Cила тока при параллельном соединении
Параллельное соединение элементов в электрической цепи
Прежде чем приступать к формированию электропроводки в любом типе помещения, разработке электрической цепи для других топов объектов, важно изучить основные способы соединений элементов, используемые на практике.
Наибольшее распространение получили следующие варианты:
- параллельное;
- последовательное;
- смешанное соединение.
Если выбран вариант последовательного соединения, это означает, что все, используемые в цепи элементы, связываются друг с другом электрическими проводами последовательно. В результате, участок цепи, на котором устанавливается такой способ монтажа, не будет иметь в своей конструкции узлов.
Если соединение выполнено параллельно, то здесь объединение элементов в цепи будет выполнено при помощи двух узлов, при этом связь со всеми другими узлами будет отсутствовать. Важно разобраться, какая сила тока при параллельном соединении элементов будет в цепи.
Смешанный тип соединения может использоваться в сложных цепях, состоящих из множества различных элементов, многофункционального узла, выполняющего, как правило, широкий набор операций.
Сила тока в параллельном проводнике
Если в цепи использовано последовательное соединение отдельных ее элементов, то сила тока здесь на всех участках, во всех проводниках будет оставаться одинаковой. Рассчитать напряжение можно, используя простое правило – необходимо сложить все напряжения, получаемые на концах каждого из проводников и получим искомый результат.
Совсем по-другому проявляется сила тока в параллельном проводнике.
При любой нагрузке в электроцепи будет возникать определенное сопротивление. Оно, естественно, будет препятствовать прохождению электрического тока без каких-либо потерь. В целом, ток так и движется – постепенно, от источника по проложенным заранее проводникам к нагруженным элементам. Чтобы обеспечить легкое прохождение тока по проводникам, важно, чтобы этот проводник мог легко и просто отдавать электроны, т.е. – обладать хорошей проводимостью.
Большая часть современных цепей использует медные проводники, а обязательным элементом также являются приемники энергии. Каждый такой приемник создает определенную нагрузку и имеет то или иное электрическое сопротивление. От приведенных выше параметров, в конечном итоге, зависит сила тока при параллельном соединении проводников.
Особенности цепи, в которой используется параллельное соединение
Как уже отмечалось, в данном варианте монтажа электроцепи, все ее элементы, проводники, соединяются друг с другом параллельным методом. Соответственно, все начала проводников соединяются при помощи медных (преимущественно) проводников в один пучок. Аналогичным способом в одну точку также собираются и концы проводников. Как же рассчитывается сила тока в цепи при параллельном соединении? Лучше всего разобраться в данном вопросе поможет достаточно простой и понятный пример.
Нарисуем на листе бумаги такой вид соединения, который у специалистов называется «разветвленным» и обеспечим нахождение в каждой отдельной ветви по одному резистору (сопротивлению). Далее проследим, каким образом будет вести себя электрический ток, протекающий по цепи. Достигнув места разветвления, ток разделится на каждый резистор, установленный далее по определенной ветке линии. Следовательно, реальный ток в цепи будет равен величина, состоящей из суммы токов на всех сопротивлениях (с учетом количества разветвлений). Как считается сила тока разобрались, а вот напряжение при параллельном сопротивлении на всех элементах в сети будет оставаться одинаковым.
Примечательно, что все установленные на различных ветвях цепи резисторы можно заменить одним таким резистором, эквивалентным по сопротивлении сумме замещаемых элементов. Рассчитать, какова сила тока при параллельном соединении резисторов поможет важнейший закон Ома!
Область применения
А можно ли на практике использовать данные сведения? Есть ли от них реальная польза?
Люстра Arte Lamp Kenny A9514PL-5-1WG
Прежде всего, рассмотрим организацию соединения проводников и сопротивлений в домашних условиях. Как правило, такие схемы собираются доля обеспечения работы многорожковых люстр, светильников с некоторым количеством ламп освещения. Если использовать здесь последовательную схему, то все лампочки будут включаться одновременно. При использовании параллельного метода можно выводить необходимое количество светильников на один выключатель и включать одну, две и более лампочек в зависимости от ранее принятого решения, с учетом вопросов экономичности, целесообразности и, конечно же, дизайна.
Подведем итог
Наконец, все, используемые в квартире, загородном доме бытовые приборы и устройства подключены к сети напряжением 220В параллельно. Это подключение происходит с помощью распределительного щитка. Зная, чему равна сила тока при параллельном соединении, можно уверенно отметить, данный способ позволит эффективно управлять используемой электротехникой, приборами и предметами освещения в квартире.
теория, формулы, подключение и расчет силы тока
Практически каждому, кто занимался электрикой, приходилось решать вопрос параллельного и последовательного соединения элементов схемы. Некоторые решают проблемы параллельного и последовательного соединения проводников методом «тыка», для многих «несгораемая» гирлянда является необъяснимой, но привычной аксиомой. Тем не менее, все эти и многие другие подобные вопросы легко решаются методом, предложенным еще в самом начале XIX века немецким физиком Георгом Омом. Законы, открытые им, действуют и поныне, а понять их сможет практически каждый.
Основные электрические величины цепи
Для того чтобы выяснить, как то или иное соединение проводников повлияет на характеристики схемы, необходимо определиться с величинами, которые характеризуют любую электрическую цепь. Вот основные из них:
- Электрическое напряжение, согласно научному определению, это разность потенциалов между двумя точками электрической цепи. Измеряется в вольтах (В). Между клеммами бытовой розетки, к примеру, оно равно 220 В, на батарейке вольтметр покажет 1,5 В, а зарядное устройство вашего планшета или смартфона выдает 5 В. Напряжение бывает переменным и постоянным, но в нашем случае это несущественно.
- Электрический ток – упорядоченное движение электронов в электрической цепи. Ближайшая аналогия – ток воды в трубопроводе. Измеряется в амперах (А). Если цепь не замкнута, ток существовать не может.
- Электрическое сопротивление. Величина измеряется в омах (Ом) и характеризует способность проводника или электрической цепи сопротивляться прохождению электрического тока. Если продолжить аналогию с водопроводом, то новая гладкая труба будет иметь маленькое сопротивление, забитая ржавчиной и шлаками – высокое.
- Электрическая мощность. Эта величина характеризует скорость преобразования электрической энергии в любую другую и измеряется в ваттах (Вт). Кипятильник в 1000 Вт вскипятит воду быстрее стоваттного, мощная лампа светит ярче и т.д.
Взаимная зависимость электрических величин
Теперь необходимо определиться, как все вышеперечисленные величины зависят одна от другой. Правила зависимости несложны и сводятся к двум основным формулам:
Здесь I – ток в цепи в амперах, U – напряжение, подводимое к цепи в вольтах, R – сопротивление цепи в омах, P – электрическая мощность цепи в ваттах.
Предположим, перед нами простейшая электрическая цепь, состоящая из источника питания с напряжением U и проводника с сопротивлением R (нагрузки).
Поскольку цепь замкнута, через нее течет ток I. Какой величины он будет? Исходя из вышеприведенной формулы 1, для его вычисления нам нужно знать напряжение, развиваемое источником питания, и сопротивление нагрузки. Если мы возьмем, к примеру, паяльник с сопротивлением спирали 100 Ом и подключим его к осветительной розетке с напряжением 220 В, то ток через паяльник будет составлять:
220 / 100 = 2,2 А.
Какова мощность этого паяльника? Воспользуемся формулой 2:
2,2 * 220 = 484 Вт.
Хороший получился паяльник, мощный, скорее всего, двуручный. Точно так же, оперируя этими двумя формулами и преобразуя их, можно узнать ток через мощность и напряжение, напряжение через ток и сопротивление и т.д. Сколько, к примеру, потребляет лампочка мощностью 60 Вт в вашей настольной лампе:
60 / 220 = 0,27 А или 270 мА.
Сопротивление спирали лампы в рабочем режиме:
220 / 0,27 = 815 Ом.
Схемы с несколькими проводниками
Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:
- Параллельное.
- Последовательное.
- Смешанное.
Параллельное соединение проводников
В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:
А затем и ее сопротивление:
220 / 0,818 = 269 Ом.
Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток — втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.
Схема люстры с тремя лампами
Все лампы в нем соединены параллельно и подключены к сети. Получается, при параллельном соединении трех ламп общее сопротивление нагрузки уменьшилось втрое? В нашем случае — да, но он частный – все лампы имеют одинаковые сопротивление и мощность. Если каждая из нагрузок будет иметь свое сопротивление, то для подсчета общего значения простого деления на количество нагрузок мало. Но и тут есть выход из положения – достаточно воспользоваться вот этой формулой:
1/Rобщ. = 1/R1 + 1/R2 + … 1/Rn.
Для удобства использования формулу можно легко преобразовать:
Rобщ. = (R1*R2*… Rn) / (R1+R2+ … Rn).
Здесь Rобщ. – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.
Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.
Последовательное соединение
Теперь настала пора выяснить, как изменятся параметры цепи, если проводники (в нашем случае лампы) соединить последовательно.
Последовательно соединенная нагрузка
Расчет сопротивления при последовательном соединении проводников исключительно прост:
Rобщ. = R1 + R2.
Те же три шестидесятиваттные лампы, соединенные последовательно, составят уже 2445 Ом (см. расчеты выше). Какими будут последствия увеличения сопротивления цепи? Согласно формулам 1 и 2 становится вполне понятно, что мощность и сила тока при последовательном соединении проводников упадет. Но почему теперь все лампы горят тускло? Это одно из самых интересных свойств последовательного подключения проводников, которое очень широко используется. Взглянем на гирлянду из трех знакомых нам, но последовательно соединенных ламп.
Последовательное соединение трех ламп в гирлянду
Общее напряжение, приложенное ко всей цепи, так и осталось 220 В. Но оно поделилось между каждой из ламп пропорционально их сопротивлению! Поскольку лампы у нас одинаковой мощности и сопротивления, то напряжение поделилось поровну: U1 = U2 = U3 = U/3. То есть на каждую из ламп подается теперь втрое меньшее напряжение, вот почему они светятся так тускло. Возьмете больше ламп – яркость их упадет еще больше. Как рассчитать падение напряжения на каждой из ламп, если все они имеют различные сопротивления? Для этого достаточно четырех формул, приведенных выше. Алгоритм расчета будет следующим:
- Измеряете сопротивление каждой из ламп.
- Рассчитываете общее сопротивление цепи.
- По общим напряжению и сопротивлению рассчитываете ток в цепи.
- По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.
Хотите закрепить полученные знания? Решите простую задачу, не заглядывая в ответ в конце:
В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?
Смешанное соединение
С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?
Смешанное соединение проводников
Как определить общее сопротивление цепи? Для этого вам понадобится разбить схему на несколько участков. Вышеприведенная конструкция достаточно проста и участков будет два — R1 и R2,R3. Сначала вы рассчитываете общее сопротивление параллельно соединенных элементов R2,R3 и находите Rобщ.23. Затем вычисляете общее сопротивление всей цепи, состоящей из R1 и Rобщ.23, соединенных последовательно:
- Rобщ.23 = (R2*R3) / (R2+R3).
- Rцепи = R1 + Rобщ.23.
Задача решена, все очень просто. А теперь вопрос несколько сложнее.
Сложное смешанное соединение сопротивлений
Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:
Rобщ.245 = R2+R4+R5.
Теперь параллельно к Rобщ.245 подключаем R3:
Rобщ.2345 = (R3* Rобщ.245) / (R3+ Rобщ.245).
Ну а дальше все очевидно, поскольку остались R1, R6 и найденное нами Rобщ.2345, соединенные последовательно:
Rцепи = R1+ Rобщ.2345+R6.
Вот и все!
Ответ на задачу о елочной гирлянде
Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.
Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.
Схема елочной гирлянды из миниатюрных ламп накаливания
220v.guru
Соединение элементов в цепи переменного напряжения и тока
Всем доброго времени суток! В прошлой статье я рассказал о воздействии переменного напряжения на элементы цепи (сопротивление, индуктивность и ёмкость) и воздействие этих элементов на напряжение, ток и мощность. В данной статье я расскажу о последовательном и параллельном соединении элементов цепи и воздействии на такие цепи переменного напряжения и тока.
Последовательное соединение элементов цепи при переменном напряжении
Начнём с последовательного соединения сопротивления R, индуктивности L и ёмкости C и рассмотрим воздействие на неё переменного напряжения с частотой ω.
Последовательное соединение элементов цепи.
В данной цепи входное переменное напряжение U в соответствии со вторым законом Кирхгофа будет равно алгебраической сумме переменных напряжений на отдельных элементах
где UR, UL, UC – напряжение на элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,
Im – амплитудное значение переменного тока.
Графическое изображение напряжений и токов на последовательно соединённых элементах цепи представлено ниже
Напряжения и токи при последовательном соединении.
Итоговое выражение является тригонометрической формой записи второго закона Кирхгофа для мгновенных напряжений и его можно переписать в виде
где R – активное сопротивление,
Х – реактивное сопротивление.
Значение активного сопротивления R всегда только положительно, а реактивное сопротивление Х может принимать, как положительное значение Х > 0, тогда оно имеет индуктивный характер, так и отрицательное значение X < 0, в этом случае реактивное сопротивление имеет ёмкостный характер.
В случае же нулевого значения реактивного сопротивления, имеет место резонанс напряжений
В этом случае сопротивление цепи представлено только активной нагрузкой R, а следовательно сдвиг фаз между напряжением и током будет нулевым.
При расчётах нас интересует не столько ток и напряжение на отдельных элементах, сколько ток и напряжение всей цепи. Для этого продолжим преобразовывать напряжение
где Z – полное сопротивление цепи,
ψ – разность фаз между напряжением и током.
Таким образом, амплитудное значение напряжения Um и амплитудное значение тока Im связаны между собой следующим соотношением
где Um – амплитудное значение переменного напряжения,
Im – амплитудное значение переменного тока,
Z – полное сопротивление цепи.
Параллельное соединение элементов цепи при переменном напряжении
Теперь рассмотрим параллельное соединение элементов цепи (сопротивления, индуктивности и ёмкости) и прохождение по ним переменного тока.
Параллельно соединение элементов цепи.
Подадим на вход такой цепи переменное напряжение U, тогда электрический ток в цепи I, в соответствии с первым законом Кирхгофа, будет равняться алгебраической суммы токов проходящей через элементы цепи
IR, IL, IC – токи в элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,
Um – амплитудное значение переменного тока.
Графическое изображение напряжений и токов в параллельно соединённых элементах цепи представлено ниже
Напряжение и токи при параллельном соединении.
Аналогично второму закону Кирхгофа, для первого закона также существует тригонометрическая форма записи, которая соответствует получившемуся выражению. Выполним ещё одно преобразование данного выражения
где g – активная проводимость, b – реактивная проводимость.
Как видно из формулы, реактивная проводимость может быть положительной b > 0, тогда она имеет индуктивный характер, а может быть отрицательной b < 0, тогда реактивная проводимость имеет ёмкостный характер. А активная проводимость может быть только положительной.
Отдельный случай представляет собой реактивная проводимость равная нулю, то есть в этом случае проводимость индуктивности и ёмкости одинаковы
Такой случай называется резонансом токов, в этом случае общая проводимость будет определяться только активной проводимостью, а сдвиг фаз между напряжением и током в цепи будет нулевым.
Определим зависимость между напряжением и силой тока в параллельной цепи
где y – полная проводимость,
ψ – разность фаз между напряжением и током в цепи.
Тогда зависимость между напряжением и током в цепи с параллельно соединёнными элементами будет иметь вид
где Um – амплитудное значение переменного напряжения,
Im – амплитудное значение переменного тока,
y – полная проводимость цепи.
Чему равна мощность в цепи при синусоидальном напряжении?
Мощность является основной энергетической характеристикой, поэтому рассмотрим мощность в цепи переменного напряжения. Мгновенная мощность в цепи будет равна
Как видно из получившегося выражения, мгновенная мощность состоит из постоянной составляющей UIcos(φ) и переменной составляющей UIcos(2ωt – φ), изменяющейся с удвоенной частотой по сравнению с частотой напряжения (тока).
Теперь определим среднее значение мощности за период или активную мощность, которая будет равна
где U – действующее значение переменного напряжения,
I – действующее значение переменного тока,
cos(φ) – коэффициент мощности.
Таким образом, активная мощность в цепи переменного напряжения (тока), равна произведению действующих значений напряжения и тока на коэффициент мощности.
При разработке и проектировании цепей переменного напряжения стараются сделать коэффициент мощности как можно больше, в идеале должен быть равен единице cos(φ) = 1. При небольших значениях данного коэффициента для создания в цепи необходимой мощности Р необходимо повышать величину напряжения U (тока I).
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Скажи спасибо автору нажми на кнопку социальной сети
www.electronicsblog.ru
Параллельное соединение — урок. Физика, 8 класс.
При параллельном соединении все потребители подключены к источнику тока независимо друг от друга и образуют разветвлённую цепь.
При параллельном соединении все потребители подключены к одному источнику тока, между клеммами которого имеется определённое напряжение.
Каждый потребитель получает полное напряжение цепи.
U=U1=U2=U3=…
При параллельном соединении общий ток является суммой токов, протекающих через отдельные потребители.
I=I1+I2+I3+…
Общее сопротивление потребителей, находящихся в параллельном соединении, будет наименьшим (меньше, чем наименьшее из сопротивлений параллельно подключённых потребителей).
Если параллельно соединены \(n\) потребителей, а сопротивление каждого из них одинаково и равно \(R\), тогда общее сопротивление цепи будет равно \(R : n\).
Можно сделать вывод о том, что при увеличении числа потребителей общая сила тока неограниченно возрастает, что может привести к пожару.
Обрати внимание!
В одну розетку нельзя включать несколько мощных потребителей, так как перенагруженные провода нагреваются и могут загореться.
Электрический кабель, который используется в электрической цепи квартиры, имеет три провода. Третий провод является заземлением.
Преимуществом параллельного соединения является то, что при отключении одного из потребителей, остальные продолжают работать.
Источники:
Fizika 9. klasei/Ilgonis Vilks. — Rīga: Zvaigzne ABC, 2008. — 159 lpp.: izmantotā literatūra: 117, lpp.
(Физика для 9 класса// Илгонис Вилкс. — Рига: Zvaigzne ABC, 2008. — 159 стр.: использованная литература: 117. стр.)
Fizika pamatskolai 2. daļa// V. Rasmane, A. Vītols, Ā. Cacāne. — Rīga: RAKA, 2006. — 136 lpp.: il.-izmantotā literatūra: 84, lpp.
(Физика для начальной школы, 2 часть// Расмане В., Витолс А., Цацане А. — Рига: RAKA, 2006. — 136 стр.: ил.-использованная литература: 84. стр.)
http://www.ndg.lv/latvian/Macibas/FizInter/b2.2.4.htm
http://www.goerudio.com/demo/paralelais_slegums
http://www.ndg.lv/latvian/Macibas/FizInter/b2.2.4.htm
www.yaklass.ru
Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно.
При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:
I1 = I2 = I. | |
Рисунок 1.9.1. Последовательное соединение проводников |
По закону Ома, напряжения U1 и U2 на проводниках равны
U1 = IR1, U2 = IR2. |
Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
U = U1 + U2 = I(R1 + R2) = IR, |
где R – электрическое сопротивление всей цепи. Отсюда следует:
При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
Этот результат справедлив для любого числа последовательно соединенных проводников.
При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы:
Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:
Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно, I = I1 + I2.
Рисунок 1.9.2. Параллельное соединение проводников |
Записывая на основании закона Ома
где R – электрическое сопротивление всей цепи, получим
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Этот результат справедлив для любого числа параллельно включенных проводников.
Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.
Рисунок 1.9.3. Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах (Ом) |
Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.
Рисунок 1.9.4. Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников |
Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.
questions-physics.ru
📌 Параллельное соединение — это… 🎓 Что такое Параллельное соединение?
- Параллельное соединение
Последовательное соединение проводников.
Параллельное соединение проводников.
Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все, входящие в цепь, элементы объединены двумя узлами и не имеют связей с другими узлами. При последовательном соединении проводников сила тока во всех проводниках одинакова.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Последовательное соединение
При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I = I1 = I2
Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи: U = U1 + U2
Резисторы
Катушка индуктивности
Электрический конденсатор
- .
Мемристоры
Параллельное соединение
Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках: I = I1 + I2
Напряжение на участках цепи АВ и на концах всех параллельно соединенных проводников одно и то же: U = U1 = U2
Резисторы
- .
Катушка индуктивности
- .
Электрический конденсатор
- .
Мемристоры
См. также
Wikimedia Foundation. 2010.
- Параллельное пространство
- Параллельность
Смотреть что такое «Параллельное соединение» в других словарях:
параллельное соединение — параллельное соединение: Тип соединения, при котором детали параллельны друг другу, например при плакировании взрывом. Источник: ГОСТ Р ИСО 17659 2009: Сварка. Термины многоязычные для сварных соединений оригинал документа … Словарь-справочник терминов нормативно-технической документации
ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ — способ соединения приемников, при к ром электр. ток в местах присоединения приборов к цепи разветвляется на части. При П. с: 1) напряжения V у концов всех приемников одинаковы; 2) сила тока I в неразветвленной части цепи равна сумме сил тока в… … Технический железнодорожный словарь
ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ — в электротехнике соединение между собой двухполюсников или четырехполюсников, при котором между полюсами (зажимами) двухполюсников или на входах (выходах) четырехполюсников действует одно и то же напряжение … Большой Энциклопедический словарь
параллельное соединение — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN parallel connection … Справочник технического переводчика
параллельное соединение — в электротехнике, соединение между собой двухполюсников или четырёхполюсников, при котором между полюсами (зажимами) двухполюсников или на входах (выходах) четырёхполюсников действует одно и то же напряжение. * * * ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ… … Энциклопедический словарь
параллельное соединение — lygiagretusis jungimas statusas T sritis automatika atitikmenys: angl. parallel connection; paralleling; shunt connection vok. Nebenschlußschaltung, f; Parallelschaltung, f rus. параллельное включение, n; параллельное соединение, n pranc.… … Automatikos terminų žodynas
параллельное соединение — lygiagretusis jungimas statusas T sritis chemija apibrėžtis Elektros energijos imtuvų jungimas, kai juos veikia ta pati įtampa, arba elektros energijos šaltinių vienodo poliškumo gnybtų sujungimas į bendrą tašką. atitikmenys: angl. parallel… … Chemijos terminų aiškinamasis žodynas
параллельное соединение — lygiagretusis jungimas statusas T sritis fizika atitikmenys: angl. parallel connection vok. Parallelschaltung, f rus. параллельное соединение, n pranc. branchement en parallèle, m; connexion en parallèle, f … Fizikos terminų žodynas
Параллельное соединение — в электротехнике, соединение Двухполюсников (обычно или потребителей, или источников электроэнергии), при котором на их зажимах действует одно и то же напряжение. П. с. основной способ подключения потребителей электроэнергии; при П. с.… … Большая советская энциклопедия
ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ — в электротехнике соединение между собой двухполюсников или пассивных четырёхполюсников, при к ром между полюсами (зажимами) двухполюсников или на входах (выходах) четырёхполюсников действует одно и то же напряжение. П. с. осн. способ подключения… … Большой энциклопедический политехнический словарь
dic.academic.ru
📌 Последовательное и параллельное соединение проводников
Последовательное соединение проводников. Параллельное соединение проводников.Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.
При последовательном соединении проводников сила тока во всех проводниках одинакова.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Последовательное соединение
При последовательном соединении проводников сила тока в любых частях цепи одна и та же:
Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:
Резисторы
Катушка индуктивности
Электрический конденсатор
- .
Мемристоры
Параллельное соединение
Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:
Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же:
Резистор
При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )
Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.
Доказательство
Для двух параллельно соединённых резисторов их общее сопротивление равно: .
Если , то общее сопротивление равно:
При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.
Катушка индуктивности
Электрический конденсатор
- .
Мемристоры
См. также
Ссылки
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 14 мая 2011. |
dic.academic.ru