+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Последовательное и параллельное соединение аккумулятров

Категория: Поддержка по аккумуляторным батареям
Опубликовано 10.04.2016 14:30
Автор: Abramova Olesya


Электрические батареи могут достигать необходимого рабочего напряжения путем последовательного подсоединения нескольких элементов — каждый элемент добавляет свой показатель напряжения к общему напряжению всей системы. Параллельное же соединение обеспечит более высокий показатель емкости и силы тока — суммарная емкость такой системы будет равна сумме емкостей всех подключенных элементов, сила тока также будет равняться сумме значений всех элементов.

Некоторые системы могут состоять из нескольких параллельных или последовательных соединений. Аккумуляторы для портативных компьютеров обычно состоят из четырех 3,6 В литий-ионных элементов, соединенных последовательно для обеспечения напряжения 14,4 В и двух соединенных параллельно для увеличения емкости от 2400 мАч до 4800 мАч.

Такая конфигурация называется 4S2P, что соответственно и расшифровывается как 4 Serial 2 Parallel (что в переводе с английского — 4 последовательных и 2 параллельных соединения). Между такими элементами в аккумуляторе обязательно присутствует изоляционный материал, во избежание короткого замыкания.

Элементы большинства электрохимических систем способны к последовательному и параллельному соединению. Важно использовать элементы одного типа, с одинаковым напряжением и емкостью, и никогда не формировать соединение из элементов разных марок и размеров, так как более слабый элемент вызовет дисбаланс всей системы. Это особенно важно при последовательном соединении, так как вся система будет зависеть от самого слабого элемента. В этом случае уместна аналогия с цепью, где слабое звено нивелирует прочность всей цепи (рисунок 1).

Рисунок 1: Сравнение последовательного соединения электрических батарей с цепью. Каждое звено этой цепи можно сравнить с электрохимическим элементом питания в последовательно соединенной системе, слабость звена или элемента приведет к коллапсу всей системы.

Слабый элемент может выявиться не сразу, при щадящих режимах работы нагрузка на него не велика, однако при возрастании нагрузки он исчерпывает свой ресурс очень быстро. При зарядке такой элемент полностью заряжается быстрее других, следовательно, остальное время на него действует излишняя зарядка, что приводит к вредному перезаряду. При разряде же он выходит из строя первым, заставляя остальные элементы питать нагрузку, уже превышающую номинал всей системы. Элементы в аккумуляторных системах обязательно должны иметь одинаковые характеристики, особенно в условиях высоких нагрузок.

Система из одного электрохимического элемента питания является простейшим примером электрической батареи. Такая система не требует предварительного согласования, а защитная схема, в случае если это литий-ионная технология, крайне проста. Типичными примерами таких систем являются 3,60 В литий-ионные аккумуляторы для мобильных телефонов и планшетов. Другим примером использования одноэлементных батарей являются настенные часы, где чаще всего используется 1,5 В щелочная батарейка.

Номинальное напряжение элемента на основе никеля составляет 1,2 В, щелочной — 1,5 В, серебряно-оксидной — 1,6 В, а свинцово-кислотной — 2,0 В. Первичные литиевые элементы обеспечивают напряжение в диапазоне от 3,0 до 3,9 В, в их числе литий-ионные — 3,6 В, литий-фосфатные — 3,2 В, литий-титанатные — 2,4 В.

Литий-марганцевая и другие электрохимические системы на основе лития часто могут обеспечить напряжение элемента на уровне 3,7 В и выше. Это связано не столько с электрохимическими аспектами, сколько является следствием оптимизации под более высокий показатель количества ватт-часов путем уменьшения внутреннего сопротивления элемента. Но в основном, элементы этой электрохимической системы производятся со стандартным показателем напряжения в 3,6 В.

Портативное оборудование, требующее высоких значений напряжения, использует в качестве источника питания два или больше электрических элемента, соединенных последовательно. На рисунке 2 показан батарейный блок из четырех 1,2 В никелевых элементов, соединенных последовательно.

Такой блок создан для получения напряжения 4,8 В и известен как 4S. Для сравнения, свинцово-кислотный аккумулятор с шестью 2 В элементами (“банками”) будет генерировать 12 В, а четыре 3,6 В литий-ионных элемента дадут 14,4 В. (BU-303: Номинальное напряжение аккумулятора)

Рисунок 2: Последовательное соединение четырех элементов (4S). Последовательное присоединение элемента увеличит напряжение, сила тока останется неизменной.

Если вам нужно особое значение напряжения, например, 9,5 вольт, последовательно подключите пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых, или три литий-ионных элемента. Конечное напряжение батарейного блока может быть немного большим, чем номинальное устройства, приложение 12 В вместо 9,5 В позволит его эксплуатировать. Большинство устройств, рассчитанных на питание электрическими батареями, могут выдерживать некоторое превышение номинального напряжения, но не следует этим злоупотреблять, слишком большое превышение напряжения может повредить устройство.

Использование электрической батареи с высоким напряжением позволяет уменьшить потери и увеличить КПД. Беспроводные инструменты работают на 12 В и 18 В аккумуляторах, более высококлассные используют даже 24 В и 36 В. Большинство электровелосипедов комплектуются 36 В литий-ионным аккумулятором, некоторые даже идут с 48 В. Существуют инициативы в автомобильной промышленности по поводу увеличения напряжения стартерного аккумулятора с 12 В (14В) до 36 В (42 В), путем размещения в аккумуляторе 18 свинцово-кислотных элементов (“банок”). Но этой инициативе препятствует необходимость изменения свойств электрических компонентов в автомобиле и повышенный риск возникновения искр в механических переключателях.

Некоторые гибридные автомобили работают на 48 В литий-ионном аккумуляторе и в дополнение к этому используют преобразователь напряжения для получения стандартных 12 вольт для электрической системы автомобиля. Также возможен вариант с отдельной установкой стандартного стартерного аккумулятора для запуска двигателя внутреннего сгорания.

Первые гибридные автомобили использовали 148 В аккумуляторы, электромобили имеют аккумуляторную систему напряжением 450-500 В. Такая система состоит из более чем 100 литий-ионных элементов, соединенных последовательно.

Аккумуляторные системы высокого напряжения требуют тщательного согласования элементов, особенно при подключении к сильной нагрузке или при работе в низкотемпературных условиях. Так как в таких последовательно соединенных системах выход из строя всего лишь одного элемента приводит к коллапсу всей системы, существуют специальная система защиты, которая выявляет неисправный элемент и позволяет “обходить” его. Такой метод конечно же уменьшает общее напряжение системы, но как временное решение весьма практичен, и главное позволяет всей системе сохранить работоспособность.

Согласование элементов становится проблемой при необходимости замены неисправного элемента в устаревшей аккумуляторной системе. Более современные элементы, как правило, имеют более высокую емкость, в результате чего в такой системе может возникнуть дисбаланс.

Сварная конструкция аккумуляторной системы также усложняет ремонт, и в связи с этим чаще всего вся аккумуляторная система меняется полностью.

В электромобилях, где цена аккумуляторной системы составляет весомую часть от стоимости всего транспортного средства, полная замена этой системы видится абсурдной. Поэтому производители делят аккумуляторную систему на модули, каждый из которых состоит из определенного числа элементов. И если такой элемент выйдет из строя, замена будет необходима не всей системе, а определенному модулю. Возникновение трудностей возможно в случае, если доступны только новые модули, укомплектованные более современными элементами. (

Смотрите: Как восстановить аккумуляторную систему).

На рисунке 3 показан батарейный блок, в котором элемент-3 производит только 0,6 В вместо 1,20 В. С пониженным общим напряжением этот батарейный блок разрядится раньше обычного. Напряжение будет проседать, и в конце концов питаемое устройство отключится.

Рисунок 3: Последовательное соединение с неисправным элементом. Неисправный элемент-3 понижает общее напряжение и приводит к преждевременному прекращению работы подключенного устройства.

Аккумуляторные системы в беспилотных летательных аппаратах или других устройствах, требующих высокие токи нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в системе является слабым. Пиковые нагрузки увеличивают стресс на аккумуляторную систему, вызывая коллапс еще быстрее. Измерение напряжения сразу после зарядки не поможет для идентификации слабого элемента — его напряжение без нагрузки будет относительно нормальным; для решения этой проблемы существуют специальные анализаторы электрических батарей.

Если для устройства требуется высокое значение силы тока и удовлетворить это требование одним элементом невозможно, следует использовать параллельное соединение элементов. Большинство электрохимических систем позволяют использование параллельной конфигурации подсоединения, но с некоторыми побочными эффектами. На рисунке 4 показаны четыре параллельно соединенных элемента, такая конфигурация еще называется 4P (4 Parallel). Напряжение этой системы остается 1,20 В, но сила тока и емкость увеличены в четыре раза.

Рисунок 4: Параллельное соединение четырех электрических элементов. Благодаря параллельной конфигурации подсоединения сила тока и емкость увеличиваются, напряжение же остается неизменным.

Выход из строя единичного элемента при параллельном соединении не столь критично, как при последовательном. Такая проблема конечно уменьшит нагрузочные характеристики всей системы, но хотя бы не выведет ее из строя. Можно провести аналогию с цилиндрами двигателя внутреннего сгорания — автомобиль сможет ехать и на трех цилиндрах, даже если у него их всего четыре. С другой стороны, при наличии неисправного элемента в параллельных системах существует больший риск возникновения короткого замыкания, так как такой элемент как бы высасывает энергию из других, в результате чего возрастает риск возгорания. Большинство таких коротких замыканий довольно умеренны и проявляются в виде повышенного саморазряда.

Причиной короткого замыкания может быть поляризация или возникновение дендритов в элементе. Большие аккумуляторные системы часто снабжены предохранителем, который отключает неисправный элемент из параллельной цепи, если он был закорочен. На рисунке 5 показана параллельная конфигурация с одним неисправным элементом.

Рисунок 5: Параллельное соединение с одним неисправным элементом. Слабый элемент не повлияет на напряжение всей системы, но уменьшит общее время работы за счет уменьшения емкости системы. Закороченный элемент может вызвать перегрев и стать причиной возникновения пожара.

Последовательно-параллельная конфигурация подсоединения элементов, показанная на рисунке 6, предоставляет большую гибкость конструкции, с ее помощью можно создать систему с желаемыми значениями напряжения и тока, используя стандартные элементы. Суммарная мощность будет произведением значений напряжения и силы тока, например, четыре 1,2 В элемента емкостью 1000 мАч производят 4,8 Вт мощности. Четыре элемента типоразмера 18650 емкостью 3000 мАч каждый могут быть соединены последовательно-параллельно для достижения 7,2 В и 12 Вт. Использование тонких элементов позволит сконструировать гибкую аккумуляторную систему, но ей будет необходима система защиты.

Рисунок 6: Последовательно-параллельное соединение четырех элементов (2S2P). Такая конфигурация обеспечивает максимальную гибкость конструкции. Параллельные элементы помогают в управлении напряжением.

Литий-ионные элементы отлично подходят для последовательно-параллельных конфигураций, но необходим мониторинг каждого элемента — для соответствия значений напряжения и силы тока. Такой мониторинг реализуется аппаратно — путем создания электронного устройства, стандартный образец которого может контролировать систему из 13 литий-ионных элементов. Для больших аккумуляторных систем создаются специальные схемы, например, как в электромобиле Tesla, где аккумуляторная система состоит из 7000 элементов типоразмера 18650, суммарная мощность которых достигает 90 кВт/ч.

5. Рекомендации по использованию первичных батарей

  • Держите контакты элементов в чистоте. Конфигурация с четырьмя элементами имеет восемь контактов и каждый добавляет сопротивление.

  • Никогда не смешивайте разнотипные элементы, если вышел из строя один, и ему нет аналогичной замены, то необходимо заменить все. Общая производительность настолько хороша, насколько этому соответствует самый слабый элемент.

  • Соблюдайте полярность. Неправильно размещенный элемент уменьшает общее напряжение системы.

  • Для предотвращения утечки электролита и коррозии, извлекайте элементы из устройства, когда оно не используется. Особенно это касается угольно-цинковых элементов.

  • Не храните электрические батареи в металлических коробках. Элементы следует по отдельности помещать в полиэтиленовые пакеты, во избежание короткого замыкания. Не стоит носить батареи в карманах.

  • Держите батареи подальше от детей. Помимо риска попадания в дыхательные пути, что может вызвать удушение, ток электрохимической батареи при попадании в желудочно-кишечный тракт может вызвать язву, а при разрыве оболочки — отравление. (Смотрите: Влияние электрохимических батарей на здоровье человека).

  • Не заряжайте первичные (неперезаряжаемые) электрические батареи, так как накопление водорода может привести к взрыву. Экспериментировать с зарядкой можно лишь контролируя этот процесс.

6. Рекомендации по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичных элементов. Несоблюдение может привести к короткому замыканию.

  • Извлекайте полностью заряженные элементы из зарядного устройства. Обычное зарядное устройство не имеет встроенной системы индикации заряда, следовательно, аккумулятор может перегреться.

  • Производите зарядку при комнатной температуре.

Последнее обновление 2016-02-29

Схемы соединения аккумуляторов: параллельное и последовательное подключение, как сделать правильно

Объединенная группа аккумуляторов называется батареей элементов или просто гальванической батареей. Существуют два основных способа соединения элементов в батареи: последовательное и параллельное соединения.

В рамках данной статьи рассмотрим особенности последовательного и параллельного соединения аккумуляторов. Есть разные ситуации, когда может потребоваться увеличить общую емкость или поднять напряжение, прибегнув к параллельному или последовательному соединению нескольких аккумуляторов в батарею, и всегда нужно помнить о нюансах.

Параллельное соединение предполагает объединение положительных клемм аккумуляторов с общей плюсовой точкой схемы, а всех отрицательных — с общим минусом, т. е. все положительные выводы элементов присоединить к одному общему проводу, а все отрицательные выводы — к другому общему проводу. Концы общих проводов такой батареи присоединяются к внешней цепи — к приемнику.

Сущность последовательного способа соединения аккумуляторов, как это вытекает из самого его названия, заключается в том, что все взятые элементы соединяются между собою в одну последовательную цепочку, т. е. положительный полюс каждого элемента соединяется с отрицательным полюсом каждого последующего элемента. 

В результате такого соединения получается одна общая батарея, у которой у одного крайнего элемента остается свободным отрицательный, а у второго — положительный выводы. При помощи их батарея и включается во внешнюю цепь — в приемник. Далее поговорим об этом более подробно.

Параллельное соединение аккумуляторов дает объединение емкостей, и при равном исходном напряжении на каждом из аккумуляторов, входящих в собираемую из них батарею, емкость составной батареи оказывается равной сумме емкостей этих аккумуляторов. При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке.

Параллельное соединение:

Сколько бы элементов мы ни соединяли параллельно, общее их напряжение всегда будет равно напряжению одного элемента, но зато сила разрядного тока может быть увеличена во столько раз, сколько элементов будет входить в состав батареи, если только все элементы в батарее однотипные.

Соединяя аккумуляторы последовательно, получают батарею той же емкости, что и емкость одного из аккумуляторов, входящих в батарею, при условии, что емкости равны. При этом напряжение батареи будет равно сумме напряжений каждого из составляющих батарею аккумуляторов.

Ежели последовательно соединяются аккумуляторы равной емкости и равного на момент соединения напряжения, тогда напряжение батареи, полученной путем последовательного соединения, будет равно произведению напряжения одного аккумулятора и количества аккумуляторов, составляющих последовательную цепь.

Последовательное соединение:

При последовательном соединении элементов складываются и величины их внутренних сопротивлений.

Поэтому от составленной батареи независимо от величины ее напряжения можно потреблять только такой же силы ток, на какой рассчитан один элемент, входящий в состав данной батареи.

Это и понятно, так как при последовательном соединении через каждый элемент проходит тот ток, какой проходит и через всю батарею.

Таким образом, путем последовательного соединения элементов, увеличивая их общее количество, можно повысить напряжение батареи до любых пределов, но сила разрядного тока батареи останется такой же, как и у одного отдельного элемента, входящего в ее состав.

И при параллельном, и при последовательном соединении, общая энергия батареи оказывается равной сумме энергий всех аккумуляторов, составляющих батарею.

Итак, для чего же аккумуляторы объединяют в батареи? Все дело в том, что в любой схеме существуют потери, связанные с нагревом проводников. И при одном и том же сопротивлении проводника, если требуется передать определенную мощность, гораздо выгоднее передавать мощность при высоком напряжении, тогда ток потребуется меньший, и омические потери будут меньше.

По этой причине мощные источники бесперебойного питания используют батареи последовательно соединенных аккумуляторов на общее напряжение в несколько десятков вольт, а не параллельную цепь на 12 вольт. Чем выше напряжение источника, тем выше КПД преобразователя.

Когда нужен значительный ток, а одного имеющегося в наличии аккумулятора для поставленной цели не достаточно, увеличивают емкость батареи, прибегая к параллельному соединению нескольких аккумуляторов.

Не всегда экономически выгодно заменять аккумулятор на новый, обладающий большей емкостью, и иногда достаточно присоединить параллельно еще один, и повысить емкость источника до необходимой. Некоторые источники бесперебойного питания имеют отсеки для установки дополнительных аккумуляторов параллельно уже имеющемуся, с целью повысить энергетический ресурс преобразователя.

Что следует учитывать при объединении аккумуляторов в последовательную цепь? Аккумуляторы различной емкости (изготовленные по одной и той же технологии, например свинцово-кислотные) отличаются внутренним сопротивлением. Чем выше емкость, тем меньше внутреннее сопротивление, зависимость здесь почти обратно пропорциональная.

По этой причине, если последовательно соединить аккумуляторы разной емкости, и замкнуть цепь нагрузки или зарядную цепь, то ток по цепи пойдет везде одинаковый, а вот падения напряжений будут разными.

И на каком-то из аккумуляторов батареи напряжение при зарядке окажется намного выше номинала, что опасно, а при разрядке — намного ниже нижнего предела, что вредно.

Рассмотрим далее пример, покажем, чем это чревато.

Пусть в нашем распоряжении 10 аккумуляторов, номинальное напряжение каждого 12 вольт, 9 из них имеют емкость 20 ампер-часов, а один — 10 ампер-часов.

Мы решили соединить их последовательно, и заряжать от зарядного устройства с контролем зарядного тока, выставили ток на 2 ампера.

Зарядное устройство настроено так, что прекратит зарядку когда напряжение батареи пересечет отметку в 138 вольт, исходя из среднего значения в 13,8 вольт на каждый аккумулятор последовательной батареи. Что произойдет?

Для каждого аккумулятора производитель предоставляет зарядную характеристику, где можно увидеть, каким током и на протяжении какого времени нужно заряжать аккумулятор.

Очевидно, аккумулятор в 2 раза меньшей емкости при токе в 2 ампера примет столько же энергии, что и аккумуляторы большей емкости, но рост напряжения на нем будет идти примерно втрое быстрее. Так, уже через 3 часа маленький аккумулятор возьмет свое, в то же самое время большие аккумуляторы еще 6 часов должны будут заряжаться.

Но напряжение на маленьком аккумуляторе уже пошло через край, его бы нужно перевести в режим стабилизации напряжения, на наш зарядный прибор этого не делает. В конце концов система рекомбинации газов в аккумуляторе вдвое меньшей емкости не выдержит, клапаны сорвет, и аккумулятор начнет терять влагу, терять емкость, при этом большие аккумуляторы все еще будут недозаряжены.

Вывод: заряжать последовательно можно только аккумуляторы равной емкости, одной и той же технологии, одного и того же состояния разряда.

Теперь допустим, что мы разряжаем эту же последовательную цепь. Изначально на каждом аккумуляторе 13,8 вольт, а разрядный ток составляет 2 ампера.

Защита от глубокого разряда разомкнет цепь при 72 вольтах, то есть предполагается не менее 7,2 вольт на аккумулятор.

Через 4 часа маленький аккумулятор полностью разрядится, а на больших еще будет по 12 вольт, и защита от глубокого разряда не уследит подвоха. Маленький аккумулятор уже необратимо потеряет часть своей емкости.

Вот почему последовательно можно соединять лишь аккумуляторы равных емкостей, если не хотите их испортить. Лучше всего последовательно соединять аккумуляторы из одной партии, и проверить предварительно их емкости тестером АКБ, дабы убедиться, что емкости аккумуляторов, из которых вы собираетесь собрать последовательную батарею, почти равны.

А вот параллельно соединять аккумуляторы разной емкости допустимо. Разумеется, при условии равенства напряжений на их клеммах. При параллельном соединении емкости аккумуляторов не будут играть роли, поскольку внутренние сопротивления аккумуляторов окажутся подключены параллельно, и максимальный ток заряда или разряда будет у каждого аккумулятора свой, они будут работать синхронно.

Однако для клемм аккумуляторов и для каждого конкретного аккумулятора ограничения по току имеются, клеммы могут и не выдержать длительный ток, который в принципе способен дать аккумулятор, об этом важно не забывать. В технической документации к аккумулятору эти параметры указаны.

Если в момент соединения двух аккумуляторов, сильно различающихся по емкости, их напряжения отличаются значительно, неизбежна кратковременная перегрузка по току одного из аккумуляторов. Если напряжение выше у аккумулятора меньшей емкости, то перераспределение заряда в момент соединения вызовет кратковременный ток короткого замыкания в нем, и может быстро привести к его разрушению.

Если напряжение выше у аккумулятора большей емкости, то опять же под угрозой аккумулятор меньшей емкости, ибо он станет принимать заряд в режиме перегрузки. Поэтому лучше всего соединять параллельно аккумуляторы, предварительно выровняв напряжения на них, а уже следующим шагом объединять в батарею.

Надеемся, что наша статья была для вас полезной, и теперь вы знаете, как можно, а как нельзя соединять аккумуляторы и для каких целей это обычно делают.

Андрей Повный 

Параллельное и последовательное соединение аккумуляторов

При параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

Получившаяся при паралельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

Для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. Если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

2.

Зачем соединять аккумуляторы в аккумуляторную батарею?

В любых электрических системах или устройствах есть омические потери: часть электрической энергия превращается в тепло, не производя полезной работы. Чем больше напряжение электросистемы, тем (при той же мощности) меньше ток, меньше омические потери и меньше цена системы. Т.е. выгодно иметь электрические системы высокого напряжения.

Причем, чем больше мощность системы, тем больше выигрыш высоковольтной системы по сравнению с низковольной.

Поэтому в небольших UPS (на несколько сотен ВА) обычно стоит один аккумулятор на 12 вольт (так получается дешевле), в UPS на несколько кВА используется аккумуляторная батарея напряжением в десятки вольт, а в мощных ИБП на десятки киловатт напряжение аккумуляторной батареи может превышать 500 В.

Следовательно, цель использования аккумуляторных батарей с последовательным соединением аккумуляторов — уменьшение потерь и увеличение коэффициента полезного действия (КПД).

Иногда емкости одного аккумулятора недостаточно, и нужно увеличить емкость. Иногда удобнее не ставить взамен аккумулятор большей емкости, а поставить еще один такой же аккумулятора параллельно, чтобы суммарная емкость аккумуляторной батареи аккумуляторной батареи удвоилась.

Например, для увеличения времени работы высококлассного ИБП Eaton Powerware 9130 от аккумуляторной батареи параллельно существующей батарее подключают еще одну или несколько таких же аккумуляторных батарей.

3. Можно ли соединять последовательно свинцовые аккумуляторы разной емкости?

Известно, что внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора.

Поэтому, при протекании тока через последовательную аккумуляторную батарею, на свинцовых аккумуляторах разной емкости будут разные напряжения.

Опасно ли это для отдельных аккумуляторов и для аккумуляторной батареи в целом? Рассмотрим по-отдельности режимы разряда и зарядки свинцовых аккумуляторов.

Предположим, мы заряжаем последовательную аккумуляторную батарею, состоящую из семи 12-вольтовых свинцовых аккумуляторов емкостью по 10 А*час и одного 12-вольтового свинцового аккумулятора емкостью 8 А*час. В начале все аккумуляторы разряжены. Зарядное устройство реализует алгоритм зарядки I-U с начальным током 1 А и конечным напряжением 110 В (13.8 В в среднем на аккумулятор).

По данным производителя, при зарядке аккумуляторов постоянным током, напряжение на аккумуляторе изменяется в соответствии с графиком справа. В начале процесса зарядки, зарядное устройство поддерживает ток 1 А, а суммарное напряжение на аккумуляторной батарее сложится из напряжений на отдельных аккумуляторах, напряжение для каждого аккумулятора можно определить по его зарядной характеристике (графику зависимости напряжения аккумулятора от времени, который приводится производителем в его технических характеристиках). В начале зарядки на свинцовом аккумуляторе в 8 А*час будет около 12. 3 В, а на всех аккумуляторах емкостью 10 А*час — примерно по 12 В на каждом. Начало зарядки абсолютно безопасно для всех 8 аккумуляторов.

Примерно через 10 часов напряжение на аккумуляторе емкостью 8 А*час достигнет 13.8 вольт. Аккумулятор в этот момент будет заряжен примерно на 80%. Остальные аккумуляторы будут заряжены примерно на 70%, а напряжение на каждом из них будет около 13.2 В.

Аккумулятор емкостью 8 А*час уже нужно переводить в режим стабилизации напряжения, но это невозможно — ведь суммарное напряжение на аккумуляторной батарее еще не достигло конечного напряжения 110 В, а составляет примерно 13.2 * 7 + 13.8 = 106.2 В.

Поэтому все аккумуляторы емкостью 10 А*час будут продолжать заряжаться, суммарное напряжение продолжит расти, а вместе с ним и напряжение на аккумуляторе емкостью 8 А*час.

Еще через 3-4 часа, напряжение на аккумуляторной батарее достигнет предела — 110 В. Это напряжение разделится следующим образом: на аккумуляторах емкостью 10 А*час будет чуть больше 13. 5 В, а на аккумуляторе емкостью 8 А*час — больше 15 В.

Система рекомбинации газов, выделяющихся в этом аккумуляторе, перестанет справляться c нагрузкой, предохранительные клапаны аккумулятора откроются, аккумулятор начнет терять воду, а с ней и емкость. В то же время, все аккумуляторы емкостью 10 А*час будут недозаряжены.

Следовательно, при зарядке свинцовых аккумуляторов соединенные последовательно аккумуляторы разной емкости будут все больше и больше расходиться по своим параметрам — ″разбегаться″.

Рассмотрим теперь разряд все той же аккумуляторной батареи из 8 свинцовых аккумуляторов током 1 А. Пусть система построена так, что при уменьшении напряжения до 84 В срабатывает защита от глубокого разряда, и разряд прекращается. Начальное состояние всех свинцовых аккумуляторов — ″полностью заряжены″.

Через 7-8 часов после начала разряда, аккумулятор емкостью 8 А*час полностью разрядится. Напряжение на нем составит 10.5 В. Напряжение на остальных аккумуляторах батареи будет в это время чуть больше 11 В на каждом. Значит суммарное напряжение на аккумуляторной батарее еще далеко от конечного напряжения разряда 84 В и составляет примерно 10.5 * 7 + 11.

1 = 88,2 В. Поэтому вся аккумуляторная батарея продолжит разряжаться, в том числе и многострадальный аккумулятор емкостью 8 А*час. Напряжение на нем будет очень быстро падать, в то время, как остальные свинцовые аккумуляторы практически не будут разряжаться.

Когда напряжение на нем достигнет примерно 7 В, система отключит нагрузку, но будет уже поздно — аккумулятор будет в состоянии глубокого разряда и потеряет часть емкости.

Теперь становится понятно, что последовательно можно соединять только свинцовые аккумуляторы одинаковой емкости, иначе аккумуляторная батарея будет быстро выходить из строя.

Рекомендуется использовать для последовательного соединения свинцовые аккумуляторы одного типа, одного завода и из одной партии.

Если в аккумуляторную батарею предполагается объединить более двух свинцовых аккумуляторов последовательно, очень желателен еще и предварительный подбор аккумуляторов по емкости и напряжению с помощью тестеров аккумуляторов

Для параллельно соединенных свинцовых кислотных аккумуляторов нет опасности появления на клеммах аккумулятора разных напряжений. Напряжения на всех параллельно соединенных аккумуляторах одинаковы в силу самого характера соединения. Значит параллельно соединенные аккумуляторы не могут «разбежаться» — они будут разряжаться или заряжаться синхронно.

Но у свинцовых аккумуляторов есть ограничение не только по максимальному и минимальному напряжению, но и по токам. Например, для аккумулятора CSB GP 1272 (GP1272) производителем установлены следующие ограничения по токам.

Максимальный разрядный ток не должен превышать 100 А для аккумуляторов с клеммами шириной 3/16″ (4.75 мм) и 130 А для аккумуляторов с клеммами 1/4″ (6.35 мм) — 130 А (18С).

Протекание такого большого тока через аккумулятор емкостью всего 7.2 А*час ограничено и по времени: не более 5 с.

Почему ограничен разрядный ток, понятно — клеммы аккумулятора не могут надежно передать больший ток (хотя сам аккумулятор, вероятно, мог бы).

Если мы посмотрим технические характеристики аккумуляторов разных производителей (правда не все указывают максимально допустимый ток), нам откроется довольно пестрая картина. Для стационарных (промышленных) свинцовых аккумуляторов, максимальный ток ограничен значением, которое численно (в амперах) составляет от 5 до 25 емкостей аккумулятора (в А*час).

Некоторые производители указывают еще и ток короткого замыкания (иногда с ограничением времени — 0.1 с) — он численно составляет от 15 до 70 емкостей аккумулятора (15С….70С).

Суммируя эти данные, можно сказать, что свинцовый аккумулятор может безопасно разряжаться очень большими токами, вплоть до десятков С, причем чем меньше время разряда, тем больше допустимый ток.

Жесткого ограничения максимального зарядного тока производитель CSB GP 1272 (GP1272) не дает, он только рекомендует ограничить максимальный ток зарядного устройства значением 2.16 А (это численно равно 30% емкости аккумулятора — 0.3С).

Это ограничение совершенно точно не связано с возможностями проводников (клемм и решетки пластин аккумулятора), — проводники этого аккумулятора, как мы уже знаем, могут передать в 50 раз больший ток.

Тогда с чем же связано это ограничение?

В процессе зарядки свинцового аккумулятора, сернокислый свинец превращается в свинец или окись свинца (в зависимости от того, на положительной или отрицательной пластине происходит реакция), а сера, входившая в состав сернокислого свинца, переходит в электролит.

Для эффективного протекания электрохимической реакции зарядки свинцового аккумуляторав, нужно все время подводить в поверхности, на которой происходит реакция, свежий электролит и отводить продукты реакции (все тот же электролит, но уже содержащий больше серы).

Активная масса пластины свинцового аккумулятора имеет пористую структуру (это увеличивает активную поверхность и емкость свинцового аккумулятора).

К открытой части активной поверхности очень легко подводить (и отводить) вещества, участвующие в реакции, а перенос свежего электролита вглубь пористой пластины затруднен — по мере удаления от поверхности, поры становятся все уже и глубже.

Поэтому в начале зарядки свинцового аккумулятора, электрохимическая реакция происходит главным образом на открытой поверхности пластин и только потом распространяется вглубь активной массы.

В начале зарядки, аккумулятор способен безопасно воспринять довольно большой зарядный ток — ведь к поверхности пластины можно быстро доставить сколько угодно свежего электролита. Но по мере того, как процесс зарядки перемещается вглубь активной масыы, зарядный ток нужно уменьшать, иначе вместо электрохимической реакции зарядки аккумулятора будет происходить разложение электролита (аккумулятор «закипит»). Свинцовый аккумулятор может быть и не выйдет из строя сразу, но его старение ускорится и он раньше потеряет емкость.

Соблюдение общего ограничения тока зарядного устройства (2.16 А для аккумулятора CSB GP 1272 (GP1272), установленного производителем, позволяет безопасно заряжать аккумулятор, независимо от глубины и характера его разряда и температуры (в определенных производителем пределах). Тем не менее, в начале зарядки свинцового аккумулятора, допустим и больший зарядный ток.

Вернемся теперь к параллельно соединенным свинцовым аккумуляторам. Понятно, что, если суммарный ток через параллельную аккумуляторную батарею не превышает ограничений, установленных для каждого аккумулятора батареи, то никакой опасности для аккумуляторов нет.

Понятно также, что, если мы соединим параллельно 5 аккумуляторов CSB GP 1272 (GP1272) из одной партии и будем их заряжать током 5 х 2 = 10 А, то опять-таки нет никакой опасности — аккумуляторы абсолютно одинаковые, токи разделятся поровну, и ток через каждый аккумулятор не превысит установленного производителем ограничения.

Но если мы соединим в параллельную батарею разные аккумуляторы, и суммарный разрядный или зарядный ток заметно превысит ограничения, установленные для отдельного свинцового аккумулятора, то через какой-то аккумулятор может потечь ток, превышающий возможности этого аккумулятора. Посмотрим теперь, как распределяются токи между свинцовыми аккумуляторами параллельной аккумуляторной батареи, составленной из аккумуляторов разных типов.

В начале зарядки или разряда параллельной аккумуляторной батареи, токи (зарядный или разрядный) разделятся между аккумуляторами обратно пропорционально их внутреннему сопротивлению.

Если свинцовые аккумуляторы сильно различаются по емкости, конструкции, составу пластин или технологии изготовления, то внутреннее сопротивление аккумуляторов может оказаться не совсем обратно пропорциональным их емкости.

В этом случае, и токи в начале разряда или зарядки свинцовых аккумуляторов могут распределиться не совсем пропорционально их емкости.

Соединенные параллельно свинцовые аккумуляторы имеют одинаковое напряжение на своих клеммах. Поэтому их разряд или зарядка происходят синхронно: невозможна ситуация, когда один из параллельно соединенных аккумуляторов разрядился (или зарядился) наполовину, а другой — полностью.

Поэтому, через некоторое время после начала разряда или зарядки, токи начинают перераспределяться между аккумуляторами так, чтобы компенсировать возможно имевшую в начале процесса место диспропорцию.

В конечном счете (или, вернее сказать, в среднем), токи распределяются между аккумуляторами пропорционально их реальной емкости, даже если внутреннее сопротивление аккумуляторов не совсем обратно пропорционально емкости аккумуляторов.

Следовательно, потенциальную опасность представляет начало разряда или зарядки свинцовых аккумуляторов, соединенных параллельно.

Но в начале разряда или зарядки, как мы уже выяснили, свинцовые аккумуляторы могут без вреда для себя разряжаться или заряжаться токами, которые превышают установленные производителем ограничения.

Поэтому можно было бы сказать, что параллельное соединение разнородных аккумуляторов не представляет опасности.

Но мы будем осторожнее, и скажем, что такой опасности почти нет — но при параллельном соединении свинцовых аккумуляторов разной емкости или изготовленных по разным технологиям нужно избегать ситуаций, когда зарядный или разрядный ток аккумуляторной батареи в несколько раз превышает установленное производителем предельное значение зарядного или разрядного тока одного аккумулятора.

Схемы соединения аккумуляторных батарей для электропитания

66008 Опубликовано 26 апреля 2017

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт.

В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений.

Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока.

Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В.

Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами.

Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически.

Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего.

Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников.

Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры.

Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя.

Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

  • Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:
  • Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

Последовательная и параллельная конфигурация соединения аккумулятров

Категория: Поддержка по аккумуляторным батареям Опубликовано 10.04.

2016 14:30
Abramova Olesya

Электрические батареи могут достигать необходимого рабочего напряжения путем последовательного подсоединения нескольких элементов — каждый элемент добавляет свой показатель напряжения к общему напряжению всей системы.

Параллельное же соединение обеспечит более высокий показатель емкости и силы тока — суммарная емкость такой системы будет равна сумме емкостей всех подключенных элементов, сила тока также будет равняться сумме значений всех элементов.

Некоторые системы могут состоять из нескольких параллельных или последовательных соединений.

Аккумуляторы для портативных компьютеров обычно состоят из четырех 3,6 В литий-ионных элементов, соединенных последовательно для обеспечения напряжения 14,4 В и двух соединенных параллельно для увеличения емкости от 2400 мАч до 4800 мАч.

Такая конфигурация называется 4S2P, что соответственно и расшифровывается как 4 Serial 2 Parallel (что в переводе с английского — 4 последовательных и 2 параллельных соединения). Между такими элементами в аккумуляторе обязательно присутствует изоляционный материал, во избежание короткого замыкания.

Элементы большинства электрохимических систем способны к последовательному и параллельному соединению.

Важно использовать элементы одного типа, с одинаковым напряжением и емкостью, и никогда не формировать соединение из элементов разных марок и размеров, так как более слабый элемент вызовет дисбаланс всей системы.

Это особенно важно при последовательном соединении, так как вся система будет зависеть от самого слабого элемента. В этом случае уместна аналогия с цепью, где слабое звено нивелирует прочность всей цепи (рисунок 1).

Рисунок 1: Сравнение последовательного соединения электрических батарей с цепью. Каждое звено этой цепи можно сравнить с электрохимическим элементом питания в последовательно соединенной системе, слабость звена или элемента приведет к коллапсу всей системы.

Слабый элемент может выявиться не сразу, при щадящих режимах работы нагрузка на него не велика, однако при возрастании нагрузки он исчерпывает свой ресурс очень быстро.

При зарядке такой элемент полностью заряжается быстрее других, следовательно, остальное время на него действует излишняя зарядка, что приводит к вредному перезаряду. При разряде же он выходит из строя первым, заставляя остальные элементы питать нагрузку, уже превышающую номинал всей системы.

Элементы в аккумуляторных системах обязательно должны иметь одинаковые характеристики, особенно в условиях высоких нагрузок.

1. Области применения одиночных элементов питания

Система из одного электрохимического элемента питания является простейшим примером электрической батареи. Такая система не требует предварительного согласования, а защитная схема, в случае если это литий-ионная технология, крайне проста.

Типичными примерами таких систем являются 3,60 В литий-ионные аккумуляторы для мобильных телефонов и планшетов. Другим примером использования одноэлементных батарей являются настенные часы, где чаще всего используется 1,5 В щелочная батарейка.

Номинальное напряжение элемента на основе никеля составляет 1,2 В, щелочной — 1,5 В, серебряно-оксидной — 1,6 В, а свинцово-кислотной — 2,0 В. Первичные литиевые элементы обеспечивают напряжение в диапазоне от 3,0 до 3,9 В, в их числе литий-ионные — 3,6 В, литий-фосфатные — 3,2 В, литий-титанатные — 2,4 В.

Литий-марганцевая и другие электрохимические системы на основе лития часто могут обеспечить напряжение элемента на уровне 3,7 В и выше.

Это связано не столько с электрохимическими аспектами, сколько является следствием оптимизации под более высокий показатель количества ватт-часов путем уменьшения внутреннего сопротивления элемента.

Но в основном, элементы этой электрохимической системы производятся со стандартным показателем напряжения в 3,6 В.

2. Последовательное соединение

Портативное оборудование, требующее высоких значений напряжения, использует в качестве источника питания два или больше электрических элемента, соединенных последовательно. На рисунке 2 показан батарейный блок из четырех 1,2 В никелевых элементов, соединенных последовательно.

Такой блок создан для получения напряжения 4,8 В и известен как 4S. Для сравнения, свинцово-кислотный аккумулятор с шестью 2 В элементами (“банками”) будет генерировать 12 В, а четыре 3,6 В литий-ионных элемента дадут 14,4 В.

(BU-303: Номинальное напряжение аккумулятора)

Рисунок 2: Последовательное соединение четырех элементов (4S). Последовательное присоединение элемента увеличит напряжение, сила тока останется неизменной.

Если вам нужно особое значение напряжения, например, 9,5 вольт, последовательно подключите пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых, или три литий-ионных элемента.

Конечное напряжение батарейного блока может быть немного большим, чем номинальное устройства, приложение 12 В вместо 9,5 В позволит его эксплуатировать.

Большинство устройств, рассчитанных на питание электрическими батареями, могут выдерживать некоторое превышение номинального напряжения, но не следует этим злоупотреблять, слишком большое превышение напряжения может повредить устройство.

Использование электрической батареи с высоким напряжением позволяет уменьшить потери и увеличить КПД. Беспроводные инструменты работают на 12 В и 18 В аккумуляторах, более высококлассные используют даже 24 В и 36 В. Большинство электровелосипедов комплектуются 36 В литий-ионным аккумулятором, некоторые даже идут с 48 В.

Существуют инициативы в автомобильной промышленности по поводу увеличения напряжения стартерного аккумулятора с 12 В (14В) до 36 В (42 В), путем размещения в аккумуляторе 18 свинцово-кислотных элементов (“банок”).

Но этой инициативе препятствует необходимость изменения свойств электрических компонентов в автомобиле и повышенный риск возникновения искр в механических переключателях.

Некоторые гибридные автомобили работают на 48 В литий-ионном аккумуляторе и в дополнение к этому используют преобразователь напряжения для получения стандартных 12 вольт для электрической системы автомобиля.

Также возможен вариант с отдельной установкой стандартного стартерного аккумулятора для запуска двигателя внутреннего сгорания. Первые гибридные автомобили использовали 148 В аккумуляторы, электромобили имеют аккумуляторную систему напряжением 450-500 В.

Такая система состоит из более чем 100 литий-ионных элементов, соединенных последовательно.

Аккумуляторные системы высокого напряжения требуют тщательного согласования элементов, особенно при подключении к сильной нагрузке или при работе в низкотемпературных условиях.

Так как в таких последовательно соединенных системах выход из строя всего лишь одного элемента приводит к коллапсу всей системы, существуют специальная система защиты, которая выявляет неисправный элемент и позволяет “обходить” его.

Такой метод конечно же уменьшает общее напряжение системы, но как временное решение весьма практичен, и главное позволяет всей системе сохранить работоспособность.

Согласование элементов становится проблемой при необходимости замены неисправного элемента в устаревшей аккумуляторной системе.

Более современные элементы, как правило, имеют более высокую емкость, в результате чего в такой системе может возникнуть дисбаланс.

Сварная конструкция аккумуляторной системы также усложняет ремонт, и в связи с этим чаще всего вся аккумуляторная система меняется полностью.

В электромобилях, где цена аккумуляторной системы составляет весомую часть от стоимости всего транспортного средства, полная замена этой системы видится абсурдной. Поэтому производители делят аккумуляторную систему на модули, каждый из которых состоит из определенного числа элементов.

И если такой элемент выйдет из строя, замена будет необходима не всей системе, а определенному модулю. Возникновение трудностей возможно в случае, если доступны только новые модули, укомплектованные более современными элементами.

(Смотрите: Как восстановить аккумуляторную систему).

На рисунке 3 показан батарейный блок, в котором элемент-3 производит только 0,6 В вместо 1,20 В. С пониженным общим напряжением этот батарейный блок разрядится раньше обычного. Напряжение будет проседать, и в конце концов питаемое устройство отключится.

Рисунок 3: Последовательное соединение с неисправным элементом. Неисправный элемент-3 понижает общее напряжение и приводит к преждевременному прекращению работы подключенного устройства.

Аккумуляторные системы в беспилотных летательных аппаратах или других устройствах, требующих высокие токи нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в системе является слабым.

Пиковые нагрузки увеличивают стресс на аккумуляторную систему, вызывая коллапс еще быстрее.

Измерение напряжения сразу после зарядки не поможет для идентификации слабого элемента — его напряжение без нагрузки будет относительно нормальным; для решения этой проблемы существуют специальные анализаторы электрических батарей.

3. Параллельное соединение

Если для устройства требуется высокое значение силы тока и удовлетворить это требование одним элементом невозможно, следует использовать параллельное соединение элементов.

Большинство электрохимических систем позволяют использование параллельной конфигурации подсоединения, но с некоторыми побочными эффектами. На рисунке 4 показаны четыре параллельно соединенных элемента, такая конфигурация еще называется 4P (4 Parallel).

Напряжение этой системы остается 1,20 В, но сила тока и емкость увеличены в четыре раза.

Рисунок 4: Параллельное соединение четырех электрических элементов. Благодаря параллельной конфигурации подсоединения сила тока и емкость увеличиваются, напряжение же остается неизменным.

Выход из строя единичного элемента при параллельном соединении не столь критично, как при последовательном. Такая проблема конечно уменьшит нагрузочные характеристики всей системы, но хотя бы не выведет ее из строя.

Можно провести аналогию с цилиндрами двигателя внутреннего сгорания — автомобиль сможет ехать и на трех цилиндрах, даже если у него их всего четыре.

С другой стороны, при наличии неисправного элемента в параллельных системах существует больший риск возникновения короткого замыкания, так как такой элемент как бы высасывает энергию из других, в результате чего возрастает риск возгорания. Большинство таких коротких замыканий довольно умеренны и проявляются в виде повышенного саморазряда.

Причиной короткого замыкания может быть поляризация или возникновение дендритов в элементе. Большие аккумуляторные системы часто снабжены предохранителем, который отключает неисправный элемент из параллельной цепи, если он был закорочен. На рисунке 5 показана параллельная конфигурация с одним неисправным элементом.

Рисунок 5: Параллельное соединение с одним неисправным элементом. Слабый элемент не повлияет на напряжение всей системы, но уменьшит общее время работы за счет уменьшения емкости системы. Закороченный элемент может вызвать перегрев и стать причиной возникновения пожара.

4. Последовательно-параллельное соединение

Последовательно-параллельная конфигурация подсоединения элементов, показанная на рисунке 6, предоставляет большую гибкость конструкции, с ее помощью можно создать систему с желаемыми значениями напряжения и тока, используя стандартные элементы.

Суммарная мощность будет произведением значений напряжения и силы тока, например, четыре 1,2 В элемента емкостью 1000 мАч производят 4,8 Вт мощности. Четыре элемента типоразмера 18650 емкостью 3000 мАч каждый могут быть соединены последовательно-параллельно для достижения 7,2 В и 12 Вт.

Использование тонких элементов позволит сконструировать гибкую аккумуляторную систему, но ей будет необходима система защиты.

Рисунок 6: Последовательно-параллельное соединение четырех элементов (2S2P). Такая конфигурация обеспечивает максимальную гибкость конструкции. Параллельные элементы помогают в управлении напряжением.

Литий-ионные элементы отлично подходят для последовательно-параллельных конфигураций, но необходим мониторинг каждого элемента — для соответствия значений напряжения и силы тока.

Такой мониторинг реализуется аппаратно — путем создания электронного устройства, стандартный образец которого может контролировать систему из 13 литий-ионных элементов.

Для больших аккумуляторных систем создаются специальные схемы, например, как в электромобиле Tesla, где аккумуляторная система состоит из 7000 элементов типоразмера 18650, суммарная мощность которых достигает 90 кВт/ч.

5. Рекомендации по использованию первичных батарей

  • Держите контакты элементов в чистоте. Конфигурация с четырьмя элементами имеет восемь контактов и каждый добавляет сопротивление.
  • Никогда не смешивайте разнотипные элементы, если вышел из строя один, и ему нет аналогичной замены, то необходимо заменить все. Общая производительность настолько хороша, насколько этому соответствует самый слабый элемент.
  • Соблюдайте полярность. Неправильно размещенный элемент уменьшает общее напряжение системы.
  • Для предотвращения утечки электролита и коррозии, извлекайте элементы из устройства, когда оно не используется. Особенно это касается угольно-цинковых элементов.
  • Не храните электрические батареи в металлических коробках. Элементы следует по отдельности помещать в полиэтиленовые пакеты, во избежание короткого замыкания. Не стоит носить батареи в карманах.
  • Держите батареи подальше от детей. Помимо риска попадания в дыхательные пути, что может вызвать удушение, ток электрохимической батареи при попадании в желудочно-кишечный тракт может вызвать язву, а при разрыве оболочки — отравление. (Смотрите: Влияние электрохимических батарей на здоровье человека).
  • Не заряжайте первичные (неперезаряжаемые) электрические батареи, так как накопление водорода может привести к взрыву. Экспериментировать с зарядкой можно лишь контролируя этот процесс.

6. Рекомендации по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичных элементов. Несоблюдение может привести к короткому замыканию.
  • Извлекайте полностью заряженные элементы из зарядного устройства. Обычное зарядное устройство не имеет встроенной системы индикации заряда, следовательно, аккумулятор может перегреться.
  • Производите зарядку при комнатной температуре.

Последнее обновление 2016-02-29

Как правильно соединять аккумуляторы последовательно и параллельно

Коротко разберём распространённое мнение – «при последовательном соединении двух аккумуляторов (АКБ), их ёмкость не меняется, она остаётся такой же, как у одного аккумулятора, поэтому время автономной работы при таком соединении будет меньше».

Но как же закон сохранения энергии? Да, при последовательном соединении аккумуляторов, формально ёмкость считается как у одного аккумулятора, а напряжение удваивается (или утраивается, учетверяется и т.д., в зависимости от количества последовательно соединённых АКБ). При параллельном же соединении АКБ – ёмкость удваивается (утраивается и т.д.), а напряжение остаётся тем же.

Варианты соединения аккумуляторов

Противоречия здесь нет. Когда люди говорят об аккумуляторе (обычно об автомобильном), то сообщают его ёмкость, но не уточняют вольтаж. Просто все привыкли, что аккумуляторы имеют напряжение 12В, и подразумевается, что упоминать об этом глупо. Но в вообще-то, ёмкость без указания вольтажа не имеет физического смысла.

Существуют аккумуляторы самой разной ёмкости и на разное напряжение – на 2В, и на 6В, и на 12В, и, редко, на 24В. Кроме того, любые одинаковые АКБ можно соединять последовательно, параллельно, или последовательно-параллельно одновременно. Но стоит только указать после величины ёмкости её вольтаж, как всё встаёт на свои места.

Ведь энергоёмкость в любом случае, как бы мы не соединяли аккумуляторы, останется прежней.

Итак, если, например, два АКБ по 200Ач 12В (например, Аккумулятор Delta GEL 12-200), соединить последовательно, то получится энергоёмкость 200Ач 24В. А если эти же два АКБ соединить параллельно, то получится – 400Ач 12В.

Проверим:

200Ач * 24В = 480Ач * В = 400Ач * 12В

Но для расчётов токов (обычно, номинальным током заряда считается ток 0,1С, где С –величина равная ёмкости аккумулятора), С берут именно по цифре слева, т.е.

в нашем примере, при последовательном соединении С = 200, а при параллельном С = 400. Легко заметить, что и мощность зарядного устройства в обоих случаях будет одинаковой.

Для первого случая, зарядный ток будет 0,1*200 = 20А, но при напряжении 24В. Т.е. зарядная мощность, Р = 20А 24В = 480Вт

Для второго случая, зарядный ток будет 0,1*400 = 40А, но при напряжении 12В. Т.е. зарядная мощность, Р = 40А 12В = 480Вт

Если рассматривать одиночные аккумуляторы, то, например, один аккумулятор 600Ач 2В (см. раздел Аккумуляторные батареи FAAM) по своей энергоёмкости соответствует одному аккумулятору 100Ач 12В (например, Аккумулятор DELTA GEL 12-100).

Чтобы получить из этих аккумуляторов (600Ач 2В) большую аккумуляторную батарею, например, на 24В, нужно соединить последовательно 12 шт таких АКБ с помощью перемычек (Перемычка для аккумуляторов 250 мм). Общая итоговая ёмкость получится 600Ач 24В.

Эта энергоёмкость, если сравнивать её с 12-и вольтовыми АКБ по 200Ач (а такие применяются в грузовиках), соответствует 6-и штукам (три соединённых параллельно цепочки аккумуляторов, где каждая цепочка состоит из двух, соединённых последовательно, аккумуляторов):

(600Ач*2В)*12 = 600Ач*24В = (200Ач*24В) + (200Ач 24В) + (200Ач 24В)

Обратите внимание – на всех рисунках специально показано, что если минус инвертора подключён к условно первому АКБ, то плюс – к последнему.

Так его следует подключать, чтобы компенсировать сопротивление даже толстых медных проводов, соединяющих аккумуляторы.

Иначе, из-за их сопротивления, при огромных токах, «дальний» от выводов инвертора аккумулятор, окажется и не «дозаряжаем», и не «доразряжаем».

Итак, ёмкостью (читайте «энергоёмкостью») аккумулятора (объединённой группы аккумуляторов), называется количество электричества (т.е. мощности, равной току умноженного на НАПРЯЖЕНИЕ), которое аккумулятор отдает при разряде до наименьшего допустимого напряжения.

Чтобы аккумулятор служил долго, его нельзя разряжать более чем на 80%. Для 12-и вольтового АКБ, это соответствует напряжению на его клеммах примерно 11,5В. Но тут важно каким током относительно емкости АКБ мы его разряжаем.

Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор.

Это потому что при быстром разряде большими токами относительно маленькой ёмкости аккумулятора электролит не успевает перемешиваться, и разряженный слой скапливается вокруг пластин. Напряжение АКБ падает и нагрузку снимают.

Однако, спустя несколько десятков минут, электролит перемешивается и ёмкость (и, соответственно, напряжение аккумулятора) повышается.

Если же разряжать малым током относительно ёмкости, то можно вычерпать всю энергию, что плохо для долговечности АКБ. Всегда надо оставлять не менее 20% ёмкости. Подробнее об этом далее.

Отметим, что во время заряда, зарядное устройство постепенно повышает напряжение на АКБ, а затем, после снятия заряда, напряжение уменьшается, возвращаясь к спокойному состоянию (так, на 12-и вольтовом аккумуляторе, в зависимости от типа АКБ, оно обычно растёт до 14,1 – 14,5 В, а после снятия заряда, даже без нагрузки, в течении получаса возвращается к 12,5 – 12,8 В).

Схемы подключения аккумуляторов

У любого аккумулятора выделяют следующие основные характеристики:

  • Номинальное напряжение (В ― Вольт)
  • Емкость (Ач – Ампер*час)
  • Максимальное количество запасенной энергии = Номинальное напряжение умноженное на Емкость (кВт*ч – киловатт*час)

Существует три возможных варианта соединения аккумуляторов между собой – последовательно, параллельно или последовательно-параллельно.   В зависимости от схемы соединения аккумуляторов в Банк Аккумуляторов может меняться Номинальное напряжение или Емкость системы, при этом максимальное количество запасенной энергии всех аккумуляторов останется неизменным.

Рассмотрим каждый из возможных вариантов соединения аккумуляторов в Банк Аккумуляторов:

1)  Последовательное соединение аккумуляторов
  • При таком соединении минусовая клемма первого аккумулятора соединяется с плюсом второго, минус второго с плюсом третьего и так далее.
  • В случае такого соединения Емкость системы остается неизменной, но напряжение системы является суммой всех соединенных последовательно аккумуляторов.
  • Например:

Имеем 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их последовательно, мы получим номинальное напряжение равное 12В*4=48В и емкость равную 200Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 200Ач*48В=9600Вт*ч=9,6кВт*ч.

Такая схема включения используется для поднятия напряжения системы.

2) Параллельное соединение аккумуляторов

При таком соединении плюсовые клеммы аккумуляторов поочередно соединяются между собой. Минусовые клеммы также соединяются поочередно между собой.

В случае такого соединения напряжение системы остается неизменным, при этом емкость Банка Аккумуляторов является суммой всех соединенных параллельное аккумуляторов.

Например:

Имеем те же 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их параллельно, мы получим номинальное напряжение равное 12В, а емкость при этом будет равна 4*200Ач=800Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 800Ач*12В=9600Вт*ч=9,6кВт*ч.

 Такая схема включения используется для увеличения емкости (тока заряда) системы.

3) Последовательно-параллельное соединение аккумуляторов
  1. Такое соединение является самым востребованным при сборке Банков Аккумуляторов для различных целей.
  2. При таком соединении цепочки последовательно соединенных аккумуляторов соединяются параллельно.
  3. Например:

Снова обратимся к нашим 4 аккумуляторам емкостью 200 Ач и номинальным напряжением 12В.

Соединив по 2 аккумулятора последовательно и затем объединим их параллельно, мы получим номинальное напряжение равное 12В*2=24В и емкость равную 200Ач*2=400Ач.

При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 400Ач*24В=9600Вт*ч=9,6кВт*ч.

Примечание: обратите внимание, что максимальное количество запасенной энергии ― не зависит от схемы соединения аккумуляторов! 

Различные схемы подключения аккумуляторов нужны для оптимизации работы комплекса оборудования используемого вместе с аккумуляторами. Выбирая различные схемы соединения, мы устанавливаем необходимые токи и напряжения для всей системы.

Источник: oporasolar.ru

Эта статья прочитана 12146 раз(а)!

Продолжить чтение

Фотоэлектрические системы

У любого аккумулятора выделяют следующие основные характеристики:

  • Номинальное напряжение (В ― Вольт)
  • Емкость (Ач – Ампер*час)
  • Максимальное количество запасенной энергии = Номинальное напряжение умноженное на Емкость (кВт*ч – киловатт*час)

Существует три возможных варианта соединения аккумуляторов между собой – последовательно, параллельно или последовательно-параллельно.   В зависимости от схемы соединения аккумуляторов в Банк Аккумуляторов может меняться Номинальное напряжение или Емкость системы, при этом максимальное количество запасенной энергии всех аккумуляторов останется неизменным.

Рассмотрим каждый из возможных вариантов соединения аккумуляторов в Банк Аккумуляторов:

1)  Последовательное соединение аккумуляторов

При таком соединении минусовая клемма первого аккумулятора соединяется с плюсом второго, минус второго с плюсом третьего и так далее.

В случае такого соединения Емкость системы остается неизменной, но напряжение системы является суммой всех соединенных последовательно аккумуляторов.

Например:

Имеем 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их последовательно, мы получим номинальное напряжение равное 12В*4=48В и емкость равную 200Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 200Ач*48В=9600Вт*ч=9,6кВт*ч.

Такая схема включения используется для поднятия напряжения системы.

 

2) Параллельное соединение аккумуляторов

При таком соединении плюсовые клеммы аккумуляторов поочередно соединяются между собой. Минусовые клеммы также соединяются поочередно между собой.

В случае такого соединения напряжение системы остается неизменным, при этом емкость Банка Аккумуляторов является суммой всех соединенных параллельное аккумуляторов.

Например:

Имеем те же 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их параллельно, мы получим номинальное напряжение равное 12В, а емкость при этом будет равна 4*200Ач=800Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 800Ач*12В=9600Вт*ч=9,6кВт*ч.

 Такая схема включения используется для увеличения емкости (тока заряда) системы.

3) Последовательно-параллельное соединение аккумуляторов

Такое соединение является самым востребованным при сборке Банков Аккумуляторов для различных целей.

При таком соединении цепочки последовательно соединенных аккумуляторов соединяются параллельно.

Например:

Снова обратимся к нашим 4 аккумуляторам емкостью 200 Ач и номинальным напряжением 12В. Соединив по 2 аккумулятора последовательно и затем объединим их параллельно, мы получим номинальное напряжение равное 12В*2=24В и емкость равную 200Ач*2=400Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 400Ач*24В=9600Вт*ч=9,6кВт*ч.

 

Примечание: обратите внимание, что максимальное количество запасенной энергии ― не зависит от схемы соединения аккумуляторов! 

Различные схемы подключения аккумуляторов нужны для оптимизации работы комплекса оборудования используемого вместе с аккумуляторами. Выбирая различные схемы соединения, мы устанавливаем необходимые токи и напряжения для всей системы.

схема подключения, для увеличения ёмкости, чтобы увеличить напряжение

Автор Акум Эксперт На чтение 7 мин Просмотров 2к. Опубликовано Обновлено

Как правильно соединить АКБ? Какие при этом могут возникнуть проблемы? Чем различаются последовательное и параллельное подключения аккумуляторов? Ответы на эти вопросы нужно знать, чтобы не «убить» новый накопитель.

Зачем соединять аккумуляторы в батареи

Для питания некоторых устройств нужны такие значения напряжения и тока, которые нельзя обеспечить имеющимися аккумуляторами. Чтобы обеспечить нужные условия, несколько накопителей объединяют.

При параллельном подключении нескольких АКБ общая емкость увеличивается. И такую конструкцию можно использовать для питания мощных устройств, которым требуются большие значения тока. Это можно использовать, когда есть два накопителя небольшой ёмкости, а нужно запитать мощное устройство или продлить его время работы от аккумуляторов. Тогда, чтобы не покупать накопители большой ёмкости, можно использовать сборку из двух имеющихся накопителей.

Параллельное включение

Чтобы повысить напряжение, аккумуляторы включают последовательно. Например, два АКБ напряжением 12 В дадут 24 В.

Последовательное включение

Чтобы одновременно увеличить разность потенциалов и ёмкость, нужно использовать комбинированное подключение.

Комбинированное подключение

Особенности и схемы последовательного и параллельного соединения

Каждая из схем имеет свои особенности, которые нужно учитывать, чтобы АКБ не вышли из строя.

Параллельное соединение — для увеличения ёмкости

При параллельном подключении аккумуляторов ёмкость складывается. Например, если подключить 5 накопителей на 1200 мАч, то получим 5 х 1200 = 6000 мАч. При параллельном соединении напряжение, выдаваемое этой конструкцией, будет таким же, как и у одного элемента конструкции.

Увеличение емкости

В параллельную сборку можно объединять аккумуляторы только с одинаковым напряжением. Если этот показатель будет отличаться, то один из АКБ будет отдавать больший ток, и возникнет перегрузка. При условии равенства потенциалов можно объединять параллельно накопители разной ёмкости. Но если это равенство будет нарушено, пострадает накопитель меньшей емкости. Если напряжение на нем будет больше, чем на остальных, то через него будет протекать большой ток. Если меньше, то он будет заряжаться в режиме перегрузки.

Параллельное подключение

Последовательное соединение — для увеличения напряжения

При последовательном соединении ёмкость сборки такая же, как и у одного аккумулятора, входящего в цепочку, а напряжение равно суммарной разности потенциалов всех элементов конструкции.

Увеличение разности потенциалов

Объединять между собой можно только накопители одинаковой ёмкости. Давайте разберемся, почему.

При последовательном соединении сила тока на всех элементах цепи одинаковая, а разность потенциалов может различаться. Внутреннее сопротивление накопителя зависит от его ёмкости. При увеличении электрической вместительности сопротивление уменьшается. Поэтому при использовании АКБ разной емкости во время зарядки напряжение на одном накопителе будет выше допустимого, а при разрядке – ниже.

Давайте рассмотрим такой случай: есть конструкция из 10 элементов разной емкости, 5 из которых рассчитаны на 20 Ач, а один – на 10 Ач. Заряжать их будем током 2 А. Отрегулируем зарядное устройство так, чтобы оно отключалось при разности потенциалов 138 В (по 13,8 В на одну батарею).

При зарядке АКБ небольшой вместительности будет заряжаться быстрее. И когда она будет заряжена, остальные АКБ еще будут пополняться энергией. Произойдет перезаряд и электролит может закипеть, что может привести к возгоранию или взрыву. К тому же это отрицательно скажется на времени жизни аккумулятора.

Заряжать последовательно подключенные батареи можно только в том случае, если они изготовлены по одной технологии, одинаковы по емкости и разряжены до одного уровня.

Последовательное включение

При разряде такой сборки АКБ малой ёмкости разрядится раньше, когда остальные еще будут отдавать энергию. Произойдет глубокий разряд накопителя, это приведет к сульфатация пластин, что станет причиной быстрого износа батареи.

Разрядные характеристики

Смешанная схема

В комбинированной схеме подключения соединение аккумуляторов происходит последовательно и параллельно. Она нужна для того, чтобы одновременно увеличить и емкость, и разность потенциалов.

Подключение накопителей может происходить по такому сценарию:

  • сначала подключаем последовательно столько аккумуляторов, сколько необходимо, чтобы обеспечить требуемую разность потенциалов;
  • потом параллельно подключаем нужное количество сборок для обеспечения требуемой вместимости.
Смешанное включение

Приведем пример. Имеется 4 АКБ, рассчитанные на напряжение 12 В, вместительностью 200 Ач. Сделаем 2 сборки по 2 батареи, подключенные последовательно. После этого объединим эти сборки, включив их параллельно. Таким образом, мы получим конструкцию емкостью 2 * 200 = 400 Ач, напряжением 2 * 12 = 24 В.

Можно ли и как правильно соединять обычные батарейки

Обычные батарейки можно подключать последовательно. Именно такое подключение используется во многих бытовых электрических приборах, например, в пульте дистанционного управления, детских игрушках, радиоприемниках.

Параллельное соединение батареек использовать не рекомендуется, потому что подобрать две батарейки с одинаковым напряжением невозможно. Между выводами возникнут разность потенциалов и паразитный ток, который будет разряжать одну из батареек. При последовательном соединении аккумуляторов одна из батарей будет просто заряжать другую, но батарейки не могут заряжаться.

Видео о подключении батареек:

Практические примеры

Часто любители автозвука подключают вторую батарею для увеличения емкости. При этом обычно одна АКБ находится под капотом, а вторая ставится в багажник. Данное соединение является параллельным, напряжение на выходе такое, как и у одного накопителя, – 12 вольт. При этом вместительность сборки будет равна сумме емкостей батарей, входящих в нее.

Теперь давайте рассмотрим, как соединить два аккумулятора параллельно. Схема такого соединения представлена на рисунке ниже.

Схема для автомобиля

Здесь буквой «Г» обозначен генератор. Своим минусовым выводом он соединен с корпусом автомобиля, а плюсовым – с соответствующим выводом АКБ. В данном примере АКБ1 – это аккумулятор, расположенный под капотом. Отрицательный вывод этой батареи также подключен к металлическому корпусу автомобиля.

Вторая батарея – та, что находится в багажнике, – обозначена на схеме АКБ2. Ее положительная клемма соединена с плюсовым выходом первой батареи. Отрицательный вывод соединяется с корпусом авто.

Для предотвращения короткого замыкания необходимо установить два предохранителя. На схеме они обозначены F1 и F2. Они располагаются на расстоянии 15-20 сантиметров от плюсовой клеммы. Подробно о данном методе соединения можно посмотреть в видео:

Иногда также используется последовательно-параллельное соединение аккумуляторов. Обычно оно применяется для питания бортовой сети грузовых автомобилей. Напряжение бортовой сети у них 24 вольта. К тому же для их питания нужны батареи большой вместительности. Решить одновременно две эти задачи поможет смешанное соединение. Схема такого соединения представлена на рисунке.

Смешанное включение

Существуют особенности последовательного соединения литиевых батарей. Эти АКБ очень чувствительны к перезаряду, а среди аккумуляторов даже из одной партии будут изделия, немного отличающимися по емкости. Поэтому, когда одна батарея уже будет заряжена, остальные еще будут пополняться энергией. И первый зарядившийся АКБ окажется перезаряженным, что плохо скажется на его долговечности. Чтобы избежать этого, используются балансировочные платы, они же BMS.

Использование балансировочной платы

Чаще всего балансир представляет собой ограничитель напряжения. Он сравнивает разность потенциалов на литиевом элементе с эталонным значением. Когда это напряжение превысит пороговое, откроется ключевой транзистор, подключенный параллельно батареи, и большая часть тока будет течь через него, что практически остановит заряд литиевого элемента.

При параллельном подключении никакой балансировки не требуется.

Спасибо, помогло!1Не помогло

Схемы соединения аккумуляторных батарей.. Статьи компании «ООО «Энерджи ГМБХ»

Схемы соединения аккумуляторных батарей АКБ.

Принятые обозначения:

·         V – напряжение, В

·         C – ёмкость, А/ч

Ёмкость аккумулятора — это тот промежуток времени аккумулятор АКБ сможет обеспечивать питание подключенной к нему нагрузки. Ёмкость аккумулятора измеряют в ампер-часах, а для небольших аккумуляторов – в миллиампер-часах.

1.     Последовательное соединение АКБ.

Для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого  аккумулятора АКБ, используя перемычку. К его отрицательной клемме подключают положительную клемму второго аккумулятора АКБ и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы (см. рис. 1).

Рис. 1 Электрическая схема последовательного соединения аккумуляторов.

Рис. 2 Последовательно соединенные аккумуляторы.

                                                          

Рис. 3 Последовательно соединенные аккумуляторы двойной перемычкой.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее (см. рис. 4).

Эквивалентное внутреннее сопротивление последовательно соединенных аккумуляторов равно сумме их внутренних сопротивлений.

Рис. 4 Последовательное соединение 4-х аккумуляторных батарей.

В рассматриваемом примере (рис. 4) четыре аккумуляторных батареи V=12 В, С=100 А/ч при последовательном соединении дают:

·         общее напряжение VΣ = 48 В

·         общая ёмкость CΣ = 100 А/ч.

2.     Параллельное соединение АКБ.

При параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″) (см. рис. 5).

Рис. 5 Электрическая схема параллельного соединения аккумуляторов

Рис. 6 Параллельно соединенные аккумуляторы.

Получившаяся при параллельном соединении аккумуляторная батарея АКБ имеет то же напряжение, что и у одиночного аккумулятора, а ёмкость такой аккумуляторной батареи равна сумме ёмкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые ёмкости, то емкость аккумуляторной батареи равна ёмкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

В примере (рис. 6) две аккумуляторных батареи V=12 В, С=100 А/ч при параллельном соединении дают:

•             общее напряжение VΣ = 12 В

•             общая ёмкость CΣ = 200 А/ч.

3.     Последовательно-параллельное соединение АКБ.

Очень часто возникают ситуации, когда необходимо увеличивать и ёмкость и напряжение. В таком случае используют последовательно-параллельные соединения АКБ.

Рис. 7 Пример последовательно-параллельного соединения АКБ

В рассматриваемом примере (рис. 7) восемь аккумуляторных батарей V=12 В, С=100 А/ч по четыре АКБ соединены последовательно в Цепь А и Цепь В, а Цепь А и Цепь В соединены параллельно, соответственно при такой схеме:

·         общее напряжение VΣ = 48 В

·         общая ёмкость CΣ = 200 А/ч.

 

Наши специалисты изготавливают перемычки, соединительные провода для аккумуляторов АКБ.

 

Схемы подключения биметаллических радиаторов отопления: нижняя, боковая, диагональная

Схемы подключения биметаллических радиаторов отопления фактически не имеют отличий от стандартных способов установки других видов отопительных батарей, например, чугунных. Вне зависимости от того, планируете ли вы выполнить работы самостоятельно или обратиться за помощью к профессионалам, стоит изначально продумать, какую именно схему выбрать и почему.

Первое, о чем стоит знать — существует три схемы подключения биметаллических радиаторов отопления:

  • Боковое.
  • Диагональное.
  • Нижнее.


Если вы хотите выполнить подключение биметаллических радиаторов отопления оптимальным способом, то есть так, чтобы трудозатраты были минимальны, а эффективность приборов максимальна, то при определении подходящей схемы нужно ориентироваться на следующие параметры:

  • Тип системы: одно- или двухтрубная.
  • Как происходит подача теплоносителя: снизу или сверху.
  • Число секций в радиаторе.


Выбор способа подключения в зависимости от типа системы

Выделяют два типа систем: одно- и двухтрубные. В первом случае теплоноситель проходит по подающей трубе к отопительным приборам, при этом по мере движения он остывает. В однотрубных схемах радиаторы монтируются последовательно. Фактически при такой схеме подающий трубопровод «превращается» в обратный. В двухтрубных системах применяется параллельное подключение биметаллических радиаторов отопления: подающая и обратная ветки полностью «автономны» друг от друга, а соединяются они с помощью конечного прибора системы отопления.

Все выпускаемые сегодня биметаллические радиаторы отопления унифицированы под любое подключение, в их конструкции предусмотрено 4 возможные точки подключения, то есть пара снизу и пара сверху. Поэтому выбирать схему нужно, ориентируясь на тип дома, его этажность, тип системы.

Особенности одно- и двухтрубных систем

Помните о том, что:

  • Однотрубные системы могут быть с горизонтальной или вертикальной разводкой. Первая, как правило, применяется в частных домах высотой в 1 или 2 этажа, в исключительных случаях — в трехэтажных. Вертикальная разводка типична для многоэтажных объектов. Преимуществом однотрубных систем является то, что их устройство требует минимальных финансовых затрат, и при этом они отличаются стабильностью (то есть разбалансировать такие системы непросто).
  • Двухтрубные системы редко эксплуатируются в «многоэтажках». Это обусловлено тем, что для создания такой системы требуется большее число труб, также в обязательном порядке необходимо применение регулирующей арматуры. Впрочем, у нее есть существенное преимущество — на все радиаторы отопления подается теплоноситель одинаковой температуры, а значит, во всех помещениях будет одинаково тепло.


Направление подачи теплоносителя

Подключение биметаллического радиатора отопления может быть выполнено снизу — в данном случае используется нижний вертикальный коллектор. При использовании такой схемы главное точно знать, к какому именно из входов подключается вода. Эти данные можно уточнить в техническом паспорте.

Также возможна боковая и диагональная подводка. В последних двух вариантах подключения биметаллических радиаторов отопления, подача теплоносителя заводится сверху, при этом снизу устанавливается труба обратного трубопровода.


Как определить оптимальную схему подключения в зависимости от числа секций?

Число секций биметаллического радиатора отопления напрямую влияет на выбор схемы подключения. Например, для моделей, имеющих до 8 секций, оптимальным будет боковое, диагональное или нижнее седельное подключение. Если количество секций биметаллического радиатора отопления больше 8-ми, то стоит выбирать диагональную схему подключения.

Впрочем, есть некоторые хитрости, которые позволяют и радиаторы с 9, 10 и более секциями подключать боковым способом. Для этого необходимо использовать так называемый удлинитель потока.


Что такое удлинитель потока и как правильно его устанавливать?

Удлинителем потока называют трубку, вставляемую в коллектор подачи. Целесообразно использовать это приспособление, если при боковом подключении горячими оказываются исключительно первые секции биметаллического радиатора отопления, а остальные остаются чуть теплыми.

При использовании удлинителя потока удается обеспечить условия, при которых теплоноситель будет подаваться не ко входу устройства, а чуть дальше (условно — в центральную часть), за счет этого и обеспечивается более равномерный прогрев поверхностей всех секций радиатора.

Если при подключении биметаллического радиатора отопления вы решили использовать удлинитель потока, то важно знать о том, какая длина приспособления будет оптимальной. Этот параметр определяется в зависимости от числа секций. Фактически вариантов два:

  • Удлинитель должен составлять 2/3 от общей длины радиатора.
  • Длина удлинителя должна быть такой, чтобы он доставал до средней части последней секции.
При этом выбирать вариант нужно методом экспериментов. Например, в некоторых случаях удлинитель, достающий до середины последней секции, не позволяет первым секциям прогреваться до той же степени, что и последним. Если вы столкнулись с такой ситуацией — не стоит переживать, ведь проблема решается просто: достаточно просто укоротить трубку. Эксперты советуют всегда приобретать удлинитель «с запасом», чтобы при необходимости его можно было укоротить: очевидно, что со слишком коротким приспособлением сделать уже будет ничего нельзя. А то, какой именно вариант подойдет (на 2/3 или до середины последней секции), напрямую зависит от диаметра подводки, а также давления в стояке.

Второй момент: если при подключении биметаллического радиатора отопления вы решили использовать удлинитель, то можно сделать в нем отверстия. Такая «хитрость» поможет обеспечить условия, при которых теплоноситель будет равномерно поступать и распределяться по вертикальным коллекторам. Впрочем, делать это вовсе не обязательно, удлинитель и без отверстий отлично справляется со своими функциями.


Советы экспертов

Полезные советы по безопасному подключению биметаллических радиаторов отопления:

  • Желательно устанавливать запорные краны на входе и выходе радиатора. Например, это могут быть шаровые краны. Наличие таких элементов значительно упростит работы в случае, если требуется ремонт, модернизация или обслуживание отопительной системы. Принцип функционирования прост: достаточно закрыть шаровые краны, подождать, пока теплоноситель станет холодным, после чего радиатор можно без опасений снимать.
  • При подключении биметаллических радиаторов отопления, обязательно используются воздухоотводчики. Когда теплоноситель контактирует с материалом коллектора, неминуемо возникают химические реакции, сопровождающиеся образованием газов. Воздухоотводчики необходимы для эффективного отвода газов и воздуха, скопившихся в радиаторе. Если их нет, то в приборе возникнет избыточное давление, и при наступлении отопительного сезона неминуемо будет нарушена циркуляция, вследствие чего одна или несколько секций радиатора (или их части) попросту перестанут нагреваться.
  • При подключении необходимо обеспечить условия, при которых биметаллический радиатор отопления будет расположен строго горизонтально. При этом можно немного «поднять» угол прибора с той стороны, где монтирован воздухоотводчик — в этом случае газы из прибора будут спускаться гораздо эффективнее. При этом обратный уклон неминуемо нарушит циркуляцию.
Если вы хотите получить профессиональные рекомендации по выбору оптимального способа подключения биметаллических радиаторов отопления, а также узнать другие особенности, которые следует учитывать при планировании системы, просто свяжитесь со специалистом компании «САНТЕХПРОМ» по телефону: +7 (495) 730-70-80.

Если пульт ДУ Apple TV Remote не работает

В этой статье описывается, что делать, если пульт ДУ не работает должным образом.

Первоочередные действия

Пульты ДУ Siri Remote или Apple TV Remote *


 

  1. Расположите пульт ДУ на расстоянии примерно 8 сантиметров от устройства Apple TV и направьте его в сторону устройства.
  2. Нажмите и удерживайте кнопку меню или «Назад» и кнопку увеличения громкости в течение 5 секунд.
  3. При появлении соответствующего запроса положите пульт ДУ на устройство Apple TV, чтобы завершить создание пары.

Если не удается создать пару с пультом ДУ Siri Remote (2-го поколения) или Apple TV Remote (2-го поколения), убедитесь, что устройство Apple TV обновлено до tvOS 14.5 или более поздней версии. Можно использовать пульт ДУ Apple TV Remote на iPhone, iPad или iPod touch для проверки версии tvOS, установленной на устройстве Apple TV. 

Если вам по-прежнему требуется помощь, обратитесь в службу поддержки Apple.

* Устройства Apple TV 4K и Apple TV HD поставляются с одинаковым пультом ДУ во всех странах. В странах и регионах, в которых поддерживается функция Siri, пульт ДУ называется Siri Remote. Во всех остальных странах он называется Apple TV Remote. Siri работает с любым из этих пультов ДУ, если в настройках Apple TV 4K или Apple TV HD выбраны поддерживаемые язык и страна или регион.

Пульт ДУ Apple Remote (алюминиевый или белый)

 

  1. Разорвите соединение между пультом ДУ Apple Remote и устройством Apple TV. Удерживайте кнопку меню и кнопку «влево» на пульте ДУ Apple Remote нажатыми в течение 6 секунд. Затем найдите значок разрыва соединения  над значком пульта ДУ на Apple TV.
  2. Установите соединение между пультом ДУ Apple Remote и устройством Apple TV. Удерживайте кнопку меню и кнопку «вправо» на пульте ДУ Apple Remote нажатыми в течение 6 секунд. Затем найдите значок установления соединения  над значком пульта ДУ на Apple TV.

Если вам по-прежнему требуется помощь, обратитесь в службу поддержки Apple.

Информация о продуктах, произведенных не компанией Apple, или о независимых веб-сайтах, неподконтрольных и не тестируемых компанией Apple, не носит рекомендательного или одобрительного характера. Компания Apple не несет никакой ответственности за выбор, функциональность и использование веб-сайтов или продукции сторонних производителей. Компания Apple также не несет ответственности за точность или достоверность данных, размещенных на веб-сайтах сторонних производителей. Обратитесь к поставщику за дополнительной информацией.

Дата публикации: 

Как подключить батареи последовательно и параллельно

Если вы когда-либо работали с батареями, вы, вероятно, встречали термины серия , параллельный и последовательно-параллельный , но что именно означают эти термины?

Series, Series-Parallel и Parallel — это соединение двух батарей вместе, но зачем вам вообще нужно соединять две или более батарей вместе?

Соединяя две или более батарей последовательно, последовательно, параллельно или параллельно, вы можете увеличить напряжение или емкость в ампер-часах, или даже и то, и другое; что позволяет использовать приложения с более высоким напряжением или энергоемкие приложения.

ПОДКЛЮЧЕНИЕ АККУМУЛЯТОРОВ СЕРИИ

Последовательное соединение батареи — это когда вы соединяете две или более батарей вместе для увеличения общего напряжения систем батарей, последовательное соединение батарей не увеличивает емкость, а только напряжение.
Например, если вы подключите четыре батареи 12 Вольт 26 Ач, у вас будет напряжение батареи 48 В и емкость батареи 26 Ач.

Чтобы сконфигурировать батареи с последовательным подключением, каждая батарея должна иметь одинаковое напряжение и номинальную емкость, иначе вы можете повредить батареи.Например, вы можете подключить две батареи 6 В 10 Ач вместе последовательно, но вы не можете соединить одну батарею 6 В 10 Ач с одной батареей 12 В 10 Ач.

Для последовательного подключения группы батарей вы подключаете отрицательную клемму одной батареи к положительной клемме другой и так до тех пор, пока не будут подключены все батареи, затем вы должны подключить перемычку / кабель к отрицательной клемме первой батареи в вашем цепочку батарей к вашему приложению, затем еще один кабель к положительной клемме последней батареи в вашей цепочке к вашему приложению.

При последовательной зарядке аккумуляторов необходимо использовать зарядное устройство, соответствующее напряжению аккумуляторной системы. Мы рекомендуем заряжать каждую батарею индивидуально, чтобы избежать дисбаланса батареи.

Герметичные свинцово-кислотные батареи

уже много лет являются предпочтительным выбором для систем с длинными линиями высоковольтных аккумуляторных батарей, хотя литиевые батареи могут быть сконфигурированы последовательно, это требует внимания к BMS или PCM.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ АККУМУЛЯТОРОВ

Параллельное подключение батареи — это когда вы соединяете две или более батареи вместе для увеличения емкости в ампер-часах, при параллельном подключении батареи емкость увеличивается, однако напряжение батареи остается прежним.

Например, если вы подключите четыре аккумулятора 12 В 100 Ач, вы получите систему аккумуляторов 12 В 400 Ач.

При параллельном подключении аккумуляторов отрицательная клемма одной батареи подключается к отрицательной клемме следующей и так далее через цепочку аккумуляторов, то же самое происходит с положительными клеммами, то есть положительный полюс одной батареи к положительной клемме батареи. следующий. Например, если вам нужна аккумуляторная система 12 В 300 Ач, вам нужно будет подключить три батареи 12 В 100 Ач вместе параллельно.

Параллельная конфигурация батарей помогает увеличить время, в течение которого батареи могут питать оборудование, но из-за увеличенной емкости в ампер-часах их зарядка может занять больше времени, чем у последовательно соединенных батарей.

СЕРИЯ

— АККУМУЛЯТОРЫ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ

И последнее, но не менее важное! Батареи соединены последовательно-параллельно. Последовательно-параллельное соединение — это когда вы подключаете цепочку батарей для увеличения как напряжения, так и емкости системы батарей.

Например, вы можете соединить шесть батарей 6 В 100 Ач вместе, чтобы получить батарею 24 В 200 Ач, это достигается путем настройки двух цепочек по четыре батареи.

В связи с этим у вас будет два или более комплектов батарей, которые будут настроены как последовательно, так и параллельно для увеличения емкости системы.

Если вам нужна помощь в настройке батарей в последовательном, параллельном или последовательном параллельном соединении, пожалуйста, свяжитесь с одним из наших экспертов по батареям.

Серия

, параллельное и последовательно-параллельное соединение батарей

Серия

, параллельная и последовательно-параллельная конфигурация батарей

Введение в соединения батарей

Можно подумать, какова цель последовательного, параллельного или последовательно-параллельного подключения аккумуляторов или какая конфигурация является правильной для зарядки аккумуляторов, системы аккумуляторных батарей, автономной системы или установки солнечных батарей.Ну, это зависит от требований системы, то есть увеличения напряжения путем последовательного соединения батарей, ампер-часов батареи (поскольку батареи рассчитаны в Ач, а не в амперах) или просто тока или мощности батарей путем подключения батарей параллельно или последовательно. параллельно поддерживать систему в соответствии с вашими потребностями. Если вам нужно знать, как это сделать, прочитайте следующее пошаговое руководство о конфигурации первичных (неперезаряжаемых, например, элементы AAA) и вторичных (перезаряжаемых, например, свинцово-кислотных, никель-кадмиевых, никель-металлогидридных, литий-ионных и т. Д.) Батарей.

Мы получили несколько сбивающих с толку схем по этой теме, и они спрашивают, подключены ли батареи последовательно, параллельно или последовательно-параллельно и к какому из них они подходят ?. Итак, мы подробно обсудим последовательное, параллельное и последовательное параллельное соединение батарей со схемами и приложениями.

А теперь приступим …

Типы подключения батарей

Есть три основных типа подключения батарей.

  1. Последовательное соединение
  2. Параллельное соединение
  3. Последовательное параллельное соединение

Щелкните изображение, чтобы увеличить

Последовательное, параллельное и последовательное-параллельное соединение батарей

Ниже приводится подробная информация о каждом соединении.

Серия

Подключение аккумуляторов

Если мы подключим положительный (+) полюс батареи к отрицательному (-), а отрицательный — к положительному полюсу, как показано на рисунке ниже, то конфигурация батарей будет последовательной.

Полезно знать:

При последовательном соединении батарей ток одинаков в каждом проводе или секции, а напряжение разное, т.е. напряжения складываются, например

V 1 + V 2 + V 3 ….Vn

На рисунке ниже две батареи по 12 В, 200 Ач соединены последовательно. Таким образом, общий эффективный ампер-час (Ач) будет таким же, пока напряжение является аддитивным.

т.е.

= 12В + 12В = 24В, 200Ач

Щелкните изображение, чтобы увеличить

Series Подключение аккумуляторов
Когда нам нужно и как подключить аккумуляторы последовательно?

Когда вам нужно удвоить уровень напряжения в соответствии с потребностями вашей системы, сохраняя при этом ту же емкость или номинальную емкость в ампер-часах (Ач) батарей.

Например, если у вас есть две батареи на 12 В, 200 Ач час, и вам нужна система на 24 В. для установки. Просто подключите обе батареи последовательно, чтобы получить 24 В и одинаковый номинал в ампер-часах, то есть 200 Ач.

Имейте в виду, что при последовательном подключении аккумуляторная батарея разряжается медленнее, чем при параллельном подключении аккумуляторов.

Вы можете сделать это с любым количеством батарей, т.е. получить 36 В, 48 В, 72 В постоянного тока и так далее, подключив батареи последовательно.

Эта система используется в различных установках солнечных панелей и других приложениях.

Параллельное соединение аккумуляторов

Если мы подключим положительную клемму (+) батареи к положительной, а отрицательную (-) к отрицательной клемме. Тогда конфигурация батарей будет параллельной.

Полезно знать:

При параллельном подключении напряжение будет одинаковым на каждом проводе или участке, а ток будет другим, т.е. ток будет аддитивным.

например

I 1 + I 2 + I 3 … + In

На рисунке ниже две батареи на 12 В, 200 Ач подключены параллельно.Таким образом, полное эффективное напряжение будет таким же, пока ампер-час складывается.

т.е.

= 200 Ач + 200 Ач = 400 Ач, 12 В.

Щелкните для увеличения изображения

Параллельное подключение батарей
Когда нам нужно и как подключить батареи параллельно?

Когда вам нужно удвоить емкость аккумулятора или номинальные ампер-часы (Ач) в соответствии с потребностями вашей системы, сохраняя при этом тот же уровень напряжения.

Например, если у вас есть две батареи на 12 В по 200 Ач и вам нужна система 12 В. для установки.Просто подключите обе батареи параллельно, при этом общая емкость батареи будет 400 Ач и будет одинаковым уровнем напряжения, то есть 12 В.

Имейте в виду, что параллельная разрядка аккумуляторов происходит быстрее, чем при последовательном подключении аккумуляторов.

Это можно сделать с любым количеством аккумуляторов, т.е. получить тот же уровень напряжения, увеличивая при этом емкость аккумулятора в ампер-часах при параллельном подключении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Последовательно-параллельное соединение батарей

Если мы соединим две пары из двух батарей последовательно, а затем соединим эти последовательно соединенные батареи параллельно, то такая конфигурация батарей будет называться последовательно-параллельным соединением батарей.

Другими словами, это последовательная или параллельная цепь, но известная как последовательно-параллельная цепь. Некоторые из компонентов включены последовательно, а другие — в параллельной или сложной схеме из последовательно и параллельно соединенных устройств и батарей.

Связанное сообщение:

На рисунке ниже.

Шесть (6) аккумуляторов на 12 В, 200 Ач каждая подключены в последовательно-параллельной конфигурации.

ie

  • B 1 & B 2 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 3 & B 4 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 5 и B 6 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение

И затем пара этих батарей соединяется параллельно i.е. два параллельных комплекта из трех батарей соединены последовательно.

т.е.

Установить 1 = B 1 , B 3 , B 5 = Серия

Установить 2 = B 2 , B 4 , B 6 = Серия

И затем ,

Set 1 & Set 2 = In Parallel.

Таким образом, эффективное напряжение и ампер-час будут равны

Ампер-час (Ач) = 200 Ач + 200 Ач + 200 Ач = 600 Ач

Напряжения = 12 В + 12 В = 24 В. (Параллельное соединение)

Щелкните изображение, чтобы увеличить

Последовательно-параллельное соединение батарей

Калькуляторы, связанные с батареями:

Когда нам нужно и как соединить батареи последовательно-параллельно?

Когда вам нужно удвоить емкость аккумулятора или номинальные ампер-часы (Ач), а также напряжение аккумуляторов в соответствии с потребностями вашей системы.

Например, если у вас шесть аккумуляторов на 12 В, 200 Ач в час, и вам потребуется емкость 600 Ач и система на 24 В для установки. Теперь у вас есть два набора из трех батарей, просто подключите два набора из трех аккумуляторов последовательно, а затем подключите два набора параллельно (как показано на рис. Выше), при этом общая емкость аккумулятора будет 600 Ач, а уровень напряжения — 24 В.

Это можно сделать с любым количеством аккумуляторов, т.е. получить разный уровень напряжения, а также увеличить емкость аккумулятора в ампер-часах при последовательно-параллельном соединении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Сравнение последовательного, параллельного и последовательно-параллельного подключения

В приведенной ниже таблице показаны основные различия между последовательным и параллельным подключением.

Щелкните изображение, чтобы увеличить

Сравнение последовательных, параллельных и последовательно-параллельных подключений

Общие меры предосторожности и инструкции по подключению и установке батарей

Предупреждение и инструкции:

  • Никогда не замыкайте и не касайтесь положительного (+ ) клемма батареи с отрицательной (-) клеммой батареи, чтобы избежать короткого замыкания, повреждения, травмы, взрыва или пожара.
  • Всегда подключайте аккумулятор одного уровня напряжения и емкости, чтобы избежать проблем с зарядкой и сокращения срока службы аккумулятора.
  • Не путайте (это может быть опасно) со сложной разводкой и подключением аккумуляторов последовательно-параллельно. Всегда делайте правильные расчеты и делайте схемы и схемы соединений батарейных блоков, прежде чем применять их на практике, чтобы быть в безопасности.
  • Особое внимание следует уделять полярности при зарядке аккумуляторных батарей, чтобы избежать короткого замыкания и возникновения опасных ситуаций.
  • Когда аккумулятор полностью зарядится, снимите зарядное устройство, чтобы избежать перегрева (в случае неавтоматического зарядного устройства или контроллера заряда).
  • Всегда заряжайте аккумулятор при комнатной температуре.
  • Не пытайтесь заряжать первичные элементы. т.е. не заряжайте неперезаряжаемые батареи.
  • Отсоедините аккумулятор от подключенной нагрузки, если он больше не используется, чтобы избежать коррозии и утечки.
  • Отключите источник заряда аккумулятора и нагрузку перед подключением или отключением клемм.

Соответствующие руководства по подключению и подключению аккумуляторов:

Соединение аккумуляторов вместе для хранения большего количества аккумуляторов

Соединение батарей вместе для большей емкости батареи Статья Учебники по альтернативной энергии 08.12.2013 08.04.2021 Учебные пособия по альтернативным источникам энергии

Соединение батарей вместе для большего количества аккумуляторов

Для автономных или подключенных к сети систем возобновляемой энергии, которые используют батареи для хранения энергии, соединение батарей вместе для производства более крупных батарейных массивов с желаемым рабочим напряжением или 24-часовым током Спрос — важная часть любой системы хранения солнечной энергии.

Большинство систем производства альтернативной энергии делятся на две основные категории: «системы, подключенные к сети» и «системы вне сети». Системы, подключенные к сети, названы так потому, что они подключаются непосредственно к электросети, и если электрическое генерирующее устройство, солнечные панели, ветряные турбины, гидрогенератор и т. Д. Вырабатывают больше электроэнергии, чем необходимо, избыток подается в сеть.

Но также возможны подключенные к сети системы с резервным аккумулятором (гибридные системы).Для систем с подключением к сети на базе аккумуляторных батарей требуется инвертор другого типа и контроллер заряда для контроля потока электричества в аккумуляторную батарею и из нее.

Автономные или автономные системы используют батареи для хранения своей электроэнергии. Автономные системы идеальны для удаленных сельских районов и приложений, где подключение к коммунальной сети непрактично или недоступно. В этих случаях более рентабельно установить единую автономную автономную систему, чем оплачивать расходы на продление местной электроэнергетической компании линий электропередач и кабелей непосредственно к дому.

Подключенные аккумуляторы глубокого цикла

Все автономные и резервные альтернативные энергетические системы, будь то ветряные, солнечные или гидроэнергетические системы, требуют некоторой формы хранения аккумуляторов, поэтому важно, чтобы соединение аккумуляторов было выполнено правильно.

Электрический генератор заряжает батареи, как правило, в светлое время суток для солнечной энергии, а батареи обеспечивают питание, когда это необходимо, часто ночью и в пасмурную погоду, поэтому соединение батарей вместе для хранения этой свободной солнечной энергии является важной частью любого Автономная возобновляемая система.

В настоящее время используются два наиболее распространенных типа аккумуляторных батарей: свинцово-кислотные и щелочные. Свинцово-кислотные батареи имеют пластины, сделанные из свинца, смешанного с другими материалами и погруженного в раствор серно-кислотного электролита. Свинцово-кислотная батарея является неотъемлемой частью любой автономной электрической системы с альтернативной энергией, и фундаментальная свинцово-кислотная технология не изменилась с момента ее изобретения.

Свинцово-кислотные батареи являются наиболее распространенными в системах зарядки возобновляемых источников энергии, потому что их первоначальная стоимость ниже и потому, что они легко доступны почти повсюду в мире.Свинцово-кислотные аккумуляторы глубокого цикла называются вторичными аккумуляторами, так как их можно заряжать током. Первичная батарея — это аккумулятор, который нельзя перезаряжать. Следовательно, все батареи глубокого разряда являются вторичными.

Аккумуляторы глубокого разряда — это свинцово-кислотные аккумуляторы, специально разработанные для обеспечения постоянного тока в течение длительного периода времени. Существует множество свинцово-кислотных аккумуляторов глубокого разряда различных размеров и конструкций, все они рассчитаны на многократную разрядку до 80% своей емкости, поэтому они являются хорошим выбором для автономных систем.Несмотря на то, что они разработаны, чтобы выдерживать глубокие циклы, эти батареи будут иметь более длительный срок службы, если циклы будут меньше.

Подключение аккумуляторов глубокого разряда

Аккумуляторы обычно соединяются проводом или соединяются вместе для получения определенного напряжения и накопительной емкости в ампер-часах. Батареи небольших систем возобновляемой энергии, например, те, которые используются для питания кают, жилых автофургонов, лодок и т. Д., Обычно имеют проводку для выработки 12-вольтовой электроэнергии.

Автономные системы, используемые для электроснабжения домов, предприятий и т. Д., Обычно имеют проводку для производства электроэнергии 24 или 48 вольт постоянного тока.Это низковольтное электричество постоянного тока также может быть преобразовано в электричество переменного тока сети с помощью инвертора, который повышает напряжение до 120 или 240 вольт, обычно используемых для питания более крупных электрических устройств.

Когда более одной батареи глубокого разряда подключены вместе, результирующий блок батарей будет иметь другое напряжение или другую емкость в ампер-часах (или и то, и другое) по сравнению с одной батареей.

Батареи могут быть соединены проводом или соединены друг с другом в последовательной или параллельной комбинации, либо в обоих случаях для увеличения напряжения или тока аккумуляторной батареи.Затем соединение батарей вместе позволяет увеличить емкость батареи.

Батареи, соединенные вместе в серии

Блок батарей создается путем соединения двух или более батарей глубокого разряда вместе. Батарейные блоки, состоящие из батарей, соединенных последовательно, имеют ту же текущую емкость, что и отдельные батареи, но напряжение умножается на количество батарей в последовательном ряду.

В последовательно соединенных батареях положительная клемма одной батареи соединена с отрицательной клеммой следующей и так далее.Соединение батарей вместе в последовательной комбинации означает более высокое напряжение при том же токе.

Батареи, соединенные параллельно

Батарейные блоки, состоящие из батарей глубокого разряда, соединенных параллельно, имеют такое же напряжение, как и отдельные батареи, но текущая емкость умножается на количество батарей. В параллельно соединенном блоке батарей положительный полюс одной батареи соединен с положительным полюсом следующего, а отрицательный вывод соединен с отрицательной клеммой.Параллельное соединение батарей означает более высокий ток при том же напряжении на клеммах.

Последовательные и параллельные комбинации батарей в блоке батарей увеличивают как напряжение в зависимости от количества батарей в последовательной цепочке, так и текущую емкость в зависимости от количества последовательно соединенных цепочек. Соединение батарей вместе как в последовательной, так и в параллельной комбинациях позволяет увеличить емкость батареи при более высоком напряжении.

Давайте посмотрим, как мы можем соединить батареи вместе для получения более высоких напряжений и текущих конфигураций.

Соединение батарей вместе для 12-вольтной проводки

Все комбинации последовательного и параллельного подключения батарей дают массив 12 вольт.

Соединение батарей вместе для 24-вольтовой проводки

Все комбинации последовательного и параллельного подключения батарей дают массив 24 вольт.

Соединение аккумуляторов вместе для 48-вольтной проводки

Наконец, эти комбинации последовательного и параллельного подключения аккумуляторов образуют массив 48 вольт.

В автономных автономных системах альтернативной энергетики электрическая энергия, произведенная генерирующим устройством, не всегда может быть использована при ее производстве. Поскольку спрос на энергию не всегда совпадает с ее производством, электрические аккумуляторные батареи обычно используются во многих автономных и связанных с сетью системах.

Выбор напряжения блока батарей, 12, 24 или 48 В, часто зависит от требований к напряжению нагрузки системы, требуемой емкости и типа имеющихся батарей.Для больших нагрузок иногда лучше соединить батареи глубокого цикла вместе, чтобы получить более высокие напряжения и снизить токи в системе.

Например, 240-ваттная нагрузка постоянного тока, работающая от 12-вольтовой батареи, потребляет около 20 ампер, тогда как 240-ваттная нагрузка постоянного тока, работающая от 48-вольтовой батареи, потребляет только 5 ампер, четверть тока. Этот более низкий ток в системе имеет много преимуществ за счет уменьшения размера используемых кабелей, изолирующих переключателей и предохранителей, что позволяет сэкономить ваши деньги.

Последний пункт безопасности при соединении свинцово-кислотных аккумуляторов.Свинцово-кислотные аккумуляторы глубокого цикла — самая опасная часть любой солнечной или ветровой энергосистемы. При обращении со свинцово-кислотными батареями и электролитом необходимо надевать перчатки, средства защиты глаз, такие как очки и маски, а также старую одежду, поскольку «аккумуляторная кислота» вызывает ожоги и раздражение кожи и глаз.

Чтобы узнать больше о «соединении батарей вместе» и о том, как вы можете использовать их как часть домашней солнечной системы, или чтобы изучить преимущества и недостатки соединения батарей вместе для увеличения емкости батареи, а также о том, как вы можете использовать батареи глубокого цикла в качестве альтернатива автомобильным батареям, тогда почему бы не нажать здесь и получить копию руководства одного из лучших производителей аккумуляторов от Amazon сегодня и узнать, как создавать, восстанавливать и ремонтировать свинцово-кислотные аккумуляторы глубокого цикла

Самые продаваемые продукты, связанные с аккумуляторами

Батареи при последовательном и параллельном подключении (блоки батарей)

Изготовление блоков батарей большего размера часто требуется для увеличения времени автономной работы или увеличения напряжения для обеспечения работы определенных устройств.Например, если у вас есть солнечная энергетическая установка или инвертор, вы можете подключить к ним несколько батарей, чтобы получить больше энергии и увеличить время работы. В коммуникационных сетях, а также в малых и больших серверах также используются резервные ИБП, в цепи которых часто используется большое количество батарей или батарей большего размера. В зависимости от потребностей и для сокращения затрат на техническое обслуживание изготавливаются разные виды пакетов.

Здесь я подробно объяснил, как сделать параллельный, последовательный и последовательно-параллельный комбинированные аккумуляторные блоки (аккумуляторные батареи).Это руководство очень полезно для начинающих пользователей, которые хотят узнать, как соединить свинцово-кислотные батареи (герметичные, VRLA, MF, Gel, AGM, влажные или залитые) вместе, подключая их к солнечным энергетическим системам, системам бесперебойного питания (ИБП), силовые инверторы или зарядные устройства. Кроме того, я также обсудил некоторые часто задаваемые вопросы по этой теме в разделе часто задаваемых вопросов ниже. Обратите внимание, что аккумуляторный блок также называется аккумуляторным блоком, а AGM и гелевые аккумуляторы также известны как необслуживаемые или сухие аккумуляторы в некоторых регионах.

Батареи в параллельном соединении (параллельный батарейный блок)

В этом типе батарейного блока батареи подключаются от выводов к тем же выводам других батарей, т.е. положительный вывод (+) одной батареи соединяется с плюсом (+) клемма другой батареи и отрицательная клемма (-) одной батареи с отрицательной клеммой (-) другой батареи. См. Схему ниже для получения дополнительной информации:

Батареи в последовательном соединении (последовательный аккумулятор)

Батареи подключаются от клеммы к клемме таким образом, что положительная (+) клемма одной батареи соединяется с отрицательной (-) клеммой. другой батареи и отрицательная клемма (-) одной батареи соединена с положительной клеммой (+) другой батареи.См. Диаграмму для получения дополнительной информации:

Батареи разного размера при параллельном или последовательном подключении
Параллельно
(Критерии: если батареи имеют одинаковое напряжение, но разную емкость)


В серии
(Критерии: Если батареи имеют одинаковое напряжение, но разную емкость)

Батареи, соединенные последовательно и параллельно

В комбинации последовательно-параллельных батарей один блок батарей, соединенных последовательно, соединяется параллельно с другим блоком батарей, соединенных последовательно.Таким образом, общее выходное напряжение последовательных блоков остается неизменным. Но емкость накопителя заряда увеличена.

9 батарей в последовательном параллельном соединении — схема подключения


Часто задаваемые вопросы

1- Почему батареи подключаются параллельно?
При параллельном подключении аккумуляторов напряжение всей батареи остается неизменным, но увеличивается емкость аккумулятора и энергия в ампер-часах (Ач) и ватт-часах (Втч).

2- Почему батареи подключаются последовательно?
При последовательном подключении аккумуляторов напряжение увеличивается, но емкость в ампер-часах (Ач) остается неизменной.Энергия в ватт-часах (Втч) увеличивается. Согласно здравому смыслу, общая емкость хранения заряда также увеличивается, потому что теперь доступно больше резервуаров для хранения заряда.

3- Последовательное или параллельное подключение аккумуляторов увеличивает емкость и резерв?
Да. Как я уже упоминал выше, теперь у вас есть два или более резервуара для хранения заряда вместо одного. Резервная копия, предоставляемая системой, будет увеличена. Но нельзя продолжать подключать батареи последовательно, если устройство питания рассчитано на определенное напряжение.Подключите их параллельно, чтобы увеличить резервную копию, или вместо этого купите батареи большего размера.

4- Почему подключение батарей разной емкости параллельно друг другу не рекомендуется для длительного использования?
Батареи разной емкости, но одинакового напряжения можно подключать параллельно, но желательно этого не делать. Потому что есть вероятность, что батареи разного размера имеют небольшую разницу в напряжении, даже если на этикетке они обозначены как одинаковое напряжение. Это приведет к разнице потенциалов между подключенными батареями, что означает, что батареи с более высоким напряжением будут пытаться зарядить батарею с более низким напряжением, что может привести к нагреву и разрушению этой батареи.Кроме того, когда батареи разной емкости подключены параллельно к ИБП или инвертору мощности, зарядное устройство ИБП может вызвать конфликт и начать работать ненормально. Чтобы свести к минимуму такие риски и неприятности, покупайте батареи одинаковой емкости и напряжения одной марки, произведенные одной и той же компанией. Никогда не используйте одновременно батареи разных марок от одного или разных производителей.

5- Почему нельзя последовательно подключать батареи разной емкости?
Никогда не подключайте батареи разной емкости последовательно друг к другу.При подключении батарея меньшей емкости будет заряжаться первой, но батарея большей емкости все равно будет разряжена. Это приведет к нагреву и перезарядке меньшей батареи. В режиме разряда батарея меньшего размера сначала разряжается, что приводит к ее глубокой разрядке. Чтобы сделать серию аккумуляторных батарей, купите батареи одинаковой емкости и напряжения той же марки и компании.

6- Могу ли я соединить старые и новые батареи параллельно и последовательно?
Очень плохая идея — одновременно использовать старые и новые батареи. Старые батареи, которые сильно изношены, не сохраняют напряжение, как новые батареи.Таким образом, если старые батареи смешать с новыми, это сократит срок службы новых батарей и повредит старые батареи. Но вы можете подключить старые и новые батареи последовательно, хотя я тоже не рекомендую это делать. Старая батарея может не достичь напряжения отключения, что приведет к перезарядке и перегреву новой и здоровой батареи.

7- Могу ли я использовать разные типы свинцово-кислотных аккумуляторов?
Нет. Никогда этого не делай. Каждый тип свинцово-кислотных аккумуляторов, включая VRLA, AGM, гелевый, влажный или залитый, имеет разную скорость заряда и разные максимальные и минимально допустимые напряжения.Смешивать их — значит испортить их и потратить впустую.

8- Почему производятся большие аккумуляторные батареи? Аккумулятор серии
предназначен для увеличения напряжения. Это помогает уменьшить размер трансформатора, который используется для повышения напряжения. Машины, которым для работы требуется постоянный ток высокого напряжения (HVDC), запрашивают серию аккумуляторных батарей. Параллельный аккумулятор просто увеличивает резерв.

Безопасность: С аккумуляторами большой емкости следует обращаться осторожно. Никогда не замыкайте их накоротко, так как короткое замыкание может вызвать возгорание и взрыв аккумуляторов.Необходимо правильно подключить батареи к ИБП, инвертору или солнечной системе. Неправильное подключение может повредить устройство.

Также прочтите:
Как подключить батареи параллельно с инвертором питания или ИБП [схемы подключения]
Как подключить батареи последовательно с инвертором или ИБП [электрические схемы]

Опасности неправильного подключения батареи

Подключение батареи может вызвать огонь, если не все сделано правильно Знаете ли вы, что подключение батареи может привести к пожару , если оно выполнено неправильно? Многие из нас, работающих с электрооборудованием, особенно с солнечной энергией, имеют дело с батареями, состоящими из большого количества батарей.Как правило, клеммы аккумулятора часто подтягиваются после того, как часть оборудования была проверена и отремонтирована и теперь наконец устанавливается в систему. Кроме того, в таких обстоятельствах обычно возникает побуждение «покончить с этим» и перейти к другой чрезвычайной ситуации. В результате терминал может остаться немного незакрепленным. Чтобы узнать о правильной разводке аккумуляторной батареи, нажмите здесь Чтобы понять, почему незакрепленное соединение клемм батареи опасно , подумайте о разряде молнии. Насколько опасен удар молнии? Он может сжечь заживо людей и животных.Он может превратить здания в пепел. Он может сжечь все, что попадется. Это огромная искра электрического тока. Искра должна выделять тепло, может быть световой и звуковой. Молния делает все эти три вещи. Мы видим свет, мы слышим гром и видим ущерб, нанесенный жарой. Искра в силовой цепи — это уменьшенная версия молнии. Искра будет образовываться всякий раз, когда два проводника с разными потенциалами лежат так близко, что разность потенциалов между ними может ионизировать воздух между сухом воздухе требуется 3 кВ для ионизации воздушного зазора 1 мм . Если зазор меньше, то при гораздо меньшем напряжении будет образовываться искра . Какое напряжение ионизирует воздушный зазор размером 1 мкм? Всего три вольта . Неплотное соединение на клемме аккумулятора — это одна из ситуаций, когда могут возникнуть такие разрывы. Напряжение низкое, но любые зазоры, которые могут возникнуть, также будут в микрометрах . Малейшие колебания при неплотном соединении могут вызвать такие разрывы многократно за секунду.А теперь воспользуйтесь основами электротехники, чтобы рассчитать мощность искры в цепи 12 В , несущей 200 А . Мощность является продуктом напряжения и тока , который в данном случае составляет 2,4 кВт! Вся эта энергия преобразуется в локализованное тепло. Как вы думаете, что произойдет, если искрение продолжится? Температура будет продолжать расти . Изоляция на кабеле и клемме расплавит и, возможно, загорится .Часть клеммы и несколько жил кабеля около клеммы сожгут . Пониженная проводимость пути в этой области увеличит местное сопротивление , а увеличит тепловыделение из-за искрения . Позвольте этому продолжаться, и у вас наверняка будет пожар. Есть еще один способ, которым незакрепленный терминал может вызвать проблемы. Сопрягаемые поверхности зажима и клеммы аккумуляторной батареи имеют около неровностей .Если клеммы не затянуты должным образом, цепь может быть замкнута, но не вся доступная поверхность находится в контакте. Это означает повышенное сопротивление и, опять же, локальный нагрев, который может привести к пожару. Есть ли у вас пожарная сигнализация и противопожарная защита?

Соединение батарей вместе — последовательное, параллельное и последовательное / параллельное объединение — энтузиазм в области инженерии

Подключение батарей или элементов часто требуется, когда вы хотите увеличить напряжение или силу тока или и то, и другое для различных приложений.Соединяя две или более батарей / элементов вместе, вы создаете так называемый аккумуляторный блок, который дает вам больше энергии для ваших приложений.

Существует 3 метода подключения батарей и построения батарейного блока: последовательный, параллельный и последовательный / параллельный комбинированный. Мы кратко опишем каждый метод с помощью иллюстраций, чтобы дать вам четкое представление.

Что нужно знать перед тем, как соединять батареи вместе?

Перед тем, как построить аккумуляторную батарею, убедитесь, что вы следуете приведенным ниже советам:

  • Используйте батареи одинакового размера (одинаковое напряжение и одинаковую силу тока)
  • Не смешивайте старую батарею (слабую) с новой. (вызывает дисбаланс зарядки)

# 1 Параллельное подключение батареи — увеличение силы тока (емкости)

Параллельное подключение батареи используется, когда вы хотите увеличить силу тока (емкость) и сохранить напряжение на том же уровне.Поясним этот метод на примере!

Этот метод используется, когда вы хотите, чтобы ваше приложение работало дольше между зарядками. Напряжение остается неизменным при параллельном подключении аккумуляторов. На рисунке ниже вы видите 4 батареи, подключенные параллельно, положительная (+) клемма первой батареи соединена с положительной (+) клеммой второй батареи… до конца, а отрицательная (-) клемма первой аккумулятор подключен к отрицательной (-) клемме второго аккумулятора и так далее.Параллельное подключение аккумуляторов, любезно предоставлено EngineeringPassion

При подключении будет емкость 12 В, 80 Ач. При увеличении силы тока до 80 Ач вам может понадобиться сверхпрочный кабель, чтобы кабель не перегорел. Для параллельного подключения требуется как минимум 2 батареи. При параллельном подключении батарей вам понадобится перемычка для подключения всех положительных (+) клемм и еще одна перемычка для подключения отрицательных (-) клемм.

Предпочтительный метод поддержания уровня заряда аккумуляторов заключается в подключении к положительному (+) полюсу на одном конце аккумуляторного блока и отрицательному (-) полюсу на другом конце, как показано на рисунке выше.

# 2 Подключение батареи серии — увеличение напряжения

Эта конфигурация понадобится вам, когда вам нужно увеличить общее напряжение системы. При последовательном подключении батареи увеличивается напряжение, а номинальная сила тока (также известная как ампер-часы) остается неизменной. Поясним этот метод на примере!

Для этого метода вам понадобятся как минимум две батареи одинакового размера и номинала. Последовательное подключение батарей — это когда вы объединяете две или более батарей, соединяя положительную (+) клемму первой батареи с отрицательной (-) клеммой второй батареи.Если бы использовались только две батареи, то у вас был бы кабель, идущий от отрицательной (-) клеммы первой батареи к вашему приложению, и кабель, отходящий от положительной (+) клеммы на второй батарее, ведущей к приложению, как показано на рисунок ниже. Подключение батареи серии, любезно предоставлено EngineeringPassion

Это подключение приведет к емкости 24 В, 20 Ач. Далее мы объясним другой способ увеличения номинального напряжения и силы тока. Это может показаться запутанным, но мы объясним ниже.

# 3 Последовательное / параллельное комбинированное соединение батарей — увеличение напряжения и силы тока

Для последовательного / параллельного комбинированного соединения вам потребуются как минимум 4 батареи одинакового размера и номинала. Поясним это на примере!

У вас будет два или более банков батарей в последовательной / параллельной конфигурациях батарей. Каждая группа батарей объединяет батареи, настроенные последовательно на желаемое напряжение. Затем банки будут соединены вместе параллельно для увеличения общей пропускной способности системы, как показано на рисунке ниже.Комбинированное последовательное и параллельное подключение аккумуляторов, любезно предоставлено EngineeringPassion

Это подключение дает емкость 24 В, 40 Ач. Комбинированное соединение похоже на объединение двух идентичных батарейных блоков вместе.

Какой способ подключения батареи мне выбрать?

Вы можете соединить столько батарей вместе, сколько захотите, но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбить с толку, а путаница может быть опасной. Ответ на этот вопрос зависит от приложения.Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи того же номинала. По возможности избегайте смешивания и соответствия размеров батарей.

Вы также можете использовать эти соединения для подзарядки батарей через солнечные панели. Всегда помните о безопасности и следите за подключениями аккумулятора. Если это поможет, сделайте схему ваших батарейных блоков, прежде чем пытаться их построить.

Проверка выводов и соединений аккумуляторной батареи

Ослабление болта зажимного разъема.

Слабый щелчок или полная тишина, когда стартер ключ повернут обычно означает, что аккумулятор почти или полностью плоский. Однако если аккумулятор полностью заряжен, проблема, вероятно, в схема между аккумулятором и стартером.

В любом случае, недостаток мощности препятствует пусковой двигатель от работы — хотя может и хватит Текущий работать соленоид , который издает слабый щелчок или болтовня .

Если вы подозреваете цепь, сначала посмотрите на клеммы аккумуляторной батареи.Если они не в хорошем состоянии, ток не может проходить через них должным образом, а иногда и вовсе.

Самыми распространенными типами соединителей являются зажимы, подходит вокруг батарейного столба или чашки, которая надевается на него. Хомут фиксируется болтом; чашку винтом в верхнюю часть столба.

Тип Ford имеет разъем плоского кабеля, прикрученный к плоскому полюсу аккумулятора.

На сопрягаемых поверхностях разъемов и полюсов аккумуляторной батареи не должно быть грязи и коррозии.

Все зеленые или белые порошкообразные отложения необходимо удалить, а металлические поверхности под ними осветлить.

Удалите эти отложения также с держателя батареи или любых других металлических частей — они очень коррозийные.

При очистке терминалы не лечит проблему, проверьте заземляющий провод — особенно там, где он прикреплен к телу или шасси , и при необходимости очистите. Для правильного заземления должен быть металлический контакт.

У некоторых автомобилей есть еще один заземляющий провод между двигатель и кузов или шасси.Обязательно изучите и это.

Посмотрите также на стартер мотор и соленоид на предмет ослабленных контактов, которые могут вызвать искрение. Это пожароопасно в любой цепи, но становится еще более опасным в цепи стартера-аккумулятора, через которую проходит около 300 ампер.

Убедитесь, что аккумулятор не болтается в креплении, или электролит может вылиться и вызвать коррозию.

Провода аккумулятора также могут отсоединиться, или корпус может треснуть из-за ударов.Незатянутый зажимной кронштейн может коснуться токоведущей клеммы аккумулятора и вызвать короткое замыкание .

Снятие разъемов аккумулятора

Ослабление болта зажимного разъема. Раздвиньте челюсти отверткой.

Зажим или соединительные муфты можно снять после отвинчивания крепежного болта или крепежного винта. Но будьте осторожны, если разъемы были плотно закреплены.

Не отрывайте их и не пытайтесь вывернуть — ненадлежащее сила и повредить клеммы аккумулятора или их тюлень с верхней частью корпуса.

Можно использовать отвертку, чтобы раздвинуть губки зажимного соединителя.

Тип Ford снимается, просто открутив гайку и болт.

Аналогичные меры предосторожности следует предпринять при установке. Не ударяйте разъем по стойке.

При использовании гаечного ключа для зажима или болта соединителя следите за тем, чтобы свободный конец не касался кузова автомобиля, так как это может вызвать короткое замыкание — даже если двигатель выключен.

Коннектор в форме чашки, прикрепленный к клеммной колодке винтом через верх.Откручиваем гайку и болт разъема форд-типа.

Как почистить клеммы аккумулятора

«Осветлите» полюса батареи наждачной бумагой. Очистите разъем металлической щеткой. Пиление металла из губок соединителя струбцины. Очистка внутренней части соединителя чашки.

Используйте горячую воду и бытовую соду, чтобы начать удаление порошкообразных отложений, которые могут образовываться на клеммах.Но будьте уверены, что ни одно из этих решений не попадет в аккумулятор. клетки .

Клеммы АКБ можно «осветлить» проволокой щетка или наждачной бумагой.

Однако не удаляйте столько металла, чтобы чашка или зажим не плотно прилегали к стойке.

Если это произойдет, можно отпилить немного металла из губок зажима или слегка сжать стенки чашки, чтобы она снова захватила стойку. В качестве альтернативы замените соединитель чашки зажимным.

Установка разъемов

Используйте припой, чтобы заполнить отверстие для винта в штыре аккумулятора, если оно слишком велико.

Нанесите тонкий слой нефть желе (не смазывайте) на сопрягаемых поверхностях как полюсов аккумулятора, так и разъемов перед установкой, чтобы предотвратить коррозию и обеспечить хорошую проводимость.

В идеале чашка или зажим должны легко надеваться на стойку. Затяните крепежный болт или винт настолько, чтобы соединитель не двигался по стойке, но не затягивайте слишком сильно.

Сжимая боковые стороны соединителя чашки, чтобы затянуть посадку.

Если винт тарельчатого соединителя не затягивается из-за снятия изоляции с резьбы, вставьте кусок припоя в отверстие, чтобы частично заполнить его.

Саморез должен затем нарезать новую резьбу с достаточным зазором, чтобы винт крепко держался. Или просто используйте саморез большего размера.

Смажьте вазелином клеммы аккумуляторной батареи. .
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *