряжения , и величина падения напряжения зависит от материалов, используемых в его конструкции, и, следовательно, от цвета. Это напряжение известно как прямое напряжение и обозначается как Vf .

Прямой ток — это значение, используемое для описания величины тока, который мы должны подавать на светодиод, чтобы он светился с оптимальной яркостью. Мы должны ограничить ток, протекающий через него, с помощью внешнего компонента, в нашем случае токоограничивающего резистора.

Оба эти значения приведены в таблице данных, техническом документе, обычно поставляемом со всеми компонентами, которые разработчик схем может использовать для получения технических деталей, необходимых для разработки схемы с использованием конкретного компонента.

В нашем примере мы будем использовать стандартный красный светодиод. Как показано в следующей таблице данных, мы видим, что у него прямое напряжение 2,1 вольт и прямой ток 25 миллиампер (то же самое, что 0,025 ампер). Эти значения довольно распространены для стандартного красного светодиода.

Вычислите сопротивление

Из таблицы данных мы знаем, что прямой ток должен составлять 25 мА, и мы будем использовать его в качестве желаемого значения сопротивления в уравнении закона Ома. Однако прямое напряжение не дает нам необходимого значения для значения напряжения по закону Ома, и мы также должны учитывать напряжение источника питания.

В этом примере мы будем использовать 5 вольт для источника питания светодиодов, поскольку это обычное напряжение, используемое микроконтроллерами, и, вероятно, вы захотите использовать его для управления своими светодиодами. Конечно, вы можете выбрать любое подходящее напряжение для вашего приложения.

Мы подключим наши компоненты последовательно так, чтобы ток протекал от положительной клеммы нашего источника питания через резистор, затем светодиод и затем на землю. Не имеет значения, расположен ли резистор до или после светодиода, поскольку ток остается постоянным для компонентов, подключенных последовательно.

Как упоминалось ранее, на светодиодах будет падение напряжения, равное прямому напряжению. Прямое напряжение указано в таблице данных светодиодов.

 Vf = 2,1V 

Остающееся напряжение появляется на резисторе, поэтому, если мы вычтем прямое напряжение из напряжения питания, мы можем вычислить напряжение на резисторе, Vr.

 Vr = V - Vf 
Vr = 5 - 2,1
Vr = 2,9

Мы хотим снабдить светодиод значением прямого тока, указанным в таблице данных, 25 мА.Поскольку резистор ограничивает ток, мы должны использовать напряжение на резисторе и желаемый прямой ток в уравнении закона Ома.

Теперь мы можем рассчитать сопротивление, переписав уравнение закона Ома в терминах сопротивления (косая черта означает «деленное на»). Помните, что мы должны преобразовать миллиампер в амперы, просто разделите на 1000.

  25 мА = 0,025 А  
 R = Vr / I
R = 2,9 / 0,025
R = 116 Ом 

Теперь мы знаем, что для обеспечения светодиода 25 мА мы должны использовать резистор номиналом 116 Ом.Всегда лучше проявлять небольшую осторожность, поскольку значения сопротивления имеют допуск и могут незначительно отличаться от заданного значения.

На практике мы должны округлить это значение до ближайшего значения общего резистора. Важно округлять в большую, а не в меньшую сторону, так как если бы мы округляли в меньшую сторону, мы подавали бы на светодиод ток, превышающий рекомендованный.

Мы будем использовать значение из значений резистора E12, что даст нам ближайшее большее значение, равное 120 Ом.

Резистор Рассеивание тепла

В отличие от светодиода, который преобразует электрический ток в свет (и некоторое количество тепла), резистор почти полностью преобразует электрический ток в тепло.

Нам известно напряжение на резисторе и ток, протекающий через него (и светодиода). Мы можем использовать закон Ватта для расчета мощности, рассеиваемой резистором.

 P = I x V 
P = 0,025 x 2,9
P = 0,0725

Резистор будет рассеивать 0,0725 Вт мощности в виде тепла, также обозначаемого как 72,5 милливатт (мВт).

Поэтому, когда мы выбираем резистор, нам нужно проверить техническое описание, чтобы увидеть, может ли он рассеивать 72,5 мВт тепла без повреждений.

Стандартные резисторы меньшего размера обычно могут рассеивать 125 мВт (также указывается как 1/8 ватта), поэтому наша комбинация светодиода, резистора и источника питания будет работать хорошо.

Мне

ДЕЙСТВИТЕЛЬНО нужен резистор?

Один вопрос, который я задавал несколько раз, но тот, который редко объясняется в аналогичных руководствах, касается сценария, в котором прямое напряжение равно напряжению питания.

Давайте посчитаем, как это выглядит на бумаге. В этом примере мы будем использовать синий светодиод с прямым напряжением 3,3 В и прямым током 25 мА. В качестве источника питания мы будем использовать 3,3 В, обычное напряжение питания, встречающееся в схемах микроконтроллеров.

Сначала рассчитываем напряжение на резисторе.

 Vr = V - Vf
Vr = 3,3 - 3,3
Vr = 0V 

Теперь мы можем снова использовать закон Ома, чтобы вычислить требуемое значение сопротивления для известного напряжения на резисторе и желаемого тока.

 R = Vr / I 
R = 0 / 0,025
R = 0 Ом

Что ?! Разве мы только что не доказали с помощью закона Ома, что значение сопротивления не требуется и, следовательно, резистор не требуется, если напряжение питания и прямое напряжение равны?

Легко понять, почему так много людей приходят к такому выводу, используя базовые принципы электроники.Я сам однажды задал такой же вопрос!

На самом деле я недавно видел, как кто-то задавал этот вопрос на форуме, что и вдохновило меня на написание этой статьи.

Реальное приложение

Первое, что нужно запомнить, это то, что мы имеем дело с абсолютными числами в наших расчетах, но в реальном мире ваш источник питания 3,3 В, вероятно, не будет точно 3,3 В. Это может быть 3,34 В, и точно так же прямое напряжение не будет точным, это может быть 3,28 В.

Далее нам нужно рассмотреть сценарий, в котором в цепи нет резистора.В этом случае сопротивление, определяющее прохождение тока через светодиод, будет внутренним сопротивлением внутри самого светодиода.

Обратите внимание, что на практике внутреннее сопротивление светодиода суммируется со значением сопротивления, выбранным для токоограничивающего резистора. Однако значение настолько мало, что его почти всегда игнорируют, поскольку оно не оказывает заметного влияния на расчет.

Внутреннее сопротивление

Итак, что произойдет, если мы будем полагаться на внутреннее сопротивление внутри светодиода? Сначала мы должны рассчитать внутреннее сопротивление.Это можно сделать, используя данные о прямом токе и прямом напряжении из таблицы.

Сначала выберем две точки напряжения на графике в линейной области. Мы выберем 3,25 В и 3,5 В. Затем давайте запомним их текущие значения, 10 мА и 20 мА соответственно.

Разница между этими значениями составляет 0,25 В и 10 мА. Мы можем использовать эти значения с законом Ома для расчета внутреннего сопротивления.

 R = V / I
R = 0,2 / 0,015
R = 25 Ом 

Далее нам нужно рассчитать собственное напряжение светодиодов, Vint.Это напряжение на светодиоде, которое можно вычесть из напряжения питания, чтобы получить напряжение на внутреннем сопротивлении.

 Vint = Vf - (Если x Rint)
Винт = 3,25 - (0,01 x 25)
Vint = 3 V 

Не беспокойтесь, если вы не все это усвоили, это немного более продвинуто, чем объем этого руководства, но я подумал, что все равно включу его.

Позвольте мне немного прояснить ситуацию. Здесь важны два значения: собственное напряжение Vint и внутреннее сопротивление Rint .Это то же самое, что и в нашем предыдущем примере, только напряжение и сопротивление для внутреннего сопротивления светодиода, а не внешнего резистора.

 Винт = 3 В
Rint = 25 Ом 

Расчет тока, протекающего через светодиод, такой же, как и раньше, мы используем закон Ома для расчета значения тока, используя значения выше.

Давайте попробуем это с произвольным напряжением питания V = 3,5 В. Сначала мы вычтем Vint из V, чтобы получить Vr = 0,5 В. Затем мы можем использовать это напряжение с внутренним сопротивлением для расчета тока.

 I = Vr / Rint
I = 0,5 / 25
I = 0,02 A 

Как и ожидалось, получаем 20 мА, что соответствует графику. Однако в реальном мире напряжение питания не будет точным. Поэтому давайте рассчитаем для 3,4 В разность 100 мВ.

Сначала мы вычитаем Vint, чтобы получить 0,4 В, затем снова вычисляем ток, используя внутреннее сопротивление.

 I = Vr / Rint
I = 0,4 / 25
I = 0,016 A 

Как вы можете видеть, мы видим заметное изменение тока только при небольшом изменении напряжения.

Сравнение

Наконец, мы можем сравнить результат с резистором и без него. Мы знаем, что падение напряжения на 100 мВ может уменьшить ток, протекающий через светодиод без внешнего резистора, на 4 мА.

Внешний резистор и питание 12 В

Сначала мы рассчитаем размер резистора, необходимого для достижения 20 мА тока через светодиод, используя типичное прямое напряжение 3,3 В, указанное в таблице данных. Мы можем использовать произвольное напряжение источника питания 12 В.

 R = (V - Vf) / I
R = (12 - 3.3) / 0,02
R = 435 Ом 

Теперь мы можем смоделировать такое же падение напряжения питания. Прямое напряжение светодиода фиксировано, поэтому падение 100 мВ повлияет на напряжение на резисторе. Это, в свою очередь, повлияет на ток, протекающий через светодиод, и рассчитывается следующим образом.

 I = ((V - Vf) - 100 мВ) / R
I = 8,6 / 435
I = 0,0198 

Результат показывает, что мы наблюдаем снижение тока только на 200 наноампер , или на 0,2 мА.

Внешний резистор и источник питания 24 В

Также стоит отметить, что чем больше напряжение на резисторе, тем меньше разница в изменении напряжения питания.Например, если мы увеличим напряжение питания до 24 В, падение напряжения питания на 100 мВ изменит ток следующим образом.

 R = (V - Vf) / I
R = (24 - 3,3) / 0,02
R = 1035 Ом 
 I = ((V - Vf) - 100 мВ) / R
I = 20,6 / 1035
I = 0,0199 

Теперь мы видим, что при питании от источника питания 24 В мы видим разницу в токе только в 100 нА или 0,1 мА!

Не забывайте о тепловыделении!

Значит, чем выше напряжение питания, тем лучше? Ну, не совсем потому, что вам все же нужно учитывать тепловыделение.Использование источника питания 24 В со светодиодом, который имеет падение напряжения 3,3 В, будет означать, что на резисторе будет 20,7 В. Сколько тепла он должен рассеять?

 P = I x V 
P = 0,02 x 20,7
P = 0,414 Вт

Наш резистор должен быть рассчитан как минимум на 500 мВт или 1/2 Вт. Даже это довольно близко к требованию, и поэтому резистор будет нагреваться.

Как и во многих случаях в электронике, всегда есть компромисс, и вы должны выбрать правильные значения компонентов, чтобы получить лучший компромисс.

Заключение

Важно регулировать ток, протекающий через светодиод, чтобы он работал стабильно и правильно. Совершенно приемлемо ограничивать ток с помощью резистора или другого устройства регулирования тока.

Теоретически можно было бы ограничить ток, используя внутреннее сопротивление светодиода, но на самом деле это просто нецелесообразно. Напряжение должно быть очень точным.

Также необходимо настроить каждый светодиод, чтобы он соответствовал точной характеристике прямого напряжения, которая также будет отличаться для каждого светодиода из-за производственных допусков, связанных с производством светодиода.

Самый простой способ предотвратить преждевременную смерть светодиода или даже его взрыв — это использовать токоограничивающий резистор!

Я надеюсь, что этот урок был информативным и дал вам некоторые новые и полезные знания о скромных и вездесущих светодиодах! Пожалуйста, найдите время, чтобы посетить некоторые из моих других интересных руководств!

Токоограничивающий резистор для светодиода и нагрузки

Сегодня мой сын научился использовать светодиод для батареи 3В. Как мы знаем, светодиоды имеют напряжение около 1,8 В, как обычно, правильный свет, а не тепло, а потребляемая мощность составляет примерно от 10 мА до 20 мА.Как использовать его с источником питания напряжением 3 В или более.

Резистор понижения тока или напряжения

Лучший способ, настолько простой и дешевый — это резистор понижения напряжения. Он подходит для более низкой токовой нагрузки. И текущая стабильная схема использования. Например, светодиоды, фонарики, реле и прочее.


Он измеряет напряжение двух последовательно соединенных батареек AA 1,5V

Он использует макетную плату и батарейный отсек. Тогда он сможет прочитать про 3В.

Затем он подключает 3-миллиметровый светодиод к клемме 3-вольтовой батареи и измеряет на нем напряжение, примерно равное 2.7 вольт

Светодиод получает слишком большой ток


Мы не должны использовать высокое напряжение, это может убить светодиод.

На изображении напряжение на батарее 3В. Затем светодиод горит ярко, а температура слишком высокая.

Использование резистора ограничения тока

В настоящее время на светодиодах было напряжение выше, чем это было бы невыносимо. Нам нужно снизить напряжение. До уровня примерно 1,8 В.

Какой у них популярный способ уменьшить ток? Срабатывает ограничивающий резистор тока.Мы будем использовать его в последовательной цепи со светодиодом.

Сколько сопротивление-R1?
На принципиальной схеме они представляют собой последовательную цепь.


Мы можем найти сопротивление R1, используя треугольник закона Ома.

R = V / I

Нам нужно сопротивление (R). Нам нужно заранее знать напряжение (В) и ток (I).

1. Теперь мы знаем ток. (IR1)
По принципу схемы

Ток, протекающий через все устройства, одинаков.

IR1 = ILED

Когда светодиод использует ток примерно 20 мА.

Значит, ток тоже 20 мА.

2. Напряжение резистора (VR1) — это то, что нужно искать!

Когда резистор и светодиод включены последовательно. Затем параллельно или поперек батареи 3 В.

Таким образом, VR1 в сочетании с VLED — напряжение светодиода — равняется батарее 3V.

Когда мы знаем, что напряжение светодиода 1,8 В, значит, напряжение резистора равно?
= 3В — 1.8 В
= 1,2 В

Следовательно:
Сопротивление R1 = 1,2 В / 2 мА
= 60 Ом

Но это значение можно купить во всех магазинах.
Так что мы используем 56 Ом лучше .

Мы можем резюмировать простую формулу:

R1 = (Vin-VLED) / ILED. или
R1 = (Vin — Vload) / Iload

Вы смотрите на блок-схему. Ясно лучше.

Какая мощность ограничивающего резистора

Мой ребенок спросил, на сколько нам следует использовать размер резистора?

Из закона Ома: P = V x I
V = напряжение резистора = 1.2 В
I = ILED = 20 мА = 0,02 А

P = 1,2 В x 0,02 А
= 0,024 Вт

Итак, мы можем использовать резистор 0,25 Вт.

Затем он использует ElectroDroid на мобильном телефоне, чтобы найти цветовой код резистора.
Затем нарисуйте и раскрасьте его на ноутбуке как Рисунок 5

, а затем мы вставляем резистор на 56 Ом в макетную плату и снова измеряем напряжение на светодиоде. Это снижает напряжение до 1,8 В, и светодиод работает нормально.

Как преобразовать напряжение 12В в реле 6В

Я хотел бы показать вам еще один пример.Предположим, вам нужно использовать реле на 6 В.

Это 6В 80 Ом, реле SPDT.

Но нужно использовать с аккумулятором 12 В. Это так нехорошо.

т.к. использует большой ток. Так как сопротивление катушки составляет 80 Ом. При использовании аккумулятора 12 В. Реле имеет слишком много токов, протекающих через катушку. Это около 0,15 А (150 мА). От
I = 12 В / 80 Ом
= 0,15 А

Батарея быстро разряжается.
И главное! Катушка реле слишком горячая.

У нас есть много способов снизить напряжение.Но использование резистора — недорогой способ.

По схеме аналогична указанной выше. Мы используем катушку реле вместо светодиода.


С помощью резистора уменьшите напряжение на реле.

Диод-D1 защищает другие части от импульса высокого напряжения, который генерируется в катушке реле, когда реле выключено.

Нахождение резистора-R1

Так как резистор-R1 = (Vin — Vload) / Iload
Vin = батарея 12 В
Vload = напряжение катушки реле = 6 В

Iload — это ток, протекающий через катушку реле.Но сейчас мы этого не знаем. Поскольку он показывает сопротивление катушки, 80 Ом.

По закону сопротивления
I = V / R

V = 6 В, R = 80 Ом
R = 6/80

= 0,075 A или 75 мА.

Итак, Iload составляет 0,075A

Снова введите его в формулу выше.
R1 = (12В — 6В) / 0,075А
= 80 Ом Но такого сопротивления не найти в обычном магазине.
Значит, мы должны использовать 82 Ом.

Далее нам нужно использовать резистор подходящей мощности.

P = V x I

V = 6V
I = ток реле = 0.075A

Значит мощность резистора.
= 6 В x 0,075 А
= 0,45 Вт
Мы можем использовать резистор 82 Ом 0,5 Вт .

Примечание: Сейчас мой сын плохо разбирается в электронике. Но ему нравилось играть с электроникой.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Что такое токоограничивающий резистор и его функция?

Введение

В схеме резистор включен последовательно с другими компонентами, и выходной сигнал в серии отсутствует.Следовательно, при коротком замыкании последовательных компонентов напряжение, приложенное к резистору, не сожжет резистор. Такой резистор является резистором-ограничителем тока. В противном случае он называется не токоограничивающим резистором, а защитным резистором или нагрузочным резистором.

Каталог

I Что такое резистор ограничения тока?

Токоограничивающий резистор — это защитный резистор, подключенный последовательно, чтобы избежать перегорания прибора из-за чрезмерного тока.Принцип заключается в уменьшении тока за счет увеличения общего сопротивления нагрузки. Как правило, он также может играть роль парциального давления. Обычно в локальной цепи резистор, который не выполняет никаких других функций последовательно с потребителем, можно рассматривать как ограничивающий ток резистор для ограничения величины тока.

Многие компоненты имеют ограничение на максимальный входной ток. Если входной ток слишком велик, компоненты не будут работать должным образом или даже перегорят.Чтобы контролировать ток, добавьте резистор на входе, чтобы уменьшить силу тока и избежать ненужных рисков.

Светодиоды и резисторы ограничения тока Простое объяснение

II Как работает резистор ограничения тока?

Резистор RL — это нагрузочный резистор, R — резистор регулятора напряжения (также называемый токоограничивающим резистором), а D — стабилитрон. Согласно принципу конструкции схемы регулятора напряжения, когда входное напряжение практически постоянно, RL становится меньше, ток, протекающий через RL, увеличивается, но ток, протекающий через D, уменьшается.

Токоограничивающий резистор используется для уменьшения тока на стороне нагрузки. Например, добавление токоограничивающего резистора на одном конце светодиода может уменьшить ток, протекающий через светодиод, и предотвратить повреждение светодиодной лампы.

III Роль токоограничивающего резистора

С точки зрения основного процесса выпрямления и фильтрации низкое и высокое напряжение одинаковы. Нарисуйте схему выпрямления и фильтрации, как показано на рисунке 1, а затем скажите: «Ключ к проблеме в том, что на конденсаторе нет заряда до включения питания.Напряжение равно 0 В, и напряжение на конденсаторе не может быть изменено. То есть в момент замыкания концы выпрямительного моста (между P и N) соответствуют короткому замыканию. Поэтому при включении питания возникают две проблемы:

Первая проблема заключается в большом пусковом токе, как показано кривой 1 на рисунке, что может привести к повреждению выпрямителя. Вторая проблема заключается в том, что напряжение на входящей линии мгновенно упадет до 0 В, как показано кривой 2 на рисунке.Эти две функции, схемы выпрямителя высокого и низкого напряжения абсолютно одинаковы. «

Рис. 2. Далее: «Схема низковольтного выпрямителя должна быть понижена с помощью трансформатора. Обмотка трансформатора представляет собой большую катушку индуктивности. Она действует как барьер и может ограничивать пусковой ток во время включения, как показано на кривая 1 на рисунке (а). В выпрямительной цепи инвертора такого барьера нет, и пусковой ток намного более серьезен, как показано кривой 1 на рисунке (b).

Что касается формы волны напряжения на входной стороне, фактически в схеме низковольтного выпрямителя вторичное напряжение трансформатора также мгновенно падает до 0 В, как показано на кривой 2 на рисунке (a). Но отражение от исходной стороны трансформатора, такое мгновенное понижение, буферизуется, как показано на кривой 3 в (a), не создает помех другим устройствам в той же сети.

В схеме выпрямителя инвертора такого буфера нет, и его входящее напряжение является напряжением сети.Следовательно, в момент закрытия напряжение в сети должно упасть до 0 В, что повлияет на нормальную работу другого оборудования в той же сети, что обычно называется помехой. Следовательно, между выпрямительным мостом и конденсатором фильтра необходимо подключить токоограничивающий резистор RL.

Когда подключен токоограничивающий резистор, пусковой ток во время включения будет уменьшен. В то же время мгновенное падение напряжения снижается на токоограничивающем резисторе, который решает форму волны напряжения на стороне источника питания.Подождите, пока напряжение на конденсаторе поднимется до определенного уровня, а затем замкните накоротко токоограничивающий резистор.

Размер закорачивающего устройства (тиристора или контактора) зависит от мощности инвертора, но сопротивление и емкость токоограничивающего резистора не сильно отличаются. Что здесь происходит?

IV Конкретные примеры работы токоограничивающего резистора

Поговорим об этом отдельно.Сначала посмотрите на токоограничивающий резистор RL. Собственно говоря, в инверторе большой емкости допустимый ток выпрямителя тоже очень велик. Емкость конденсатора фильтра также должна быть большой, сопротивление токоограничивающего резистора должно быть небольшим, а емкость (мощность) — большой. Но давайте посмотрим на пример. Предполагая, что значение сопротивления выбранного токоограничивающего резистора составляет RL = 50 Ом, каков максимальный пусковой ток, даже если напряжение источника питания равно значению амплитуды ULM = 1.41 & ВРЕМЯ; 380 = 537В? ”

Только чуть больше 10А.

И, если предположить, что емкость конденсатора фильтра составляет 5000 мкФ, сколько времени занимает зарядка?

T = RLC = 50 & TImes; 5000 = 250000 мкс = 250 мс = 0,25 с

Это постоянная времени зарядки, и время зарядки должно быть от 3 до 5 раз. То есть время зарядки составляет от 0,75 до 1,25 с. Единая точка клетки составляет около 1 с.

Такой зарядный ток и такое время зарядки приемлемы для инверторов большинства размеров? Поэтому, чтобы уменьшить количество типов других компонентов, производитель принял практику выбора токоограничивающих резисторов одной и той же спецификации для инверторов с различными характеристиками.

Что касается мощности (мощности) резистора, поскольку время прохождения тока в RL очень короткое, всего 1 с, время, чтобы фактически достичь 10A, короче. Поэтому в целом мощность не менее 20Вт. Посмотрите на байпасный контактор КМ. Тем не менее используйте конкретные примеры, чтобы проиллюстрировать это.

Предположим, что мощность двигателя составляет 7,5 кВт, 15,4 А. Мощность инвертора 13кВА, 18А.

Вообще говоря, емкость промежуточного контура и входная мощность инвертора должны быть равны.Когда напряжение источника питания составляет 380 В, среднее значение постоянного напряжения составляет 513 В. Итак, насколько большим должен быть постоянный ток? ”

Три контакта контактора могут использоваться параллельно, если контактора на 10 А достаточно.

Однако, если вы используете тиристор, вам все равно нужно использовать 30А.

Тогда, если мощность двигателя 75кВт, 139,7А. Мощность инвертора 114кВА, 150А. Каков размер подрядчика?

Следует выбирать контакторы с номинальным током 80 А.

В Причина возгорания токоограничивающего резистора

Почему токоограничивающий резистор дымит и дует? Возможны три причины перегорания токоограничивающего резистора.

Первая возможность состоит в том, что емкость токоограничивающего резистора выбрана небольшой. Поскольку ток, протекающий в токоограничивающем резисторе, экспоненциально затухает, а продолжительность очень мала, как показано на рисунке 4.Поэтому его емкость можно выбрать меньшей. Чтобы снизить стоимость компонентов, некоторые производители инверторов часто принимают меньшие значения при определении емкости токоограничивающего резистора. Однако на практике ток IR, протекающий через токоограничивающий резистор, связан с сопротивлением RL токоограничивающего резистора и емкостью CF сглаживающего конденсатора. Сравнивая графики (а) и (б), RL большой: начальное значение тока небольшое, но длительность тока большая.

Сравнивая рисунок (b) с рисунком (c), известно, что CF велик и продолжительность тока будет увеличиваться. Поэтому, строго говоря, емкость RL также должна быть отрегулирована соответствующим образом. Однако, как упоминалось ранее, нет строгих требований к процессу зарядки конденсатора фильтра. Следовательно, нет четкого регулирования сопротивления и емкости RL. В общем, если RL ≥ 50 Ом, PR ≥ 50 Вт не проблема.

(а) RL = 80 Ом, CF = 1000 мкФ (б) RL = 40 Ом, CF = 1000 мкФ (в) RL = 40 Ом, CF = 2000 мкФ

Вторая возможность состоит в том, что конденсатор фильтра вышел из строя.У каждого прибора с электролитами есть особенность: им всегда пользуешься, его непросто сломать. Если вы не используете его часто, он сломается. Если инвертор хранится на складе более года, вы должны сначала открыть крышку и осмотреть конденсатор фильтра, чтобы убедиться, что это «барабан»? Есть ли утечка электролита? Характерным признаком износа электролитических конденсаторов является, во-первых, увеличение тока утечки.

Инвертор, который долгое время не использовался, внезапно добавляет высокое напряжение, и ток утечки электролитического конденсатора может быть довольно большим.При первом включении питания изнутри инвертора идет дым. Вполне вероятно, что электролитический конденсатор серьезно протекает или даже закорочен. Напряжение постоянного тока выше 450В сложно зарядить, закорачивающее устройство не работает, а токоограничивающий резистор включен в цепь на длительное время. Конечно, он должен дымить и дуть.

Когда электролитический конденсатор в это время не используется, сначала необходимо добавить около 50% номинального напряжения, а время прессования должно составлять более получаса, как показано на рисунке 5.Его ток утечки упадет, и он будет использоваться в обычном режиме.

Сначала используйте мультиметр, чтобы измерить, не закорочен ли конденсатор. Если короткого замыкания нет, это не значит, что внешний вид неисправен. Как показано на рисунке, через полчаса включения конденсатор можно восстановить.

Третья возможность состоит в том, что байпасный контактор KM или тиристор не работают. В результате токоограничивающий резистор подключается к цепи на длительное время.

Устройство байпаса должно срабатывать, когда конденсатор фильтра заряжен до определенной степени (например, напряжение превысило 450 В). Следовательно, при подтверждении того, что конденсатор фильтра не поврежден при включении питания, наблюдайте, работает ли байпасное устройство, когда напряжение постоянного тока UD достаточно увеличивается.

Одним из специальных методов является подключение вольтметра PV1 параллельно токоограничивающему резистору, а также подключение вольтметра PV2 к обоим концам конденсатора фильтра, а затем подключение двух последовательно соединенных лампочек к обоим концам конденсатора фильтра. как груз.Как показано на рисунке 6. После включения, если PV2 показывает, что UD достаточно велик, но показание PV1 не равно 0 В, байпасное устройство не работает.

Подключите нагрузку к цепи постоянного тока. Если нет нагрузки, в токоограничивающем резисторе не будет тока, даже если закорачивающее устройство не сработает, токоограничивающий резистор не сможет измерить напряжение.

Поскольку электролитический конденсатор обладает определенными индуктивными свойствами, он не может поглотить напряжение помех за короткое время, что легко приводит к неисправности «срабатывания защиты от перенапряжения».Конденсатор C0 используется для поглощения напряжения помех.

VI Расчет токоограничивающего резистора

Токоограничивающий резистор (RS):

(1) Обеспечьте рабочий ток ВЗ.

(2) Защитите VZ от повреждений при перегрузке по току.

Два крайних случая:

1. (Входное напряжение VS)

VS = VS (мин.), IL = IL (макс.) (IL — рабочий ток нагрузки) Когда VS = VS (макс.), IL = IL (мин.)

VII Как выбрать резистор ограничения тока

Как выбрать резистор ограничения тока?

Во-первых, вы должны знать рабочий ток и рабочее напряжение выбранного вами светодиода.Обычно рабочий ток светодиода 0805 составляет около 5 мА, а напряжение зависит от цвета светодиода; рабочие напряжения красного, зеленого, синего и белого светодиодов не соответствуют друг другу. Для получения подробной информации, пожалуйста, перейдите по этой ссылке: SMD 0805 Ток питания светодиода, токоограничивающий резистор и яркость

На примере красного светодиода рабочее напряжение составляет 2 В, а рабочий ток установлен на 5 мА.

R = U / I = (4,2-2) / 5 = 440 Ом. Учтите, что у вас двигатель 4.Батарея 2 В, токоограничивающий резистор может быть немного меньше, и вы можете выбрать 330 Ом.

Обратите внимание, что рабочий ток не должен быть слишком большим, иначе это повлияет на срок службы светодиода.


7.1 Как выбрать резистор ограничения тока светодиода?

Расчет относительно прост, но рекомендуется освоить метод расчета: метод следующий:

1, по формуле: U / I = R

2, в соответствии с типичным напряжением в спецификации светодиодного общего белого света, синий свет составляет 3.2 В при 20 мА желтый, красный 2,0 В при 20 мА

3. По электрическому току возбуждения светодиода. Обычная пиранья 20 мАч может достигать 50 мА, высокая мощность может достигать 350 мА или выше

4. Начало расчета. В качестве примера взята обычная белая светоизлучающая трубка: R = U (падение напряжения на резисторе) / I (ток через резистор) устанавливает напряжение возбуждения равным 12 В; тогда R = (12-3,2 В) / 0,02 А = 8,8 В / 0,02 А = 440

Опыт

Ом: Чтобы продлить срок службы продукта, общий ток привода меньше, чем типичное значение тока привода.Такие как обычные диоды около 15мА.


7.2 Как выбрать токоограничивающий резистор на стабилитроне?

Стабилитроны могут быть подключены последовательно для использования при более высоких напряжениях, а более стабильные напряжения могут быть получены путем последовательного подключения.

Стабилитрон действует как регулятор напряжения. Когда ток нагрузки уменьшается, падение напряжения на токоограничивающем резисторе уменьшается, а выходное напряжение увеличивается, то есть обратное напряжение стабилитрона относительно увеличивается, а ток стабилитрона IZ увеличивается, в результате чего IRS также возрастает, Падение напряжения на трубке токоограничивающего резистора RS возрастает, выходное напряжение падает, а выходное напряжение остается неизменным.Недостатком является невозможность получения большого выходного тока.

Процентное соотношение регулирования напряжения:% V.R

Стабильность напряжения, чем ниже коэффициент, тем лучше. При изменении входного напряжения постоянного тока VS или тока нагрузки IL выходное значение Vo может оставаться в определенном диапазоне.

VNL: Выходное напряжение без нагрузки VFL: Выходное напряжение при полной нагрузке

Пример: Показанный выше регулятор имеет выходное напряжение 7,5 В при отсутствии нагрузки и 7.4 В при номинальном токе на выходе, и достигается стабильность напряжения регулятора.

Ⅷ FAQ

1. Что такое токоограничивающий резистор?

Токоограничивающий резистор регулирует и снижает ток в цепи. Это уравнение и калькулятор помогают определить значение резистора, добавляемого к светоизлучающему диоду (LED) , чтобы он мог ограничивать ток, проходящий через светодиод. Расчет также определяет, сколько энергии потребляет светодиод.

2. Как найти токоограничивающий резистор?

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одного светодиода, основная форма закона Ома — V = IR — принимает следующий вид: где: Vbatt — напряжение между резистором и светодиодом. Vled — прямое напряжение светодиода.

3. Какова формула тока резистора?

Ток I резистора в амперах (A) равен напряжению резистора V в вольтах (V), деленному на сопротивление R в омах (Ω): V — падение напряжения на резисторе, измеренное в вольтах (V).

4. Зачем светодиодам нужны токоограничивающие резисторы?

В случае светодиодных лент или коммерческого освещения устанавливаются токоограничивающие резисторы, чтобы минимизировать влияние колебаний источника напряжения. Эти светодиодные фонари часто указывают напряжение, при котором они работают, и что для них требуются драйверы светодиодов постоянного напряжения. Подберите источник питания, подходящий для вашей светодиодной конфигурации.

5. Как найти токоограничивающий резистор для светодиода?

Вы должны быть уверены, что номинальная мощность (мощность) вашего резистора достаточна для используемой мощности.Уравнение мощности: предположим, вы используете приведенный выше светодиод с напряжением питания 12 В, прямым напряжением светодиода 3,9 В и общим прямым током 1400 мА.

6. Уменьшает ли резистор ток или напряжение?

Вкратце: резисторы ограничивают поток электронов, уменьшая ток. Напряжение возникает из-за разницы потенциальной энергии на резисторе.

7. Влияет ли резистор на напряжение?

Чем больше резистор, тем больше энергии используется этим резистором и тем больше падение напряжения на этом резисторе…. Кроме того, законы Кирхгофа для цепей гласят, что в любой цепи постоянного тока сумма падений напряжения на каждом компоненте цепи равна напряжению питания.

8. Какой резистор используется в качестве токоограничивающего устройства?

Токоограничивающий резистор — это резистор, который используется для уменьшения тока в цепи. Простой пример — резистор, включенный последовательно со светодиодом. Обычно вам нужно установить резистор, ограничивающий ток, последовательно со светодиодом, чтобы вы могли контролировать количество тока, протекающего через светодиод.

9. В чем разница между текущим напряжением и сопротивлением?

Напряжение — это разница зарядов между двумя точками. Ток — это скорость, с которой течет заряд. Сопротивление — это способность материала сопротивляться потоку заряда (тока).

10. Какое ограничение по току у источника питания?

Ограничение тока — это защита чувствительных устройств от больших токов, которые могут возникнуть при нормальной работе или из-за неисправностей.Самая простая форма устройства ограничения тока — предохранитель.


Вас также могут заинтересовать :

Классификация сопротивления и ее параметры

Что такое термистор и как он работает?

Что такое измеритель сопротивления изоляции и как его проверить?

Что такое резистор и его функции?

Альтернативные модели

Часть Сравнить Производителей Категория Описание
Производитель.Часть #: EP1S10F780C7 Сравнить: EP1S10F780C5N VS EP1S10F780C7 Производитель: Altera Категория: ПЛИС Описание: FPGA Stratix Family 10570 Cells 420.17 МГц, 130 нм, 1,5 В, 780 контактов, FC-FBGA
Производитель Номер детали: EP1S10F780C7N Сравнить: Текущая часть Производитель: Altera Категория: ПЛИС Описание: FPGA Stratix Family 10570 Cells 420.17 МГц, 130 нм, 1,5 В, 780 контактов, FC-FBGA
Производитель Номер детали: EP1S10F780C5 Сравнить: EP1S10F780C7N VS EP1S10F780C5 Производитель: Altera Категория: ПЛИС Описание: FPGA Stratix® Family 10570 Cells 500MHz 130nm Technology 1.5V 780Pin FC-FBGA
Производитель Номер детали: EP1S10F780C6 Сравнить: EP1S10F780C7N VS EP1S10F780C6 Производитель: Altera Категория: ПЛИС Описание: FPGA Stratix® Family 10570 Cells 450.05 МГц, 130 нм, 1,5 В, 780 контактов, FC-FBGA

Токоограничивающий резистор: Светодиод накаливания от 230 В переменного тока

Токоограничивающий резистор

для Свечение светодиода от переменного тока: Светодиод (светоизлучающий диод) Рабочее напряжение светодиода очень низкое.

Рабочее напряжение составляет от 1,5 до 3 В постоянного тока. В общем, мы видели, что в нашем доме на настенном распределительном щите есть все индикаторы неоновой лампочки. который имеет небольшие размеры и подключен последовательно с резистором 68k .

Это руководство поможет вам сделать индикатор, который светится очень красиво и выглядит с помощью светодиодов. сделать светодиодный индикатор легко.

Светодиодные индикаторы

долговечны по сравнению с другими. Я обсуждаю схему светодиодного индикатора, которую можно использовать с 230 вольт переменного тока.

Светодиодная лампа светится ярче и красивее, чем другие лампы. Но есть проблема со светодиодами, они работают только с постоянным током, а не с переменным током.

Если подключить светодиод напрямую к источнику переменного тока без использования резисторов, он загорится или взорвется.

Какой резистор использовать со светодиодом

Для избежать отказа светодиода мы используем , используя резистор сопротивлением 68 кОм или 100 кОм.

Это означает, что резистор подключается к фазной линии для уменьшения напряжения, подходящего для светодиода.

после резистора, выпрямительный диод должен быть подключен последовательно с резистором, чтобы преобразовать сигнал переменного тока в постоянный, а затем он подключает положительную клемму светодиода.

  • Светодиод накаливания от 230 В переменного тока

Отрицательный вывод светодиода напрямую соединяется с землей переменного тока.

, если вы хотите, чтобы светодиоды светились больше, тогда резистор 50 кОм подключается вместо резистора 100 кОм. используйте эти токоограничивающие резисторы в соответствии с вашими потребностями.

, пожалуйста, очень внимательно выполните эту работу и очень осторожно подключите резистор и диод в соответствии со схемой.

Светоизлучающий диод, имеющий собственный ток и напряжение для правильной работы. поэтому мы подбираем резисторы в соответствии с напряжением и амперой входного напряжения.

, если у вас есть сомнения по поводу подключения светодиода к источнику переменного тока, дайте мне знать в комментариях.

Расчет номинала токоограничивающего резистора для светодиодов

При расчете значения сопротивления для ограничения тока резистора необходимо учитывать несколько переменных.Во-первых, что такое напряжение питания, которое будет подаваться на светодиод? Во-вторых, что такое прямое напряжение выбранного вами светодиода? В-третьих, каково количество ток, который вы хотите протекать через светодиод? Отвечая на эти вопросы, вы сможете рассчитать номинал резистора. Чтобы начать процесса, вы должны знать, какое напряжение питания вы будете подавать на светодиод. Независимо от того, 12 В, 5 В или 3,3 В, это значение важно для расчета. сопротивления. Следующая необходимая информация — это прямое напряжение для конкретного используемого светодиода.Чтобы найти это информацию, вы должны ссылаться на техническое описание детали. Нападающий напряжение можно найти в разделе «Электрические характеристики» техническая спецификация. Ниже показано изображение прямого напряжения для Osram. Светодиод:

Как видно из рисунка, максимальное прямое напряжение светодиода составляет 3,2 В. Следующая необходимая информация — это текущий который должен проходить через светодиод. Чтобы найти эту информацию, на лист данных необходимо еще раз сослаться. Обычно эта информация показаны в виде графика, показывающего прямой ток в зависимости отсветящийся интенсивность. Ниже показан пример пары графиков из одного и того же Osram LED как раньше:

Эти графики показывают полезную информацию, необходимую для расчета нашего номинал резистора. График справа показывает относительный световой поток. против прямого тока. Первый шаг — выбрать желаемую яркость. для вашего приложения. В этом примере мы будем использовать 1.0 для нашего значения. Из графика мы можем понять, что при относительной интенсивности 1,0 ток 350 мА прямой ток необходим.Теперь информация из графика на left необходимо указать. Из графика видно, что для форварда ток 350 мА, на светодиодах будет прямое напряжение 2,8 В. После обнаружив это, у нас есть вся информация, необходимая для расчета значение резистора ограничения тока. Уравнение показано ниже:

RCL = VIN − VfIf

Где RCL — сопротивление токоограничивающего резистора, VIN — напряжение питания, Vf — прямое напряжение светодиода, а If — прямой ток в амперах.Для выбранного примера уравнение будет выглядеть так:

RCL = 5−2.8.350

Из этого уравнения мы можем рассчитать сопротивление как 6,28 Ом. (при напряжении питания 5В). Хотя для большинства светодиодов этого не требуется количество тока для работы (в большинстве таблиц указано 20 мА), это все еще может показать, как найти и использовать информацию в таблице данных найти номинал токоограничивающего резистора.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *