+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как измерить сопротивление заземления мегаомметром

Измерение сопротивления заземления

Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.

Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.

Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.

Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.

Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить к разъему “клещи”.
  • К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить к разъему “клещи”.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземления с измерительными клещами и передающими клещами

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить измерительными клещами и подключить к разъему П1.
  • Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
  • Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
  • Начать измерение, нажав кнопку Rx.

Измерение удельного сопротивления грунта


Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.

Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом. При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.

Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов, удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

Измерение сопротивления изоляции мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Как проверить качество заземления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Цифровой мегаомметр Fluke 1625 II 4325162

Технические характеристики
Общие сведения
Дисплей: ЖК, 1999-разрядный Дисплей со специальными символами, высота символа — 25 мм, флуоресцентная подсветка
Пользовательский интерфейс Мгновенное измерение одним нажатием кнопок TURN (Поворот) и START (Запуск). Единственными действующими элементами являются поворотный переключатель и кнопка START (Запуск)
Прочный, водо- и пыленепроницаемый Инструмент предназначен для тяжелых рабочих условий (резиновая защитная крышка, IP56)
Память Объем внутренней памяти позволяет хранить до 1500 записей, доступных через разъем USB.
Диапазон температур
Рабочая температура от -10 °C до +50 °C (от 14 °F до 122 °F)
Температура хранения от -30 °C до 60 °C (от -22 °F до 140 °F)
Температурный коэффициент ± 0,1 % показаний/°C <18 °C >28 °C
Основная погрешность Относится к стандартному диапазону температур и гарантируется в течение одного года
Операционная ошибка Зависит от диапазона рабочих температур и обеспечивается гарантией на 1 год
Климатический класс C1 (IEC 654-1), от -5 °C до +45 °C (от 23° до +115° F), от 5 % до 95 % отн. влажн.
Класс защиты IP56 для футляра, IP40 для крышки батарейного отсека согласно EN60529
Безопасность Защита обеспечивается двойной и/или усиленной изоляцией. Максимум 50 В на землю. IEC61010-1: степень загрязнения 2
EMC (Невосприимчивость к излучениям) IEC61326-1: Портативное устройство
Система качества Разработан и изготовлен согласно требованиям стандарта DIN ISO 9001
Наружное напряжение V наруж, макс = 24 В (пост.ток, перем.ток < 400 Гц), для более высоких значений измерение затруднено
Подавление V наруж > 120 дБ (162⁄3, 50, 60, 400 Гц)
Время измерения Обычно 6 секунд
Макс. перегрузка 250 В среднеквадратичное значение (имеет отношение к неправильному обращению)
Дополнительное питание 6 щелочных батарей 1,5 В (тип: AA LR6)
Ресурс батареи Стандартно > 3 000 измерений
Размеры (ШxВxГ) 250 мм x 133 мм x 187 мм (9,75 дюймов x 5,25 дюймов x 7,35 дюймов)
Вес 1,1 кг (2,43 фунта) включая батареи
7,6 кг (16,8 фунтов) включая аксессуары и батареи в футляре для переноски
RA 3-полюсное измерение сопротивления заземления (IEC 1557-5)
Положение переключателя R A 3-полюсное
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (2 % от показаний прибора + 3 знака)
Операционная ошибка ± (5 % от показаний прибора + 3 знака)
Принцип измерения: измерение силы тока и напряжения
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Дополнительная погрешность от R H и RS R H[кОм]•••R S[кОм]/R A[Ом]•••0,2 %
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
R A 4-полюсное измерение сопротивления заземления (IEC 1557-5)
Положение переключателя R A 4-полюсное
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (2 % от показаний прибора + 3 знака)
Операционная ошибка ± (5 % от показаний прибора + 3 знака)
Принцип измерения: измерение силы тока и напряжения
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S +R ES) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Дополнительная погрешность от R H и RS R H[кОм]•••R S[кОм]/R A[Ом]•••0,2 %
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
RA 3-полюсное выборочное измерение сопротивления заземления при помощи токовых клещей (R A при помощи клещей )
Положение переключателя R A 3-полюсное при помощи клещей
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)

Принцип измерения: измерение силы тока/напряжения (с помощью наружных токовых клещей)

Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
RA 4-полюсное выборочное измерение сопротивления заземления при помощи токовых клещей (R A при помощи клещей )
Положение переключателя R A 4-полюсное при помощи клещей
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)
Принцип измерения: измерение силы тока/напряжения (с помощью наружных токовых клещей)
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
Безэлектродное измерение контура заземления (2 зажима )
Положение переключателя R A 4-полюсное при помощи 2 зажимов
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)
Принцип измерения: Безэлектродное измерение сопротивления в замкнутых контурах при помощи двух трансформаторов тока
Измерение напряжения Vm = 48 В переменного тока
Измерение частоты 128 Гц
Шумовой ток (I EXT) Макс. I EXT = 10 А (перем. ток) (R A < 20 Ом)
Макс. I EXT = 2 А (перем. ток) (R A > 20 Ом)
Автоматический выбор диапазона.
Данные относительно безэлектродного измерения контура заземления можно считать достоверными, только если измерения осуществлялись рекомендуемыми токовыми клещами на минимальном заданном расстоянии.

Как проверить заземление мегаомметром — Строительство домов и бань

Как проверить качество заземления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Все об измерениях сопротивления заземления

Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.

Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.

Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.

Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.

Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.

С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.

Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.

Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.

Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).

В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду.

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Измерение сопротивления изоляции мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объектУровень напряжения (В)Минимальное сопротивление изоляции (МОм)
Проверка электропроводки1000,00,5>
Бытовая электроплита1000,01,0>
РУ, Электрические щиты, линии электропередач1000,0-2500,01,0>
Электрооборудование с питанием до 50,0 вольт100,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт250,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт500,0-1000,00,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В2500,00,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Как измерить сопротивление заземления с помощью мультиметра и мегаомметра

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Как проверить контур заземления

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление. Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Проверка заземления

Проверку заземления реализует компания «ИНТЕХ» (Москва). Чтобы получить КП на проверку заземления, позвоните по телефону: . Отправить заявку

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Общий порядок технического обследования

В основу главных подходов к проверке качества заземления заложены известные методики измерения его сопротивления растеканию тока на землю. При оценке этой величины контролю подлежат как отдельные элементы, так и контактные зоны контура заземления, который начинается от защищаемого участка и кончается точкой соприкосновения заземлителя с грунтом. В процессе проведения работ особое внимание уделяют частям конструкции заземления, имеющим непосредственный контакт с грунтом и подвергающихся повышенному коррозийному воздействию.

Дело в том, что в результате разрушения металла в зоне контакта снижается его электропроводность и повышается сопротивление растеканию тока. В результате этого показатели надёжности ЗУ, а также эффективность его действия заметно ухудшаются. Для проверки и оценки состояния металлических переходов отдельных элементов заземлителя используются специальные измерительные приборы (омметры). Они обеспечивают снятие показаний с допустимой погрешностью.

Обратите внимание, что указанная процедура проверки проводится, как правило, в рамках рабочих операций, предполагающих комплексное испытание заземляющих устройств на их соответствие требования ПУЭ.

Проведение проверки тесно связано с измерением протекающего в контуре тока, в соответствии с которым и рассчитывается величина нормируемого ПТЭЭП сопротивления. При необходимости это значение может снижаться путём увеличения площади контакта с землёй или изменения электрической проводимости грунта. С этой целью в конструкцию контура заземления добавляются дополнительные металлические стержни, либо повышается концентрация соли в районе его непосредственного соприкосновения с почвой.

Обследуемая заземляющая цепь считается соответствующей требованиям ПУЭ и нормам безопасности лишь в тех случаях, когда величина суммарного сопротивления всех её элементов не превышает определённого значения. На основании полученных в процессе проверки результатов представителями специальных измерительных лабораторий составляется акт о состоянии обследуемой системы и выдаётся разрешение на её дальнейшую эксплуатацию.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Периодичность проверки

Действующими нормативами (ПТЭЭП, в частности) устанавливается периодичность проведения обследований заземления на предмет его соответствия заданным параметрам. Указанная цикличность отражается в специально подготовленном графике планово-предупредительных работ (ППР), который утверждает ответственный за объект.

Помимо этого, согласно п. 2.7.9. уже рассмотренных Правил обязательны визуальные осмотры открытых частей заземления, организуемые с периодичностью не реже 1 раза в полгода. Этим же документом предусматривается и обследование устройства с выборочным вскрытием почвы в районе размещения элементов заземлителя (в этом случае испытания проводятся не реже раза за 12 лет).

Периодические измерения сопротивления устройств заземления организуются согласно приложению №3, п. 26 ПТЭЭП и различаются по типам питающих линий.

При этом возможны следующие варианты:

  • в линиях с питающим напряжением до 1000 Вольт проверка заземления проводится не реже чем 1 раз за 6 лет;
  • для ВЛ питания с рабочим напряжением выше 1000 Вольт такая проверка должна проводиться не реже 1 раза за 12 лет.

Важно! Оговоренные в нормативной документации сроки проверки учитываются при составлении графиков и согласуются со всеми службами, имеющими непосредственное отношение к проводимым работам.

Оформление результатов

По результатам всего комплекса проведённых испытаний составляется протокол проверки заземляющего устройства, в котором обязательно указываются измеренные параметры заземления и даются рекомендации по дальнейшей эксплуатации системы.

Необходимость в организации и проведении полного комплекса измерительных мероприятий чаще всего возникает по окончании реконструкции или ремонта всей системы заземления. В отдельных случаях проверочные испытания проводятся после обнаружения серьёзных нарушений правил эксплуатации.

Значения нормируемых показателей работоспособности таких систем (удельная проводимость грунта и сопротивление установки току растекания) при различных типах заземления нейтрали приведены в табл.36 ПТЭЭП (Приложение 3.1).

Систематические проверки работоспособности заземления гарантируют эффективную защиту потребителя от поражения током и обеспечивают полную безопасность эксплуатации любых видов электрооборудования.

Отзывы о компании ООО «ИНТЕХ»:

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

© 2003-2020 ИНТЕХ — Вентиляция и кондиционирование. Контакты

Как мегаомметром проверить заземление


Измерение сопротивления заземления мегаомметром и мультиметром

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Примечание

Для измерения R заземления мультиметр не очень подходит. Почему, поясняется ниже. В интернете встречаются рекомендации, что лучше пользоваться приборами аналоговыми М-416, Ф4103 (М1), ИСЗ-2016, МС-08 или цифровыми серии MRU (модели 105, 120 или 200). А в чем разница, непонятно. Схемы их подключения аналогичны.

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

Кроме того, агрессивные хим/соединения вступают с ним в прямой контакт, что вызывает появление на поверхности этого электрода окисной пленки. Как результат – снижение способности стержня отводить в землю эл/ток (наведенный, возникший вследствие пробоя изоляции или в ином аварийном случае). Следовательно, такое заземление уже не способно обеспечить безопасность пользователя (обслуживающего персонала).

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть < 0,05 Ом.
  • При таком способе измерения погрешность в пределах 15%.
  • Диагностику контура необходимо проводить при благоприятных погодных условиях.

Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Успехов вам в измерениях!

Как проверить замыкание на массу с помощью мультиметра

Одним из наиболее распространенных тестов при автомобильной диагностике является проверка замыкания на массу. К счастью, вашу работу можно значительно упростить с помощью цифрового мультиметра. Есть несколько мультиметров, специально разработанных для автомобильной диагностики, но любой мультиметр, который может измерять сопротивление в Ом (обычно отображается как Ω на шкале мультиметра), может справиться с этой несложной задачей. Если вы ищете цифровой мультиметр, ознакомьтесь с несколькими нашими сравнительными статьями.

Хотя проверить замыкание на землю с помощью мультиметра несложно (для этой задачи мы рекомендуем использовать мультиметр Fluke 3340), для правильного определения требуются некоторые знания.

В этом сообщении блога мы кратко обсудим теорию проверки замыкания на землю, а затем предоставим подробный обзор точных шагов, которые необходимо предпринять для проверки замыкания на землю с помощью цифрового мультиметра. Когда вы научитесь проверять замыкание на землю с помощью мультиметра, вы сможете найти эту распространенную проблему и сделать первые шаги по устранению небольших проблем с электричеством в ваших приборах или автомобилях.

Ом и сопротивление

Для проверки замыкания на массу с помощью мультиметра необходимо измерить сопротивление. Электрическое сопротивление — это буквально сложность, с которой электричество должно пройти через компонент, называемый проводником. Чем больше сопротивление, тем труднее току пройти через проводник. Чтобы измерить сопротивление, вам нужно найти напряжение объекта и разделить его на ток. Напряжение — это емкость объекта, а ток — это показатель того, какая часть этой емкости используется.

Чем больше потеря тока по сравнению с емкостью, тем большее сопротивление измеряется. Соотношение между вольт и током измеряется в омах, поэтому вам понадобится мультиметр, измеряющий сопротивление, для проверки замыкания на землю. К счастью, цифровой мультиметр автоматически выполнит все вычисления за вас, но всегда полезно понимать динамику измерения, чтобы знать, что происходит.

Вы также можете посмотреть это видео, чтобы лучше понять сопротивление и закон Ома:

Короткое замыкание на землю

Короткое замыкание на землю — это особый тип электрической проблемы (которая наиболее часто встречается в автомобильных проблемах).Короче говоря, если у вас короткое замыкание на землю, это означает, что провод под напряжением касается чего-то, чего он не должен касаться, и случайно заземлен. В электрическом приборе в вашем доме это приведет к срабатыванию выключателя, и вы не сможете восстановить его, пока проблема не будет устранена.

На практике это означает, что где-то в вашей электрической цепи есть утечка. Если ваша электрическая цепь представляет собой простую водопроводную трубу, по которой течет вода, замыкание на землю можно сравнить с большим отверстием где-нибудь в трубе, из которого вытекает вся вода, прежде чем она когда-либо достигнет места назначения.

Как проверить замыкание на массу с помощью мультиметра

Между прочим, вот несколько рекомендуемых продуктов, которые могут вам понадобиться:

Чтобы проверить замыкание на массу с помощью мультиметра, вам необходимо установить шкалу вашего мультиметр на Ом или другой параметр, позволяющий измерять сопротивление. Если у вас есть какой-либо из цифровых мультиметров, предназначенных для автомобильной диагностики, например Innova 3340 (ваш цифровой мультиметр), просто отрегулируйте циферблат, но большинство других мультиметров также будут иметь настройку Ω.Все цифровые мультиметры, которые мы обсуждаем на нашем сайте, имеют возможность измерения сопротивления.

Теперь, когда ваш циферблат находится в режиме настройки сопротивления, подключите один вывод к одному концу цепи или компонента, который вы тестируете. Другой конец подсоедините к хорошему заземлению. В автомобилях подойдет непокрытый кусок металла. Теперь прочтите дисплей вашего цифрового мультиметра. Если на дисплее отображается что-либо , кроме , кроме бесконечного сопротивления OL, короткое замыкание на массу. Это потому, что хорошее заземление одного из ваших выводов должно создавать бесконечное сопротивление.

Заключение

Теперь, когда вы знаете, как проверить замыкание на землю с помощью мультиметра, пришло время проверить свои знания. Помните, что если в проверяемом компоненте или цепи нет замыкания на землю, вы будете измерять что-то другое, кроме бесконечного сопротивления. Возьмите некоторые компоненты в свой автомобиль и убедитесь, что вы что-то читаете, и вы поймете разницу, когда возникнет проблема.

.

Что такое мегомметр?

Мегомметр, или мегомметр, как его более широко называют, представляет собой электрический испытательный прибор, предназначенный для проверки чрезвычайно высоких сопротивлений путем создания постоянного напряжения (постоянного тока) от 300 до 15000 вольт. Мегомметр вырабатывает высоковольтный и слаботочный заряд постоянного тока, который позволяет измерять сопротивления, обычно встречающиеся при испытаниях обмоток электродвигателей или изоляции кабелей. Мегомметры вырабатывают это высокое напряжение с помощью внутренней схемы с батарейным питанием или генератора с ручным управлением.

Человек с дрелью

Проверка электрического оборудования, механизмов или установок на сопротивление обмотки, заземления или изоляции с помощью обычного омметра может быть неточно достигнута из-за чрезвычайно высоких сопротивлений, характерных для этих приложений.Сопротивления в этих случаях могут варьироваться от нескольких МОм до нескольких миллионов МОм и требуют испытательного напряжения, намного превышающего то, которое используется в меньших омметрах. Мегомметр использует постоянное напряжение в диапазоне от 300 до 15 000 вольт для точного измерения этих очень высоких значений сопротивления. Эти напряжения поставляются с очень низким номинальным током и обычно не опасны для пользователя мегомметра.

Существует два основных типа мегомметров: с батарейным питанием и с ручным кривошипом или моторным генератором.Оба варианта мегомметра способны проводить точные испытания сопротивления изоляции на установках и оборудовании с сопротивлением в несколько тераом (1000000 мегом). В мегомметрах с батарейным питанием используются специальные внутренние схемы для преобразования низкого напряжения батареи в более высокое испытательное напряжение. Эти инструменты, как правило, меньше и легче, чем версии с генераторами, и предлагают преимущества одной кнопки, управления одной рукой и выбора нескольких рабочих напряжений.Обратной стороной мегомметров с батарейным питанием является короткое время автономной работы и то, что они, как правило, выдают максимум 5000 вольт.

Генераторные мегаомметры

используют небольшой внутренний генератор для создания требуемых высоких испытательных напряжений.Эти генераторы обычно управляются вручную с помощью внешней кривошипной рукоятки, но могут быть оснащены внутренним моторным приводом. Эти инструменты могут создавать напряжения от 300 до 15 000 вольт и не требуют замены батареи. Одним из недостатков использования этого типа инструмента является то, что операция требует использования двух рук, что требует использования пристегивающихся проводов или помощи второго человека. Кроме того, они обычно более громоздкие и обеспечивают одно испытательное напряжение.

При проверке электрического оборудования следует всегда помнить о высоком напряжении, создаваемом этими приборами.Испытательные напряжения мегомметра не должны превышать рабочее напряжение испытываемого оборудования со слишком большим запасом, поскольку это может вызвать необратимые повреждения. Несмотря на то, что испытательное напряжение подается при очень низком токе, всегда следует проявлять осторожность, чтобы предотвратить поражение электрическим током при работе с мегомметром.

.

Что я должен использовать: высокий потенциометр или мегомметр?

Когда следует использовать высокий потенциометр, а когда — мегомметр? На этот, казалось бы, простой вопрос нет такого простого ответа, поскольку разница заключается не в функциях каждого инструмента, а в ожидаемом результате.

Давайте сначала посмотрим, что делает каждое устройство:

A hi-pot (сокращенный способ обозначения высокого потенциала или высокого напряжения) — это термин, используемый для инструментов тестирования электробезопасности, используемых для проверки электрической изоляции в готовых приборах, кабелях или других проводных узлах, печатных платах, электродвигателях, и трансформаторы.

Мегаомметр — это особый тип омметра, который используется для измерения электрического сопротивления изоляторов.

По сути, и высокий потенциометр, и мегомметр делают одно и то же, но с совершенно разными результатами. Оба прибора подают сравнительно высокое напряжение на изоляцию и пропускают через изоляцию ток утечки, соизмеримый с ее изоляционными свойствами и состоянием. Но мегомметр дает оператору измерение, в то время как высокий горшок принимает меры.

Мегомметр измеряет чрезвычайно малые токи, обычно в нано ампер, которые возникают из-за дефектов и разрушения изоляционного материала. По закону Ома он преобразует это в показания сопротивления. Обычно они выражаются в МОмах. Все, что меньше одного МОм, обычно считается неработающим.

Как только оператор получает показания мегомметра, он / она должен решить, должно ли тестируемое оборудование оставаться в эксплуатации, очищаться, ремонтироваться или сдаваться в лом.Поскольку он работает с испытательным током всего в несколько миллиампер, мегомметр имеет ограниченную мощность и не повреждает изоляцию. Это важно, потому что наиболее эффективное использование мегомметра включает в себя повторяющиеся рутинные испытания для определения тенденции жизненного цикла и выполнения профилактического обслуживания.

Напротив, высокий потенциометр использует более высокие напряжения и токи, и, хотя он может обеспечивать измерения, его основная функция заключается в выявлении и устранении слабых; например, вывод из эксплуатации устаревшего оборудования путем разрушения слабой изоляции до того, как в работе произойдет дорогостоящая неисправность.Тестирование можно проводить как при постоянном, так и при переменном напряжении.

High-pots также известны как «тестеры диэлектрической прочности». Испытуемый объект должен выдерживать приложенное напряжение; тем не менее, можно пойти на компромисс в тесте «подъем вверх». В тестере есть измеритель напряжения и тока, и ожидается, что они будут повышаться синхронно, пока изоляция «выдерживает». Когда ток начинает расти быстрее, чем напряжение, испытание резко останавливается, прежде чем может произойти повышенное повреждение. Затем тестируемый элемент необходимо отремонтировать.

Выбор между высоковольтным потенциометром или мегомметром для проведения тестирования на самом деле сводится к тому, что вы тестируете, какое напряжение и ток необходимы для тестирования, и немного личных предпочтений.

Если вам нужны измерения для отслеживания тенденций жизненного цикла оборудования, то мегомметр — ваш инструмент.

Однако, если вы хотите по-настоящему нагружать тестируемое оборудование, чтобы определить, соответствует ли оно стандартам и безопасно ли оно работает, тест с высокой нагрузкой поможет вам принять более решительные меры.

.

Мегаомметров | Тестеры изоляции | Инструменты AEMC

Почему выбирают мегомметры AEMC?

Полная линейка мегомметров

Мы знаем, что для вас очень важно иметь возможность правильно определять состояние изоляции проводов и обмоток двигателя, чтобы предотвратить повреждение дорогостоящего оборудования и незапланированные отключения, а также обеспечить личную безопасность. Вот почему мы предлагаем полную линейку мегомметров с испытательным напряжением от 10 В до 15 кВ (в зависимости от модели), способных измерять сопротивление изоляции от 1000 до 30 ТОм.Эти прочные, погодоустойчивые измерители точны, надежны и созданы для работы. Доступны модели с батарейным питанием, питанием от переменного тока и с ручным приводом.

Покрытие всего спектра испытаний сопротивления изоляции

Регулярное использование мегомметра для проверки как новых установок, так и в качестве программы технического обслуживания помогает обеспечить безопасность ваших цепей. Наши приборы предлагают испытания с высоким сопротивлением до 30 Ом. Мегомметры AEMC выполняют точечные, синхронизированные, ступенчатые и линейные измерения напряжения для измерения сопротивления, коэффициента диэлектрической абсорбции (DAR), индекса поляризации (PI) и диэлектрического разряда (DD).

Основные характеристики
  • Более 110 лет опыта в разработке и производстве мегомметров — гарантия того, что у вас есть профессиональный надежный прибор.
  • Разработано в соответствии с последними стандартами безопасности — ваша защита превыше всего
  • Автоматические функции тестирования и вычислений — исключают ошибки, экономят время и деньги
  • Предлагает самый широкий спектр приборов для проверки изоляции — позволяет выбрать подходящий прибор для вашего применения.
  • Простая и легкая в использовании настройка -m сделай это правильно с первого раза
Мощное и гибкое программное обеспечение для анализа данных

В комплект входит наше мощное программное обеспечение DataView, которое позволяет получить ценную информацию о состоянии изоляции проводов, кабелей и обмоток двигателя.

Сравнение мегомметров

Мы создали следующие универсальные одностраничные сравнительные документы, чтобы помочь вам выбрать лучший мегомметр для ваших конкретных нужд.

СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметров — (жесткий футляр)
СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметров — (портативные)

Эксперт техподдержки

AEMC ® обеспечивает полную техническую поддержку по нашей горячей линии 800-945-2362 (доб. 351), поговорите напрямую с одним из членов нашей группы технической поддержки.Или отправьте свои вопросы нашей технической команде по электронной почте. [email protected]

Отличное обслуживание клиентов

Наша компетентная и дружелюбная сервисная команда обеспечивает лучшую поддержку в отрасли. Мы стараемся понять ваш запрос или обратную связь уважительно и ответственно. Наша цель в AEMC ® — превзойти ваши ожидания.

Запросить демонстрацию

Есть вопросы по использованию мегомметров AEMC ® ? Мы рады провести демонстрацию с нашими техническими экспертами.Свяжитесь с нами по телефону (800) 343-1391 или напишите нам по адресу [email protected]

.

Как пользоваться мегаомметром: измерение, подключение, видео

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

Содержание статьи

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

    Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

    Как пользоваться мегаомметром: правила электробезопасности

  3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  6. Работать в перчатках.

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю».

    Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В100 ВДолжно соответствовать паспортным, но не менее 0,5 МОмВо время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В250 В
тоже, но напряжением от 100 В до 380 В500-1000 В
свыше 380 В, но не больше 1000 В1000-2500 В
Распределительные устройства, щиты, токопроводы1000-2500 ВНе менее 1 МОмИзмерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть1000 ВНе менее 0,5 МОмВ опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года
Стационарные электроплиты1000 ВНе менее 1 МОмИзмерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Тестеры заземления

Назначение заземления

Для создания защитного заземления следует предусмотреть соединение заземляющего прибора с оборудованием, электрической установкой — есть риск того, что последний окажется под напряжением при замыкании на корпус. Создается для того, чтобы обезопасить пользователя от удара тока при касании к корпусу или другим элементам электроустановки — не токоведущим, но находящимся под напряжением.

Не меньше одного раза в год и после проведения монтажной работы, приспособление необходимо испытывать согласно программе «Правила устройства электроустановки».

Что такое тестер заземления

Тестер измерения сопротивления заземления — это специальный измерительный прибор, который используется при измерении сопротивления заземляющего устройства, удельных сопротивлений почвы, активного сопротивления. Помимо этого он также способен дать характеристику электрическому состоянию заземляющего устройства и громоотвода.

При покупке приспособления стоит обращать внимание на технические характеристики и выбирать те образцы, которые будут предпочтительны для дальнейшей работы. Обратите внимание на изделия от проверенных производителей. Приборы от известных компаний будут служить долго и без поломок. Цена не является решающим фактором к покупке. Подозрительно дешевая стоимость может быть признаком подделки или брака.

Заказ и покупка на gtest.com.ua

Купить измеритель сопротивления заземления по доступной цене можно в нашем интернет-магазине. Мы предоставляем удобные и выгодные условия выбора, оплаты и доставки. В ассортименте сайта исключительно качественные приборы, обладающие сертификатами, которые это подтверждают. В удобном каталоге очень просто подобрать необходимое устройство, всегда указана актуальная цена. Оформления заказа занимает не больше 10 минут.

Доставка осуществляется во все регионы Украины курьерской службой «Новая почта». Срок поставки по Киеву — один день, в другие города — в самые быстрые сроки, зависимо от километража. Наиболее удобный способ оплаты выбирается клиентом самостоятельно. Это может быть наличный или безналичный расчет. Компания обеспечивает быстрое и качественное сервисное обслуживание товаров, которые ранее были приобретены у нас.

Квалифицированные специалисты могут проконсультировать и помочь определиться с выбором. При возникновении дополнительных вопросов и для получения более подробной информации, в рабочее время обращайтесь по номерам телефонов, которые указаны на странице сайта.

 

Тестер заземления (другое название – измеритель сопротивления заземления) — прибор предназначенный для измерения сопротивления контура заземления. Тестеры заземления купить можно в нашем магазине — будут надежными помощниками в выполнении замеров как контура заземления так и напряжения, тока. Некоторые модели тестеров обеспечивают также тестирование автоматов защиты. Сейчас в Украине можно купить тестер заземления как правило произведенные в Китае, реже в США или Германии. Измеритель заземления  цена  в интернет-магазине G-test  будет минимальна, можно купить также уценённые — тем самым сэкономить собственные деньги. Если Вы решили  купить недорого или дёшево — обращайтесь к нам. В нашем ассортименте самый большой выбор измерителей сопротивления заземления. Тестер заземления купить по самым низким ценам!

Смотрите так же:   Анемометры, Блоки питания, Влагомеры,  Генераторы сигналов,  Дозиметры, детекторы излучения и магнитного поля,  Измерители сопротивления заземления,  Измерители сопротивления изоляции,  Искатели скрытой проводки, кабельные тестеры,  Лазерные линейки,  Люксметры, спектроанализаторы, Мультиметры,  Нивелиры,  Нитрат-тестеры, газоанализаторы, Осциллографы,  Пирометры,  Программируемые Нагрузки DC, Расходомеры ультразвуковые,  Регистраторы,  Тахометры,  Тепловизоры,  Термометры,  Тестеры чередования фаз,  Токовые клещи,  Толщиномеры,  Эндоскопы для трубопроводов и канализаций,  Шумомеры,  РАСПРОДАЖА.

Измеритель сопротивления заземления ИС-20 — Мегаомметр

Назначение Измеритель сопротивления заземления ИС-20
•измерение сопротивления элементов заземления трех- или четырехпроводным методом от 1 мОм до 10 кОм 
•измерение сопротивления единичного заземлителя в многоэлементном заземлении без разрыва цепи заземлителей (только ИС-20/1
•измерение сопротивления заземления без вспомогательных электродов с применением двух клещей от 0,01 до 100 Ом (только ИС-20/1
•измерение сопротивления металлосвязи током свыше 200 мА с разрешением 1мОм 
•измерение переменного тока частотой 50Гц от 1 мА до 2,5А (только ИС-20/1) 
•вычисление удельного сопротивления грунта в Ом/м

 

Краткие технические характеристики измерителя сопротивления заземления ИС-20

•защита от появления напряжения во время измерения
•автоматический выбор диапазонов измерений
•возможность калибровки прибора на сопротивление измерительных проводов произвольной длины при измерении по двухпроводной схеме
•высокая помехоустойчивость
•высокоинформативный ЖК дисплей
•ударопрочный, пыле- и влагозащищенный корпус. Степень защиты IP54
•встроенная память на 10000 измерений
•автоматическое отключение питания
•индикация состояния внутреннего источника питания
•система защиты аккумулятора от перезаряда
•защита от неправильного включения
•связь с компьютером

 

Технические характеристики

Параметр ИС-20
Диапазоны измерения сопротивления контура заземления 1- 999 мОм 
1,00-9,99 Ом 
10,0 — 99,9 Ом 
100 — 999 Ом 
1кОм — 9,99 кОм
Диапазон измерения сопротивления заземления методом двух клещей без разрыва петли заземления. 0,01-100 Ом
Максимальный тестовый ток 250мА / 128Гц
Погрешность 3%
Фильтрация помехи до 24В
Измерение напряжения (амплитудное значение) 300В
Измерение переменного тока частотой 50Гц (с помощью клещей КТИ-20/1) 1мA – 2,5А
Рабочая температура От –15°С до +55°С
Питание аккумулятор Ni-MH 6 В или 5 элементов типа АА
Габариты 120х250х80 мм
Вес 800 гр.

 

Комплект поставки ИС-20

 

Наименование и условное обозначение Количество
1. измеритель ИС-20 или ИС-20/1 1
2. аккумулятор Ni-MH 6 В (установлен в приборе) 1
3. адаптер для заряда аккумулятора 1
4. струбцина для подключения к шине заземления 1
5. изолированный зажим типа «крокодил» 2
6. провод 1,5 м с острым зондом 2
7. провод 40 м на катушке 2
8. Bluetooth-USB адаптер 1
9. руководство по эксплуатации 1
10. сумка для переноски 1

  *Поставляется по отдельному заказу. Предназначены для измерения сопротивления заземления методом двух клещей. 
Дополнительно прибор может быть укомплектован 4-мя штырями длиной 1м

7 CFR § 1755.406 — Измерение сопротивления заземления экрана или брони. | CFR | Закон США

§ 1755.406 Измерение сопротивления заземления щита или брони.

(a) Измерения сопротивления заземления экрана или брони должны проводиться на законченных отрезках медного кабеля и проводов, а также на волоконно-оптических кабелях.

(b) Метод измерения.

(1) Измерение сопротивления заземления экрана или брони должно производиться между медным кабелем и экраном провода и землей, а также между броней оптоволоконного кабеля и землей, соответственно.Измерения должны проводиться либо на кабелях, либо на длинах проводов перед сращиванием и до того, как будут выполнены какие-либо заземляющие соединения с кабелем, экранами проводов или броней. По желанию, измерение может проводиться на длинах кабеля и провода после сращивания, но все заземляющие соединения должны быть удалены с тестируемой секции.

(2) Метод измерения с использованием комплекта для испытания сопротивления изоляции или мегомметра мостового постоянного тока должен быть таким, как показано на рисунке 18, следующим образом:

(c) Испытательное оборудование.

(1) Измерения сопротивления заземления экрана или брони могут быть выполнены с использованием набора для испытания сопротивления изоляции, мегаомметра мостового типа постоянного тока или имеющегося в продаже прибора для определения места повреждения.

(2) Комплект для испытания сопротивления изоляции должен иметь выходное напряжение не более 500 вольт постоянного тока и может работать вручную или работать от батареи.

(3) Мегаомметр мостового типа постоянного тока, который может питаться переменным током, должен иметь шкалы и множители, позволяющие точно считывать значения сопротивления от 50 000 Ом до 10 МОм.Напряжение, подаваемое на экран или броню во время испытания, не должно быть меньше «250 вольт постоянного тока» и не должно превышать «1000 вольт постоянного тока» при использовании прибора с регулируемыми уровнями испытательного напряжения.

(4) Вместо вышеупомянутого оборудования можно использовать имеющиеся в продаже локаторы неисправностей, если устройства способны обнаруживать неисправности, имеющие значения сопротивления от 50 000 Ом до 10 МОм. Работа устройств и метод поиска неисправностей должны соответствовать инструкциям производителя.

(d) Применимые результаты.

(1) Для всех новых медных кабелей и проводов и всех новых волоконно-оптических кабелей уровни сопротивления заземления экрана или брони обычно превышают 1 МОм-милю (1,6 МОм-км) при 68 ° F (20 ° C). Значение 100 000 Ом-миль (161 000 Ом-км) при 68 ° F (20 ° C) должно быть минимальным приемлемым значением сопротивления заземления экрана или брони.

(2) Сопротивление заземления экрана или брони обратно пропорционально длине и температуре. Кроме того, другими факторами, которые могут повлиять на показания, могут быть почвенные условия, неисправное испытательное оборудование и неправильные процедуры испытаний.

(3) Для метода испытания сопротивления и мегаомметра мостового типа постоянного тока значение Ом-миля (Ом-км) для сопротивления заземления экрана или брони должно быть вычислено путем умножения фактического показания шкалы в Ом на испытательной установке на длину. в милях (км) тестируемого кабеля или провода.

(4)

(i) Сопротивление заземления экрана или брони объектива можно определить путем деления 100 000 на длину в милях (161 000 на длину в км) испытуемого кабеля или провода.Полученное значение является минимально допустимым показанием шкалы измерителя в омах. Примеры пунктов (d) (3) и (d) (4) этого раздела следующие:

Уравнение 1. Испытательный комплект: показание шкалы * длина = сопротивление-длина

75000 Ом * 3 мили = 225000 Ом-миля

(75000 Ом * 4,9 км = 367000 Ом-км)

Уравнение 2. 100 000 Ом-миля ÷ длина = минимально допустимое показание шкалы счетчика.

100000 Ом-миля ÷ 3 мили = 33 333 Ом

(161000 Ом-км ÷ 4.9 км = 32 857 Ом)

(ii) Поскольку 33 333 Ом (32 857 Ом) является минимально допустимым показанием шкалы измерителя, а показание шкалы измерителя составляет 75 000 Ом, считается, что кабель соответствует требованиям 100 000 Ом-миль (161 000 Ом-км).

(5) Из-за различий между различными материалами оболочки, используемыми при производстве кабеля или провода, а также из-за различных условий почвы, нецелесообразно предоставлять простые факторы для прогнозирования величины изменения сопротивления экрана или брони от сопротивления заземления из-за температуры.Однако отклонения могут быть значительными при значительных отклонениях температуры от окружающей температуры 68 ° F (20 ° C).

(e) Запись данных. Данные должны быть скорректированы с учетом требований к длине в ом-миля (ом-км) и температуре 68 ° F (20 ° C) и должны быть записаны в форме, указанной в применимом строительном контракте.

(f) Возможные причины несоответствия.

(1) Если результаты измерений сопротивления ниже требуемых 100000 Ом-миль (161000 Ом-км) при 68 ° F (20 ° C), температура оболочки, условия почвы, испытательное оборудование и метод должны быть проверены перед кабелем. или провод считается неисправным.Если температура составляет приблизительно 68 ° F (20 ° C) и условия почвы приемлемы, и отображается показание менее 100 000 Ом-миль (161 000 Ом-км), проверьте калибровку оборудования; а также метод испытания. Если было обнаружено, что оборудование не откалибровано, откалибруйте оборудование заново и повторно измерьте кабель или провод. Если температура была 86 ° F (30 ° C) или выше, кабель или провод должны быть повторно измерены в то время, когда температура составляет примерно 68 ° F (20 ° C). Если испытание проводилось в необычно влажной почве, кабель или провод следует повторно испытать после того, как почва достигнет нормальных условий.Если после выполнения вышеуказанных шагов достигается значение сопротивления 100 000 Ом-миль (161 000 Ом-км) или больше, кабель или провод считается приемлемым.

(2) Если значение сопротивления кабеля или провода все еще ниже требуемого 100000 Ом-миль (161000 Ом-км) после выполнения шагов, перечисленных в параграфе (f) (1) этого раздела, неисправность должны быть изолированы путем измерения сопротивления заземления экрана или брони на отдельных участках кабеля или провода.

(3) После устранения неисправности или неисправностей оболочка кабеля или провода должна быть отремонтирована в соответствии с § 1755.200, Стандарт RUS на сращивание медных и оптоволоконных кабелей, или вся секция кабеля или провода может быть заменена по запросу заемщик.

Комплект

Megger DET4TCR2 + Комплект профессионального тестера сопротивления заземления (перезаряжаемый) Комплект

Megger DET4TCR2 + Комплект профессионального тестера сопротивления заземления (перезаряжаемый)

Магазин не будет работать корректно, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Специальная цена 2 995,00 долларов США Обычная цена 3 435 долларов США

Номер детали Mitchell

АВО-1000-405-К

В наличии

Обычно в наличии, звоните, если срочно

Краткий обзор

Комплект Megger DET4TCR2 + Тестер заземления / Комплект тестера заземления (1000-405) включает внутренние аккумуляторные батареи, зажимы и комплект принадлежностей PROFESSIONAL

Тестер заземления Meggers

— тестирование по 2,3,4 точкам, ART * и испытание с фиксацией (без стоек) в одном компактном приборе!

  • Комплексное решение для всех ваших потребностей в испытании заземляющих стержней и удельного сопротивления грунта:

— Испытания по 2 точкам
— Испытания по 3 точкам (испытание на падение потенциала)
— Испытания по 4 точкам (испытание на удельное сопротивление грунта)
— Испытания ART (Метод прикрепленного стержня)
— Испытания с зажимом (испытание без стоек)

  • Простое переключение между тестированием 25 В или 50 В (в соответствии с местными стандартами тестирования)
  • Четкий, легко читаемый дисплей обеспечивает отличную контрастность и угол обзора для использования на открытом воздухе.
  • Яркий дисплей с подсветкой расширяет рабочую среду до подвалов и других темных помещений
  • Широкий диапазон измерения 0.От 01 Вт до 20 кВт, измерение шума заземления от 1 В до 100 В и измерение тока заземления от 1 мА до 20 А
  • Корпус со степенью защиты IP54 для работы на открытом воздухе
  • Поворотный переключатель диапазонов и кнопка тестирования одним касанием позволяют работать руками в перчатках

* Что такое АРТ?
ART (метод присоединенного стержня) позволяет тестировать заземляющий стержень без необходимости «поднимать» (отсоединять) подключение к электросети. В типичной системе заземления путь заземления электросети становится параллельным сопротивлением и вызывает неправильные показания в большинстве тестеров сопротивления заземления колышкового типа.В тесте ART используется зажимной зонд для измерения тока ТОЛЬКО для измерения тока, протекающего через тестируемое заземление, и позволяет рассчитать сопротивление заземления

.

Тестер заземления
Дополнительная информация
Масса 9,000000
Продукт включает , четыре стойки для шнека, четыре измерительных провода (два 164 фута и два 98 футов) на приемных барабанах, токоизмерительные клещи, индукционные зажимы, плата проверки калибровки зажимов, комплект углового адаптера, жесткий футляр для переноски, рулетка и компакт-диск с инструкцией по эксплуатации
Технические характеристики

Диапазон сопротивления: 0.От 01Вт до 20кВт
2,3- или 4-точечная точность измерения сопротивления: 2% ± 3 цифры
ART Точность сопротивления: 5% ± 3 цифры
Выходное напряжение: ± 25 В или ± 50 В при 128 Гц
Выходной ток: 4,5 мА или 0,45 мА при 128 Гц
Диапазон напряжения заземления: От 0 до 100 В переменного тока
Точность напряжения заземления: 5% ± 3 цифры
Диапазон тока заземления: от 0,5 мА до 19,9 А (с использованием зажима)
Дисплей : 3 1/2 разрядный высококонтрастный ЖК-дисплей с подсветкой
Источник питания: внутренний аккумулятор
Стандарты соответствия: KEMA K85B и EN61557
Размеры: 8 дюймов x 5.8 дюймов x 3 дюйма (2,2 фунта)

размер 8 дюймов x 5,8 дюйма x 3 дюйма (2,2 фунта)
Блок питания внутренний аккумулятор
Производитель Меггер
MPN DET4TCR2 + Комплект
Гарантия производителя 1 год

Общие сведения об испытании сопротивления изоляции | EC&M

Изоляция начинает стареть сразу после ее изготовления.С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Это ухудшение может привести к опасным условиям с точки зрения надежности электроснабжения и безопасности персонала. Таким образом, важно быстро выявить это ухудшение, чтобы можно было предпринять корректирующие действия. Не все понимают один из простейших тестов и необходимый для него инструмент. Чтобы устранить это непонимание, давайте подробно обсудим тестирование сопротивления изоляции (IR) и мегомметр.

Компоненты для испытания изоляции

Подойдем к теме покомпонентно.

Мегаомметр

Базовая схема подключения мегомметра показана на рис. 1 (слева). Мегомметр похож на мультиметр, когда последний выполняет функцию омметра. Однако есть отличия.

Во-первых, выход мегомметра на намного выше , чем у мультиметра. Используются напряжения 100, 250, 500, 1000, 2500, 5000 и даже 10000 В (, таблица 1, ).Наиболее распространенные напряжения — 500 В и 1000 В. Более высокие напряжения используются для большей нагрузки на изоляцию и, таким образом, для получения более точных результатов. Таблица 1. Рекомендуемые испытательные напряжения для текущих проверок сопротивления изоляции оборудования, рассчитанного на напряжение 4160 В и выше.

Во-вторых, диапазон мегомметра выражается в мегаомах, как следует из названия, а не в омах, как у мультиметра.

В-третьих, мегомметр имеет относительно высокое внутреннее сопротивление, что делает его менее опасным в использовании, несмотря на более высокие напряжения.

Контрольные соединения

Мегаомметр обычно оснащен тремя выводами. Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.

Клемма «ЗЕМЛЯ» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.

Клемма «GUARD» (или «G») обеспечивает обратный контур, который обходит счетчик.Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD».

Рис. 2, 3 и 4 показаны соединения для тестирования трех распространенных типов оборудования. На рис. 2 показано соединение для проверки ввода трансформатора без измерения поверхностной утечки. Измеряется только ток через изоляцию, так как любой поверхностный ток будет возвращаться на провод «GUARD».

Различные тесты изоляции

По сути, есть три различных теста, которые можно выполнить с помощью мегомметра.

1) Сопротивление изоляции (IR)

Это самый простой из тестов. После выполнения необходимых подключений вы прикладываете испытательное напряжение в течение одной минуты. (Одноминутный интервал — это отраслевая практика, которая позволяет всем снимать показания одновременно. Таким образом, сравнение показаний будет иметь ценность, потому что методы тестирования, хотя и взяты разными людьми, согласованы.) интервале сопротивление должно падать или оставаться относительно стабильным.В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления.

Обратите внимание, что ИК чувствителен к температуре. Когда температура повышается, ИК понижается, и наоборот. Следовательно, чтобы сравнить новые показания с предыдущими, вам необходимо скорректировать показания до некоторой базовой температуры. Обычно в качестве температур сравнения используются 20 ° C или 40 ° C; таблицы доступны для любой коррекции.Однако общее практическое правило состоит в том, что ИК-излучение изменяется в два раза на каждые 10 ° C.

Например, предположим, что мы получили показание ИК-излучения 100 МОм при температуре изоляции 30 ° C. Скорректированный ИК (при 20 ° C) будет 100 МОм умножить на 2 или 200 МОм.

Также обратите внимание, что допустимые значения IR будут зависеть от оборудования. Исторически сложилось так, что полевой персонал использовал сомнительный стандарт — один мегом на кВ плюс один. Международная ассоциация электрических испытаний.(NETA) Спецификация NETA MTS-1993, Спецификации технического обслуживания для оборудования и систем распределения электроэнергии , предоставляет гораздо более реалистичные и полезные значения.

Результаты испытаний следует сравнить с предыдущими показаниями и показаниями, снятыми для аналогичного оборудования. Любые значения ниже стандартных минимумов NETA или внезапные отклонения от предыдущих значений должны быть исследованы.

2) Коэффициент диэлектрической абсорбции

Этот тест подтверждает тот факт, что «хорошая» изоляция будет показывать постепенно увеличивающееся ИК-излучение после подачи испытательного напряжения.После того, как соединения выполнены, прикладывается испытательное напряжение, и ИК считывается в два разных момента: обычно 30 и 60 секунд или 60 секунд и 10 минут. Более позднее показание делится на более раннее, в результате чего получается коэффициент диэлектрического поглощения. 10 мин. / 60 сек. отношение называется индексом поляризации (ПИ).

Например, предположим, что мы применяем мегомметр, как описано ранее, с соответствующим испытательным напряжением. Одна мин. Показание ИК составляет 50 МОм, а 10 мин.Показание ИК составляет 125 МОм. Таким образом, PI составляет 125 МОм, разделенное на 50 МОм, или 2,5.

В различных источниках имеются таблицы допустимых значений коэффициентов диэлектрической абсорбции (см. , таблица 2, ). Таблица 2. Перечень условий изоляции в соответствии с коэффициентами диэлектрической абсорбции. Эти значения следует рассматривать как предварительные и относительные, с учетом опыта применения метода сопротивления времени в течение определенного периода времени.

* Эти результаты будут удовлетворительными для оборудования с очень низкой емкостью, такого как короткие участки домашней электропроводки.

** В некоторых случаях с двигателями значения, примерно на 20% превышающие указанные здесь, указывают на сухую, хрупкую обмотку, которая может выйти из строя при ударах или во время пусков. Для профилактического обслуживания обмотку двигателя следует очистить, обработать и высушить для восстановления гибкости обмотки.

3) Испытание ступенчатым напряжением

Это испытание особенно полезно при оценке устаревшей или поврежденной изоляции, не обязательно имеющей влажность или загрязнение.Здесь требуется испытательный прибор с двойным напряжением. После подключения выполняется ИК-тест при низком напряжении, скажем, 500 В. Затем образец для испытаний разряжается, и испытание проводится снова, на этот раз при более высоком напряжении, скажем, 2500 В. Если разница между двумя показаниями ИК-излучения превышает 25%, следует подозревать старение или повреждение изоляции.

БОКОВАЯ ШИНА: Основная теория

Эквивалентная схема для электрической изоляции показана на Рис.5 ниже. Верхняя клемма может быть центральным проводом силового кабеля, а нижняя клемма — его экраном. Ток, протекающий через изоляцию кабеля, будет тем током, который на схеме обозначен как «полный ток». Как видите, полный ток равен сумме «емкостного тока» плюс «ток поглощения» плюс «ток утечки».

Обратите внимание, что полный ток — это не ток нагрузки, протекающий через систему. Скорее, это ток, который течет от проводника под напряжением через изоляцию к земле.

Давайте дадим здесь несколько основных определений.

Емкостный ток . Конденсатор образуется, когда два проводника разделены изолятором. Такова ситуация в энергосистеме.

Если внезапно приложить напряжение постоянного тока (замыкающий переключатель на рис. 5 ), электроны устремятся к отрицательной пластине и будут оттянуты от положительной пластины. Первоначально этот ток будет очень большим, но постепенно он будет уменьшаться до гораздо меньшего значения, в конечном итоге приближаясь к нулю.Ток, обозначенный как «емкостной зарядный ток» в Рис. 6 ниже, показывает, как этот ток изменяется со временем после приложения напряжения постоянного тока.

Ток утечки . Никакая изоляция не идеальна; даже новая изоляция будет иметь некоторый ток утечки, хотя и небольшой. Этот ток утечки будет увеличиваться с возрастом изоляции. Это также ухудшится, если изоляция будет влажной или загрязненной.

«Ток проводимости или утечки», показанный в Рис. 6 — это графическое представление тока утечки.Обратите внимание, что он начинается с нуля и быстро увеличивается до конечного значения 10 мкА. Так ведет себя хорошая изоляция. Однако по мере старения и ухудшения состояния изоляции в токе утечки могут произойти два изменения. Одно изменение может заключаться в том, что конечное значение тока утечки может увеличиваться, а не выравниваться. Например, вместо выравнивания на уровне 10 мкА конечный ток может увеличиться до 20 мкА. Другое изменение может заключаться в том, что вместо быстрого повышения до конечного значения и выравнивания ток утечки просто может продолжать увеличиваться.В этом случае изоляция в конечном итоге выйдет из строя.

Ток потребления . Заряды, которые образуются на пластинах конденсатора, притягивают заряды противоположной полярности в изоляции, заставляя эти заряды перемещаться и, таким образом, потреблять ток. Наибольшее движение заряда происходит в начальные моменты, а затем постепенно спадает почти до нуля. Этот ток называется диэлектрическим поглощением или просто током поглощения. Временной график этого тока, обозначенный как «ток поглощения», также показан на рис.6 .

Итого текущие . Полный ток, протекающий в цепи, равен сумме компонентов, показанных на рис. 6. Полный ток, протекающий при приложении постоянного напряжения, начинается с относительно высокого значения, а затем падает, установившись на значении чуть выше ток утечки. При плохой или изношенной изоляции общий ток будет медленно падать или даже увеличиваться.

Практическое руководство по испытанию сопротивления заземления

Сопротивление заземления для электрических систем заземления

Самая простая и несколько вводящая в заблуждение идея хорошего заземления для электрической системы — это отрезок железной трубы, вбитый в землю с помощью провода проводник, подключенный от трубы к электрической цепи (рисунок 1).

Практическое руководство по испытанию сопротивления заземления — Megger (на фото: четырехконтактный тестер сопротивления заземления / заземления и удельного сопротивления грунта)

Это может быть, а может и не быть подходящей дорогой с низким сопротивлением для электрического тока для защиты персонала и оборудования.

Рис. 1. Упрощенная система заземления на промышленном предприятии

Практичный заземляющий электрод, обеспечивающий низкое сопротивление заземления, не всегда легко получить. Но из опыта, полученного другими, вы можете узнать, как настроить надежную систему и как проверить значение сопротивления с разумной точностью.

Как вы увидите, удельное сопротивление земли имеет важное значение для сопротивления электрода , так же как и глубина, размер и форма электрода .

Принципы и методы испытаний на сопротивление заземления, описанные в этом разделе, применимы к установкам молниеотвода , а также к другим системам , требующим заземления с низким сопротивлением . Такие испытания проводятся на электростанциях, в системах распределения электроэнергии, промышленных предприятиях и в телекоммуникационных системах.


Факторы, которые могут изменить минимальное сопротивление заземления

Позже мы обсудим, какое значение сопротивления заземления считается достаточно низким. Вы увидите, что не существует общего правила, применимого для всех случаев.

Однако сначала рассмотрим следующие факторы, которые могут из года в год изменять требования к заземляющему электроду:

Правило № 1

Завод или другое электрическое оборудование может увеличиваться в размерах. Кроме того, новые заводы продолжают строиться все больше и больше. Такие изменения создают разные потребности в заземляющем электроде. То, что раньше было достаточно низким сопротивлением заземления, может стать устаревшим «стандартом».

Правило № 2

По мере того, как предприятия добавляют более современное чувствительное оборудование с компьютерным управлением, проблемы электрических шумов усугубляются. Шум, который не повлияет на более грубое, старое оборудование , может ежедневно вызывать проблемы с новым оборудованием .

Правило № 3

По мере того, как все больше неметаллических труб и трубопроводов прокладывается под землей, такие установки становятся все менее надежными в качестве эффективных заземляющих соединений с низким сопротивлением.

Правило № 4

Во многих местах уровень грунтовых вод постепенно падает. Примерно через год системы заземляющих электродов, которые раньше были эффективными, могут оказаться в сухом заземлении с высоким сопротивлением.

Эти факторы подчеркивают важность непрерывной периодической программы испытаний на сопротивление заземлению . Недостаточно проверить сопротивление заземления только во время установки.


Факторы, влияющие на требования к хорошей системе заземления

На промышленном предприятии или другом объекте, требующем системы заземления, необходимо внимательно рассмотреть одно из следующих условий (см. Рисунок 2):

Рисунок 2 — Типичные условия, которые необходимо учитывать при система заземления установки

Ограничение до определенных значений напряжения на земле всей электрической системы. Использование подходящей системы заземления может сделать это, поддерживая в некоторой точке цепи потенциал земли.

Такая система заземления обеспечивает следующие преимущества:

  • Ограничивает напряжение, которому подвергается изоляция системы от земли, тем самым более точно фиксируя номинальные характеристики изоляции.
  • Ограничивает напряжение между системой и землей или между системой и корпусом до значений, безопасных для персонала.
  • Обеспечивает относительно стабильную систему с минимумом переходных перенапряжений.
  • Позволяет быстро изолировать любое замыкание системы на землю.
Практическое руководство по тестированию сопротивления заземления — Megger

Что такое тест Megger и как он выполняется

Устройство используется с 1889 года, популярность возросла в течение 1920-х годов, так как давно разработанное устройство не изменилось по своему назначению и целям тестирования, в последние годы появилось мало реальных улучшений с его дизайном и качеством тестера. Теперь доступны качественные варианты, которые просты в использовании и достаточно безопасны.Тест Меггера — это метод тестирования использования измерителя сопротивления изоляции, который поможет проверить состояние электрической изоляции.

Качество сопротивления изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. Е. Температурой, влажностью, влажностью и частицами пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

IR измеряет стойкость изолятора к рабочему напряжению без каких-либо путей утечки тока. Он дает представление о состоянии изолятора. Он измеряется с помощью прибора под названием Megger, способного регистрировать напряжение постоянного тока между двумя датчиками, автоматически вычисляя и затем отображая значение IR.

Megger настолько популярен, что термины «сопротивление изоляции» и «мегомметр» используются как синонимы.

Почему проводится тестирование Megger?

Сопротивление изоляции электрической системы со временем ухудшается, условия окружающей среды i.е. температура, влажность, влажность и частицы пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

Другой сценарий: в вашем доме только что произошел пожар, и пожарная часть покинула место происшествия. Электрическая компания отключила у вас газ и электричество, и вы в темноте.По милости Божьей все, что повреждено, — это ваш дом, и вам нужно начать процесс восстановления. Ваша страховая компания сообщает вам, что местная юрисдикция или сама страховая компания требуют проведения «теста Megger» для проверки целостности системы электропроводки в вашем доме.

Когда происходит пожар или другое событие с высокой температурой (молния, взрыв и т. Д.), Проводка и соответствующие ей элементы (изоляция и т. Д.) Подвергаются сильному нагреву. Все металлы и физические соединения имеют точку плавления.Во время некоторых пожаров достигается эта точка плавления и нарушается целостность проводки по току. Изоляция могла расплавиться внутри или оплавился и провод, и изоляция. Когда это происходит, у вас есть карман сопротивления, который образуется, когда электрический ток пытается течь через эту расплавленную область. По мере того, как ток увеличивается, пытаясь пересечь карман, он выделяет тепло. Это тепло может создать достаточно температуры, чтобы вызвать еще один пожар. Именно то, что вам не нужно! Самое страшное в этих поврежденных проводах заключается в том, что вы можете не догадываться, что это произошло, поскольку провод может быть скомпрометирован за стенами или на вашем чердаке

Тестирование

Megger не вызывает никаких повреждений, что делает его хорошим вариантом, когда кто-то не хочет проделывать дыры в стенах для проверки электрической изоляции на предмет каких-либо проблем или проблем.Тестовое устройство работает только от 500 до 1000 вольт, что относительно мало. Из-за низкого напряжения некоторые проколы в изоляции остаются незамеченными. Обычно он предоставляет информацию о токе утечки и наличии чрезмерной грязи или влаги на изоляционных участках, а также о количестве влаги, износе и повреждениях обмотки.

Что делается во время тестирования Megger?

Мы можем протестировать ваши цепи на наличие существующих соединений и участков с расплавленными неисправностями, которые могли возникнуть во время пожара.Затем эти результаты анализируются, и определенные цепи могут быть изолированы и заменены, чтобы убедиться, что в затронутых цепях больше нет проблем. Если у вас был пожар, поговорите со своим Настройщиком и посмотрите, требуется ли тестирование мегомметром. Обычно это покрывается страховкой, поскольку последнее, что они хотят сделать, — это оплатить еще одну претензию через месяц после того, как вы сможете восстановить свое место жительства.

Carelabs имеет под рукой оборудование и опыт для проведения тестирования Megger и регистрации этих результатов в вашей страховой компании, а также в местном отделе строительства.Мы здесь, чтобы помочь вам убедиться, что ваша существующая проводка безопасна, и, конечно же, при необходимости установить новую проводку. Мы готовы удовлетворить все ваши потребности в электричестве.

Как выполняется тестирование Megger?

Мультиметр используется в качестве измерителя сопротивления изоляции в некоторых условиях, и в большинстве случаев выполняется только проверка целостности цепи. Но для обнаружения и тестирования тока утечки в нормальных условиях или в условиях перегрузки используется специальный прибор, известный как тестер изоляции.

Мы измеряем утечку тока в проводе, и результаты очень надежны, так как мы будем пропускать электрический ток через устройство во время тестирования. Мы проверяем уровень электрической изоляции любого устройства, например двигателя, кабеля, обмотки генератора или общей электрической установки. Это очень важный тест, проводимый очень давно. Не обязательно, он показывает нам точную область электрического прокола, но показывает величину тока утечки и уровень влажности в электрическом оборудовании / обмотке / системе.

Порядок проверки сопротивления изоляции или мегомметра приведен ниже:

  • Сначала отключим все линейные и нейтральные клеммы трансформатора.
  • Провода мегомметра подключаются к шпилькам вводов НН и ВН для измерения значения сопротивления изоляции IR между обмотками НН и ВН.
  • Провода мегомметра подключаются к шпилькам высоковольтного ввода и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками высокого напряжения и землей.
  • Провода мегомметра подключаются к шпилькам вводов НН и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками НН и землей.

Эмпирическое соотношение, приведенное ниже, дает рекомендуемое минимальное значение для IR, его единица составляет мега Ом (МОм). . Показатели стоимости дают нам представление о прочности изоляции кабеля и о том, повреждена она или нет.

IRmin (в МОм) = кВ + 1

Где кВ = номинальное рабочее напряжение в кВ

Бывают случаи, когда измеренное значение IR почти в 10–100 раз превышает значение IRmin, полученное из приведенного выше уравнения.

Общая процедура измерения состоит из измерения IR между тремя фазами, а также между отдельной фазой и землей. IR также измеряется для корпуса оборудования. Процедура варьируется от оборудования к оборудованию. Существуют разные уровни напряжения, которые применяются к кабелям в зависимости от их номинала и размера. Для выполнения мегомметра кабеля HT 33 кВ. Применяемый уровень напряжения составляет 5000 В, а значение IR может находиться в диапазоне от 1 Гига Ом до 200 Гига Ом.

Когда мы используем мультиметр, мы измеряем сопротивление, напряжение и ток.Исходя из этого, я надеюсь, что мы знакомы с термином «изоляция». Это означает, что ток не может проходить или течь через определенный проводящий провод, если он должным образом изолирован или защищен. Эти провода могут быть внутри здания, бытовой техники или электродвигателя.

Вы в основном проверяете сопротивление провода. Например, если вы хотите увидеть, неисправен ли двигатель, вы проведете «мегомметр», проверяя каждую из трех фаз двигателя на землю и между собой, чтобы увидеть, не замкнут ли он на землю или на саму себя.

Принцип работы Megger
  • Напряжение для тестирования вырабатывается ручным мегомметром путем вращения кривошипа, в случае ручного типа, для электронного тестера используется батарея.
  • 500 В постоянного тока достаточно для проведения испытаний на оборудовании с напряжением до 440 Вольт.
  • От 1000 В до 5000 В используется для тестирования высоковольтных электрических систем.
  • Отклоняющая катушка или токовая катушка, подключенные последовательно и позволяющие пропускать электрический ток, принимаемый проверяемой цепью.
  • Управляющая катушка, также известная как катушка давления, подключена к цепи.
  • Токоограничивающий резистор (CCR и PCR), подключенный последовательно с управляющей и отклоняющей катушками, для защиты от повреждений в случае очень низкого сопротивления во внешней цепи.
  • В ручном мегомметре эффект электромагнитной индукции используется для создания испытательного напряжения, т. Е. Якорь перемещается в постоянном магнитном поле или наоборот.
  • Где, как и в электронном виде, мегомметры используются для создания испытательного напряжения.
  • По мере увеличения напряжения во внешней цепи отклонение указателя увеличивается, а отклонение указателя уменьшается с увеличением тока.
  • Следовательно, результирующий крутящий момент прямо пропорционален напряжению и обратно пропорционален току.
  • Когда проверяемая электрическая цепь разомкнута, крутящий момент, создаваемый катушкой напряжения, будет максимальным, а стрелка показывает «бесконечность», что означает отсутствие короткого замыкания во всей цепи и максимальное сопротивление в тестируемой цепи.
  • Если есть короткое замыкание, указатель показывает «ноль», что означает «НЕТ» сопротивления в проверяемой цепи.

Типы мегомметров

Это можно разделить в основном на две категории:

  1. Электронный (работает от батарей)
  2. Ручного типа (с ручным управлением)

A Преимущества Megger электронного типа
  • Уровень точности очень высокий.
  • Значение IR цифрового типа, легко читаемое.
  • Один человек может работать очень легко.
  • Прекрасно работает даже в очень загруженном пространстве.
  • Очень удобно и безопасно в использовании.

Преимущества ручного мегомметра
  • По-прежнему играет важную роль в мире высоких технологий, поскольку это самый старый метод определения значения IR.
  • Для работы не требуется внешний источник.
  • На рынке дешевле.

Но есть и другие типы мегомметров, которые являются двигательными, в которых не используется батарея для создания напряжения. Для этого требуется внешний источник для вращения электрического двигателя, который, в свою очередь, вращает генератор мегомметра.

Испытание сопротивления изоляции или инфракрасное излучение проводится инженерами по техническому обслуживанию, чтобы убедиться в исправности всей системы изоляции силового трансформатора. Он отражает наличие или отсутствие вредных загрязнений, грязи, влаги и грубого разложения. Для сухой системы изоляции ИК обычно будет высоким (несколько сотен МОм). Инженеры по техническому обслуживанию используют этот параметр как показатель сухости изоляционной системы.

Это испытание проводится при номинальном напряжении или выше него, чтобы определить, есть ли пути с низким сопротивлением к земле или между обмоткой и обмоткой в ​​результате ухудшения изоляции обмотки.На значения тестовых измерений влияют такие переменные, как температура, влажность, испытательное напряжение и размер трансформатора.

Это испытание следует проводить до и после ремонта или при выполнении технического обслуживания. Данные испытаний должны быть записаны для будущих сравнительных целей. Для сравнения значения испытаний следует нормализовать до 20 ° C.

Общее практическое правило, которое используется для приемлемых значений для безопасного включения, — это 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм.

Меры безопасности Megger

При использовании мегомметра вы можете получить травму или повредить оборудование, с которым работаете, если не соблюдаете следующие МИНИМАЛЬНЫЕ меры безопасности.

  • Используйте мегомметр только для измерений высокого сопротивления, таких как измерения изоляции или для проверки двух отдельных проводов на кабеле.
  • Ни в коем случае не прикасайтесь к измерительным проводам во время поворота ручки.
  • Обесточьте и полностью разрядите цепь перед подключением мегомметра.
  • Отключите проверяемый элемент от других цепей, если возможно, перед использованием мегомметра.

Преимущества тестирования Megger
  • Профилактический анализ состояния оборудования
  • Снижение риска отказа системы аварийного электроснабжения
  • Застрахованная доступность
  • Профилактический ремонт
  • Управление активами
  • Прогнозируемый ожидаемый срок службы оборудования

Проверка изоляции — еще немного

Появляется небольшое покалывание при использовании шлифовальной машины? Возможно, вы захотите проверить его изоляцию, прежде чем использовать его, стоя в луже с водой.Подключите мегомметр между каждым силовым проводом и заземляющим проводом. Инструменты с двойной изоляцией имеют только два контакта в шнуре питания, и в этом случае подключите тестер между каждым из силовых проводов и любым оголенным металлом на инструменте, как показано на Рисунке 2. Между заземлением и любой из силовых проводов. (Примечание: сопротивление между двумя силовыми проводниками будет низким — несколько сотен Ом или меньше — что нормально).

Мегаомметр также может использоваться для проверки изоляции обмоток двигателей и генераторов.Для генератора переменного тока или бесщеточного двигателя постоянного тока обмотки статора следует отсоединить друг от друга и проверить сопротивление между обмотками и между обмотками и землей. Для щеточных двигателей постоянного тока или генераторов щетки следует снимать и отдельно проверять сопротивление между катушками. Для 12-вольтного двигателя или генератора все сопротивления должны быть минимум 100 кОм.

Многие лодки включают трансформаторы на входящем береговом питании либо для обеспечения изоляции от берегового переменного тока, либо в качестве повышающего или понижающего трансформатора для преобразования 220 В переменного тока в 120 В переменного тока или наоборот.У нас есть понижающий трансформатор на 1 кВА на борту «Девятки кубков». Мегаомметр можно использовать для проверки изоляции обмоток. Трансформатор должен быть отключен от берегового источника питания и бортовых цепей, и сопротивление каждой обмотки должно быть проверено относительно другой и относительно земли. Для типичного изолирующего трансформатора на 120 В переменного тока все сопротивления должны быть выше 350 МОм. Для понижающего, повышающего трансформатора или изолирующего трансформатора 220 В переменного тока сопротивление должно быть больше 650 МОм.

Хотя мегомметр может и не быть важным инструментом на борту, он, безусловно, полезен.Теперь, когда они стали по разумной цене, возможно, имеет смысл купить один.

Аренда или покупка Megger (AVO Biddle) DET 2/3 Advanced Earth (Ground) Tester

Электрические испытания и анализаторы мощности >> Мегаомметры и микроомметры сопротивления заземления, целостности заземления >> Усовершенствованный тестер заземления

Производитель: Megger (AVO Biddle)
Модель: DET 2/3



Загрузить техническое описание продукта

Обзор продукта

АРЕНДА Megger DET2 / 3 Advanced Earth (Ground) Tester (Запрос о доступности)

Автоматический прибор для проверки заземления Megger DET2 / 3 — прочный, компактный и предназначен для измерения сопротивления заземляющего электрода и сопротивления почвы.Он предоставляет полный набор методов тестирования и превосходит четырехконтактный метод измерения, который исключает сопротивление токовой цепи из измерения. DET2 / 3 — надежный прибор для использования в больших или более сложных системах заземления, которые включают системы заземления связи и сложные испытательные среды. Его можно использовать для тестирования в соответствии с BS 7430 (заземление), BS-EN-62305 (молниезащита), IEEE Standard 81 и железнодорожных приложений.

Тестер заземления DET2 / 3 обеспечивает точность 1 м? разрешающие измерения сопротивления заземляющего электрода.Частоту испытания, испытательное напряжение и фильтрацию можно быстро и легко отрегулировать, чтобы можно было преодолеть неблагоприятные условия, которые могут повлиять на испытание. Широкая полоса тестовых частот с разрешением 0,5 Гц может использоваться для устранения ошибок, вызванных шумом в земле. Megger DET2 / 3 Advanced Earth Tester также включает функцию автоматического выбора частоты, которая сканирует частоты с наименьшим уровнем шума, а затем запускает тест на этой частоте.

Основные характеристики усовершенствованного тестера заземления Megger DET2 / 3:

  • Высокое разрешение 1 мОм, идеально для больших систем заземления
  • Высокая точность для испытаний сетки заземляющих электродов и удельного сопротивления грунта
  • Перезаряжаемый аккумулятор, которого хватит на весь день с быстрой подзарядкой (до 10 часов)
  • Автоматический выбор частоты тестирования, с фильтрами и функциями высокого тока

Полные технические характеристики см. В листе данных

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *