+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

принцип действия, схемы и т.д.

Термистор — это чувствительный к изменениям температуры элемент, изготовленный из полупроводникового материала. Он ведет себя как резистор, чувствительный к изменениям температуры. Термин «термистор» — это сокращение от термочувствительного резистора. Полупроводниковый материал — это материал, который проводит электрический ток лучше, чем диэлектрик, но не так хорошо, как проводник.

Термистор
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термистора

Подобно термометрам сопротивления термисторы используют изменения величины сопротивления в качестве основы измерений. Однако сопротивление термистора обратно пропорционально изменениям температуры, а не прямо пропорционально. По мере увеличения температуры вокруг термистора, его сопротивление понижается, а по мере понижения температуры его сопротивление увеличивается.

Хотя термисторы выдают такие же точные показания, как и термометры сопротивления, однако, термисторы чаще конструируются для измерений в более узком диапазоне.

Например, диапазон измерений термометра сопротивления может быть в пределах от -32°F до 600°F, а термистор будет измерять от -10°F до 200°F. Диапазон измерений для конкретного термистора зависит от размера и типа полупроводникового материала, который в нем используется.

Как термометры, термисторы реагируют на изменения температуры пропорциональным изменением сопротивления, они оба часто используются в мостовых схемах.

Мостовая схема с термистором

В данной цепи изменение температуры и обратно пропорциональная зависимость между температурой и сопротивлением термистора будет определять направление протекания тока. Иначе цепь будет функционировать таким же образом как в случае с термометром сопротивления. По мере изменения температуры термистора, изменяется его сопротивление и мост становится неуравновешенным. Теперь через прибор будет протекать ток, который можно будет измерить. Измеряемый ток можно преобразовать в единицы измерения температуры с помощью переводной таблицы, или откалибровав соответствующим образом шкалу.

Термистор — это… Что такое Термистор?

Датчик температуры на основе термистора Символ терморезистора, используемый в схемах Вольт-Амперная характеристика (ВАХ) для позистора. Зависимость сопротивления Термистора от температуры. 1:для R0

Термистор — полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.
Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см.

Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.

Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент США номер #2,021,491.

Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС.
Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO?, NiO, CuO), легированных Ge и Si, полупроводников типа A

III BV, стеклообразных полупроводников и других материалов.

Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170—510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900—1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от — 2,4 до −8,4 %/К и номинальным сопротивлением 1—106 Ом.

Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро-магнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.


Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.

Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO3. Такие терморезисторы обычно называют позисторами. Известны терморезисторы с небольшим положительным температурным коэффициентом (0,5—0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону.

Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.

Стоит отметить, что график изображённый на рисунке «Вольт-Амперная характеристика (ВАХ) для позистора.» некорректен, так как неправильно расположены оси — нужно поменять их местами. Для получения ВАХ термистора график необходимо повернуть влево на 90 градусов и инвертировать по вертикали.

Литература

  • Шефтель И Т.
    , Терморезисторы
  • Мэклин Э. Д., Терморезисторы
  • Шашков А. Г., Терморезисторы и их применение
  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401-407. — 479 с. — 50 000 экз.

См. также

Категории:
  • Полупроводниковые приборы
  • Электронные компоненты
  • Датчики

Wikimedia Foundation. 2010.

Термистор — электронный компонент, области применения, для чего нужен

Термистор (терморезистор, temperature-sensitive resistor — eng.) – резистор на основе полупроводника, значительно уменьшающий своё сопротивление при понижении температуры. На основе этих данных можно измерять температуру в понятном для микроконтроллёров виде.

Основным материалом для изготовления термистора (с отрицательным ТКС*) служат поликристаллические оксидные полупроводники (окислы металлов).

Существует также разновидность терморезисторов (с положительным ТКС*) – позисторы

. Их получают из титана вкупе с бариевой керамикой и редкоземельными металлами. Значительно увеличивают сопротивление при увеличении температуры. Основное применение – температурная стабилизация устройств на транзисторах.

Термистор изобретён Самуэлем Рубеном (Samuel Ruben) в 1930 году.

Термисторы применяются в микроэлектронике для контроля температур, тяжёлой промышленности, мобильных измерительных

устройствах, выполняют функцию защиты импульсных блоков питания от больших зарядных токов конденсаторов & etc.

Очень часто встречаются на компьютерных комплектующих.

Позволяют измерять температуру процессоров, оперативной памяти, видеокарт, систем питания, чипсетов, жёстких дисков и прочих компонентов. Довольно надёжны, хотя не редок заводской брак, когда температура смещена на несколько десятков градусов, либо вообще находится в минусе.

Существуют также термисторы с собственным встроенным подогревом. Служат для ручного включения подогрева и подачи сигнала с резистора о изменении сопротивления, либо для контроля подачи питания сети (при отключении резистор перестанет нагреваться и изменит сопротивление).

Формы и размеры термисторов могут быть разными (диски, бусинки, цилиндры & etc).

Основными характеристиками полупроводникового термистора являются: ТКС*, диапазон рабочих температур, максимально допустимая мощность рассеяния, номинальное сопротивление.

Термисторы (большинство) выносливы к различным температурам, механическим нагрузкам, к износу от времени, а при определённой обработке и к агрессивным химическим средам.

*Температурный Коэффициент Сопротивления

5.5. Термисторы


Хермистор — это полупроводниковое термочувствительное сопротивление. При повышении температуры сопротивление тер-мистора резко уменьшается, а следовательно, увеличивается его электропроводность. Устройство некоторых термисторов приведено на рис. 96. Различают стержневые формы термисторов (рис. 96, а, б), сферические / и дисковые 2 (рис. 96, в).

Основное достоинство термисторов — большой температурный коэффициент сопротивления, равный 3-4% на градус (у платины и меди около 0,4% на градус). Малые габариты термисторов обеспечивают их небольшую тепловую инерционность, что важно при измерении сравнительно быстро меняющихся температур.

Термисторы могут быть изготовлены очень небольших размеров для измерения температур в миниатюрных приборах и в малодоступных местах. Обычное сопротивление термисторов, применяемых для измерения температур, составляет от 1 до 5 кОм. При таком значительном сопротивлении результаты измерений не зависят от длины соединительных проводов. Температурный диапазон применения термисторов составляет от -50 до +180 °С. Выпускают термисторы, работающие и до 450 «С. Измерительные схемы с использованием термисторов принципиально Не отличаются от схем с проволочными термометрами сопротивления. Следует учитывать только, что сопротивление термисторов с ростом температуры падает не линейно, а экспоненциально.

Основным параметром термистора является его вольтамперная характеристика (рис. 96, г). У небольших термисторов, имеющих малую тепловую инерцию, кривая U = f(I) имеет хорошо выраженный максимум, за которым следует падение напряжения с увеличением силы тока. При повышении температуры сопротивление термистора падает, а ток, проходящий через него, растет, что приводит к увеличению выделения энергии в Форме теплоты в самом термисторе. При некоторой температуре ток в измерительной схеме может возрасти настолько, что теплота, выделяемая в термисторе, не будет успевать отводиться,



Рис. 96. Устройство термисторов (о, 6, в) и их вольтамперная характеристика (г): а, б: 1 — вещество, обладающее электрическим сопротивлением; 2 — колпачки; 3 — защитный металлический чехол; 4 — стеклянный изолятор

а это приведет к дальнейшему разогреву и возрастанию тока, а следовательно, и увеличению погрешностей в измерении температуры. Поэтому каждый термистор имеет верхний температурный предел применимости. Для выбора рабочего режима тер-мистора снимают его вольтамперную характеристику. В соответствии с полученной характеристикой подбирают параметры измерительной схемы, которые отвечают левому участку кривой до точки максимума. При замене термистора прибор снова калибруют.

Другим недостатком термисторов является систематическое изменение сопротивления со временем и связанная с этим невысокая воспроизводимость показаний. При 100 «С показания термисторов воспроизводятся в интервале ±0,01 °С. Наибольшей стабильностью показаний термисторы обладают в интервал температур от -60 до +100 °С. Когда термистор помешают герметичный защитный чехол, стабильность их показаний возрастает, но при этом увеличивается их инерционность.

При длительном пользовании термистором измеряемая температура с точностью до 1 °С может воспроизводиться лишь при условии периодически повторяемой калибровки.

В качестве полупроводниковых датчиков температуры могут быть использованы также полупроводниковые диоды и транзисторы- При постоянном значении тока, протекающего в прямом управлении через переход транзистора, изменение напряжения на переходе практически линейно меняется с температурой. Датчиками могут быть как германиевые, так и кремниевые транзисторы.

 

К оглавлению


Радиодеталь: NTC термистор

 NTC — термистор, который применяют для защиты от пусковых токов (двигатели, трансформаторы, БП, зарядные и т.п.) Штука очень полезная и простая, казалось бы, но как-то не встретил доходчивой информации…
В общей теории всё понятно: холодный термистор имеет относительно большое сопротивление (например, 33 Ом), когда через термистор начинает проходить ток, термистор нагревается и его сопротивление сильно уменьшается, доходя в рабочем режиме до десятых и даже сотых долей Ома.

Этим и обеспечивается плавный запуск устройства, которое питается через такой термистор и его последующая нормальная работа после запуска (термистор становится «прозрачным»).

А на практике дополнительно возможны следующие вопросы, на которые хотелось бы дать хотя бы краткие пояснения:

1) Как выбирать термисторы? В рабочем состоянии термистор ВСЕГДА должен быть ГОРЯЧИМ? Ведь иначе у термистора сохранится начальное большое сопротивление — он будет работать в схеме как простой резистор.  Насколько горячим должен быть термистор, какая температура у него в установившемся режиме?

Ответ: Термистор выбирают под номинальный рабочий ток, тогда он и будет греться до нужной температуры. Максимальный установившийся ток термистора должен быть немногим больше, чем максимальный средний ток для устройства, тогда термистор в установившемся режиме будет работать близко к максимальной температуре и при минимальном сопротивлении.

Минимально допустимое сопротивление термистора при 25˚С определяется исходя из допустимого пикового тока для потребителя и напряжения в розетке по формуле с первой страницы аппликухи

(√2*VE*1.1)/(Rc+R25)≤Imax

где,

VE — напряжение в розетке
Rc — собственное сопротивление входа без термистора 

Из подходящих по этим параметрам термисторов выбираем тот, у которого постоянная времени меньше.

 

2)  Есть ли в связи с этим какие-то особенности его монтажа, разводки на ПП, чтобы ничего вокруг не поплавилось и не погорело?

Ответ: При монтаже вокруг термистора должно быть пространство для охлаждения, нельзя монтировать впритык к другим деталям. Рабочая температура должна быть около 65 град. Во многих распаянных платах мониторов ЛТ терморезисторы были установлены через втулки-стойки, которые были расклёпаны и пропаяны со стороны дорожек. И теплоотвод, и надёжный контакт.

 

3) Как проверить приборно, что термистор отрабатывает или не отрабатывает на пуске?

Ответ: Это не требуется, если выбрано правильно стартовое сопротивление. Оно само по себе является гарантом того, что термистор выполнит свою функцию. Стартовое сопротивление термистора подбирается под конкретные ёмкости, номинал которых добросовестный производитель указывает в даташитах.

ТЕРМИСТОРЫ NTC ФИРМЫ «JOYIN»

??     Термисторы NTC — это специализированные резисторы с отрицательным температурным коэффициентом, чье сопротивление быстро падает, при превышении температурой компонента определенного порога. Эти приборы характеризуются широчайшим спектром применений:

— Бытовая техника: измерения и компенсации температуры в холодильниках и морозильниках, посудомоечных машинах, кондиционерах, в нагревательных системах т. д.
— Автомобильная техника: измерение температуры воды или масла, контроль температуры выхлопных газов, цилиндров, тормозной системы, салона автомобиля
— В промышленной электронике: для ограничения пусковых токов в светотехнике и электроприводе, устройствах запуска мощных моторов и импульсных источников питания; в качестве датчиков уровня жидкости, скорости потока жидкости или газа и др.

     NTC термисторы JNR для ограничения бросков тока при коммутации мощных нагрузок.

Основные параметры:

 

 

  • Rном — номинальное сопротивление термистора при температуре 25°С
  • Отклонение Rном — пределы возможного отклонения Rном от номинала (типовые значения ±10% и ±20%)
  • Imax — максимальный ток через термистора не вызывающий лавинообразного снижения сопротивления
  • RImax — расчетное значения сопротивления термистора, при протекании через него тока Imax
  • Коэффициент энергетической чувствительности — величина равная количеству мощности, которую должен поглотить термистор, для того чтобы его температура поднялась на 1 °С
  • Постоянная времени охлаждения — величина равная времени, в течение которого температура электрически ненагруженного термистора изменится на 63,2 % от разности температуры термистора и окружающей среды
  • Смакс — максимальная емкость тестовой схемы, которая может быть разряжена (с ограничительным резистором, тестовое напряжение 240 В АС) на термистор, без повреждения последнего
  • В — коэффициент температурной чувствительности материала термистора. Определяется формулой В=(T1хT2)/(T2-T1) ln (RT1/RT2), значения в таблице приведены исходя из T1=25°C (298.15°K) и Т2=50°С(323,15°K)
  •  

  •  
  •  

 

 

Наименование Rном, Ом Отклонение Rном Iмакс, А RIмакс, Ом Коэффициент
энергетической
чувствительности, мВт/°С
Постоянная
времени
охлаждения, с
Смакс, мкФ В ±10%,
°К
мин. макс.
      Диаметр — 8 мм
JNR08S4R7M 4,7 3,76 5,64 2 0,285 13 42 100 2750
JNR08S040M 4 3,2 4,8 2 0,274 13 42 100 2750
JNR08S050M 5 4 6 2 0,348 16 55 100 2750
JNR08S060L 6 5,1 6,9 2 0,325 16 55 100 2750
JNR08S070L 7 5,95 8,05 2 0,387 16 44 100 2750
JNR08S080L 8 6,8 9,2 2 0,72 16 44 100 2750
JNR08S100L 10 8,5 11,5 2 0,357 16 44 100 2750
JNR08S150L 15 12,75 17,25 2 0,375 12 47 100 2850
JNR08S180L 18 15,3 20,7 2 0,442 12 47 100 2850
JNR08S200L 20 17 23 1 0,46 12 47 100 2850
JNR08S220L 22 18,7 25,3 1 1,238 12 57 100 2850
      Диаметр — 10 мм
JNR10S2R5M 2,5 2 3 5 0,653 14 45 150 2750
JNR10S030M 3 2,4 3,6 4 0,103 15 45 150 2750
JNR10S040M 4 3,2 4,8 4 0,139 17 45 150 2750
JNR10S050M 5 4 6 4 0,153 17 80 150 2750
JNR10S060L 6 5,1 6,9 3 0,969 17 80 330 2750
JNR10S070L 7 5,95 8,05 3 0,258 18 80 330 2750
JNR10S080L 8 6,8 9,2 3 0,286 19 80 330 2750
JNR10S100L 10 8,5 11,5 3 0,298 19 86 330 2800
JNR10S120L 12 10,2 13,8 2,5 0,379 19 86 330 2800
JNR10S130L 13 11,05 14,95 2,5 0,406 19 88 330 2850
JNR10S150L 15 12,75 17,25 2,5 0,428 18 88 330 2850
JNR10S160L 16 13,6 18,4 2,5 0,283 18 57 330 3100
JNR10S200L 20 17 23 2 0,501 19 57 330 3100
JNR10S250L 25 21,25 28,75 2 0,517 19 57 330 3100
JNR10S300L 30 25,5 34,5 2 0,579 19 64 330 3100
JNR10S470L 47 39,95 54,05 2 0,691 20 70 330 3100
JNR10S500L 50 42,5 57,5 2 0,787 22 97 330 3100
JNR10S800L 80 68 92 1 1,928 17 66 390 3400
JNR10S121L 120 102 138 1 2,342 17 95 390 3400
      Диаметр — 13 мм
JNR13S1R3M 1,3 1,04 1,56 7 0,048 19 68 47 2750
JNR13S2R5M 2,5 2 3 5 0,098 21 92 68 2750
JNR13S030M 3 2,4 3,6 5 0,106 22 95 68 2750
JNR13S050M 5 4 6 5 0,083 22 110 100 2850
JNR13S060L 6 5,1 6,9 5 0,157 22 110 150 2850
JNR13S070L 7 5,95 8,05 4 0,287 22 110 330 2850
JNR13S080L 8 6,8 9,2 4 0,306 22 110 330 2850
JNR13S100L 10 8,5 11,5 4 0,126 22 110 330 2850
JNR13S120L 12 10,2 13,8 3 0,267 18 75 390 3100
JNR13S150L 15 12,75 17,25 3 0,338 18 82 560 3100
JNR13S160L 16 13,6 18,4 3 0,31 18 82 560 3100
JNR13S180L 18 15,3 20,7 2,8 0,372 22 82 470 3100
JNR13S200L 20 17 23 2,8 0,34 22 82 470 3100
JNR13S250L 25 21,25 28,75 2 0,664 22 94 560 3100
JNR13R500L 50 42,5 57,5 2 0,201 22 94 560 3400
      Диаметр — 15 мм
JNR15S1R5M 1,5 1,2 1,8 8 0,049 23 94 100 2750
JNR15S1R3M 1,3 1,04 1,56 8 0,047 23 94 47 2750
JNR15S2R5M 2,5 2 3 8 0,062 23 112 150 2750
JNR15S030M 3 2,4 3,6 7 0,082 23 150 330 2750
JNR15S040M 4 3,2 4,8 6 0,112 24 110 330 2850
JNR15S050M 5 4 6 6 0,111 25 110 390 2850
JNR15S060L 6 5,1 6,9 5 0,137 25 114 390 2850
JNR15S070L 7 5,95 8,05 5 0,117 19 72 470 3100
JNR15S080L 8 6,8 9,2 5 0,126 21 76 470 3100
JNR15S100L 10 8,5 11,5 5 0,14 21 96 560 3100
JNR15S120L 12 10,2 13,8 4 0,206 21 100 560 3100
JNR15S150L 15 12,75 17,25 4 0,224 21 120 680 3100
JNR15S160L 16 13,6 18,4 4 0,219 26 120 680 3100
JNR15S180L 18 15,3 20,7 4 0,244 26 125 680 3100
JNR15S200L 20 17 23 4 0,248 26 125 680 3100
JNR15S250L 25 21,25 28,75 3 0,321 19 84 680 3400
JNR15S300L 30 25,5 34,5 3 0,349 24 97 680 3400
JNR15S400L 40 34 46 3 0,398 25 99 1000 3400
JNR15S470L 47 39,95 54,05 3 0,414 25 123 1000 3400
JNR15S800L 80 68 92 2,5 0,492 25 94 680 3600
JNR15S121L 120 102 138 2 0,906 25 97 1000 3600
JNR15S221L 220 187 253 1 2,917 25 138 1500 3600
      Диаметр — 20 мм
JNR20S0R7M 0,7 0,56 0,84 12 0,037 29 118 470 2750
JNR20S1R3M 1,3 1,04 1,56 8 0,057 31 157 470 2750
JNR20S2R5M 2,5 2 3 8 0,08 31 98 330 2850
JNR20S050M 5 4 6 7 0,095 31 90 390 3100

 


Габаритные размеры:

 

 

 

 

 

 

 

Диаметр Dmax d(±0,05) F(+0,8/-0,2) L1min Tmax
8 9,5 0,6 5 25 4,6
10 11,5 0,6/0,8 5,0/7,5 25 5,7
13 14,5 0,8 7,5 25 5,8
15 15,6 0,8 7,5 25 5,9
20 22 0,8/1,0 7,5/10 25 6,1

 

 

  • Наименование

    К продаже

    Цена от

К продаже:

8 214 шт.

К продаже:

3 942 шт.

К продаже:

8 941 шт.

К продаже:

5 001 шт.

К продаже:

8 141 шт.

К продаже:

793 шт.

К продаже:

1 615 шт.

К продаже:

13 400 шт.

К продаже:

11 869 шт.

К продаже:

1 шт.

К продаже:

8 855 шт.

К продаже:

790 шт.

К продаже:

972 шт.

К продаже:

5 246 шт.

К продаже:

987 шт.

К продаже:

3 479 шт.

К продаже:

811 шт.

К продаже:

3 477 шт.

К продаже:

6 440 шт.

К продаже:

8 783 шт.

К продаже:

458 шт.

К продаже:

728 шт.

К продаже:

700 шт.

К продаже:

2 056 шт.

К продаже:

7 483 шт.

К продаже:

5 014 шт.

К продаже:

9 284 шт.

К продаже:

10 928 шт.

К продаже:

4 315 шт.

К продаже:

28 шт.

К продаже:

2 765 шт.

К продаже:

7 867 шт.

К продаже:

2 996 шт.

К продаже:

12 391 шт.

К продаже:

394 шт.

К продаже:

1 шт.

К продаже:

3 669 шт.

К продаже:

13 шт.

К продаже:

600 шт.

К продаже:

26 401 шт.

К продаже:

1 362 шт.

К продаже:

600 шт.

К продаже:

11 406 шт.

К продаже:

5 604 шт.

К продаже:

1 789 шт.

Датчики и сенсоры онлайн журнал

 

 

Для определения сопротивления термистор включается в измерительную цепь, по изменению тока в той и судят о величине сопротивления. В зависимости от заданного уровня точности и стоимости калибровка термистора может проводиться на основе одной из известных аппроксимационных моделей.

При использовании термистора в качестве датчика абсолютной температуры предполагается, что при прохождении через него электрического тока, его собственная температура не изменится, что означает, что он не внесет в систему значительных тепловых возмущений, способных повлиять на точность измерений. В этом случае говорят, что термистор обладает «нулевой мощностью».
Далее будет отображено, как эффект саморазогрева сказывается на величине сопротивления терморезистора, но пока будем считать, что он приводит к появлению лишь незначительных погрешностей. При использовании термисторов в каких-либо измерительных системах необходимо знать их передаточные функции, которые являются аналитическими выражениями, связывающими величину сопротивления и температуру. Для описания передаточной функции термисторов были предложены несколько математических моделей. рекомендуется отметить, что все математические модели являются только аппроксимациями, и, как правило, чем проще модель, тем ниже ее точность. С другой стороны, при использовании более сложных моделей значительно усложняется калибровка термисторов. Все существующие модели термисторов построены на экспериментально доказанном факте, что логарифм сопротивления термистора связан с его абсолютной температурой следующей полиноминальной зависимостью:
Термисторы с положительным температурным коэффициентом Все металлы относятся к материалам с положительным температурным коэффициентом (ПТК). Из соответствующей таблицы Приложения видно, что все они обладают низкими значениями температурных коэффициентов сопротивления (ТКС). РДТ, описанные ранее, также имеют небольшой ПТК. В отличие от них многие керамические материалы в определенном температурном диапазоне обладают довольно значительными ПТК. термисторы с ПТК обычно изготавливаются на базе поликристаллических керамических материалов, основные компоненты которых (титанат бария или твердые растворы титаната бария и стронция), обладающие высоким удельным сопротивлением, легируются дополнительными примесями для придания им свойств полупроводников [8]. При температурах, превышающих точку Кюри композиционных материалов, их ферроэлектрические свойства меняются очень быстро, что приводит к значительному увеличению сопротивления, иногда на несколько порядков. На рис. 16.12 отображены передаточные характеристики для трех типов температурных детекторов: с ОТК, ПТК и РДТ. Как видно из рисунка, для термисторов с ПТК очень сложно подобрать математическую аппроксимацию, поэтому для них в документации обычно приводятся следующие характеристики: 1. Сопротивление при нулевой приложенной мощности, R25. При этом значении влияние эффекта саморазогрева незначительно. 2. Минимальное сопротивление Rm, при котором термистор меняет знак своего температурного коэффициента (точка т) 3. Температура перехода Tt, начиная с той начинается быстрое изменение сопротивления. Она приблизительно совпадает с точкой Кюри материала. Значения температуры перехода обычно лежат в интервале — 30…+160°С (Keystone Carbon Co.)
Этот коэффициент сильно зависит от температуры и часто определяется в точке х (т.е. там, где он обладает максимальным значением). Он может достигать значений 2/°С, что означает 200% изменение сопротивления на °С. 4. Максимальное напряжение Ет, соответствующее предельно допустимому значению, выдерживаемому термистором. 5. Тепловые характеристики: теплоемкость, коэффициент рассеяния 8 (определенный для заданных условий связи детектора с окружающей средой) и тепловая постоянная времени (характеризующая быстродействие термистора при определенных условиях) Рис. 16.12. Передаточные функции для термисторов с ОТК, ПТК и РДТ рекомендуется отметить, что для термисторов с ПТК важными факторами являются: температура окружающей среды и эффект саморазогрева. Любой из них влияет на положение рабочей точки термистора. На рис. 16.13 отображены вольтампер-ные характеристики термистора с ПТК при разных температурах окружающей среды, по которым можно оценить его температурную чувствительность. В соответствии с законом Ома обычный резистор с близким к нулю ТКС обладает линейной вольтамперной характеристикой. При ОТК коэффициент кривизны положительный, а при ПТК — отрицательный. При подключении термисторов с ОТК к идеальному источнику напряжения (обладающему практически нулевым выходным сопротивлением и способностью вырабатывать любой ток без изменения величины напряжения) явление саморазогрева, возникающее из-за рассеяния Джо-улева тепла, приводит к уменьшению сопротивления, что, в свою очередь, вызывает увеличение тока и большему нагреву детектора. Если термистор с ОТК имеет плохой теплоотвод, может произойти его перегрев и даже разрушение. В отличие от термисторов с ОТК, детекторы с ПТК при подключении к идеальным источникам напряжения ведут себя как саморегулирующиеся устройства. к примеру, нить накаливания раскаленной лампы не перегорает из-за того, что увеличение ее температуры ведет к росту сопротивления, ограничивающего ток. Эффект саморегулирования значителен в термисторах с ПТК. Термин термистор образовался в результате соединения двух слов: тепловой и резистор. Это название дано металл-оксидным детекторам, имеющим форму капель, стержней, цилиндров, прямоугольных пластин и толстых пленок. термисторы относятся к классу сенсоров абсолютной температуры, отображения которых соответствуют абсолютной температурной шкале. Все термисторы делятся на две категории: с отрицательным температурным коэффициентом (ОТК) и положительным температурным коэффициентом (ПТК) сопротивления. Для проведения прецизионных измерений используются термисторы только с ОТК.
Термисторы с отрицательным температурным коэффициентом сопротивления Обычные металоксидные термисторы обладают ОТК. Это значит, что при увеличении температуры их сопротивление падает. Сопротивление термисторов с ОТК, также как и любых других резисторов, определяется их физическими величиными и удельным сопротивлением материала. Зависимость между величиной сопротивления и температурой является сильно нелинейной. При проведении прецизионных измерений или при работе в широком температурном диапазоне нельзя напрямую использовать характеристики термисторов, приведенные в документации на них, поскольку типовые допуски на номинальные значения серийно выпускаемых изделий при температуре 25°С составляют порядка ±20%. Поэтому для достижения высокой точности измерений термисторы необходимо индивидуально калибровать в широком температурном диапазоне. Правда, существуют и прецизионные термисторы, характеристики которых в заводских условиях подгоняются методом шлифовки до требуемых размеров. Этот процесс проводится под непрерывным контролем за номинальными значениями сопротивлений при заданной температуре. Однако такая процедура настройки термисторов приводит к значительному повышению их стоимости. Поэтому на практике чаще применяется метод индивидуальной калибровки термисторов. В процессе калибровки измеряется сопротивление термистора при помещении его в среду точно известной температурой (для этих целей часто применяется камера с мешалкой, в которую может быть залита вода, но чаще минеральное масло или специальный состав, к примеру, Flourent®). Если требуется многоточечная калибровка, эта процедура выполняется при разных температурах. Естественно, что качество проведенной калибровки сильно зависит от точности эталонного термометра. Из рис. 16.13 видно, что в относительно узком температурном диапазоне, термистор с ПТК обладает отрицательным сопротивлением, т.е. Рис. 16.13. Вольтамперная характеристика детектора с ПТК В этой зоне устройства обладают внутренней отрицательной обратной связью, т.е. работают саморегулирующимися термостатами. При этом любой рост напряжения на термисторе приводит к выделению тепла, то, в свою очередь, вызывает увеличение сопротивления и уменьшению тепловых потерь, в результате чего возникает динамическое равновесие, позволяющее удерживать температуру устройства на постоянном уровне TQ (рис. 16.12). Эта температура соответствует точке х, в той касательная к кривой имеет максимальный наклон. рекомендуется отметить, что термисторы с ПТК обладают максимальной эффективностью при больших значениях Т0 (около 100°С), а при меньших температурах их эффективность (наклон характеристики /?(7) в точке х) резко падает. По своей физической природе термисторы с ПТК предпочтительнее использовать при температурах, значительно превышающих температуру окружающей среды. Приведем четыре примера применения термисторов с ПТК: 1. В устройствах защиты электронных схем термисторы с ПТК могут играть роль неразрушаемых предохранителей, реагирующих на токи, значения которых превышают допустимые уровни. На рис. 16.14А отображен термистор с ПТК, включенный последовательно с источником напряжения Е, подающего на нагрузку ток /. При комнатной температуре термистор обладает очень низким сопротивлением (порядка 10… 140 Ом). При токе / падение напряжения на нагрузке составляет V , а на термисторе — К . Считаем, что VL»Vx Мощность, рассеиваемая на термисторе: P — V i, отдается в окружающую среду. При этом температура термистора возрастает, но очень на небольшую величину. Однако при значительном увеличении окружающей температуры или сильном изменении тока нагрузки происходит резкий рост температуры термистора до величины Т, по достижении той его сопротивление начинает расти, что предотвращает дальнейшее увеличение тока. При коротком замыкании в нагрузке Vx = Е, а ток /’ падает до минимального значения. Это значение будет сохраняться до тех пор, пока сопротивление нагрузки не придет в норму, после чего, термистор восстановит свои исходные характеристики. Однако при этом необходимо выполнение условия Е<0.9Етах, иначе может произойти разрушение термистора. 2. В миниатюрных термостатах с саморазогревом (рис. 16.14Б), используемых в микроэлектронике, биомедицине, химических исследованиях и т.д, также используются термисторы с ПТК с соответственно подобранной температурой перехода. Термостат состоит из кюветы, теплоизолированной от окружающей среды и связанной с термистором. Для устранения сухого контакта между термистором и кюветой делают слой из специальной смазки.
где 8 — коэффициент рассеяния, зависящий от теплоизоляции термистора от окружающей среды, а Г — температура окружающей среды. Рабочая точка термостата определяется физическими свойствами керамического материала (точкой Кюри). Благодаря внутренней тепловой обратной связи, устройство может работать в сравнительно широком диапазоне напряжений и окружающих температур. Естественно, что окружающая температура должна быть всегда меньше Т. 3. термисторы с ПТК из-за большой длительности переходных процессов, определяемых временем между подачей напряжения и переходом устройства в рабочее состояние, часто требует подключения схем задержки. 4. Расходомеры и детекторы уровня жидких сред, работающие на принципе детектирования теплового рассеяния, также часто реализуются на основе тер-мисторов с ПТК. Рис. 16.14. Применение термисторов с ПТК: А — в схемах ограничения тока, Б — в микротермостатах
.

  Список тем   Назад   Вперед

 

 

Информация исключительно в ознакомительных целях. При использовании материалов этого сайта ссылка обязательна.Правообладатели статей являются их правообладателями.

 

По вопросам размещения статей   пишите на email:

[email protected]

 

 

Что такое термистор и как он работает?


Опубликовано 28 августа 2018 г.

Термисторы — это тип полупроводников, что означает, что они имеют большее сопротивление, чем проводящие материалы, но меньшее сопротивление, чем изоляционные материалы. Взаимосвязь между температурой термистора и его сопротивлением во многом зависит от материалов, из которых он изготовлен. Производитель обычно определяет это свойство с высокой степенью точности, поскольку это основная характеристика, представляющая интерес для покупателей термисторов.

Термисторы состоят из оксидов металлов, связующих и стабилизаторов, спрессованы в пластины, а затем нарезаны по размеру чипа, оставлены в форме диска или сделаны в другую форму. Точное соотношение композитных материалов определяет их «кривую» сопротивления / температуры. Производители обычно регулируют это соотношение с большой точностью, поскольку оно определяет, как термистор будет работать.

Подробнее о термисторах

Что означает «термистор»?

Термисторы, производные от термина термочувствительные резисторы, представляют собой очень точный и экономичный датчик для измерения температуры.Доступный в 2 типах, NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент), это термистор NTC, который обычно используется для измерения температуры. Термисторы

бывают двух типов: с отрицательным температурным коэффициентом (термисторы NTC) и с положительным температурным коэффициентом (термисторы PTC). Сопротивление термисторов NTC уменьшается с увеличением их температуры, в то время как сопротивление термисторов PTC увеличивается с увеличением их температуры. Для измерения температуры обычно используются только термисторы NTC.

Термисторы состоят из материалов с известным сопротивлением. При повышении температуры сопротивление термистора NTC будет увеличиваться нелинейным образом, следуя определенной «кривой». Форма этой кривой зависимости сопротивления от температуры определяется свойствами материалов, из которых изготовлен термистор.

Термисторы

доступны с различными базовыми сопротивлениями и кривыми зависимости сопротивления от температуры. В низкотемпературных приложениях (от -55 до прибл. 70 ° C) обычно используются термисторы с более низким сопротивлением от 2252 до 10 000 Ом).В приложениях с более высокими температурами обычно используются термисторы с более высоким сопротивлением (более 10 000 Ом). Некоторые материалы обеспечивают лучшую стабильность, чем другие. Сопротивление обычно указывается при 25 ° C (77 ° F). Термисторы имеют точность приблизительно ± 0,2 ° C в пределах указанного диапазона температур. Обычно они прочные, долговечные и недорогие.

Термисторы часто выбирают для применений, где важны прочность, надежность и стабильность. Они хорошо подходят для использования в экстремальных условиях или там, где присутствует электронный шум.Они доступны в различных формах: идеальная форма для конкретного применения зависит от того, будет ли термистор установлен на поверхности или встроен в систему, а также от типа измеряемого материала.

Термисторы с эпоксидным покрытием доступны для использования при более низких температурах [обычно от -50 до 150 ° C (от -58 до 316 ° F)]; термисторы также доступны со стеклянным покрытием для использования при более высоких температурах [обычно от -50 до 300 ° C (от -58 до 572 ° F)]. Эти покрытия защищают термистор и его соединительные провода от влаги, коррозии и механических воздействий.

Доступные конфигурации термистора

Термисторы доступны в нескольких распространенных конфигурациях. Три наиболее часто используемых — это герметичный гибкий термистор (серия HSTH), тип с болтовым креплением / шайбой и самоклеящийся тип поверхностного монтажа. Термисторы

HSTH полностью закрыты оболочками из PFA (пластикового полимера) для защиты чувствительного элемента от влаги и коррозии. Их можно использовать для измерения температуры множества жидкостей, от масел и промышленных химикатов до пищевых продуктов.

Термисторы с датчиками на болтах или шайбах можно устанавливать в резьбовые отверстия или отверстия стандартного размера. Их небольшая тепловая масса позволяет им быстро реагировать на изменения температуры. Они используются во многих областях, включая бытовые приборы, резервуары для воды, трубы и кожухи оборудования.

Термисторы для поверхностного монтажа имеют клейкую внешнюю поверхность, которая может легко закрепиться на плоских или изогнутых поверхностях. Их можно снимать и наносить повторно, и они имеют несколько коммерческих и промышленных применений.

Диапазон температур, точность и стабильность

Термисторы обладают высокой точностью (от ± 0,05 ° C до ± 1,5 ° C), но только в ограниченном диапазоне температур, который находится в пределах примерно 50 ° C от базовой температуры. Диапазон рабочих температур для большинства термисторов составляет от 0 ° C до 100 ° C. Термисторы класса A обеспечивают высочайшую точность, в то время как термисторы класса B могут использоваться в сценариях, где нет необходимости в точных измерениях. После завершения производственного процесса термисторы становятся химически стабильными, и их точность с возрастом существенно не меняется.

Общие приложения для термисторов

Термисторы используются в широком спектре коммерческих и промышленных приложений для измерения температуры поверхностей, жидкостей и окружающих газов. Когда они заключены в защитные зонды, которые можно надежно дезинфицировать, они используются в производстве продуктов питания и напитков, в научных лабораториях и в исследованиях и разработках. Термисторы для тяжелых условий эксплуатации подходят для погружения в агрессивные жидкости и могут использоваться в промышленных процессах, в то время как крепления термисторов с виниловыми наконечниками используются на открытом воздухе или в биологических приложениях.Термисторы также доступны с металлическими или пластиковыми крышками элементов в виде клетки для измерения температуры воздуха.

Как подключить термистор?

Термисторы очень просто подключить. Большинство из них имеют двухпроводные разъемы. Те же два провода, которые соединяют термистор с его источником возбуждения, можно использовать для измерения напряжения на термисторе.

Техническое обучение Техническое обучение Просмотреть эту страницу на другом языке или в другом регионе

Что такое термистор? — Информация о термисторе

Термисторы

— это термочувствительные резисторы, основная функция которых — показывать большое, предсказуемое и точное изменение электрического сопротивления при соответствующем изменении температуры тела.Термисторы с отрицательным температурным коэффициентом (NTC) демонстрируют снижение электрического сопротивления при повышении температуры тела, а термисторы с положительным температурным коэффициентом (PTC) демонстрируют увеличение электрического сопротивления при повышении температуры тела. U.S. Sensor Corp.®, приобретенная Littelfuse в 2017 году, производит термисторы, способные работать в диапазоне температур от -100 ° до более + 600 ° по Фаренгейту. Из-за их очень предсказуемых характеристик и превосходной долговременной стабильности термисторы обычно считаются наиболее предпочтительными датчиками для многих приложений, включая измерение и регулирование температуры.

С тех пор, как отрицательный температурный коэффициент сульфида серебра был впервые обнаружен Майклом Фарадеем в 1833 году, технология термисторов постоянно совершенствовалась. Самой важной характеристикой термистора, несомненно, является его чрезвычайно высокий температурный коэффициент сопротивления. Современная технология термисторов позволяет производить устройства с чрезвычайно точными характеристиками сопротивления в зависимости от температуры, что делает их наиболее выгодными датчиками для широкого спектра применений.

Изменение электрического сопротивления термистора из-за соответствующего изменения температуры очевидно, независимо от того, изменилась ли температура корпуса термистора в результате проводимости или излучения из окружающей среды или из-за «самонагрева», вызванного рассеянием мощности внутри устройства.

Когда термистор используется в цепи, в которой мощность, рассеиваемая внутри устройства, недостаточна, чтобы вызвать «самонагрев», температура корпуса термистора будет соответствовать температуре окружающей среды.Термисторы не являются «самонагревающимися» для использования в таких приложениях, как измерение температуры, контроль температуры или температурная компенсация.

Когда термистор используется в цепи, где мощность, рассеиваемая внутри устройства, достаточна для «самонагрева», температура корпуса термистора будет зависеть от теплопроводности окружающей среды, а также от его температуры. Термисторы являются «самонагревающимися» для использования в таких приложениях, как определение уровня жидкости, определение расхода воздуха и измерение теплопроводности.

Типы различий термисторов, термисторы NTC и PTC

В предыдущем блоге мы обсуждали, что такое термистор и как он работает. Мы также изучили, что такое резистор, потому что термистор на самом деле представляет собой резистор особого типа. Давайте подробнее рассмотрим, какие существуют типы термисторов, из чего они сделаны и какую работу они выполняют. Если вы еще не читали наше введение в термисторы, обязательно сначала ознакомьтесь с разделом «Что такое термистор», а затем вернитесь сюда, чтобы узнать немного больше об этом интригующем датчике температуры.

Рисунок 1: Термисторы 2.251K, 40K и 10K

Основы термистора

Как обсуждалось в нашем предыдущем блоге, термистор будет сопротивляться электрическому току. Он отличается от резистора, потому что термистор влияет на ток в зависимости от температуры. Мы не будем вдаваться в подробности в этой статье, но нажмите на ссылку выше, чтобы узнать больше. Давайте взглянем на диаграмму, чтобы наглядно представить связь между температурой и сопротивлением.

Рисунок 2: Схема термистора A 10K

Вы можете увидеть, как сопротивление термистора уменьшается с увеличением температуры. Если бы это была диаграмма для резистора, «кривая» на самом деле была бы вертикальной линией; значение сопротивления не изменится независимо от температуры. Резисторы отлично подходят для использования в электронике, например, из-за этой стабильной характеристики. Резистор 10 кОм всегда ограничивает 10 000 Ом электрического тока.Однако термистор 10 кОм ограничивает только 10 000 Ом тока при 25 ℃. Если температура выше, скажем, 50 ℃, термистор ограничит сопротивление всего 3900 Ом. Эта изменчивость с изменением температуры может сделать термистор ужасным для использования в электронике, но, безусловно, делает его отличным термометром.

Различные типы термисторов

Существует много различных типов термисторов, но все они работают по одному и тому же принципу: переменное сопротивление в зависимости от температуры.В основном есть две категории термисторов, к которым относятся все типы; NTC и PTC. В зависимости от вашего конкретного применения вы можете предпочесть один термистор другому. Давайте сначала исследуем эти две большие разницы.

Отрицательный температурный коэффициент (NTC)

Термисторы NTC являются наиболее распространенным типом, доступным для использования. Определяющей характеристикой этого термистора является то, что его сопротивление уменьшается с увеличением температуры. Эти датчики широко распространены в отрасли отопления, вентиляции и кондиционирования воздуха, производстве продукции, транспорте, бытовой технике и многих других секторах.Сопротивляясь току, термистор создает побочный продукт остаточного тепла. Если известно, что термистор NTC работает при температурах, вызывающих значительное нагревание, можно применить поправку к измеренным значениям для поддержания точности. Кроме того, с термисторами NTC этот эффект самонагрева будет происходить при низких температурах, когда он может гораздо легче рассеиваться в окружающем процессе.

Положительный температурный коэффициент (PTC)

Термисторы PTC действуют противоположно термистору NTC.Положительный температурный коэффициент означает, что с увеличением температуры сопротивление термистора также увеличивается. Эта категория термисторов встречается нечасто, но они выполняют определенную нишевую функцию; предохранитель. В некоторых процессах наличие чрезмерного тепла означает возникновение нежелательной ситуации. Если в цепи присутствует термистор PTC, он может действовать как своего рода дроссель. Увеличение сопротивления, которое происходит с увеличением тепла, похоже на естественный предохранительный клапан, а сверхактивный контур достигает своего рода верхнего предела.На приведенном ниже графике показаны противоположные кривые термисторов PTC и NTC.

Рисунок 3: NTC и PTC нанесены на одну диаграмму

Что такое кривые и диапазоны термисторов?

Помимо двух различных категорий NTC и PTC, типы термисторов различаются по кривой и диапазону. В целом, их обычно идентифицируют по их резистивной способности при 25 ℃. Мы уже вкратце упомянули, например, обычный термистор 10K.Он выдерживает ток 10 000 Ом при температуре окружающей среды 25 ℃. Есть термисторы 3К, термисторы 12К, термисторы 100К; и список можно продолжать и продолжать. Термистор 10K может быть обычным стандартом, но существует бесчисленное множество других термисторов, которые более точны для использования для других специализированных задач. Давайте взглянем на график нескольких различных термисторов NTC-типа и обсудим несколько важных моментов.

Рисунок 4: Сравнение нескольких термисторов NTC

По этим построенным кривым вы можете определить оптимальный диапазон термистора.Взгляните на область ниже 0 ℃. Здесь вы можете увидеть большое изменение сопротивления, но небольшое изменение температуры. Это означает, что каждое крошечное повышение температуры можно точно измерить, потому что изменение сопротивления велико и легко измеряется. Термисторы не работают автоматически лучше, чем холоднее; есть нижний предел их полезности. При температурах ниже -50 ℃ резистивная способность большинства термисторов слишком велика без специального контроля и схем.

Давайте посмотрим на другой конец диаграммы; кривые выше 50 ℃.В этом разделе есть небольшое изменение сопротивления, но большие изменения температуры. Кривая относительно пологая. Это означает, что легко получить неточные показания температуры, поскольку результирующие изменения сопротивления очень малы. Вам понадобится очень точный прибор для измерения мельчайших изменений сопротивления, иначе будет казаться, что ваша температура сильно колеблется. Только специализированные термисторы могут точно работать при температуре выше 100 ℃.

Хотите узнать немного больше о практической стороне термисторов? Перейдите к разделу «Для чего используются термисторы?» и мы обсудим несколько реальных примеров нишевого рынка датчиков температуры, на котором работают термисторы.

И термисторы в двух словах

Измерение температуры является широко распространенным требованием во многих отраслях промышленности, и термисторы являются подходящим вариантом для некоторых из этих потребностей. В целом, существует три доступных измерительных прибора для контроля температуры, каждый из которых имеет свои сильные и слабые стороны. Не забудьте прочитать о РДТ и термопарах; вместе с термистором они являются ключом к нашим современным процессам измерения температуры.Продолжайте получать знания и ознакомьтесь с разделами «Что такое термопара» и «Как работают датчики температуры RTD?» для получения дополнительной информации о других типах датчиков температуры.

Альтернативы ртутному термометру: Термистор | NIST

Схема термистора, красный цвет указывает на типичное размещение резистора

Термисторы

(терморезисторы) основаны на очень хорошо изученных отношениях между температурой и электрическим сопротивлением в различных полупроводниковых материалах.

Вместо металлических датчиков, как в платиновых термометрах сопротивления (ПТС), в термисторах обычно используются полимеры или керамика — обычно полупроводники, изготовленные путем спекания смесей оксидов металлов, таких как марганец, никель, кобальт, медь, железо и др.

В зависимости от состава датчика термисторы могут показывать повышенное или пониженное сопротивление при повышении температуры. Большинство коммерческих моделей представляют собой блоки с «отрицательным температурным коэффициентом», сопротивление которых уменьшается с температурой.Модели с положительным температурным коэффициентом обычно используются для специализированных приложений в очень узком диапазоне температур, в первую очередь в качестве устройств управления и безопасности.

Оба типа работают лучше всего при температуре от -50 ° C до примерно 100 ° C. Повышенная температура приведет к чрезмерному старению термистора и его дрейфу.

Термисторы

обладают высокой стабильностью при использовании в узком диапазоне температур от 0 ° C до 50 ° C и могут иметь погрешность менее 0,001 ° C. Эта чувствительность, которая значительно выше, чем у PRT в том же диапазоне, является результатом того факта, что сопротивление термистора изменяется более чем в 300 раз от –50 ° C до 90 ° C (около 4 процентов на градус Цельсия), тогда как сопротивление термистора изменяется более чем в 300 раз. PRT выставляет около 0.Изменение сопротивления на 4% на градус в том же диапазоне.

Типичные размеры терморезисторного зонда варьируются от менее миллиметра до примерно 2 см в диаметре и могут иметь форму бусинок, стержней, шайб или стружки. Датчики обычно залиты эпоксидной смолой или герметично закрыты стеклом. Частые применения, помимо измерения температуры, включают температурную компенсацию в электрических цепях, контроль температуры, измерения уровня жидкости, измерения мощности, теплопроводности, биомедицинские приложения и контроль уровня мощности.

NIST калибрует эти устройства от -50 ° C до 100 ° C и других диапазонов температур по специальному запросу.

Типичные термисторные датчики рядом с десятицентовиком для сравнения размеров

Преимущества

  • Легко уменьшить
  • Прочный
  • Быстрое время отклика
  • Простота использования
  • Недорого
  • Высокая чувствительность (погрешность калибровки 1 мК в диапазоне температур 50 ° C)
  • Для точечного зондирования можно использовать шарики небольшого размера
  • Стабильность: 4000 ч при 100 ° C; бусинка в стекле: 0.От 003 ° C до 0,02 ° C; диск: от 0,01 ° C до 0,02 ° C

Недостатки

  • Малый температурный диапазон
  • Устройство нелинейное
  • Требуется частая проверка калибровки при t> 100 ° C
  • Взаимозаменяемость ограничена, если термисторы не согласованы.
  • Самонагрев может быть большим

Термисторы — TE Technology

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2NvbGRwbGF0ZTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY29sZHBsYXRlMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW 50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZz ogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DT0xEIFBMQVRFIENPT0xFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ09MRCBQTEFURSBDT09MRVJTIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjMiLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5Ljg0OTEwMTkyMTQ3MDM0MyUiLCJ5Ij oiMzcuNzIxMzU0MTY2NjY2NjY0JSIsIndpZHRoIjoiNTAuMzQ5NjUwMzQ5NjUwMzU0ZW0iLCJoZWlnaHQiOiI2LjY0MzM1NjY0MzM1NjY0M2VtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5Db2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDb2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW 5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI0LjIyMDcwODAyMDA1MDEyNSUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIzMi42OTIzMDc2OTIzMDc2OWVtIiwiaGVpZ2h0IjoiNC43MjAyNzk3MjAyNzk3MjFlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLmNvbG9yPS cjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2VtO2NvbG9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ29sZCBQbGF0ZSBDb29sZXIgUHJvZHVjdHM8L3NwYW4 + PC9hPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiYnV0dG9uX2NsYXNzIjoic2FuZ2FyLWJ0bi1zcXVhcmUiLCJ0ZXh0IjoiVmlldyBDb2xkIFBsYXRlIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdG lvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuODY1MzE5ODY1MzE5ODY1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9haXJjb29sZXIxLmpwZ1wiID4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImltZ19zaXplX29wdGlvbiI6IjxzZWxlY3Q + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xNTB4MTUwLmpwZ1wiIHdpZHRoPVwiMTUwXCIgaGVpZ2h0PVwiMTUwXCIgdmFsdWU9XCJ0aHVtYm5haWxcIj5UaHVtYm5haWwg4oCTIDE1MCDDlyAxNTA8L29wdGlvbj48b3B0aW9uIHNlbGVjdGVkPVwiXCIgdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2FpcmNvb2xlcjEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxv YWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xMDI0eDEwMi5qcGdcIiB3aWR0aD1cIjEwMjRcIiBoZWlnaHQ9XCIxMDJcIiB2YWx1ZT1cImxhcmdlXCI + TGFyZ2Ug4oCTIDEwMjQgw5cgMTAyPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS5qcGdcIiB3aWR0aD1cIjIwMDBcIiBoZWlnaHQ9XCIyMDBcIiB2YWx1ZT1cImZ1bGxcIj5GdWxsIOKAkyAyMDAwIMOXIDIwMDwvb3B0aW9uPjwvc2VsZWN0PiIsImltZ19zaXplIjoiZnVsbCIsImltZ19zcmMiOiJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNi4xNjgwNDUzNDMxMzcyNSUiLCJ5IjoiNC4wOTgzNjA2NTU3Mzc3MDUlIiwid2lkdGgiOiIzNy41NDIwODc1NDIwODc1MzZlbSIsImhlaWdodCI6IjUuMjE4ODU1MjE4ODU1MjE5ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41 ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5BSVIgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBSVIgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC42ODYwMzgwMTE2OTU5MDYlIiwieSI6IjM2LjY1MzY0NTgzMzMzMzMz JSIsIndpZHRoIjoiNTUuNzIzOTA1NzIzOTA1NzJlbSIsImhlaWdodCI6IjYuNTY1NjU2NTY1NjU2NTY1ZW0iLCJpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkFpciBDb29sZXJzIGZvciBlbGVjdHJpY2FsIGVuY2xvc3VyZXMgYW5kIHJlZnJpZ2VyYXRlZCBjYWJpbmV0cy5cblF1YWxpdHkgY29vbGVycyBtYW51ZmFjdHVyZWQgaGVyZSBpbiB0aGUgVVNBLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBaXIgQ29vbGVycyBmb3IgZWxlY3RyaWNhbCBlbmNsb3N1cmVzIGFuZCByZWZyaWdlcmF0ZWQgY2FiaW5ldHMuXG5RdWFsaXR5IGNvb2xlcnMgbWFudWZhY3R1cmVkIGhlcmUgaW4gdGhlIFVTQS4iLCJhbGlnbiI6ImNlbnRlciIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGluZV9oZWln aHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNS41NTczODMwNDA5MzU2NzIlIiwieSI6IjcwLjcwMzEyNSUiLCJ3aWR0aCI6IjI1LjU4OTIyNTU4OTIyNTU4OGVtIiwiaGVpZ2h0IjoiNS4yMTg4NTUyMTg4NTUyMTllbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9haXItY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUu YmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBBaXIgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgQWlyIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2Fpci1jb29sZXJzLyIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwidGV4dF9zaXplIjoiMS43IiwidGV4dF9jb2xvciI6IiMwMDAwMDAiLCJ0ZXh0X2ZvbnQiOiIiLCJ0ZXh0X3dlaWdodCI6ImJvbGQiLCJiYWNrZ3JvdW5kIjoicmdiKDI1NSwgMTUyLCAwKSIsImhvdmVyX3RleHRfY29sb3IiOiIiLCJob3Zlcl9iYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIxLjVlbSA0ZW0gMS41ZW0gNGVtIiwieW91dHViZV9wb3B1cCI6ZmFsc2UsInlvdXR1YmVfc291cmNlIjoiIn0sImNvbnRlbnRUeXBlIjoiYnV0dG9uIiwiYW5pbWF0aW9uIjoiZW5hYmxlIn1dfSwibW9iaWxlIjp7Im51bWJlciI6MCwib3B0aW9ucyI6e30sImNvbnRlbnQiOltdfX0 =

eyJkZXNrdG 9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2N1c3RvbTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY3VzdG9tMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIG hlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZT ogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DVVNUT00gQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDVVNUT00gQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC45MzAxMzc4NDQ2MTE1MyUiLCJ5IjoiMzguNTU0Njg3NSUiLCJ3aWR0aCI6IjU0Ljg5NTEwNDg5NTEwNDllbSIsImhlaWdodCI6IjYuNjQzMzU2NjQzMzU2NjQzZW0iLC JpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkN1c3RvbSBDb29sZXJzIG9wdGltaXplZCBmb3IgeW91ciBleGFjdCByZXF1aXJlbWVudHMuXG5DYWxsIG91ciBlbmdpbmVlcnMgdG8gZGlzY3VzcyB0aGUgcG9zc2liaWxpdGllcy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ3VzdG9tIENvb2xlcnMgb3B0aW1pemVkIGZvciB5b3VyIGV4YWN0IHJlcXVpcmVtZW50cy5cbkNhbGwgb3VyIGVuZ2luZWVycyB0byBkaXNjdXNzIHRoZSBwb3NzaWJpbGl0aWVzLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdG lvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI1LjA1NjEyOTkwODEwMzU5MyUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIyOS43MjAyNzk3MjAyNzk3MmVtIiwiaGVpZ2h0IjoiNS4yNDQ3NTUyNDQ3NTUyNDVlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLmNvbG9yPScjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2VtO2NvbG 9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ3VzdG9tIENvb2xlciBQcm9kdWN0czwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IEN1c3RvbSBDb29sZXIgUHJvZHVjdHMiLCJoeXBlcmxpbmsiOiIvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6 IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2xpcXVpZDEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvbGlxdWlkMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8 L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3Jt OiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5MSVFVSUQgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMSVFVSUQgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNy40NjA0NzQzMDgzMDAzOTUlIiwieSI6IjM3LjY3MjI0NDA5NDQ4ODE4NSUiLCJ3aWR0aCI6IjU5Ljc5MDIwOTc5MDIwOTc5ZW0iLCJoZWlnaHQiOiI2LjQ2ODUzMTQ2ODUzMTQ2OWVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU9J3Bv c2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBsZWZ0O3BhZGRpbmc6IDAuNWVtIDAuNzVlbTsnID48cCBzdHlsZT0nbWFyZ2luOiAwcHg7bGluZS1oZWlnaHQ6IDEuNTtmb250LXNpemU6IDJlbTtjb2xvcjogIzI2MzI0ODtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LWRlY29yYXRpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + TGlxdWlkIENvb2xlcnMgZGVsaXZlciBjb25jZW50cmF0ZWQgY29vbGluZyB0byByZW1vdGUgaGVhdCBzb3VyY2VzLiBPdXIgZXhwZXJ0cyBjYW4gaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMaXF1aWQgQ29vbGVycyBkZWxpdmVyIGNvbmNlbnRyYXRlZCBjb29saW5nIHRvIHJlbW90ZSBoZWF0IHNvdXJjZXMuIE91ciBleHBlcnRzIGNhbiBoZWxwIHdpdGggc2l6aW5nIGFuZCBzZWxlY3Rpb24uIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxl Ijoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI3LjU2Mjk5NDA3MTE0NjI0NiUiLCJ5IjoiNzIuNTYzOTc2Mzc3OTUyNzYlIiwid2lkdGgiOiIzMi44NjcxMzI4NjcxMzI4N2VtIiwiaGVpZ2h0IjoiNS40MTk1ODA0MTk1ODA0MmVtIiwiaWQiOjMsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxhIGhyZWY9Jy9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13ZWlnaHQ6 IFwiYm9sZFwiOyc + VmlldyBMaXF1aWQgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgTGlxdWlkIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMC4wMDAwMDAwMD AwMDAwM2VtIiwiaGVpZ2h0IjoiMTkuOTE2MTQyNTU3NjUxOTk1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS5qcGdcIiA + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJpbWdfc2l6ZV9vcHRpb24iOiI8c2VsZWN0PjxvcHRpb24gdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMTAyNHgxMDIuanBnXCIgd2lkdGg9XCIxMDI0XCIgaGVpZ2h0PVwiMTAyXCIgdmFsdWU9XCJsYXJnZVwiPkxhcmdlIOKAkyAxMDI0IMOXIDEwMjwvb3B0aW9uPjxvcHRpb24gdX JsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNS4zMDMzMzI2MTQzMjI2OSUiLCJ5IjoiNS43OTIwMjU4NjIwNjg5NjUlIiwid2lkdGgiOiI0OC4wMDgzODU3NDQyMzQ4MWVtIiwiaGVpZ2h0IjoiNC44MjE4MDI5MzUwMTA0ODJlbSIsImlkIjoxLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2IHN0eWxlPSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyLjdlbTtjb2xvcjogI2ZmZmZmZjtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LWRlY29yYX Rpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + VEVNUEVSQVRVUkUgQ09OVFJPTExFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEVNUEVSQVRVUkUgQ09OVFJPTExFUlMiLCJhbGlnbiI6ImxlZnQiLCJzaXplIjoiMi43IiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNi44MTkzOTIyMzA1NzY0NCUiLCJ5IjoiMzYuOTY2MTQ1ODMzMzMzMzM2JSIsIndpZHRoIjoiNjAuNTg3MDAyMDk2NDM2MDY2ZW0iLCJoZWlnaHQiOiI2LjkxODIzODk5MzcxMDY5MmVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU9J3 Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5UZW1wZXJhdHVyZSBDb250cm9sbGVycyBmb3IgcHJlY2lzZSB0aGVybWFsIG1hbmFnZW1lbnQuXG5Db21wbGV0ZSBlbmdpbmVlcmluZyBhc3Npc3RhbmNlIGZyb20gY29vbGVycyB0byBjb250cm9scy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVGVtcGVyYXR1cmUgQ29udHJvbGxlcnMgZm9yIHByZWNpc2UgdGhlcm1hbCBtYW5hZ2VtZW50LlxuQ29tcGxldGUgZW5naW5lZXJpbmcgYXNzaXN0YW5jZSBmcm9tIGNvb2xlcnMgdG8gY29udHJvbHMuIiwiYWxpZ24iOiJjZW50ZXIiLCJzaXplIjoiMiIsImNvbG9yIjoiIzI2MzI0OCIsImxpbmVfaGVpZ2h0IjoiIiwiZm9udF90eXBlIjoiIiwiZm9udF93ZWlnaHQiOiJib2xkIiwidGV4dF90cmFuc2Zvcm0iOiJub25lIiwidGV4dF9kZWNvcmF0aW9uIjoibm9uZSIsImZvbnRfc3 R5bGUiOiJub3JtYWwiLCJsZXR0ZXJfc3BhY2luZyI6IiIsInRleHRfc2hhZG93IjoiIiwiYmFja2dyb3VuZCI6IiIsImJvcmRlcl9wb3NpdGlvbiI6ImJvcmRlciIsImJvcmRlcl9zaXplIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwiYm9yZGVyX3JhZGl1cyI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMi41ZW0gMi41ZW0gMi41ZW0gMi41ZW0ifSwiY29udGVudFR5cGUiOiJ0ZXh0IiwiYW5pbWF0aW9uIjoiZW5hYmxlIn0seyJ4IjoiMjQuMzg3NzkyMzk3NjYwODE3JSIsInkiOiI3Mi4zNjk3OTE2NjY2NjY2NyUiLCJ3aWR0aCI6IjI5LjU1OTc0ODQyNzY3Mjk1N2VtIiwiaGVpZ2h0IjoiNS4yNDEwOTAxNDY3NTA1MjRlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS90ZW1wZXJhdHVyZS1jb250cm9sbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm 9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBUZW1wZXJhdHVyZSBDb250cm9sbGVyczwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFRlbXBlcmF0dXJlIENvbnRyb2xsZXJzIiwiaHlwZXJsaW5rIjoiL3Byb2R1Y3QtY2F0ZWdvcnkvdGVtcGVyYXR1cmUtY29udHJvbGxlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3 aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RoZXJtbzEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGhlcm1vMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI+TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlv bj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24+PC9zZWxlY3Q+IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI1LjkxODI2OTIzMDc2OTIzJSIsInkiOiI1Ljc4MTI1JSIsIndpZHRoIjoiNDcuOTAyMDk3OTAyMDk3OTFlbSIsImhlaWdodCI6IjQuODk1MTA0ODk1MTA0ODk1ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMi43ZW07Y29sb3I6ICNmZmZmZmY7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1k ZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPlRIRVJNT0VMRUNUUklDIE1PRFVMRVM8L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEhFUk1PRUxFQ1RSSUMgTU9EVUxFUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIyLjciLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5LjUxNTgxMDI3NjY3OTg0NCUiLCJ5IjoiMzcuODMyMTg1MDM5MzcwMDglIiwid2lkdGgiOiI0OC4yNTE3NDgyNTE3NDgyNWVtIiwiaGVpZ2h0IjoiNi42NDMzNTY2NDMzNTY2NDNlbSIsImlkIjoyLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2IHN0eWxl PSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA+PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkxhcmdlIGludmVudG9yeSBvZiBwcmVtaXVtIHF1YWxpdHkgUGVsdGllciBtb2R1bGVzLlxuT25saW5lIGNhbGN1bGF0b3JzIHRvIGhlbHAgeW91IHNlbGVjdC48L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiTGFyZ2UgaW52ZW50b3J5IG9mIHByZW1pdW0gcXVhbGl0eSBQZWx0aWVyIG1vZHVsZXMuXG5PbmxpbmUgY2FsY3VsYXRvcnMgdG8gaGVscCB5b3Ugc2VsZWN0LiIsImFsaWduIjoibGVmdCIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ci OiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNy41NjI5OTQwNzExNDYyNDYlIiwieSI6IjcyLjU2Mzk3NjM3Nzk1Mjc2JSIsIndpZHRoIjoiMzIuODY3MTMyODY3MTMyODdlbSIsImhlaWdodCI6IjUuNTk0NDA1NTk0NDA1NTk1ZW0iLCJpZCI6Mywiel9pbmRleCI6MTAwLCJodG1sIjoiPGEgaHJlZj0nL3Byb2R1Y3QtY2F0ZWdvcnkvY29sZC1wbGF0ZS1jb29sZXJzLycgY2xhc3M9J3Nhbmdhci1idG4tc3F1YXJlJyB0YXJnZXQ9J19zZWxmJyBzdHlsZT0nd2hpdGUtc3BhY2U6IG5vd3JhcDsgcGFkZGluZzogMS4wZW0gMi41ZW07YmFja2dyb3VuZDogcmdiKDI1NSwgMTUyLCAwKTsnIG9uTW91c2VPdmVyPVwiXCIgb25Nb3VzZU91dD1cInRoaXMuZ2V0RWxlbWVudHNCeVRhZ05hbWUoJ3NwYW4nKVswXS5zdHlsZS5jb2xvcj0nIzAwMDAwMCc7dGhpcy5zdHlsZS5iYWNrZ3JvdW5kPSdyZ2IoMjU1LCAxNTIsIDApJztcIj48c3BhbiBzdHlsZT0nZm9udC1zaXplOiAxLjdlbTtjb2xvcjogIzAwMDAwMDtmb250LXdlaWdodDogXCJib2xkXCI7Jz5WaWV3IFBlbHRpZXIgTW9kdWxlczwvc3Bhbj48L2E+ IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFBlbHRpZXIgTW9kdWxlcyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

Thermistors, NTC & PTC Thermistor Sensor, 10K Ohms Thermistor

Providing accurate and sensitive measurement and control of temperatures, choose Allied Electronics’ extensive cata log of durable thermistors and build efficient temperature-controlled circuits.

Все термисторы, представленные в нашем ассортименте, изготовлены из материалов высочайшего качества известными поставщиками термисторов, такими как Vishay Dale, Honeywell и Amphenol Advanced Sensors. В нашем ассортименте есть бесчисленное количество типов, таких как токоограничивающие, высокочувствительные, суровые условия, а также герметичные термисторы, поэтому мы можем помочь независимо от вашего проекта или области применения.

У нас есть много различных типов термисторов, поэтому используйте функции поиска, чтобы ограничить поиск компонентов по характеристикам, производителю, типу и т. Д.Если вам нужна дополнительная информация о температурных термисторах, их функциях и использовании, прокрутите вниз. Хотите узнать больше? Свяжитесь с нами или посетите наш экспертный центр, чтобы получить ответы на все ваши вопросы.

Что такое термистор?

Термочувствительные резисторы, термисторы — это компоненты, которые, обнаружив изменение температуры, сопротивляются протекающему через них току, пропорциональному изменению температуры.

Обычно они используются для измерения изменений температуры. Когда температура вокруг термистора изменяется, полупроводниковые материалы внутри них изменяют напряжение, протекающее через компонент.Это считывается контроллером температуры, а генерируемые данные используются для информирования о функциях других компонентов в цепи.

Как работают различные термисторные датчики температуры?

Термисторные датчики температуры работают в соответствии с материалами, из которых они изготовлены — они изменяют масштаб сопротивления пропорционально изменению температуры. Каждый термистор изготовлен из полупроводниковых оксидов металлов, спрессованных в форму (например, бусинки, цилиндра или диска), которые покрыты водонепроницаемым материалом, обычно стеклом или эпоксидной смолой.

По мере нагревания этих оксидов их электрическое сопротивление либо увеличивается, либо уменьшается. Это зависит от различных типов термисторов, в которых они используются, а их два:

Термисторы с отрицательным температурным коэффициентом — Термисторы с отрицательным температурным коэффициентом (NTC) уменьшают свое электрическое сопротивление по мере увеличения измеряемой температуры и наоборот. Они часто используются для измерения температуры, будь то в системах отопления, автомобильных датчиках температуры или для ограничения токов в цепях питания до безопасных уровней.

Термисторы PTC — Сопротивление термисторов с положительным температурным коэффициентом (PTC) увеличивается с увеличением температуры. Они часто используются в саморегулирующихся нагревателях — при понижении температуры к нагревательному элементу прикладывается больший ток, что увеличивает температуру окружающей среды. Они также могут защищать от сверхтоков, действуя как самовосстанавливающийся предохранитель, который останавливает ток, пока температура корпуса термистора не упадет до безопасного уровня.

В чем разница между термистором и резистивным датчиком температуры (RTD)?

Хотя они похожи на датчики температуры, между термисторами и RTD есть некоторые ключевые различия, которые определяют их правильное использование.

Термисторные датчики температуры менее дороги, более долговечны, обычно обеспечивают более точный диапазон измерения температуры и могут гораздо быстрее изменять свое сопротивление в соответствии с колебаниями температуры, чем датчики RTD.

Однако их диапазоны измерения температуры намного ниже, чем у RTD, и корреляция их сопротивления изменению температуры нелинейна. Решение этой проблемы может быть сложным, но необходимо учитывать, чтобы точно считывать данные термистора.Компоненты термистора также могут выделять тепло, что может привести к ошибочным показаниям. С другой стороны, РДТ

сделаны из металла, что означает, что они могут работать в гораздо более высоких диапазонах температур, чем термисторы, и их сопротивление температурной корреляции является линейным. Однако они больше и дороже, а также менее чувствительны, изменяя сопротивление на меньшее количество Ом на градус, чем термисторы.

Какие области применения термисторов?

Термисторные датчики температуры, используемые во многих промышленных, производственных или электронных приложениях, где необходимо измерять или реагировать на температуру газа, жидкости или поверхности, являются чрезвычайно распространенными компонентами.

Они используются в производстве пищевых продуктов, где необходимо контролировать температуру, чтобы смягчить состояние пищевых продуктов или санитарную среду. В химическом и нефтехимическом производстве некоррозионные термисторы играют большую роль в безопасном производстве различных жидкостей. В аэрокосмической отрасли, связи, электронике и медицине они приносят пользу как точному производству оборудования, так и обеспечивают возможность измерения температуры в самих продуктах.

И в повседневной жизни они гарантируют, что духовки, системы отопления, кондиционеры и пожарная сигнализация могут работать правильно, а температуру в двигателях транспортных средств можно контролировать.

Почему стоит доверять Allied Electronics как дистрибьютору термисторов?

Приобретая термисторы у Allied Electronics, вы получаете почти столетний опыт в области распределения электрических компонентов.

Мы являемся одним из крупнейших авторизованных дистрибьюторов в Северной Америке и поддерживаем тесные партнерские отношения с широким спектром поставщиков компонентов, такими как Omron Automation, EPCOS, AVX и Sensata. Это означает, что у нас почти наверняка есть термистор, который вам нужен для решения поставленной задачи.

Выполните поиск в нашем ассортименте по сопротивлению — просмотрите термисторы NTC, термисторы PTC или компоненты ICL и PPTC — и просмотрите их по допускам, типу заделки и многому другому. Просто используйте меню слева, чтобы сузить выбор.

Если у нас нет необходимых терморезисторов, свяжитесь с нашими специалистами, и они будут рады помочь. Посетите наш экспертный центр, чтобы узнать больше.

14.1.5 Термистор [Техническое описание серии T] | LabJack

Обзор

Значения AIN # _EF_INDEX:

50 : рассчитать температуру с помощью уравнения Стейнхарта-Харта
51 : рассчитать температуру с помощью уравнения бета

Эта расширенная функция термистора автоматически выполняет необходимые вычисления для термисторов с использованием уравнения Стейнхарта-Харта или бета-уравнения.

Steinhart-Hart по сравнению с бета-версией : Бета-функция хорошо работает в ограниченном диапазоне около 50 ºC. Типичная погрешность составляет ~ ± 0,5 ºC. Steinhart-Hart обычно более точен (± 0,01 ºC) в большем диапазоне. Обратите внимание, что это просто точность математического преобразования сопротивления в температуру, и, вероятно, есть другие источники ошибок в ваших измерениях, которые похожи или больше (например, точность самого термистора и точность сопротивления в цепи преобразования напряжения).

Конфигурация

Для настройки запишите в следующие регистры.

AIN # _EF_CONFIG_A — Опции термистора : выбирает единицы измерения температуры:

AIN # _EF_CONFIG_B — Индекс цепи возбуждения : Индекс используемой цепи возбуждения делителя напряжения.

См. 14.1.0.1 Цепи возбуждения для индексов цепей.

AIN # _EF_CONFIG_C — 2nd AIN: Номер канала для измерения Резистор V : Для цепей возбуждения 3 и 5 это дополнительный AIN, используемый для измерения напряжения на постоянном резисторе.Игнорируется для других цепей возбуждения.

AIN # _EF_CONFIG_D — ​​Вольт или Ампер возбуждения : Для цепи возбуждения 2 это фиксированный ток источника тока. Для цепи возбуждения 4 это фиксированное напряжение источника напряжения. Игнорируется для других цепей возбуждения.

AIN # _EF_CONFIG_E — Ом постоянного резистора : Для цепей возбуждения 3, 4 и 5 это сопротивление постоянного резистора.

AIN # _EF_CONFIG_F — R25 Ом : Номинальное сопротивление термистора в Ом при 25 ° C.

Стейнхарт-Харт Бета
AIN # _EF_CONFIG_G Коэффициент А ß
AIN # _EF_CONFIG_H Коэффициент B ºC, при котором было вычислено ß
AIN # _EF_CONFIG_I Коэффициент C Без значения
AIN # _EF_CONFIG_J Коэффициент D Без значения

Регистры конфигурации G, H, I и J имеют разное значение для Steinhart-Hart и бета-версии.3 «. Если у вас есть коэффициенты, которые были сгенерированы на основе этой формы, установите C = 0 (AIN # _EF_CONFIG_I = 0) и передайте заданное значение C для D (AIN # _EF_CONFIG_J).

Онлайн-калькулятор от daycounter.com использует форму «R / R25» и поэтому полезен для тестирования. LabJack предоставляет электронную таблицу термисторного калькулятора, которая также полезна для тестирования и устранения неполадок (сделайте копию, если вам нужна редактируемая версия). Онлайн-калькулятор от thinksrs.com можно использовать для проверки коэффициентов на основе «R» или бета-уравнения, а также для расчета коэффициентов Стейнхарта-Харта на основе «R» из 3 пар сопротивление-температура.

Примечания

Нормальные регистры аналогового входа используются для управления отрицательным каналом, индексом разрешения, установкой и диапазоном.

Только

T7: если напряжение останется ниже 1,0 В, используйте диапазон 1,0 В для улучшения разрешения и точности.

Результаты

Для получения результатов прочтите следующие регистры.

AIN # _EF_READ_A: Расчетная температура термистора
AIN # _EF_READ_B: Сопротивление термистора
AIN # _EF_READ_C: Напряжение термистора

Только чтение AIN # _EF_READ_A запускает новое измерение, поэтому вы всегда должны читать A перед чтением B или C.

Поиск и устранение неисправностей

Температура к напряжению

Определите ожидаемое сопротивление и напряжение и сравните с тем, что вы видите. Предположим, у нас есть термистор Vishay NTCLE100E3103 10k и LJTick-Resistance-10k и температура 22 ° C. Из таблицы ожидаемое сопротивление составляет 12488 при 20 ° C и 10000 Ом при 25 ° C, поэтому мы интерполируем, чтобы получить ожидаемое сопротивление при 22 ° C:

R22 = 12488 — (((22-20) / (25-20)) * (12488-10000)) = 11493 Ом

Теперь мы используем уравнение из таблицы LJTick-Resistance для расчета ожидаемого напряжения:

Vout = Vref * Rfixed / (Runknown + Rfixed) = 2.5 * 10000 / (11493 + 10000) = 1,163 вольт

Сравните ожидаемое сопротивление и напряжение с AIN # _EF_READ_B и AIN # _EF_READ_C.

Температурная стойкость

Воспользуйтесь одним из различных онлайн-калькуляторов на сайте daycounter.com, чтобы проверить устойчивость к преобразованию температуры. В этом случае у нас есть коэффициенты Стейнхарта-Харта, и первый калькулятор на этой странице применим. Мы подставляем A = 0,003354016, B = 0,000256985, C = 0,000002620, D = 0,00000006383, Rt = 10000 и R = 11493, и получаем результат 21.85 ° С. Достаточно близко к 22.0, чтобы говорить нам, что все работает правильно. Основным источником ошибки здесь является тот факт, что мы сделали линейную интерполяцию, чтобы получить ожидаемое сопротивление, но сопротивление очень нелинейно. Мы знаем, что это основной источник ошибок, потому что если мы поместим фактическое табличное значение 12488 Ом для 20 ° C, калькулятор даст нам 19,998 ° C.

Пример

В этом примере настраивается LabJack для чтения с термистора Vishay NTCLE100E3103 10k с использованием LabJack LJTick-Resistance для завершения цепи возбуждения.LJTick-Resistance подключается к клеммной колодке AIN0 / 1. Термистор подключается между клеммами Vref и INA на LJTick-Resistance.

 AIN0_EF_INDEX = 50 - Стейнхарт-Харт
AIN0_EF_CONFIG_A = 1 - вывод градусов Цельсия.
AIN0_EF_CONFIG_B = 4 - Схема возбуждения №4.
AIN0_EF_CONFIG_C = 0 - Второй AIN, не используется для схемы возбуждения №4.
AIN0_EF_CONFIG_D = 2,5 - 2,5 В обеспечивается LJTick-Resistance
AIN0_EF_CONFIG_E = 10000 - шунтирующий резистор 10 кОм, обеспечиваемый LJTick-Resistance-10k.AIN0_EF_CONFIG_F = 10000 - R25 Номинальное сопротивление термистора при 25 ºC.
AIN0_EF_CONFIG_G = 0.003354016 - Константы из даташита термистора.
AIN0_EF_CONFIG_H = 0,000256985
AIN0_EF_CONFIG_I = 0,000002620
AIN0_EF_CONFIG_J = 0,00000006383
 

Результатов:

 AIN0_EF_READ_A = 23.19 - Температура термистора. (° C)
AIN0_EF_READ_B = 10829.4 - Расчетное сопротивление. (Ом)
AIN0_EF_READ_C = 1.299774 - Напряжение на термисторе. (V)
 
.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *