+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Какие есть способы соединения приемников электрической энергии

Какие есть способы соединения приемников электрической энергии

Приемник электрической энергии — устройство, в котором происходит преобразование электрической энергии в другой вид энергии для ее использования.

При одновременном включении нескольких приемников электроэнергии в одну и ту же сеть, эти приемники можно легко рассматривать просто как элементы единой цепи, каждый из которых обладает собственным сопротивлением.

В ряде случаев такой подход оказывается вполне приемлемым: лампы накаливания, электрические обогреватели и т. п. — можно воспринимать как резисторы. То есть приборы можно заменить на их сопротивления, и легко произвести расчет параметров цепи.

Способ соединения приемников электроэнергии может быть одним из следующих: последовательный, параллельный или смешанный тип соединения.

Последовательное соединение

Когда несколько приемников (резисторов) соединяются в последовательную цепь, то есть второй вывод первого присоединяется к первому выводу второго, второй вывод второго соединяется с первым выводом третьего, второй вывод третьего с первым выводом четвертого и т. д., то при подключении такой цепи к источнику питания, через все элементы цепи потечет ток I одной и той же величины. Данную мысль поясняет приведенный рисунок.

Заменив приборы на их сопротивления, рисунок преобразуем в схему, тогда сопротивления с R1 по R4, соединенные последовательно, примут каждый на себя определенные напряжения, которые в сумме дадут значение ЭДС на зажимах источника питания. Для простоты здесь и далее изобразим источник в виде гальванического элемента.

Выразив падения напряжений через ток и через сопротивления, получим выражение для эквивалентного сопротивления последовательной цепи приемников: общее сопротивление последовательного соединения резисторов всегда равно алгебраической сумме всех сопротивлений, составляющих эту цепь. А поскольку напряжения на каждом из участков цепи можно найти из закона Ома (U = I*R, U1 = I*R1, U2 = I*R2 и т. д.) и E = U, то для нашей схемы получаем:

Напряжение на клеммах источника питания равно сумме падений напряжений на каждом из соединенных последовательно приемников, составляющих цепь.

Так как ток через всю цепь течет одного и того же значения, то справедливым будет утверждение, что напряжения на последовательно соединенных приемниках (резисторах) соотносятся между собой пропорционально сопротивлениям. И чем выше будет сопротивление, тем выше окажется и напряжение, приложенное к приемнику.

Для последовательного соединения резисторов в количестве n штук, обладающих одинаковыми сопротивлениями Rk, эквивалентное общее сопротивление цепи целиком будет в n раз больше каждого из этих сопротивлений: R = n*Rk. Соответственно и напряжения, приложенные к каждому из резисторов цепи будут между собой равны, и окажутся в n раз меньше напряжения, приложенного ко всей цепи: Uk = U/n.

Для последовательного соединения приемников электроэнергии характерны следующие свойства: если изменить сопротивление одного из приемников цепи, то напряжения на остальных приемниках цепи при этом изменятся; при обрыве одного из приемников ток прекратится во всей цепи, во всех остальных приемниках.

В силу этих особенностей последовательное соединение встречается редко, и используют его лишь там, где напряжение сети выше номинального напряжения приемников, в отсутствие альтернатив.

К примеру напряжением 220 вольт можно запитать две последовательно соединенные лампы равной мощности, каждая из которых рассчитана на напряжение 110 вольт. Ежели данные лампы при одинаковом номинальном напряжении питания будут обладать различной номинальной мощностью, то одна из них будет перегружена и скорее всего мгновенно перегорит.

Параллельное соединение

Параллельное соединение приемников предполагает включение каждого из них между парой точек электрической цепи с тем, чтобы они образовывали параллельные ветви, каждая из которых питается напряжением источника. Для наглядности опять заменим приемники их электрическими сопротивлениями, чтобы получить схему, по которой удобно вести расчет параметров.

Как уже было сказано, в случае параллельного соединения каждый из резисторов испытывает действие одного и того же напряжения. И в соответствии с законом Ома имеем: I1=U/R1, I2=U/R2, I3=U/R3.

Здесь I – ток источника. Первый закон Кирхгофа для данной цепи позволяет записать выражение для тока в неразветвленной ее части: I = I1+I2+I3.

Отсюда общее сопротивление для параллельного соединения между собой элементов цепи можно найти из формулы:

Величина обратная сопротивлению называется проводимостью G, и формулу для проводимости цепи, состоящей из нескольких параллельно соединенных элементов, также можно записать: G = G1 + G2 + G3. Проводимость цепи в случае параллельного соединения образующих ее резисторов равна алгебраической сумме проводимостей этих резисторов. Следовательно, при добавлении в цепь параллельных приемников (резисторов) суммарное сопротивление цепи уменьшится, а суммарная проводимость соответственно возрастет.

Токи в цепи состоящей из параллельно соединенных приемников, распределяются между ними прямо пропорционально их проводимостям, то есть обратно пропорционально их сопротивлениям. Здесь можно привести аналогию из гидравлики, где поток воды распределяется по трубам в соответствии с их сечениями, тогда большее сечение аналогично меньшему сопротивлению, то есть большей проводимости.

Если цепь состоит из нескольких (n) одинаковых резисторов, соединенных параллельно, то общее сопротивление цепи будет ниже в n раз, чем сопротивление одного из резисторов, а ток через каждый из резисторов будет меньше в n раз, чем общий ток: R = R1/n; I1 = I/n.

Цепь, состоящая из параллельно соединенных приемников, подключенная к источнику питания, отличается тем, что каждый из приемников находится под напряжением источника питания.

Для идеального источника электроэнергии справедливо утверждение: при подключении или отключении параллельно источнику резисторов, токи в остальных подключенных резисторах не изменятся, то есть при выходе из строя одного или нескольких приемников параллельной цепи, остальные будут продолжать работать в прежнем режиме.

В силу данных особенностей параллельное соединение обладает значительным преимуществом перед последовательным, и по этой причине именно соединение параллельное наиболее распространено в электрических сетях. Например, все электроприборы в наших домах предназначены для параллельного подключения к бытовой сети, и если отключить один, то остальным это ничуть не навредит.

Сравнение последовательных и параллельных цепей

Смешанное соединение

Под смешанным соединением приемников понимают такое их соединение, когда часть или несколько из них соединены между собой последовательно, а другая часть или несколько — параллельно. При этом вся цепь может быть образована из разных соединений таких частей между собой. Для примера рассмотрим схему:

Три последовательно соединенных резистора подключены к источнику питания, параллельно одному из них подключены еще два, а третий — параллельно всей цепи. Для нахождения полного сопротивления цепи идут путем последовательных преобразований: сложную цепь последовательно приводят к простому виду, последовательно вычисляя сопротивление каждого звена, и так находят общее эквивалентное сопротивление.

Для нашего примера. Сначала находят общее сопротивление двух резисторов R4 и R5, соединенных последовательно, затем сопротивление параллельного соединения их с R2, потом прибавляют к полученному значению R1 и R3, и после — вычисляют значение сопротивления всей цепи, включая параллельную ветвь R6.

Различные способы соединения приемников электроэнергии применяют на практике для различных целей, чтобы решать конкретные поставленные задачи. Например, смешанное соединение можно встретить в схемах плавного заряда электролитических конденсаторов в мощных блоках питания, где нагрузка (конденсаторы после диодного моста) сначала получает питание последовательно через резистор, затем резистор шунтируется контактами реле, и нагрузка оказывается подключенной к диодному мосту параллельно.

Ранее ЭлектроВести писали, что львовянка Оксана Денис подключила свою квартиру к солнечным панелям и ветроэнергетическим установкам.

По материалам: electrik.info.

2.5 Виды соединений резисторов

— Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

Рисунок 2.3 -Последовательное соединение резисторов

(14)

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

— Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )

Рисунок 2.4 – Параллельное соединение резисторов

(15)

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

— Смешанное соединение резисторов

Рисунок 2.5 — Смешанное соединение резисторов

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов и , общим сопротивлением , другой из резистора , общая проводимость будет равна , то есть общее сопротивление . (16)

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

2.6 Описание потенциометрического эффектра

Потенциометрический эффект нашёл широкое применение в технике, на его основе работают потенциометрические датчики, преобразователи и др. Весьма большим классом измерительных преобразователей являются резистивные преобразователи, принцип действия которых основан на преобразовании значения измеряемой величины в изменение сопротивления. Последнее может быть вызвано различными эффектами в преобразующем элементе, например нагреванием или охлаждением, механическим напряжением, воздействием светового потока (как в фотопроводящих преобразователях), увлажнением, осушением, механическим перемещением контактной щетки реостата. Если через резистивный материал во время изменения измеряемой величины протекает фиксированный ток, то результатом будет изменение напряжения вдоль материала, которое отражает изменение измеряемой величины. Одним из вариантов резистивного преобразователя является потенциометрический преобразователь [1], в котором изменение измеряемой величины преобразуется в изменение отношения напряжений вследствие изменения положения контактной щетки на резистивном материале, запитываемом от внешнего источника (рисунок 1.1). Определенный механический элемент преобразует изменение измеряемой величины в перемещение щетки. Потенциометр, изображенный на рисунке 1.1, можно представить в виде эквивалентной электрической схемы, как это сделано на рисунке 1.2 Его выходное напряжение определяется выражением

(1.1)

где V1 — напряжение на входе.

Рисунок 1.1 — Резистивное преобразование, при котором используется потенциометрическое устройство, вызывающее изменение выходного напряжения.

Рисунок 1.2 — Эквивалентная схема потенциометрического устройства

Когда прикладываемое на вход прибора напряжение является постоянным и измеряемое значение определяется положением щетки потенциометра, тогда выходное напряжение есть непосредственно функция измеряемой величины.

В преобразователях могут использоваться потенциометрические устройства (с одним или несколькими сопротивлениями в схеме) либо они сами являются потенциометром. В последнем случае потенциометрический элемент будет переменным. Некоторые преобразователи имеют непроволочные сопротивления, такие, как металлокерамическая подложка или проводящая пластиковая пленка. Встречаются потенциометры, в которых полный диапазон изменений положения щетки равен 270°, в то время как другие конструкции имеют диапазон в 10 или даже 20 полных оборотов (3600 или 7200°).

Урок 11. Все способы соединения резисторов

Соединение резисторов разными способами позволяет получить необходимую величину сопротивления и мощности рассеивания одного эквивалентного резистора. Всего существует три способы соединения резисторов – последовательное, параллельное и смешанное.

Последовательное соединение резисторов

Последовательное соединение резисторов предполагает использование двух и более радиоэлектронных элемента. Конец предыдущего элемента соединяется с началом последующего и так далее. При последовательном соединении сопротивления и мощности рассеивания всех резисторов складываются.

Рассмотрим следующий пример. Соединим последовательно четыре резистора, каждый имеет R = 1 кОм и мощность рассеивания P = 0,25 Вт.

Rобщ = R1 + R2 + R3 + R4 = 1кОм + 1кОм + 1кОм + 1кОм = 4 кОм.

Pобщ = P1 + P2 + P3 + P4 = 0,25 Вт + 0,25 Вт + 0,25 Вт + 0,25 Вт = 1 Вт.

Таким образом, получается один эквивалентный или общий резистор, имеющий следующие параметры:

Rобщ = 4 кОм; Pобщи = 1 Вт.

В последовательной цепи электрической ток протекает одной и той же величины, поэтому электроны на протяжении всего пути неизбежно наталкиваются на все препятствия в виде сопротивлений. С каждым препятствием уменьшается число свободных зарядов, что приводит к снижению силы электрического тока.

Параллельное соединение резисторов

При параллельном соединении резисторов увеличивается количество путей для перемещения свободных зарядов, то есть электронов, из одного участка пути к другому. Поэтому при параллельном соединении резисторов их суммарное (общее, эквивалентное) сопротивление всегда ниже наименьшего сопротивления из всех резисторов.

Величина, обратная сопротивлению называется проводимостью. Проводимость измеряется в сименсах [См] и обозначается большей латинской буквой G.

G = 1/R = 1/Ом = См

Поэтому при выполнении различных подсчетов в электрических цепях, имеющих параллельное соединение, пользуются проводимостью.

Если сопротивления всех параллельно соединенных резисторов равны, то для определения общего Rобщ достаточно R одного из них разделить на их общее количество:

Если R1 = R2 = R3 = R4 = R, то

Rобщ = R/4.

Например, каждый из четырех резисторов имеет R = 10 кОм, тогда

Rобщ = 10 кОм/4 = 2,5 кОм.

Мощности рассеивания суммируются также, как и при последовательном соединении.

Смешанное соединение резисторов

Смешанное соединение резисторов представляет собой комбинации последовательных и параллельных соединений. В принципе любую даже самую сложную электрическую цепь, состоящую из источников питания, конденсаторов, диодов, транзисторов и других радиоэлектронных элементов в конкретный момент времени можно заменить резисторами и источниками напряжения, параметры которых изменяются с каждым последующим моментом времени. Для примера изобразим схему, имеющую несколько соединений.

Общее (эквивалентное) сопротивление находится методом «сворачивания» схемы. Сначала определяется общее сопротивление одного отдельного соединения, затем последующего и так далее.

Теперь самостоятельно подсчитайте общее сопротивления схемы, приведенной ниже.

Правильный ответ: 2 ома.

Источник

Схемы соединения резисторов

Последовательное соединение резисторов

Последовательное соединение резисторов

 

 

Iобщ = I1 = I2 = I3

Uобщ = U1 + U2 + U3

 

Параллельное соединение резисторов

Параллельное соединение резисторов

 

 

Iобщ = I1 + I2 + I3

Uобщ = U1 = U2 = U3

 

Реостат

Реостат – это переменный резистор, который включается в цепь последовательно с потребителем нагрузки.

Изменяя положение ползунка, в цепи меняется ток от 0 до max.

Реостат применяется для изменения тока в цепи.

В электрических схемах встречается понятие – реостатное включение нагрузки.

Реостатное включение нагрузки

 

T1   I =

Uист

Rр + Rн

→ max

 

RP = 0

 

T2   I =

Uист

Rр + Rн

→ min

Гасящий резистор

В радиосхемах возникает необходимость подавать на потребитель напряжение меньше чем развивает источник, тогда между источником и нагрузкой включается гасящий резистор.

Применение – в схеме создания напряжения смещения на участке эмиттер-база транзистора.

Гасящий резистор

 

 

 

Uгас = Uист – U

 

 

PRгас = I2 – Rгас

Делитель напряжения

Делитель напряжения

 

 

Делитель напряжения – это цепь, состоящая из нескольких последовательно соединённых резисторов обеспечивающих подачу на потребитель некоторой части напряжения источника.

Потенциометр

Потенциометр – это переменный резистор, с части которого снимается напряжения источника.

Потенциометр

 

 

Применение – регулировка громкости на входе усилителя низкой частоты.

Параллельное подключение резисторов формула

Электрическое сопротивление характеризует свойство проводника препятствовать прохождению через него электрического тока. У каждого материала есть свое удельное сопротивление. Это табличная величина, и условно она считается постоянной.

Условно, потому что во многом эта характеристика зависит от внешних условий, например температуры. Сопротивление же какого-либо конкретного элемента (мы будем говорить о резисторах) складывается из многих факторов, например, из геометрических параметров, а когда речь идет о цепи переменного тока, то в расчеты включают также индуктивное и емкостное сопротивление, но об этом мы расскажем позже. Пока же — немного теории.

Закон Ома

В 1826 году немецкий физик Георг Ом на основе своих опытов вывел закон, согласно которому сила тока на участке цепи прямо пропорциональна напряжению, которое к нему приложено, и обратно пропорциональна сопротивлению участка. Из школьного курса мы знаем этот закон:

I=U/R

Позже он был сформулирован и для полной цепи:

I=ε/(R+r)

Где ε — ЭДС источника, R — сопротивление цепи, а r — сопротивление источника.2/R

Последовательное и параллельное соединение

В реальной жизни мы редко имеем дело с одним проводником и одним источником. Достаточно взглянуть в любую принципиальную электрическую схему, например, такую простенькую:

(это схема микроволновки «Электроника»)

можно увидеть, что элементы в схеме соединены по-разному, но мы покажем вам базовые закономерности, которые работают в цепях.

Правила Кирхгофа

Если взять замкнутую электрическую цепь, по которой течет заряд, то можно определенно сказать: он никуда не денется. Сумма всех зарядов, которые текут в одной цепи, всегда одинакова. Это называется законом сохранения заряда, частным случаем общего закона сохранения (как говорится, если в одном месте что-то убудет, в другом непременно прибудет).

Отсюда мы и выводим тот факт, что в каждом узле цепи сумма токов равна нулю. То есть, если ток «приходит» в точку по ветке и «уходит» по двум — значит, первый равен сумме второго и третьего.

На этой картинке мы видим, что I1+I4=I2+I3

Это называется первым правилом Кирхгофа.

Если наша цепь не будет содержать узлов, значит, ток в ней будет величиной постоянной, а элементы, один за другим поставленные в цепь, будут давать падение напряжения. При этом общее напряжение в цепи останется тем же. Отсюда вытекает второе правило Кирхгофа: сумма напряжений на участках цепи будет равна ЭДС источников тока, входящий в эту цепь. Если у нас источник один, то будет верно равенство:

ε=U1+U2+U3+…+Un

Сумма падений напряжения будет, таким образом, нулевой.

В ситуациях, когда мы имеем дело с переменным током, падение будет наблюдаться на участках с конденсаторами и катушками — в цепях переменного тока у них появляется сопротивление (об этом позже).

Теперь, когда мы познакомились с теоретической частью, можем перейти к более приближенному к суровой реальности вопросу, а именно — расчету последовательного и параллельного соединения резисторов.2/R

Исходя из вышеперечисленных закономерностей, вы сможете рассчитывать самые причудливые соединения резисторов, можете попрактиковаться, взяв в библиотеке задачник.

Типы резисторов

Как уже было сказано ранее, элемент, который ставится в цепь для нагрузки, называется резистором. Ставят его для разных целей, главным образом для того, чтобы изменить тот или иной параметр на участке цепи. Например, понизить напряжение или силу тока, чтобы деталь, стоящая за резистором, не сгорела.

Предприятиями выпускается большой ассортимент таких изделий, и их можно по-разному классифицировать. Номинально резистор имеет то сопротивление, которое указано на нем, а по факту оно может зависеть от напряжения в сети (нелинейность), иметь разброс параметра (иногда до 20% доходит). По применяемой технологии резисторы можно разделить на:

  1. проволочные;
  2. композитные;
  3. металлофольговые;
  4. угольные;
  5. интегральные.

Фактическое сопротивление такого элемента может зависеть от температуры окружающей среды и даже от частоты, если мы имеем дело с переменным током. Дело в том, что часть ассортимента резисторов выполнены по проволочной технологии, то есть фактически они представляют собой мини-катушку. При малых частотах (50 Гц) это в расчет не берется, а вот на высоких (мегагерцы) паразитная индуктивность и индуктивное сопротивление может сказаться на работе схемы. Поэтому при выборе резистора для работы с высокочастотными схемами внимательно смотрите. по какой технологии он сделан. Отдайте предпочтение тонкослойным и композиционным изделиям.

Помимо этого, большое распространение получили переменные резисторы, значение сопротивления которых можно регулировать. Делается это чаще всего отверткой. Необходимость в таких изделиях продиктована разбросом параметров у обычных резисторов, а подстроечный вариант позволяет регулировать сопротивление.

Все вышесказанное актуально для цепей постоянного тока и переменного при невысоких частотах, и все это — при нормальных условиях внешней среды. Расчеты цепей при нарушении этих условий нуждаются в дополнительной корректировке: это связано с ограниченностью действия закона Ома. С чем связаны ограничения? Вот несколько примеров:

  1. при сверхнизких температурах многие проводники проявляют такое интересное явление, как сверхпроводимость;
  2. также сопротивление может разниться при нагревании;
  3. неприменим закон Ома для описания электрического тока в газах;
  4. наконец, обычный резистор можно просто пробить высоким напряжением.

Все это прекрасно работает. Не верите — можете поэкспериментировать у себя дома или провести замеры тестером. Например, изучить елочную гирлянду или показания счетчиков при включенных электроприборах (напомню, что в гирлянде лампочки соединены последовательно, а розетки в доме — параллельно). Удачи!

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт . Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А ), а сопротивление каждого из них равно 50 Ом , тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт . В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт .

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте .

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно , можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов (I1 и I2) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать .

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

На практике нередко встречается задача нахождения сопротивления проводников и резисторов при различных способах соединения. В статье рассмотрено, как рассчитывается сопротивление при и некоторые другие технические вопросы.

Сопротивление проводника

Все проводники имеют свойство препятствовать течению электрического тока, его принято называть электрическим сопротивлением R, оно измеряется в омах. Это основное свойство проводниковых материалов.

Для ведения электротехнических расчётов применяется удельное сопротивление – ρ Ом·м/мм 2 . Все металлы – хорошие проводники, наибольшее применение получили медь и алюминий, гораздо реже применяется железо. Лучший проводник – серебро, оно применяется в электротехнической и электронной промышленности. Широко распространены сплавы с высоким значением сопротивления.

При расчёте сопротивления используется известная из школьного курса физики формула:

R = ρ · l/S, S – площадь сечения; l – длина.

Если взять два проводника, то их сопротивление при параллельном соединении станет меньше из-за увеличения общего сечения.

и нагрев проводника

Для практических расчётов режимов работы проводников применяется понятие плотности тока – δ А/мм 2 , она вычисляется по формуле:

δ = I/S, I – ток, S – сечение.

Ток, проходя по проводнику, нагревает его. Чем больше δ, тем сильнее нагревается проводник. Для проводов и кабелей разработаны нормы допустимой плотности, которые приводятся в Для проводников нагревательных устройств существуют свои нормы плотности тока.

Если плотность δ выше допустимой, может произойти разрушение проводника, например, при перегреве кабеля у него разрушается изоляция.

Правилами регламентируется производить расчёт проводников на нагрев.

Способы соединения проводников

Любой проводник гораздо удобнее изображать на схемах как электрическое сопротивление R, тогда их легко читать и анализировать. Существует всего три способа соединения сопротивлений. Первый способ самый простой – последовательное соединение.

На фото видно, что полное сопротивление равно: R = R 1 + R 2 + R 3 .

Второй способ более сложный – параллельное соединение. Расчёт сопротивления при параллельном соединении выполняется поэтапно. Рассчитывается полная проводимость G = 1/R, а затем полное сопротивление R = 1/G.

Можно поступить и по-другому, прежде рассчитать общее сопротивление при R1 и R2, после этого повторить операцию и найти R.

Третий способ соединения наиболее сложный – смешанное соединение, то есть присутствуют все рассмотренные варианты. Схема приведена на фото.

Для расчёта этой схемы её следует упростить, для этого заменяют резисторы R2 и R3 одним R2,3. Получается несложная схема.

R2,3,4 = R2,3 · R4/(R2,3 + R4).

Схема становится ещё проще, в ней остаются резисторы, имеющие последовательное соединение. В более сложных ситуациях используется этот же метод преобразования.

Виды проводников

В электронной технике, при производстве проводники представляют собою тонкие полоски медной фольги. Ввиду малой длины сопротивление у них незначительно, им во многих случаях можно пренебречь. Для этих проводников сопротивление при параллельном соединении уменьшается вследствие увеличения сечения.

Большой раздел проводников представляют обмоточные провода. Они выпускаются разных диаметров – от 0,02 до 5,6 миллиметра. Для мощных трансформаторов и электродвигателей выпускаются медные шинки прямоугольного сечения. Иногда при ремонте заменяют провод большого диаметра на несколько параллельно соединённых меньшего размера.

Особый раздел проводников представляют провода и кабели, промышленность предоставляет широчайший выбор марок для самых различных нужд. Нередко приходится заменять один кабель на несколько, меньшего сечения. Причины этого бывают самые различные, например, кабель сечением 240 мм 2 очень трудно прокладывать по трассе с крутыми изгибами. Его заменяют на 2×120 мм 2 , и проблема решена.

Расчёт проводов на нагрев

Проводник нагревается протекающим током, если его температура превысит допустимую, наступает разрушение изоляции. ПУЭ предусматривает расчёт проводников на нагрев, исходными данными для него являются сила тока и условия внешней среды, в которой проложен проводник. По этим данным из таблиц в ПУЭ выбирается рекомендуемое проводника или кабеля).

На практике встречаются ситуации, когда нагрузка на действующий кабель сильно возросла. Существует два выхода ‒ заменить кабель на другой, это бывает дорого, или параллельно ему проложить ещё один, чтобы разгрузить основной кабель. В этом случае сопротивление проводника при параллельном соединении уменьшается, следовательно падает выделение тепла.

Чтобы правильно выбрать сечение второго кабеля, пользуются таблицами ПУЭ, важно при этом не ошибиться с определением его рабочего тока. В этой ситуации охлаждение кабелей будет даже лучше, чем у одного. Рекомендуется рассчитать сопротивление при параллельном соединении двух кабелей, чтобы точнее определить их тепловыделение.

Расчёт проводников на потерю напряжения

При расположении потребителя R н на большом расстоянии L от источника энергии U 1 возникает довольно большое на проводах линии. К потребителю R н поступает напряжение U 2 значительно ниже начального U 1 . Практически в качестве нагрузки выступает различное электрооборудование, подключаемое к линии параллельно.

Для решения проблемы производят расчет сопротивления при параллельном соединении всего оборудования, так находится сопротивление нагрузки R н. Далее следует определить сопротивление проводов линии.

Здесь S – сечение провода линии, мм 2 .

Каждый в этой жизни сталкивался с резисторами. Люди с гуманитарными профессиями, как и все, изучали в школе на уроках физики проводники электрического тока и закон Ома.

С резисторами также имеют дело студенты технических университетов и инженеры различных производственных предприятий. Перед всеми этими людьми, так или иначе, вставала задача расчёта электрической цепи при различных видах соединения резисторов. В данной статье речь пойдёт о расчёте физических параметров, характеризующих цепь.

Виды соединений

Резистор – пассивный элемент , присутствующий в каждой электрической цепи. Он предназначен для того, чтобы сопротивляться электрическому току. Существует два вида резисторов:

Зачем же спаивать проводники друг с другом? Например, если для какой-то электрической цепи нужно определённое сопротивление. А среди номинальных показателей нужного нет. В таком случае необходимо подобрать элементы схемы с определёнными значениями сопротивления и соединить их. В зависимости от вида соединения и сопротивлений пассивных элементов мы получим какое-то определённое сопротивление цепи. Оно называется эквивалентным. Его значение зависит от вида спайки проводников. Существует три вида соединения проводников:

Значение эквивалентного сопротивления в цепи считается достаточно легко. Однако, если резисторов в схеме очень много, то лучше воспользоваться специальным калькулятором, который считает это значение. При ведении расчёта вручную, чтобы не допускать ошибок, необходимо проверять, ту ли формулу вы взяли.

Последовательное соединение проводников

В последовательной спайке резисторы идут как бы друг за другом. Значение эквивалентного сопротивления цепи равно сумме сопротивлений всех резисторов. Особенность схем с такой спайкой заключается в том, что значение тока постоянно . Согласно закону Ома, напряжение в цепи равно произведению тока и сопротивления. Так как ток постоянен, то для вычисления напряжения на каждом резисторе, достаточно перемножить значения. После этого необходимо сложить напряжения всех резисторов, и тогда мы получим значение напряжения во всей цепи.

Расчёт очень простой. Так как с ним имеют дело в основном инженеры-разработчики, то для них не составит труда сосчитать всё вручную. Но если резисторов очень много, то проще воспользоваться специальным калькулятором.

Примером последовательного соединения проводников в быту является ёлочная гирлянда.

Параллельное соединение резисторов

При параллельном соединении проводников эквивалентное сопротивление в цепи считается по-другому. Немного сложнее, чем при последовательном.

Его значение в таких цепях равняется произведению сопротивлений всех резисторов, делённому на их сумму. А также есть и другие варианты этой формулы. Параллельное соединение резисторов всегда снижает эквивалентное сопротивление цепи. То есть, его значение всегда будет меньше, чем наибольшее значение какого-то из проводников.

В таких схемах значение напряжения постоянно . То есть значение напряжения во всей цепи равно значениям напряжений каждого из проводников. Оно задаётся источником напряжения.

Сила тока в цепи равна сумме всех токов, протекающих через все проводники. Значение силы тока, протекающего через проводник. равно отношению напряжения источника к сопротивлению этого проводника.

Примеры параллельного соединения проводников:

  1. Освещение.
  2. Розетки в квартире.
  3. Производственное оборудование.

Для расчёта схем с параллельным соединением проводников лучше пользоваться специальным калькулятором. Если в схеме много резисторов, спаянных параллельно, то гораздо быстрее вы посчитаете эквивалентное сопротивление с помощью этого калькулятора.

Смешанное соединение проводников

Этот вид соединения состоит из каскадов резисторов . Например, у нас есть каскад из 10 проводников, соединённых последовательно, и после него идёт каскад из 10 проводников, соединённых параллельно. Эквивалентное сопротивление этой схемы будет равно сумме эквивалентных сопротивлений этих каскадов. То есть, по сути, здесь последовательное соединение двух каскадов проводников.

Многие инженеры занимаются оптимизацией различных схем. Её целью является уменьшение количества элементов в схеме за счёт подбора других, с подходящими значениями сопротивлений. Сложные схемы разбиваются на несколько небольших каскадов, ведь так гораздо проще вести расчёты.

Сейчас, в двадцать первом веке, инженерам стало гораздо проще работать. Ведь несколько десятилетий назад все расчёты производились вручную. А сейчас программисты разработали специальный калькулятор для расчёта эквивалентного сопротивления цепи. В нём запрограммированы формулы, по которым ведутся расчёты.

В этом калькуляторе можно выбрать вид соединения, и потом ввести в специальные поля значения сопротивлений. Через несколько секунд вы уже увидите это значение.

Параллельным соединением резисторов (или приемников энергии, ветвей,сопротивлений) называется такое, при котором к одним и тем же двум узлам электрической цепи (рисунок 1) присоединены несколько резисторов (ветвей).

Рис. 1 Изображение параллельного соединения трех резисторов

Проводимость при параллельном соединении

Сопротивление при параллельном соединении:

Для трёх параллельно соединенных сопротивлений

Для двух параллельно соединенных сопротивлений

Для ветвей с одинаковым сопротивлением где n количество ветвей

Ток при параллельном соединении

Мощность при параллельном соединении

Доказательство

Так как резисторы присоединены к одним и тем же узлам, то каждый из них находится под одинаковым напряжением U. Согласно закону Ома токи в сопртивлениях определяются по формулам

Из этих формул следует, что токи в параллельных ветвях с сопротивлениями распределяются прямо пропорционально проводимостям ветвей или обратно пропорционально их сопротивлениям. Ряд параллельно соединенных резисторов можно заменить эквивалентным с сопротивлением R, значение которого должно быть таким, чтобы при том же напряжении на выводах ток в эквивалентном резисторе был равен сумме токов в отдельных ветвях:

т. е. эквивалентная проводимость параллельного соединения резисторов равна сумме проводимостей всех параллельных ветвей. Следовательно, эквивалентное сопротивление будет меньше самого малого из параллельно соединенных резисторов.
Формула (1) дает возможность определить и эквивалентное сопротивление параллельного соединения резисторов. Например, при трех ветвях эквивалентная проводимость

и эквивалентное сопротивление

Для двух резисторов

Если сопротивление ветвей одинаково R1 = R2 = R3, то можно воспользоваться формулой

в общем случае при соединении n резисторов с одинаковым сопротивлением R1 эквивалентное сопротивление равно

Мощности параллельно соединенных резисторов равна сумме мощностей всех резисторов

Как считать сопротивление при параллельном соединении

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:


Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:


Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

При проектировании электрических схем возникает необходимость использования последовательного и параллельного соединений резисторов. Соединения применяются также и при ремонтах электрооборудования, поскольку в некоторых ситуациях невозможно найти эквивалентный номинал резистора. Выполнить расчет просто, и справиться с этой операцией может каждый.

Типы проводников

Проводимость веществом электрического тока связана с наличием в нем свободных носителей заряда. Их количество определяется по электронной конфигурации. Для этого необходима химическая формула вещества, при помощи которой можно вычислить их общее число. Значение для каждого элемента берется из периодической системы Дмитрия Ивановича Менделеева.

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок. К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда. При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы. После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника. Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра. Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются. При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a Объединение резистивных радиокомпонентов

Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.

Каждое из соединений обладает определенными характеристиками. Кроме того, последовательно или параллельно могут объединяться несколько резисторов. Соединения также могут быть смешанными, т. е. применяться оба типа объединения радиокомпонентов.

Параллельное соединение

При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.

Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).

При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:

  1. Номинал резистора в 16 Ом подойдет.
  2. Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).

В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:

  1. Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
  2. Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.

Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).

Последовательное подключение

Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:

  1. Ток не изменяется на участке цепи.
  2. Общее напряжение равно сумме падений напряжений на каждом резисторе.
  3. Rобщ = R1 + R2 + … + Rn.

Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:

  1. I = I1 = I2 = 0,5 (А).
  2. Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
  3. Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).

Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.

Таким образом, параллельное и последовательное соединения резисторов применяются для получения более точных значений сопротивлений, а также при отсутствии необходимого номинала радиокомпонента при проектировании или ремонте устройств.

Урок 11. ВСЕ Способы соединения резисторов

содержание видео

Рейтинг: 4.0; Голоса: 1Применяются следующие соединения резисторов Evgeny: Вопрос: мощности рассеивания у резисторов параллельно включенных то складываются, но ведь при параллель включении через резистор конкретный потечёт НЕ ОБЩИЙ ток, а лишь часть общего, а значит и нагрев будет меньше и мощность рассеивания меньше. Т е мощности рассеивания одних и тех же резисторов включенных последовательно или параллельно будут разные же? Верно я понимаю?
Дата: 2020-09-04

Похожие видео

Комментарии и отзывы: 9

Lokki
Извините, может не так понял предыдущие видео, но всё же.
По данной схеме, почему ток не идёт от плюса черёд R1 к R2 и к минусу? Ведь насколько понимял, ток идёт по пути на меньшего сопротивления.
Пройдя R1 у тока два варианта. Либо на 3 Ома и к плюсу, либо на 3+3Ома и к плюсу.
Но через 3 Ома и к плюсу ведь сопротивление будет меньше?

Bogdan
А почему при последовательном соединении мощность рассеивания складывается? Если по цепи из 4 транзисторов, 0. 25W каждый, пустить ток расчитаный на транзистер с мощностью рассеивания 1W, разве оно не сожжет каждый транзистер по очереди?

Виолетта
Смотришь на одном дыхании! Спасибо за ваш труд. Мне почему-то поставили минус в задании, где были одинаковые параллельно соединенные резисторы: я их умножила и поделила на их сумму, но в решении учителя они просто складывались

Сергей
Не понимаю я это параллельное подключение, никак не понимаю. Ппц просто. Не могу суть понять почему там сопротивление падает, хоть убей. Подскажите что ещё где почитать

#mIDeep
как эти пружинки называются на 12: 06 я забыл. немного помню что это связано с излучением эл. тока внутри этой пружины типа какого-то там магнита типа того

vs
Как уменьшить сопротивление? Я увеличил длину провода джойстика и он стал откликаться с задержками. Я думаю надо увеличить сечение провода. Это верно?

Штепсель
Не уловил суть для чего используют смешанные и параллельные соединения если их можно заменить одним эквивалентным резистором?

#mIDeep
4: 02 скиньте ссылку где говорится про мощность рассеивания. что то не припомню что я видел такое видео. в каком видео это было сказано?

Alex
А можно ли упростить расчет и находить значение параллельных проводников через отношение наибольшего значения к наименьшему?

Типы резисторов на основе сопротивления

Уменьшение протекания электрического тока или потока электронов до определенного уровня называется сопротивлением, а Устройство, используемое для уменьшения протекания электрического тока, называется резистором.

Резистор — это небольшой электронный компонент, который ограничивает прохождение электрического тока до определенного уровня и кроме того, он не пропускает электрический ток.

Количество протекающего электрического тока через резистор в основном зависит от сопротивления резистор. Резисторы с высоким сопротивлением будут противодействовать или блокирует большое количество электрического тока и допускает небольшое количество электрического тока. Резисторы с меньшим сопротивлением будут противостоит небольшому количеству электрического тока и допускает большое количество электрического тока.

Резисторы в основном делятся на два типы:

Постоянные резисторы

Переменные резисторы

Фиксированный резисторы

Постоянные резисторы — наиболее часто используемые резисторы в электронных схемах. Как видно из названия, постоянные резисторы имеют фиксированное значение сопротивления. Нет возможно изменение сопротивления постоянных резисторов.

Фиксированный определение резистора

Постоянный резистор — это тип резистора, который обеспечивает постоянное сопротивление электрическому току. В другом словами, количество электрического тока, протекающего через резистор снижается до фиксированного уровня и не может быть изменен (если приложенное напряжение постоянно).

Пример:

Например, если фиксированный резистор имеет сопротивление 100 кОм, он обеспечивает сопротивление электрическому току всего 100 кОм. Текущий.Если мы хотим большего сопротивления, чтобы уменьшить поток электрического тока, то нам нужно заменить существующие резистор с другим резистором, который обеспечивает высокий сопротивление резистора 100 кОм. Точно так же, если мы хотим меньше сопротивление более 100 кОм, то нам необходимо заменить существующие резистор с другим резистором, который обеспечивает меньше сопротивление, чем резистор 100 кОм.

Сопротивление постоянного резистора не зависит от температуры или напряжения

Сопротивление постоянного резистора не изменяются с увеличением напряжения. Следовательно, фиксированное количество электрического тока проходит через постоянный резистор.

Наиболее распространенное значение сопротивления фиксированного резистор 10 Ом, 100 Ом, 10 кОм и 100 кОм.Стоимость постоянного резистора высока по сравнению со стоимостью переменного резистора, т. к. поменять сопротивление нам нужно купить еще один фиксированный резистор. В значение сопротивления резистора можно измерить с помощью омметр.

Фиксированный символ резистора

Американский стандарт и IEC (Международный Электротехническая комиссия) стандартное обозначение постоянного резистора показано на рисунке ниже.В Постоянный резистор состоит из двух выводов. Два терминала фиксированный резистор используется для подключения к другому компоненты в цепи.

Типы постоянных резисторов

различные типы постоянных резисторов включают углеродный состав, карбоновая пленка, углеродный ворс, металл пленка, пленка оксида металла, проволочная намотка, толстая и тонкая пленка, и сеточный резистор.

Переменные резисторы

Как видно из названия, переменные резисторы имеют изменяемое значение сопротивления. Мы можем изменить сопротивление переменного резистора на желаемое значение в любое время. В переменные резисторы применяют, если мы не знаем, какие именно значение сопротивления, которое мы хотим.

В отличие от постоянного резистора, переменный резистор контролирует прохождение электрического тока.Если сопротивление переменного резистора увеличено, величина электрический ток, протекающий через резистор, уменьшается. Аналогично, если сопротивление переменного резистора уменьшается, количество электрического тока, протекающего через резистор увеличивается.

Переменный резистор определение

Переменный резистор электронный компонент, который контролирует электрический ток, изменяя сопротивление переменного резистора.Другими словами, сумма электрического тока, протекающего через резистор, может быть увеличивается или уменьшается, если мы изменяем сопротивление переменный резистор.

Если увеличить сопротивление переменного резистора, электрический ток через резистор уменьшается. По аналогии, если мы уменьшим сопротивление переменного резистора, то электрический ток через резистор увеличивается.

переменная символ резистора

Американский стандарт и IEC (Международный Электротехническая комиссия) условное обозначение стандартного переменного резистора показано на рисунке ниже.

Три клеммы переменного резистора

Переменные резисторы состоят из трех выводов среди которых два фиксированных и одно изменяемое.Два фиксированных клеммы подключены к резистивному элементу или дорожке, а одна переменная клемма подключается к дворнику или щетке. Трек или резистивный элемент — это резистивный путь, через который электрический ток течет. Стеклоочиститель или щетка используются для изменения сопротивление резистора.


Сопротивление переменной резистор не зависит от температуры или напряжения

Сопротивление переменного резистора не меняется с увеличением напряжения.Следовательно, фиксированная количество электрического тока, протекающего через переменную резистор.

Если мы изменим сопротивление переменной резистор, количество электрического тока, протекающего через переменный резистор увеличивается или уменьшается.

Приложения резисторов переменных

Различные применения переменной резисторы в составе:

ТВ-ресиверы

Генераторы

Преобразователи

Управление аудиосистемой

Типы резисторов переменных

Различные типы переменных резисторов включают потенциометр, подстроечный резистор и реостат.


Конструкция резистора

  • Изучив этот раздел, вы должны уметь:
  • • Опишите распространенные типы конструкции резистора.
  • Технология поверхностного монтажа (SMT).
  • Углеродистые пленочные резисторы.
  • Карбоновый резистор.
  • Резисторы с проволочной обмоткой.
  • Резисторы металлопленочные.
  • Резисторы с термопредохранителями

Постоянные резисторы

Рис. 2.0.1 Обозначения резисторов

Резисторы — это компоненты, используемые для сопротивления прохождению электрического тока и имеющие указанное значение СОПРОТИВЛЕНИЯ.Используются многие типы резисторов, имеющих различное назначение и конструкцию. Наиболее распространенные типы имеют фиксированное значение сопротивления, поэтому их часто называют фиксированными резисторами. Они показаны на принципиальных схемах (теоретические схемы, которые показывают, как компоненты схемы соединены электрически, а не как схема выглядит физически) с использованием одного из символов, показанных на рис. 2.0.1.

В схемах используются различные типы постоянных резисторов, они являются наиболее многочисленными из всех электронных компонентов, и их наиболее распространенная задача заключается в снижении напряжений и токов в цепи, чтобы, например, « активные компоненты », транзисторы и интегральные схемы, несущие На такие задачи, как создание или усиление сигналов в цепи, подаются правильные напряжения и токи для правильной работы.

Резисторы

также используются вместе с другими компонентами, такими как катушки индуктивности и конденсаторы, для обработки сигналов различными способами.

Поскольку резисторы являются «пассивными компонентами», они не могут усиливать или увеличивать токи или сигналы напряжения, они могут только уменьшать их. Тем не менее они являются наиболее важной частью любой электронной схемы.

Рис. 2.0.2 Типы фиксированных резисторов

SMT (технология поверхностного монтажа)

Во многих современных схемах используются резисторы SMT.Их производство включает нанесение пленки из резистивного материала, такого как оксид олова, на крошечный керамический чип. Затем края резистора точно заземляются или вырезаются лазером для получения точного сопротивления (которое зависит от ширины пленки резистора) на концах устройства. Допуски могут составлять всего ± 0,02%. Контакты на каждом конце припаиваются непосредственно к проводящей печати на печатной плате, обычно с помощью методов автоматической сборки. Резисторы SMT обычно имеют очень низкую рассеиваемую мощность.Их главное преимущество состоит в том, что можно достичь очень высокой плотности компонентов.

Вернуться к картинке

Резисторы углеродные пленочные

Конструкция аналогична металлопленочным резисторам, но обычно с более широким допуском (обычно +/- 5%), показанным на рис. 2.0.2, установленным на бумажных полосках для машинной вставки в печатные платы. Небольшие резисторы — это чрезвычайно недорогие компоненты, которые также часто продаются партиями по 10 или 100 штук в таком виде для облегчения обращения.

Вернуться к картинке

Углеродный резистор

Углеродный состав — самая старая конструкция и обычно самый дешевый из резисторов. Гранулы углерода смешиваются с наполнителем и вставляются в трубчатую оболочку. В более ранних типах использовалась вулканизированная резина, но в современных конструкциях углерод смешивается с керамическим наполнителем. Величина сопротивления определяется количеством углерода, добавленного в смесь наполнителя.Резисторы из углеродного состава не имеют таких жестких допусков, как углеродные или металлические пленки. Типичные допуски составляют +/- 10% или 20%. Однако одним из преимуществ является то, что они лучше подходят для приложений, включающих большие импульсы напряжения, чем более современные типы.

Вернуться к основному изображению

Резистор 1Вт

Углеродные резисторы, углеродные и металлопленочные резисторы доступны в диапазоне номинальной мощности от 0,125 Вт до 5 Вт. В резисторе мощность, которую резистор должен рассеивать (избавляться от тепла), зависит от разницы напряжений (V) на резисторе и тока (I), протекающего через него.Их умножают, чтобы получить количество мощности (P), которое необходимо рассеять, по формуле P = IV . Для любого конкретного типа или номинала резистора, чем выше номинальная мощность, тем больше физический размер резистора.

Вернуться к основному изображению

Резисторы проволочные

Резисторы с проволочной обмоткой очень разнообразны по конструкции и внешнему виду. Их резистивные элементы обычно представляют собой отрезки проволоки, обычно из сплава, такого как нихром (никель / хром) или манганин (медь / никель / марганец), обернутого вокруг керамического или стекловолоконного стержня или трубки и покрытого изолирующей огнестойкой цементной пленкой.Обычно они доступны с довольно низкими значениями сопротивления (от одного Ом до нескольких киломов), но могут рассеивать большое количество энергии. При использовании они могут сильно нагреваться.

По этой причине резисторы с проволочной обмоткой большой мощности могут быть размещены в оребренном металлическом корпусе, который может быть прикреплен болтами к металлическому шасси для максимально эффективного рассеивания выделяемого тепла. Для всех типов резисторов с проволочной обмоткой важна противопожарная защита и жизненно важны огнестойкие корпуса или покрытия.Выводные провода обычно привариваются, а не припаяны к резистору.

Вернуться к основному изображению

Резисторы металлопленочные.

Эти резисторы изготовлены из небольших стержней из керамики, покрытых металлом, например никелевым сплавом, или оксидом металла, например оксидом олова. Величина сопротивления определяется, в первую очередь, толщиной слоя покрытия; чем толще слой, тем меньше значение сопротивления. Также с помощью тонкой спиральной канавки, прорезанной вдоль стержня с помощью лазерного или алмазного резака, чтобы эффективно разрезать углеродное или металлическое покрытие на длинную спиральную полосу, которая образует резистор.Металлопленочные резисторы могут быть получены в широком диапазоне значений сопротивления от нескольких Ом до десятков миллионов Ом с очень малым ДОПУСКОМ. Например, типичное значение может быть 100 кОм ± 1% или меньше, то есть для заявленного значения 100 кОм фактическое значение будет между 99 кОм и 101 кОм. Обратите внимание, что хотя цвет корпуса (цвет лакового покрытия) металлопленочных резисторов часто бывает серым, это не является надежным ориентиром. Небольшие углеродные, металлические и оксидные резисторы могут быть выполнены в различных цветах корпуса, таких как темно-красный, коричневый, синий, зеленый, серый, кремовый или белый.

Вернуться к основному изображению

Резистор с проволочной обмоткой 5 Вт

Резистор с проволочной обмоткой может иметь меньший физический размер для данной номинальной мощности, чем резисторы из углеродистой композиции или пленочные резисторы, сравните этот резистор 5 Вт с резистором 1 Вт (обозначенный 3 на рис. 2.0.2). Однако резисторы с проволочной обмоткой не имеют строгих допусков по составу или типу пленки. Этот резистор 4R7 имеет допуск ± 10%.

Вернуться к основному изображению

Монтаж на печатной плате Резистор с проволочной обмоткой

Резисторы с проволочной обмоткой обычно имеют диапазон сопротивления от 1 Ом до 50 кОм.Поскольку они используют катушку с проволокой в ​​качестве резистивного элемента, они в некоторой степени действуют как индукторы. Это ограничивает их использование низкочастотными цепями до нескольких десятков килогерц (кГц). Этот пример, доступный с номинальной мощностью до 25 Вт, предназначен для монтажа на печатной плате, и для предотвращения теплового повреждения платы ножки специальной формы обеспечивают воздушный зазор между резистором и платой. Весь резистор заключен в огнестойкий керамический слой.

Вернуться к основному изображению

Металлическая пленка высокой мощности

Металлопленочные резисторы

также доступны в вариантах с высокой мощностью с номинальной мощностью меньше, чем у проволочных резисторов (обычно менее 5 Вт), но с меньшими допусками.

Вернуться к основному изображению

Плавкий резистор с проволочной обмоткой

В этом плавком резисторе ток, протекающий через резистор, сначала проходит через подпружиненное соединение, расположенное близко к корпусу резистора. Тепла, выделяемого проволочным резистором при нормальных условиях, будет недостаточно для расплавления капли припоя, удерживающей пружинную проволоку на месте. Если через резистор протекает слишком много тока, он перегревается, припой плавится, и проволока всплывает, размыкая соединение и останавливая ток.Затем специалисту по обслуживанию необходимо найти причину перегрузки по току перед повторной пайкой пружинного соединения для восстановления нормальной работы. При повторной пайке важно использовать правильный тип припоя (обычно указывается в руководстве по обслуживанию оборудования), так как это повлияет на температуру, при которой пружина открывается.

Вернуться к основному изображению

Что такое резистор, типы, последовательное и параллельное соединение (видео в комплекте)

Резистор:

Резистор — не что иное, как противодействие. Это основной компонент электроники, который используется для противодействия протеканию тока, или компонент, или устройство, или компонент, спроектированный так, чтобы иметь известное значение сопротивления . Основное назначение резистора — ограничить ток ( протока электрона ) в той или иной цепи.

Он поставляется в различных формах, и вы можете приобрести их по своему усмотрению или даже с использованием клемм к очень маленьким компонентам для поверхностного монтажа , используемым сегодня во многих электронных схемах.

Резистор является одним из трех основных пассивных элементов схемы и, как таковой, не может подавать мощность или накапливать энергию . Вместо этого резисторы поглощали мощность, которая проявлялась в виде тепла (нагреватель) и света (светоизлучающий диод).

Мощность в сопротивлении всегда положительна, независимо от полярности напряжения и направления тока. Он просто ограничивает ток. В проводе всегда присутствует небольшое значение сопротивления.

Несмотря на то, что все они сопротивляются прохождению тока, их другие параметры означают, что некоторые типы более подходят для определенных приложений, чем другие.

Типы резисторов:

Он подразделяется на два типа. Их

Фиксированный тип далее подразделяется на три типа:

  • Тип углеродного состава
  • Проволочная обмотка типа
  • Металлизированный тип

Стационарный

Согласно их названию, номинал резистора фиксированный.Пример: 11 Ом, 14 Ом 164 Ом и т. Д.

Тип состава углерода.

Это наиболее часто используемый. Он изготовлен из углеродно-глинистого состава с пластиковым покрытием поверхности. Следовательно, он называется резистором из углеродного состава. Свинцы изготовлены из луженой меди.

Они дешевы, надежны и обладают высокой стабильностью.

Резистор с проволочной обмоткой

Резистор с проволочной обмоткой, изготовленный путем намотки металлической проволоки с нихромом вокруг керамики, пластика, стекловолокна, причем проволока припаивается или сваривается с двумя колпачками или кольцами, прикрепленными к концам сердечника.

Сборка защищена слоем краски из модулированного пластика или эмали. Покрытие запекается при высоких температурах.

Резистор металлизированный

Это резистор общего назначения. В нем используется керамический сердечник, покрытый оксидом металла. Эти резисторы электрически стабильны и надежны при работе в условиях высоких температур.

Переменный резистор

Очень распространенный пример переменного резистора — ручка регулировки громкости или регулятор вентилятора.

Движение ручки фактически изменяет сопротивление цепи и увеличивает уровень громкости. Точно так же движение регулятора увеличивает скорость вентилятора.

Имеет три отведения, один переменный, а два других фиксированные.

Есть два типа переменных резисторов. Их

Реостат

Это два фиксированных вывода, а другой — переменный, соединенный один конец с другим. Этот ход движется слева направо.Его сопротивление перемещается от минимального к максимальному. Реостат используется в лабораториях в экспериментальных целях.

Потенциометр

Он имеет три вывода A, B и W, а центральный вывод регулируется от конца A к B. здесь R на конце A является минимальным, а b — максимальным.

В случае потенциометра сопротивление также изменяется таким же образом, как и сопротивление смеси реостата до максимального сопротивления. Практический потенциометр, как показано, наиболее распространенным примером потенциометра является регулятор вентилятора,

.

Кодировка цвета:

В качестве компонентного резистора на резисторе нанесены полосы разного цвета, которые определяют значение.

Как рассчитать значение сопротивления?

Есть два типа резисторов с четырьмя полосами и живыми полосами. Каждая цветная полоса имеет свое собственное десятичное значение, которое начинается со значимости и определяется из следующей таблицы.

Чтобы запомнить эту таблицу и значение цветовых полос, мы следуем предложению.

«У BB Roy из Великобритании очень хорошая жена»

Все заглавные буквы обозначают цвета

Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый

В случае четырех полосных резисторов 1 st , 2 и слева определяют десятичное значение 3 rd полоса является множителем 4 -я полоса предназначена для допуска.Рассмотрим R с четырьмя полосами.

Красный, красный, черный и золотой

Из таблиц получаем значения 2 для левого и черного для 0 и 5% для золотого

Суммарный номинал резистора

22 * ​​10 ± 5%

22 * ​​1 ± 5%

22 ± 5% Ом

Единственная модификация пяти полосных резисторов — первая трехцветная полоса определяет значения, четвертая полоса для множителя и пятая полоса для допуска.

Красный синий зеленый оранжевый серебристый

265 * 10³ ± 10%

265 кОм ± 10%

Характеристики резистора

Характеристики резистора — это значение сопротивления рассеиваемой мощности или номинальная мощность.

Когда электрический ток проходит через резистор, электрическая энергия теряется резистором в виде тепла. Чем больше ток, тем сильнее резистор, это называется номинальной мощностью резистора.

Рассеиваемая мощность на резисторе:

Как мы знаем из закона Ома, V — входное напряжение, I — ток , протекающий через резистор, а R — цепь сопротивления.

Мощность Рассеяние в цепи


Здесь P — рассеиваемая мощность в цепи.И номинальная мощность обычно указана в ваттах

.

Номинальная мощность резистора:

Когда производитель резистора проектирует резистор, все резисторы имеют номинальную мощность, которая является максимальной мощностью, которую резистор может поглощать мощность с безопасным рабочим пределом, сверх этого сопротивление может быть повреждено.

Пример:

означает резистор мощностью 2 Вт; он потребляет 2 Вт в час.

Подключение с различным сопротивлением:

Вы можете изменить или изменить значение общего сопротивления цепи, добавив различные значения резисторов, включенных последовательно или параллельно цепи.Посмотрим, как последовательное или параллельное соединение меняет эквивалентное сопротивление цепи.

Последовательное соединение резистора:

См. Схему, здесь резисторы R1, R2 и R3 соединены последовательно, Requ — эквивалентное сопротивление цепи, а V1, V2 и V3 — это падение напряжения , падение на резисторе, V — входное напряжение и ток I протекает через весь резистор.

Применить правило Кирхгофа по напряжению.

Здесь эквивалентное сопротивление цепи равно сумме всех отдельных сопротивлений цепи, которые все последовательно соединены друг с другом.Таким же образом можно добавить неограниченное количество соединений и таким же образом вычислить эквивалентное сопротивление.

Резистор параллельно Подключение:

См. Схему, здесь сопротивления R1, R2 и R3 соединены параллельно, Requ — эквивалентное сопротивление или сумма всех сопротивлений цепи.

В — это падение напряжения на резисторе, V — входное напряжение, а ток I1, I2 и I3 протекает через отдельные сопротивления R1, R2 и R3.

Я — полный ток цепи, применяю правило Кирхгофа.

Примечание: напряжение в параллельной цепи равно приложенному напряжению источника. Следовательно, входное напряжение V равно напряжению на всех отдельных резисторах.

Обратное эквивалентное сопротивление равно сумме обратных величин отдельного значения сопротивления цепи.

Пояснение к видео:

Работа резисторов — сопротивление, единица измерения, символ, типы, цветовая кодировка, использование

Резисторы

считаются наиболее часто используемым и самым важным компонентом всех электронных схем.Ознакомьтесь с работой, типами, а также применением резисторов в области электроники.

Мы знаем, что основная идея любой электронной схемы — это поток электричества. Он также делится на две категории — проводники и изоляторы. Проводники пропускают поток электронов, а изоляторы — нет. Но количество электричества, которое мы хотим пропустить через них, зависит от резисторов. Если высокое напряжение проходит через проводник, такой как металл, все напряжение проходит через него.Если установлены резисторы, можно контролировать величину напряжения и тока.

Таким образом, «сопротивление можно определить как легкость, с которой что-то пропускает через себя электричество».

Проводник имеет меньшее сопротивление, чем изолятор. Величина, используемая резистором для управления электрической цепью, называется сопротивлением.

Что такое сопротивление?

Определение сопротивления основано на законе Ома, данном немецким физиком Георгом Симоном Омом.

Закон Ома гласит, что напряжение [В] на резисторе прямо пропорционально току [I], протекающему через него. Здесь его сопротивление [R] является константой пропорциональности.

Следовательно, V = I * R

Единица сопротивления

Единица измерения сопротивления в системе СИ — Ом [Ом]. Более высокие кратные и подмножественные значения Ом — это килоом [кОм], мегаом [МОм], миллиОм и т. Д. »» »»

Таким образом, сопротивление можно определить как напряжение, необходимое для протекания по цепи тока в 1 ампер.Если схема требует 100 Вольт для протекания тока в 1 ампер, тогда сопротивление составляет 100 Ом.

Обозначение резистора

Резистор — это пассивное устройство с 2 выводами. Символ приведен ниже.

Обозначение резистора

Работа резистора

Работу резистора можно объяснить тем, что вода течет по трубе. Рассмотрим трубу, по которой может течь вода. Если диаметр трубы уменьшить, поток воды уменьшится.Если сила воды увеличивается за счет увеличения давления, тогда энергия будет рассеиваться в виде тепла. Также будет огромная разница в давлении в головном и хвостовом концах трубы. В этом примере сила, приложенная к воде, аналогична току, протекающему через сопротивление. Приложенное давление можно сравнить с напряжением.

Последовательные и параллельные схемы резисторов

Могут быть случаи, когда два или более резистора должны быть соединены в цепь.Самый простой способ их соединения — последовательно и параллельно.

При последовательном соединении резисторы будут подключены последовательно, и ток, протекающий через резисторы, будет таким же. Напряжение на резисторах будет равно сумме напряжений на каждом резисторе. Вот рисунок резисторов, включенных последовательно. Три резистора R 1 , R 2 и R 3 соединены последовательно. Общее сопротивление R всего дает

R Всего = 1 + 2 + R 3

резисторов последовательно и параллельно

При параллельном соединении резисторы будут включены параллельно, и напряжение, приложенное к каждому компоненту, будет одинаковым.Ток на резисторах будет равен сумме токов на каждом резисторе. На приведенном выше рисунке показано параллельное соединение резисторов. Три резистора R 1 , R 2 и R 3 подключены параллельно. Общее сопротивление R всего дает

1 / R всего = 1 / R 1 + 1 / R 2 + 1 / R 3 .

Следовательно, R всего = R 1 * R 2 * R 3 / R 1 + R 2 + R 3

Мощность, рассеиваемая на резисторе

Рассеиваемая мощность резистора определяется уравнением

Мощность, P = I 2 * R = V * I = V 2 / R

Первое уравнение было получено из первого закона Джоуля, а два других — из закона Ома.

Виды резисторов

Наиболее часто используемые резисторы выглядят одинаково. Они похожи на маленького червяка с цветными полосками сбоку. Доступно множество типов резисторов. Чаще всего встречается керамический стержень, намотанный изнутри медной проволокой. Число витков меди и толщина меди определяют сопротивление компонента. Чем больше витков и меньше толщина, тем больше сопротивление. Существуют также резисторы со спиральным рисунком из углерода вместо медной обмотки.Такие резисторы используются для изготовления резисторов меньшего номинала. Рассмотрим подробнее все резисторы.

1. Резисторы с проволочной обмоткой

Резисторы с керамическим стержнем, намотанным медными проволоками, называются резисторами с проволочной обмоткой. Такие резисторы обладают эффектом индуктивности, поскольку имеют медные обмотки. Несмотря на то, что провода намотаны секциями с чередованием обратного состояния, индуктивность все же создается. Таким образом, используются разные типы обмоток. Один из типов намотки называется методом плоской тонкой формовки, который помогает в значительной степени уменьшить площадь поперечного сечения катушки.Существуют также другие типы обмоток, называемые обмоткой Айртона-Перри и бифилярной обмоткой. Некоторые резисторы с проволочной обмоткой имеют алюминиевый корпус, поэтому их можно подключать к радиаторам, которые рассеивают тепло.

2. Резисторы из углеродного состава

Это обычные резисторы с резистивным элементом в форме цилиндра. Резистивный элемент представляет собой смесь углеродного порошка и керамики. Эта смесь скрепляется с помощью смолы. Эта смесь заделана проволочными выводами.Затем он прикрепляется к свинцовым проводам. Значение резистора можно узнать с помощью метода, называемого цветовым кодированием, которое наносится на внешний корпус резистора.

Если концентрация углерода увеличивается, сопротивление компонента снижается. Этот тип резистора сейчас не используется так часто. Хотя этот резистор был очень надежным, его характеристики перегрева и перенапряжения не так надежны.

3. Карбоновая пленка

Этот тип резистора применим для цепей, работающих в широком диапазоне температур.Резистор изготавливается путем нанесения углеродной пленки на изолирующую подложку. Они могут работать в диапазоне от -55 ° C до 155 ° C. Диапазон напряжения варьируется от 100 до 650 вольт при сопротивлении от 1 до 10 МОм.

4. Тонкие и толстопленочные резисторы

Этот тип резистора был основой популярных резисторов для поверхностного монтажа, используемых в настоящее время. Названия различаются по способу нанесения пленки на цилиндр.

Для тонкопленочного резистора используется метод вакуумного напыления, чтобы нанести резистивный материал на изолирующую подложку.Этот тип резистора обычно используется для изготовления печатных плат. Этот тип резистора обеспечивает точное сопротивление, так как можно контролировать весь процесс его изготовления.

Толстые пленки также производятся таким же образом, как и тонкие пленки. Но у них также есть некоторые дополнительные соединения, такие как стекло, а также жидкость для трафаретной печати.

Оба они различаются по диапазону температур, а также по ценам. Тонкие пленки дороже толстых.

5. Резисторы металлопленочные

Этот тип резистора изготавливается путем покрытия никель-хромом [NiCr].Процесс изготовления этого резистора аналогичен процессу изготовления тонкопленочных резисторов. Разница будет в используемых соединениях.

6. Шунтирующий резистор амперметра

Это самый уникальный тип резистора, который используется для измерения тока. Он имеет четыре клеммы и используется в миллиомах и микроомах. Хотя они используются для измерения малых токов, если ток проходит через шунтирующий механизм, их также можно использовать для измерения больших токов. С помощью этого механизма ток измеряется в соответствии с падением напряжения на нем.

Шунтирующий механизм состоит из двух латунных блоков. Между ними проложены полосы из низкотемпературных сплавов сопротивления. Большие болты, ввинченные в блоки, обеспечивают текущие соединения.

Существуют также резисторы других типов, такие как резисторы для размещения выводов, сеточные резисторы и т. Д. Существуют также переменные резисторы, такие как резисторы с ответвлениями, металлооксидный варистор (MOV) и тензодатчик. Чтобы узнать больше, нажмите на следующие ссылки.

ПОСМОТРЕТЬ: ПОТЕНЦИОМЕТР И РЕОСТАТ — РАБОТА И СРАВНЕНИЕ

ПОСМОТРЕТЬ: ПЕРЕМЕННЫЕ РЕЗИСТОРЫ — РАБОТА И ПРИМЕНЕНИЕ

ПОСМОТРЕТЬ: ВАРИСТОР ОКСИДА МЕТАЛЛА (MOV)

Цветовое кодирование

Значение сопротивления определяется по цветовой кодировке.Резисторы имеют цветовую полосу, показанную на их внешнем покрытии. Вот шаги, чтобы определить номинал резистора.

  • Все резисторы имеют три цветных полосы, за которыми следует пробел, а затем четвертая цветная полоса. Четвертая полоса цвета будет коричневой, красной, золотой или серебряной.
  • Чтобы прочитать цвета, поверните его так, чтобы слева были три последовательных цвета, затем пробел и остальные цвета.
  • Первые два цвета слева обозначают первые две цифры значения.Третий цвет представляет собой цифровой множитель. То есть он показывает, на сколько вам нужно умножить первые два числа. Таким образом, если у вас есть сопротивление с первыми тремя цветами, коричневым, черным и красным, значение сопротивления будет 10 * 100 = 1000 Ом или 1 кОм.
  • Последняя полоса после пробела указывает допуск резистора. Это указывает на диапазон точности резистора. Таким образом, наряду с тремя цветами выше, если четвертый цвет — золотой, это означает, что у вас есть допуск в пределах +/- 5%.Таким образом, фактическое значение сопротивления может составлять от 950 Ом до 1 кОм.
  • Также могут быть резисторы пяти цветов. Если это так, первые три представляют собой цифры, четвертая — множитель, а пятая — процент допуска. Это указывает на то, что более точное значение используемого резистора может быть получено с помощью 5-цветного резистора.

Обратите внимание на цвета и соответствующие им номера, указанные ниже.

Цветовая кодировка резисторов

Применение резисторов

Хотя резисторы могут вызывать потери электричества, они имеют множество преимуществ и применений в нашей повседневной жизни.

  • Сопротивление — один из основных ингредиентов в работе лампочки. Когда электричество проходит через нить лампы накаливания, она ярко горит, поскольку становится очень горячей из-за своего меньшего размера. Хотя этот механизм расходует много электроэнергии, мы вынуждены использовать его для получения света. Свет, используемый в настоящее время, более эффективен, чем старые лампы накаливания.
  • Подобная нить накала является основным ингредиентом в работе некоторых наших обычных бытовых приборов, таких как электрические чайники, электрические радиаторы, электрические души, кофеварки, тостеры и так далее.
  • Применение переменного сопротивления также полезно для нас. Наши телевизоры, радиоприемники, громкоговорители и т. Д. Работают по этому принципу.

Что такое переменный резистор?

Переменные резисторы — это резисторы, которые изменяют сопротивление от нуля до определенного максимального значения. Они обычно используются в качестве регуляторов громкости и регуляторов напряжения.

Переменные резисторы можно разделить на три типа:

  • Потенциометры
  • Реостаты
  • Цифровые потенциометры

Символы для переменных резисторов Потенциометр
Реостат
Предустановленный резистор

Потенциометр с

Потенциометры используются для изменения сопротивления в цепи путем поворота поворотной ручки.Потенциометры имеют три контакта. Между двумя боковыми штырями проложена полоса из резистивного материала, который создает сопротивление. Средний штифт — дворник. Это соединение стеклоочистителя находится где-то на полосе между двумя концами. Вы можете переместить точку соединения скребка с резистивным материалом, поворачивая вал потенциометра. При перемещении дворника влево сопротивление между средним штифтом и левым штифтом уменьшается. Затем сопротивление между средним штифтом и правым штифтом увеличивается при перемещении дворника влево.

Типы потенциометров
  1. Поворотные потенциометры — самый распространенный тип потенциометров. Они используют поворотную ручку для перемещения скребка вокруг резистивного материала.
  2. Линейные потенциометры — состоят из линейного ползунка, который контролирует положение скребка вдоль резистивного материала.

Потенциометры как делители напряжения

Делитель напряжения — это простая схема, которая может использоваться для понижения напряжения в цепи.Выходное напряжение зависит от соотношения двух последовательно соединенных резисторов. Выходное напряжение берется из точки между двумя резисторами. Чтобы рассчитать выходное напряжение делителя напряжения, используйте уравнение для делителя напряжения ниже:

R1 — резистор, ближайший к входному напряжению, R 2 — резистор, ближайший к земле, V в — входное напряжение, а V out — выходное напряжение.

Потенциометры — это просто регулируемые делители напряжения.


Условное обозначение потенциометра

Внутри потенциометра находится единственный резистор и стеклоочиститель, который разрезает резистор на две части и перемещается для регулировки соотношения между обеими половинами. Внешне обычно имеется три контакта: два контакта подключаются к каждому концу резистора, а третий подключается к дворнику потенциометра. Если два внешних контакта подключены к напряжению, выход (V из на среднем контакте) будет имитировать делитель напряжения. Если потенциометр полностью повернется в одном направлении, напряжение может быть нулевым.И если он поворачивается на другую сторону, выходное напряжение приближается к входному, а дворник в среднем положении означает, что выходное напряжение будет половиной входного.

Подключение потенциометра
  1. Начните с определения трех клемм на потенциометре. Расположите его валом вверх и тремя выводами к себе. В этом положении вы можете легко идентифицировать клеммы слева направо как клеммы 1, 2 и 3. Заземлите первую клемму потенциометра.
  2. В этом приложении клемма 1 обеспечивает заземление. Для этого припаяйте оба конца провода к клемме и шасси электрического компонента соответственно. Отмерьте и отрежьте длину провода, необходимого для подключения клеммы к удобному месту на шасси, и припаяйте оба конца провода к клемме и к шасси компонента. Это заземлит потенциометр. И его можно повернуть до нуля в минимальном положении.
  3. Подключите вторую клемму к выходу схемы, чтобы создать вход потенциометра.К нему должна подключаться входная линия схемы. Припаиваем это соединение так же, как и предыдущее.
  4. Подключите клемму 3 к входу схемы, поскольку клемма 3 является выходом потенциометра. Припаиваем провод так же, как в первых 2-х выводах.
  5. После подключения проверьте с помощью вольтметра. Подключите выводы вольтметра к входным и выходным клеммам потенциометра и включите вал. Поворачивая вал по часовой стрелке или против часовой стрелки, можно настроить сигнал на вашем устройстве.

Пример схемы светорегулятора с использованием потенциометра и полевого МОП-транзистора

Цифровые Потенциометры

Цифровой потенциометр — это тип переменного резистора, который использует цифровые сигналы вместо механического движения для изменения своего сопротивления. Цифровые потенциометры изменяют сопротивление дискретными шагами в зависимости от посылаемого на него цифрового сигнала. Они отлично подходят для сред, где вибрация, пыль или влага могут забить вал механического потенциометра.

Вот несколько цифровых потенциометров, которые нравятся любителям электроники:

Каждый из следующих цифровых потенциометров от Renesas Electronics имеет 100 различных точек сопротивления, работает от 5 В и управляется трехпроводным последовательным интерфейсом:

Семейство цифровых потенциометров MPC41 / 42 от Microchip также довольно распространено:

  • MCP4131 — 129 точек сопротивления, доступны в диапазонах 5 кОм, 10 кОм, 50 кОм и 100 кОм, рабочее напряжение 1.От 8 В до 5,5 В, управление с помощью SPI
  • MCP42010 — 256 точек сопротивления, доступные в диапазонах 10 кОм, 50 кОм и 100 кОм, рабочее напряжение от 2,7 В до 5,5 В, управление с помощью SPI

Факты о резисторах для детей

Два резистора в последовательной цепи Два резистора в параллельной цепи

Резистор ограничивает электрический ток, протекающий по цепи. Сопротивление — это ограничение тока. В резисторе энергия электронов, проходящих через резистор, изменяется на тепло и / или свет.Например, в лампочке есть резистор из вольфрама, который преобразует электроны в свет.

Последовательный и параллельный

Резисторы могут быть соединены в различных комбинациях для создания схемы:

    Серия
  1. — где резисторы соединены один за другим .
  2. Параллельно — где резисторы соединены друг с другом .

Есть много разных типов резисторов. Резисторы имеют разные номиналы, чтобы сообщить электрикам, с какой мощностью они могут выдержать до того, как сломаются, и насколько точно они могут замедлить поток электричества.Последовательное соединение двух резисторов приводит к более высокому сопротивлению, чем при параллельном подключении тех же двух резисторов. Чтобы резистор не достиг своей емкости, разместите резисторы параллельно, чтобы общее сопротивление было ниже. В настоящее время в электротехнической промышленности во многих случаях используются резисторы на основе так называемой технологии поверхностного монтажа, которые могут быть очень маленькими.

Расчет сопротивления

  • Последовательная цепь: Rt = R1 + R2 + R3 + R4 … Rn
  • Параллельная цепь: 1 / Rt = 1 / R1 + 1 / R2 + 1 / R3…1 / Rn

Где R — номинал резистора

Закон Ома

Формула закона Ома, V = I * R, утверждает, что падение напряжения на компоненте равно произведению тока, протекающего в компоненте, на сопротивление компонента. Используя закон Ома, вы можете изменить формулу, если необходимо, чтобы найти другой результат: I = V / R или R = V / I

Цветовой код

Номиналы резистора

указаны по цветам, указанным на его стороне.Цветные полосы, которые используются на сторонах резистора, являются черными, коричневыми, красными, оранжевыми, желтыми, зелеными, синими, пурпурными, серыми и белыми. Каждый цвет представляет собой разное число. Черная полоса представляет собой цифру 0, коричневая полоса представляет собой цифру 1, красная — 2 и так далее, вплоть до белой, которая представляет собой цифру 9. Эти числа очень важны в электронной сфере.

На стороне резистора может быть несколько цветных полос. У наиболее распространенных — четыре, но их может быть до 6 на резистор.На четырехполосном резисторе последняя полоса золотая или серебряная. Золотая полоса представляет собой положительный или отрицательный 5% допуск. Серебряная полоса на резисторе соответствует положительному или отрицательному допуску в 10%. Держите эту полосу с правой стороны и читайте цвета слева направо. Первые две полосы читаются как числа, которые они представляют в цветовом коде. Третья полоса действует как множитель для других полос, поэтому, например, если третья полоса была оранжевой полосой, которая равна 3, это будет означать, что вы умножаете два числа на 1000.Короче говоря, вы добавляете значение цвета нулями в конце, поэтому добавьте три нуля.

Приложения

Резисторы

используются по-разному. Прежде всего, они вставлены в цепи, чтобы защитить компоненты от повреждений, например светодиоды. Они также контролируют количество тока, протекающего в цепи, например, если вы хотите, чтобы ток был замедлен, вы должны добавить больше резисторов, чтобы создать большее сопротивление в цепи. Резисторы также могут распределять напряжение между различными частями цепи и управлять временной задержкой.

Материалы резистора

Вы можете найти множество различных типов резисторов. Все они изготовлены из резистивного материала, заключенного в корпус из непроводящего материала, например из пластика. Постоянные резисторы обычно изготавливаются из углерода, заключенного в пластиковый цилиндр, с соединительным проводом на обоих концах. Большинство резисторов, используемых сегодня в электронике, представляют собой углеродные резисторы. Старые резисторы были сделаны из металла с плохой проводимостью, чтобы ограничить прохождение электричества.

Детские картинки

  • Резисторы осевые на ленте.Компонент вырезается из ленты во время сборки, и деталь вставляется в плату.

  • Силовой резистор в алюминиевом корпусе мощностью 50 Вт с теплоотводом

  • Резистор силовой ВЗР 1,5кОм 12Вт, изготовлен в 1963 году в Советском Союзе

  • Комплект одинарных резисторов (SIL) с 8 отдельными резисторами по 47 Ом. Один конец каждого резистора подключен к отдельному выводу, а другие концы все вместе подключены к оставшемуся (общему) выводу — выводу 1, конец которого обозначен белой точкой.

  • Резисторы с выводами для сквозного монтажа

  • Три резистора из углеродного состава в ламповом радиоприемнике 1960-х годов

  • Углеродный пленочный резистор с открытой углеродной спиралью (Tesla TR-212 1 кОм)

  • Угольный резистор, напечатанный непосредственно на контактных площадках SMD на печатной плате. Внутри органайзера Psion II

    урожая 1989 года
  • Прецизионная сеть тонкопленочных резисторов с лазерной обрезкой от Fluke, используемая в мультиметре Keithley DMM7510.Керамическая основа со стеклянной герметичной крышкой.

  • Проволочные резисторы большой мощности для динамического торможения вагонов с электроприводом. Такие резисторы могут рассеивать много киловатт в течение длительного периода времени.

  • Типовой потенциометр для монтажа на панели

  • Чертеж потенциометра с вырезанным корпусом, показывающий детали: ( A ) вал, ( B ) неподвижный резистивный элемент из углеродной композиции, ( C ) грязесъемник из фосфористой бронзы, ( D ) вал, прикрепленный к дворнику, ( E, G ) клеммы, подключенные к концам резистивного элемента, ( F ) клеммы, подключенные к дворнику.

  • Десятилетний ящик сопротивления «Kurbelwiderstand», произведенный в бывшей Восточной Германии.

  • На этом изображении показаны четыре резистора для поверхностного монтажа (компонент в верхнем левом углу — конденсатор), включая два резистора с нулевым сопротивлением. Вместо проводных перемычек часто используются перемычки с нулевым сопротивлением, поэтому их можно вставить с помощью машины для вставки резисторов. Их сопротивление ненулевое, но незначительное.

Фиксированный резистор — обзор

Потенциометры из кермета

Металлические и металлооксидные пленки, хотя и отлично подходят для фиксированных резисторов, не подходят для использования в потенциометрах, поскольку пленки слишком хрупкие, чтобы выдерживать трение от протирающего контакта.Однако твердые и стеклообразные металлокерамические материалы доступны в виде толстой пленки и идеально подходят для использования с потенциометром вместе с рычагом стеклоочистителя с угольной щеткой. Керметы, однако, более распространены в многооборотных потенциометрах и в подстроечных устройствах, чем в обычных поворотных потенциометрах, и не используются для ползунковых потенциометров.

Твердая природа металлокерамической пленки позволяет изготавливать потенциометры, которые будут иметь длительный срок службы без каких-либо проблем износа, характерных для типов углеродного состава.Вероятно, из-за неисправного регулятора громкости утилизируется больше радиоприемников, чем по какой-либо другой причине, в основном потому, что замена регулятора громкости неэкономична, а использование металлокерамических потенциометров в таких приложениях могло бы значительно продлить срок службы, если бы это считалось желательным . Для более серьезных применений использование металлокерамических потенциометров вместо углеродных составов очень значительно продлевает безотказный срок службы схемы. Что касается измерительных приборов, то многооборотные потенциометры из кермета заменили все, кроме проволочных, и могут предложить гораздо лучшее разрешение, чем проволочные потенциометры.

Потенциометры Cermet предлагаются с мощностью рассеивания 1 Вт, 2 Вт и 5 Вт, заключенные в прочный корпус из алюминиевого сплава. Одна конструкция, предназначенная для использования на панели, содержит металлокерамический элемент внутри исполнительной ручки, так что очень небольшая часть компонента выступает внутри панели. Другие версии построены в более ортодоксальном стиле, но все они обладают гораздо большей рассеиваемой способностью для своего физического размера, чем типы углеродного состава. В отличие от углеродных типов, потенциометры из кермета рассчитаны на рассеивание при температуре окружающей среды 70 ° C (типы углеродного состава рассчитаны на 40 ° C), а температурный коэффициент составляет порядка 100 ppm / ° C.Для всех, кроме размера 1 Вт, можно ожидать отклонения сопротивления 10% — подрезать металлокерамические дорожки до точного значения сопротивления для потенциометра не так просто, как для постоянного резистора. Углы электрического вращения варьируются от 210 ° до 270 ° в зависимости от физической конструкции, и большинство разновидностей имеют контактное сопротивление около 2 Ом, а значения сопротивления изоляции находятся в диапазоне от 10 9 до 10 11 Ом. Диапазон сопротивления может быть большим, от 10 Ом до 1 МОм, хотя некоторые типы изготавливаются в более ограниченном диапазоне от 470 Ом до 470 кОм.Потенциометры из металлокерамики, которые предназначены для больших рассеиваний, таких как 5 Вт, обычно имеют ребристый радиатор как часть корпуса.

На другом конце шкалы применений кермета есть огромный ассортимент триммеров кермета, многие из которых имеют многооборотную регулировку. Более простые типы точно повторяют структуру триммеров из углеродного состава и доступны в закрытом или открытом виде для вертикального или горизонтального монтажа. Открытые типы, доступные как в горизонтальном, так и в вертикальном положении, примерно такого же размера, как и их составные аналоги, примерно 10 мм × 10 мм, но в металлокерамической форме такие триммеры могут рассеивать до 0.75 Вт при 40 ° C, 0,5 Вт при 70 ° C. Гусеницы, как всегда для металлокерамики, являются линейными, а крепления расположены для использования на печатной плате с центрами 2,5 мм (0,1 дюйма). Доступны соответствующие закрытые типы, которые могут регулироваться отверткой или регулироваться пальцами с помощью встроенной ручки. Они больше, с размерами 16 мм в диаметре для одних, стороной 9,5 мм (квадрат) для других, но с показателями рассеяния 0,5 Вт для физически меньших типов и 1 Вт для больших. В некоторых закрытых типах используются контакты стеклоочистителя с угольной щеткой, в других — многоконтактные системы, обеспечивающие более низкий уровень шума.Отличительной особенностью нескольких закрытых триммеров из металлокерамики является отличное уплотнение, которое позволяет им выдерживать погружение в воду (стандарт MIL-R-22097) без вредных воздействий.

Однако большинство металлокерамических триммеров, которые можно найти в современном оборудовании, относятся к миниатюрным размерам 14 и 38, квадратным или круглым. Типы 38 дюймов могут поставляться с горизонтальной или вертикальной установкой и представляют собой однооборотные потенциометры с многоконтактными дворниками. Мощность рассеивания составляет 0,5 Вт при необычно высокой температуре окружающей среды 85 ° C, с допуском 10% и диапазоном рабочих температур от –55 ° C до + 125 ° C.Некоторые производители изготавливают эти триммеры в соответствии со спецификацией погружения в воду MIL-R-22097.

Субминиатюрные 14 триммеры могут быть квадратными или круглыми, а вертикальные — обычно квадратными, а триммеры с горизонтальной установкой — круглыми. Мощность рассеивания 0,4 Вт при 70 ° C относится к обоим типам с диапазоном рабочих температур от –55 ° C до + 125 ° C и допуском сопротивления 10%, хотя допуск часто увеличивается до 20% для значений сопротивления ниже 100 Ом. Диапазон сопротивления составляет от 10 Ом до 500 кОм.

Как правило, весь ассортимент однооборотных триммеров из кермета будет иметь низкие значения температурного коэффициента в диапазоне от –125 до +200 ppm / ° C.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.