+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Система заземления TN-C: схема подключения, недостатки

Электрические сети напряжением до 1кВ, кроме установок специального назначения, являются сетями с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены в звезду, а её средняя точка соединяется с контуром заземления. Со средней точкой звезды соединяется также нулевой (нейтральный) провод трёхфазной линии электропередач.

Такие электроустановки, согласно ПУЭ п. 1.7.3, считаются установками с системой заземления TN. В этом разделе Правил Устройства Электроустановок рассказывается о разных типах заземлений, отличающихся методом соединения корпуса электроустановок с нейтралью трансформатора. Один из видов такого соединения — система заземления TN-C.

Особенности системы заземления TN-C

Система TN-C используется в жилых зданиях, электропроводка в которых не реконструировалась со времён Советского Союза. Это питающая линия, выполненная четырёхпроводными воздушными линиями или кабелями — 3 фазных и 1 нулевой.

В такой схеме соединения в одном проводе совмещены два проводника — нулевой «N» и заземление «РЕ». Это провод называется «PEN» и он соединяет нейтраль трансформатора и корпус электроустановки. Это является основным недостатком схемы заземления TN-C.

В Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления «РЕ» и система заземления TN-C, фактически являющаяся не заземлением, а занулением, перестала соответствовать требованиям безопасности.

Расшифровка TN-C показывает конструкцию этой системы:

  1. T — terre (земля). Показывает, что это система заземления.
  2. N — neuter (нейтраль). Указывает, что линия соединяется со средней точкой звезды — нейтралью (занулена).
  3. C — combined (объединённый). Значит, что нулевой и заземляющий провода являются одним проводом на всём протяжении от трансформатора до электроустановки.

Как выполнена схема заземления tn c

Система заземления TN-C состоит из следующих частей:

  1. 1) Контур заземления. Это заземление, находящееся на трансформаторной подстанции и соединённое со средней точкой вторичной обмотки трансформатора.
  2. 2) Нулевой провод. В четырёхпроводной трёхфазной схеме электропитания выполняет роль нулевого и заземляющего проводников и обозначается на схемах PEN проводник.

В жилых домах, имеющих такую систему заземления, на каждом этаже находится электрощиток, в который приходит 4 провода – три фазы А, В, С и

нулевой провод «PEN». При этом в каждую из квартир приходит 2 провода — фаза и ноль (PEN).

В бытовых розетках, установленных во времена СССР отсутствовал заземляющий контакт, как и не было электроприборов, конструкция которых предусматривала подключение к заземлению.

Важно! Если в розетке или квартирном щитке соединить заземляющий контакт и нулевой, то получится не заземление, а зануление.

В системе заземления TN-C с проводом PEN соединяются все металлические части электроприборов, находящихся в квартире. В этом случае вместо защитного заземления получится защитное зануление.

Так как провод PEN кроме заземляющего является также нулевым проводом, то он может не соединяться с заземлёнными частями здания. В некоторых случаях к нему выполняется подключение корпуса вводного и этажных электрощитков.

Ввод электропитания в квартиру выполняется двумя проводами, без заземления. И даже при установке евровилок с заземляющими контактами их некуда подключать. В результате все приборы в доме работают без заземления, даже те, которые нуждаются в нём по инструкции завода-изготовителя.

Кроме того, без заземления не работают разрядники системы грозозащиты, предохраняющие электрооборудование от высоковольтных грозовых импульсов. Они должны подключаться к нулевому и фазному проводам, а также к контуру заземления.

Тем не менее, система TN-C является более передовой по сравнению с полным отсутствием защиты и, во время монтажа, соответствовала существовавшим в этот период нормативным документам.

Достоинства и недостатки

Система заземления TN-C, как и любая схема, имеет отличия от других заземляющих устройств и связанные с этим достоинства и недостатки.

Достоинства этой системы не связаны с высокой безопасностью людей:

  • Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
  • Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.

Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,

возможная в разных ситуациях, связанных с отсоединением PEN проводника:

  1. обрыв этого провода между потребителем и питающим трансформатором;
  2. срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.

В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.

Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.

Что делать? Как исправить?

При реконструкции построенных и во всех новых зданиях сохранять и устанавливать систему TN-C современными нормативными документами запрещается. Однако есть возможность модернизации этой системы в TN-C-S или TN-S.

Система заземления TN-S является более надёжной, но требует значительных материальных затрат и прокладки пятого провода «РЕ» от потребителя к трансформатору. Правилами устройства электроустановок и другими нормативными документами

допускается переделка системы TN-C в TN-C-S.

Для этого в водном щитке проводник PEN заземляется ещё раз, после чего он разделяется на два провода — нейтраль — N и заземление РЕ. После чего четырёхпроводная сеть превращается в пятипроводную и в квартиры заводится по три провода — фаза «L», ноль «N» и заземление «PE», причём заземление подключается в водном щитке на отдельную шину заземления. После электрощитка заземляющий провод подключается к клеммам заземления розеток и других электроприборов.

В отдельно стоящих коттеджах, запитанных от трёхфазной сети, такое разделение выполняется в вводном щитке учета

ДО электросчётчика.

В зданиях, которым подведено однофазное напряжение, согласно ПУЭ п. 1.7.132 разделение проводника «PEN» на «РЕ» и «N» НЕ ПРОИЗВОДИТСЯ!. Это необходимо выполнить в месте подключения однофазной линии к трёхфазной сети.

Важно! Согласно ПУЭ п. 1.7.135 после разделения провода «N» и «PE» соединять в переходных коробках, розетках и других местах ЗАПРЕЩАЕТСЯ.

Почему система TN-C морально устарела

В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.

Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.

В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.

Так же является опасной ситуация обрыва нулевого провода «N»

. В этом случае корпус окажется под напряжением через цепь «фаза-электроприбор-ноль-заземление-корпус».

Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.

Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства.

Опасные способы заземления

Для того, чтобы обезопасить себя и членов своей семьи от поражения электрическим током, некоторые «специалисты» прокладывают линию заземления самостоятельно. Для этого используются различные варианты:

  1. Подключение к радиаторам центрального отопления или к водопроводным трубам. Это опасно тем, что при небольшой утечке по трубам начнёт протекать ток, вызывающий быструю коррозию, а при ремонте водопроводчики могут получить электротравму.
  2. Соединение в розетке нулевого и заземляющего контакта. Это не заземление, а зануление. В ПУЭ п.1.7.50 зануление отсутствует среди средств, защищающих от поражения электрическим током.
  3. Присоединение защитного проводника РЕ к корпусу электрощита, находящемуся на этаже. Этот вариант лучше предыдущих, но качество соединения самого PEN провода с корпусом щитка неизвестно. Кроме того, место соединения проводов «PEN», «N» и «РЕ» должно быть заземлено.

Кроме того неизвестно заземлен ли вообще PEN проводник в этажном щите. К примеру, можно представить ситуацию, когда при такой «схеме заземления» произойдет обрыв нулевого провода N и тогда все заземленные корпуса приборов в квартире через этот дополнительный проводник РЕ окажутся под напряжением.

Тем более если разобраться то такое подключение является не заземлением, а занулением.

Кроме различных вариантов самостоятельного подключения к проводу «PEN», возможен монтаж контура заземления из стальных уголков, штырей и труб, закопанных ниже уровня промерзания почвы. К этим уголкам присоединяется провод, заводится в квартиру и подключается к розеткам. В этом случае есть опасность обрыва этого провода или окисливания в месте контакта, находящемся на улице.

Важно! Контур заземления, выпоненный по всем правилам, соединяется при помощи электросварки с металлическими элементами конструкции здания и подлежит регулярной проверке.

Единственной надёжной защитой от поражения электрическим током является установка систем заземления TN-C-S или TN-S. В этом случае при нарушении изоляции между заземлённым корпусом электроприбора и токоведущими частями возникнет замыкание по цепи «токоведущие части-корпус-заземление», ток через автоматический выключатель возрастёт и автомат отключит питание установки.

Желательно дополнительно к системе заземления в электрощите подключить УЗО. Это устройство будет отключать электропитание в том случае, если изоляция нарушена и появился ток утечки, но отсутствует короткое замыкание.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Заземление | Обозначение систем заземления


система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;

система ТN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;

система TN-С-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания;

система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены;

система TТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Расшифровка условных обозначений систем заземления

Первая буква — состояние нейтрали источника относительно земли:

    Т — заземленная нейтраль;
    I — изолированная нейтраль.

Вторая буква — состояние открытых проводящих частей относительно земли:

    Т — открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
    N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие буквы после N — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

    S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
    С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник)

Схемы систем заземления

При работе с электроприборами наиболее важный метод защиты от поражения электрическим током это заземление. Для грамотного ремонта или модернизации электропроводки в доме, необходимо знать, какой тип заземления используется в здании. Так же от этого зависит не только правильная работа оборудования, но и безопасность людей. Т.к. система заземления должна быть учтена еще на стадии проектирования дома, рассмотрим имеющиеся схемы системы заземления.

В зависимости от устройства нулевого рабочего (N) и нулевого защитного (PE) проводников различаются три типа системы TN.

Система заземления TN – C.

Функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике по всей сети. Система TN-C запрещена в новом строительстве, в цепях однофазного и постоянного тока. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.

Система заземления TN – C – S.

Функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети. В системе  TN-C-S  во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник — РЕN разделен на нулевой защитный — РЕ и нулевой рабочий — N проводники

Это наиболее перспективной для нашей страны система позволяющая в комплексе с широким внедрением УЗО обеспечить высокий уровень электробезопасности в электроустановках без их полной реконструкции.

 

Система TN – S.

В этой системе нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе.

В качестве рекомендаций по выбору системы заземления можно указать что систему TN-C и TN-C-S не рекомендуется использовать из-за неудовлетворительного уровня электро- и пожаробезопасости.

Система TN-S рекомендуется для установок  собранных раз и навсегда и не подверженных изменениям.

Систему ТТ используют  в основном для изменяемых или временных электроустановок.

Материалы, близкие по теме:

типов систем заземления — что означает заземление TT, IT и TN?

Стандарты, используемые для определений систем заземления

За последнее столетие стандарты электробезопасности превратились в высокоразвитые системы, охватывающие все основные аспекты безопасной установки, включая системы заземления. В электроустановках низкого напряжения (LV) стандарт IEC 60364 используется для мер, которые должны быть реализованы, чтобы гарантировать защиту персонала и имущества.

Стандарт IEC 60364 определил три типа систем заземления, а именно системы TT, IT и TN. Поскольку IEC публикует международные стандарты для всех электрических, электронных и связанных с ними технологий и является ведущей международной организацией в своей области, IEC 60364 является документом высшего уровня, который информирует о стандартах для электроустановок низкого напряжения во всем мире. Таким образом, три типа систем заземления, определенные в IEC 60364, также признаны во многих национальных стандартах.BS 7671: 2008, также известный как 17-е издание Правил электропроводки IEE, — это британский стандарт, опубликованный в январе 2008 года, используемый в Великобритании и других странах. Аналогичным образом, Индийский стандарт IS 732: 1989 (R2015) используется в Индии для электрических установок.

Следите за нашими обновлениями в LinkedIn

Типы систем заземления

Как упоминалось выше, три основных типа систем заземления, используемых в соответствии с IEC 60364:

  • TT
  • IT
  • TN — TN-C, TN-S, TN-CS

Система TN подразделяется на TN-C, TN-S и TN-CS, поэтому мы будем ссылаться на 5 типов. систем заземления, распространенных во всем мире.

Номенклатура

Первая буква каждой системы относится к источнику питания от обмотки, соединенной звездой.

Вторая буква относится к потребляющему оборудованию, которое необходимо заземлить.

Из «Справочника по электротехнике: для специалистов в нефтегазовой и нефтехимической промышленности» Алана Л. Шелдрейка

В первой букве : «T означает, что начальная точка источника надежно заземлена. , который обычно находится в непосредственной близости от обмотки.
I обозначают, что начальная точка и обмотка изолированы от земли. Начальная точка обычно связана с индуктивным сопротивлением или сопротивлением. Емкостный импеданс никогда не используется ».

А для второй буквы , “T означает, что потребитель надежно заземлен независимо от метода заземления источника.
N обозначает, что провод с низким сопротивлением отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.
S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.
C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником. Это означает, что для трехфазного потребителя необходимо проложить четыре провода ».

Проще говоря:

T = прямое соединение с землей, T означает Terra, что означает земля

I = изолированный

N = нейтральный

S = отдельный

C = объединить

Самыми распространенными системами являются TT и TN.Некоторые страны, например Норвегия, используют ИТ-систему. В таблице ниже приведены примеры систем заземления, используемых для общественных сетей (потребители низкого напряжения) в нескольких странах.

Система заземления TT ​​


В этом типе системы заземления подключение к источнику питания напрямую подключается к заземлению и концу нагрузки, либо монтажные металлоконструкции также напрямую подключаются к земле. Следовательно, в случае воздушной линии обратным путем для линии будет масса земли.Нейтральный и заземляющий проводники должны быть разделены во время установки, поскольку распределитель мощности обеспечивает только нейтраль питания или защитный провод для подключения к потребителю.

Система заземления IT


Распределительная система не имеет заземления или имеет только высокоомное соединение. Основная особенность системы заземления IT заключается в том, что в случае короткого замыкания между фазами и землей система может продолжать работать без перебоев.Такая ошибка называется «первой ошибкой». Таким образом, обычная защита от заземления для данной системы не эффективна и этот тип не предназначен для электроснабжения потребителей. Система заземления IT используется для систем распределения электроэнергии, таких как подстанции или генераторы.

Система заземления TN-S

В этой системе заземляющий и нейтральный проводники разделены по всей распределительной системе. Защитный проводник — это металлическое покрытие кабеля, питающего установку.Все открытые токопроводящие части установки подключаются к этому защитному проводу или через главный зажим заземления установки.

Система заземления TN-C

Нейтраль и защитное заземление объединены в один провод во всей системе. Все открытые и токопроводящие части установки подключены к PEN-проводу. Согласно пункту 8 (4) Правил электробезопасности, качества и непрерывности электроснабжения 2002 года, «Потребитель не должен совмещать нейтральную и защитную функции в одном проводе в установке своего потребителя».

TN-C-S Система заземления

Нейтраль и защитное заземление объединены в одном проводе в части системы. Этот тип заземления также известен как многократное защитное заземление. PEN-проводник системы питания заземляется в двух или более точках, и может потребоваться заземляющий электрод на установке потребителя или рядом с ним. Все открытые проводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, и эти клеммы соединяются вместе.

Здесь вы можете ознакомиться с нашим широким ассортиментом оборудования для заземления и заземления. Вы можете связаться с нами , если вам нужно предложение или у вас есть дополнительные вопросы относительно продуктов, необходимых для заземления, заземления или соединения.

Эта статья является частью нашей серии статей по молниезащите, защите от перенапряжения и заземлению, вы можете прочитать больше по следующим ссылкам:

Введение в основы молниезащиты и заземления и Стандарты (IEC 62305 и UL 467)

Проектирование систем молниезащиты и продукты

Устройства защиты от перенапряжения (SPD)

Зоны молниезащиты и их применение для выбора SPD

Как устроен грозозащитный разрядник Работа?

Для получения дополнительной информации свяжитесь с нами по адресу www.axis-india.com/contact-us/

Типы систем заземления TN, TT, IT и систем заземления — Aktif Group

В настоящее время технические установки во всех отраслях промышленности характеризуются все возрастающей сложностью и автоматизацией. От высокоразвитых производственных линий до робототехники, количество оборудования, которому для бесперебойной работы требуется надежный источник питания, неуклонно растет. Поэтому основы надежности и доступности установки уже заложены путем выбора правильной системы электроснабжения.Помимо защиты персонала и противопожарной защиты, отказоустойчивость является ключевым фактором при выборе подходящего источника питания. На этапе планирования установки доступны три типа систем: система TN, система TT и система IT.

Защитная мера всегда требует согласования заземления, типов токопроводящих проводов и защитного оборудования по отношению к типам систем заземления. В этом разделе описаны системы и их заземление в соответствии с IEC 60364-1.

Стандарт оценивает следующие характеристики системы распределения;

  • Типы систем токоведущих проводов;
  • Типы системного заземления.

В результате получаются следующие характеристические значения для типа распределительной системы

  • Тип и количество активных проводников системы

Различают системы переменного и постоянного тока.

В стандарте учтены следующие системы токоведущих проводов.

Система переменного тока Система постоянного тока
Однофазный 2-проводный 2-проводный
Однофазный 3-проводный 3-проводной
Двухфазный 3-проводный
Двухфазный 5-проводный
Трехфазный 3-проводный
Трехфазный 3-проводный

Типы систем заземления

Различные используемые коды основаны на отношении распределительной системы к земле и отношения открытых проводящих частей электроустановки к земле.Используемые коды имеют следующее значение;

Первая буква Связь распределительной системы с землей
т Прямое подключение одной точки к земле;
Я Все токоведущие части изолированы от земли или одна точка соединена с землей через полное сопротивление
Вторая буква Связь открытых токопроводящих частей установки с землей
т Прямое электрическое подключение открытых токопроводящих частей к заземлению независимо от заземления любой точки энергосистемы;
N Прямое электрическое соединение открытых проводящих частей с заземленной точкой энергосистемы (в системах переменного тока заземленной точкой энергосистемы обычно является естественная точка или, если нейтральная точка недоступна, фазный провод).
Последующее письмо Расположение нейтральных и защитных проводов
S Защитная функция обеспечивается проводником, отделенным от нейтрали или от проводника заземленной линии (или в системах переменного тока, заземленной фазы).
С Нейтральная и защитная функции объединены в одном проводе (провод PEN)
PE Защитный провод.

Главные распределительные системы:

Система TN, система TT, система IT

TN система

TN Распределительные системы имеют одну точку прямого заземления, при этом открытые проводящие части установки соединяются с этой точкой с помощью защитных проводов.Существуют различные типы систем TN в отношении расположения нейтральных и защитных проводов. Они следующие:

  • Система TN-S: по всей системе используется отдельный защитный проводник;
  • Система
  • TN-C-S: нейтраль и защитные функции объединены в одном проводе в части системы;
  • Система
  • TN-C: функции нейтрали и защиты объединены в одном проводе по всей системе.

Система TT

Распределительная система TT имеет одну точку прямого заземления, а открытые проводящие части установки электрически соединены с заземляющими электродами.

независимо от заземляющих электродов энергосистемы.

ИТ-система

В распределительной системе IT все токоведущие части изолированы от земли или одна точка соединена с землей через полное сопротивление, а открытые токопроводящие части электроустановки заземлены.

  • Самостоятельно, или
  • вместе или
  • К заземлению системы

Результат

Системы заземления обычно важны для защиты основной защиты (от прямого контакта) и защиты от короткого замыкания / короткого замыкания (от косвенного контакта) от ударов и минимизации риска возгорания.Потому что от этих систем зависят два важных значения, которые нам необходимы для создания защиты и оснащения цепей необходимыми защитными устройствами. Эти два важных значения — ток повреждения и напряжение прикосновения. Потому что защита изменится на размер этих значений. Эти значения полностью зависят от системы заземления.

Список литературы

  • W. Hofheinz: Мониторинг тока короткого замыкания в электроустановках
  • Актиф Мухендислик Каталог медицинских систем питания

Харун Öndül
Менеджер по продажам
Aktif Mühendislik

Николай Бозов | Промышленная автоматизация и управление

Типы систем заземления

Сегодня существуют три схемы заземления системы, определенные стандартами IEC 60364 и NF C 15.100, это системы TN, TT и IT.

Для обеспечения защиты людей, оборудования и непрерывности работы токопроводящие провода и токоведущие части электроустановки «изолированы» от заземленных открытых проводящих частей. Изоляция включает:

  • разделение изоляционными материалами.
  • разделение по линейным зазорам в газах (например, в воздухе) или по длинам утечки по изоляторам (например,грамм. для предотвращения пробоя в электрическом распределительном устройстве).

Различные схемы заземления (часто называемые типом энергосистемы или схемами заземления системы) характеризуют метод заземления установки после вторичной обмотки трансформатора СН / НН и средства, используемые для заземления открытых проводящих проводов. части установки РН, питаемые от нее.

Таким образом, обозначение типов систем заземления обозначается двумя буквами.Первая буква для подключения нейтрали трансформатора (2 возможности):

  • T для «заземленного».
  • I для «раскопанных» (или «изолированных»).

Вторая буква для типа соединения открытых токопроводящих частей установки (2 возможности):

  • T для «прямого» заземления
  • Н для «подключен к заземленной нейтрали» в исходной точке установки.

Комбинация этих двух букв дает три возможных конфигурации: TT, TN и IT.

Система ТТ

Одна точка источника питания подключена непосредственно к земле. Все открытые и посторонние проводящие части подключаются к отдельному заземляющему электроду на установке. PE-соединение обеспечивается локальным заземляющим электродом. Этот электрод может быть или не быть электрически независимым от электрода истока. Две зоны воздействия могут перекрываться, не влияя на работу защитных устройств. Таким образом, защита людей от непрямого контакта обеспечивается УЗО со средней или низкой чувствительностью.

Система ТТ

T = Terra = нейтраль с прямым заземлением

T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением


Рисунок 1. Системы заземления TT.

Техника защиты людей: открытые токопроводящие части заземлены и используются устройства защитного отключения (УЗО). УЗО вызывает отключение распределительного устройства, как только ток короткого замыкания имеет напряжение прикосновения, превышающее безопасное напряжение Ui.

Принцип действия: прерывание при первом повреждении изоляции.

Основные характеристики

  • Самое простое решение в проектировании и установке. Используется в установках, снабжаемых непосредственно общественной распределительной сетью низкого напряжения.
  • Не требует постоянного контроля во время работы (может потребоваться периодическая проверка УЗО).
  • Защита обеспечивается специальными устройствами, устройствами защитного отключения (УЗО), которые также предотвращают риск возгорания, когда они настроены на <= 500 мА.
  • Каждое нарушение изоляции приводит к прерыванию подачи питания, однако отключение ограничивается неисправной цепью путем последовательной установки УЗО (селективные УЗО) или параллельно (выбор цепи).
  • Нагрузки или части установки, которые при нормальной работе вызывают высокие токи утечки, требуют специальных мер во избежание ложных отключений, т. Е. Снабжают нагрузки разделительным трансформатором или используют специальные УЗО.

Преимущество: Требуется всего 3 проводника

Недостаток: Эффективная система только при удалении трансформатора от потребителей.Применяется в низковольтных сетях в районах, в которых подстанция находится на большом удалении от потребителей, то есть в сельской местности. Используется в сетях среднего напряжения совместно с (воздушными) линиями электропередач.

Системы TN

Источник заземлен как для системы TT (см. Выше). В установке все открытые и посторонние проводящие части подключены к нейтральному проводу. Ниже представлены версии систем TN.

Система TN-C

Нейтральный проводник также используется в качестве защитного проводника и называется проводником PEN (защитный проводник и нейтраль).Эта система не допускается для проводов сечением менее 10 мм2 или переносного оборудования.

T = Terra = нейтраль с прямым заземлением

N = низкоомный обратный проводник к нейтрали трансформатора

C = «комбинированный» провод для PE и N = PEN

Рисунок 2. Системы заземления TN-C.

Система TN-C требует эффективного эквипотенциального окружения внутри установки с рассредоточенными заземляющими электродами, расположенными как можно более равномерно, поскольку PEN-проводник является одновременно нейтральным проводником и в то же время несет токи дисбаланса фаз, а также гармонические токи 3-го порядка (и их кратные).

Следовательно, провод PEN должен быть подключен к нескольким заземляющим электродам в установке.

Внимание: В системе TN-C функция «защитный провод» имеет приоритет над «функцией нейтрали». В частности, PEN-провод всегда должен быть подключен к клемме заземления нагрузки, а для подключения этой клеммы к нейтральной клемме используется перемычка.

Преимущество: всего 4 проводника

Недостаток: чувствительность к электромагнитным помехам, поскольку гармоники отводятся через PEN, что означает, что нагрузки с N-проводником дополнительно нагружаются гармониками.

Система TN-S

Система TN-S (5 проводов) обязательна для цепей с поперечным сечением менее 10 мм2 для переносного оборудования. Защитный провод и нейтральный провод разделены. В подземных кабельных системах, где существуют кабели в свинцовой оболочке, защитным проводником обычно является свинцовая оболочка. Использование отдельных проводов PE и N (5 проводов) обязательно

T = Terra = нейтраль с прямым заземлением

N = низкоомный обратный провод к нейтрали трансформатора

S = отдельные провода для PE и N

Рисунок 3.TN-S Системы заземления.

Преимущество: система соответствует требованиям EMC

Недостаток: 5 проводников

Система TN-C-S

Системы TN-C и TN-S могут использоваться в одной установке. В системе TN-CS система TN-C (4-х проводная) никогда не должна использоваться после системы TN-S (5-проводная), поскольку любое случайное прерывание нейтрали на восходящей части приведет к прерыванию цепи. защитный провод в выходной части и, следовательно, опасность.

В этой системе комбинированный провод N и PE (PEN) выходит из трансформатора, но в какой-то момент провод PEN разделяется на отдельные линии PE и N. Тем не менее, PEN является правильным описанием для этого PE, потому что нейтраль может быть отделена от комбинированного проводника в любое время. После того, как нейтраль была отделена от комбинированного проводника, ее нельзя снова подключить к PEN, т.е. это должна быть «ответвительная линия»! Если нейтральный провод, который уже был отделен от PEN, был бы повторно подключен к нему, он образовал бы параллельное соединение с неисчислимым импедансом и, следовательно, также неисчислимой нагрузкой короткого замыкания.Кроме того, это может привести к возникновению нежелательных блуждающих («блуждающих») токов.

Рисунок 4. Системы заземления TN-C-S.

ИТ-системы

Между нейтральной точкой источника питания и землей не выполняется преднамеренное соединение.

I = нейтраль трансформатора изолирована или с заземлением с высоким сопротивлением

T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением

Преимущество: первая неисправность = проводящее соединение от фазы к корпусу не вызывает отключения.

Недостаток: должна быть установлена ​​дополнительная система мониторинга для обнаружения первой неисправности.

Используется, например, в ситуациях, когда важна высокая доступность электроустановок, например в операционных больниц, во взрывоопасных зонах.

Рисунок 5. Системы заземления IT.

Заземление

TT, IT и TN для безопасного заземления | EPR

Стандарты электробезопасности превратились в высокоразвитые системы, охватывающие все основные аспекты безопасной установки, включая системы заземления.В электроустановках низкого напряжения (LV) эталонный стандарт IEC 60364 используется для реализации мер, гарантирующих защиту персонала и имущества.

В этом стандарте определены три типа систем заземления; Системы TT, IT и TN. Поскольку IEC издает международные стандарты для всех электрических, электронных и связанных с ними технологий и является ведущей международной организацией в своей области, IEC 60364 является документом высшего уровня, который информирует о стандартах для электроустановок низкого напряжения во всем мире.Индийский стандарт IS 732: 1989 (R2015) — это правила проводки IEE, который используется в Индии для электрических установок.

Типы систем заземления
Три основных типа систем заземления, используемых в соответствии с IEC 60364:

  • TT
  • IT
  • TN — TN-C, TN-S, TN-C-S

Система TN подразделяется на TN-C, TN-S и TN-C-S, и поэтому мы будем ссылаться на 5 типов систем заземления, распространенных во всем мире.

НОМЕНКЛАТУРА
Первая буква каждой системы относится к источнику питания от обмотки, соединенной звездой.Вторая буква относится к потребляющему оборудованию, которое необходимо заземлить. Из «Справочника по электротехнике: для практиков нефтяной, газовой и нефтехимической промышленности» Алана Л. Шелдрейка

Проще говоря:
T = прямое соединение с землей, T означает Terra, что означает землю
I = изолированный
N = нейтральный
S = отдельный
C = объединить
Наиболее распространенными системами являются TT и TN. . Некоторые страны, например Норвегия, используют ИТ-систему.В таблице ниже приведены примеры систем заземления, используемых для общественных сетей (потребители низкого напряжения) в нескольких странах.

TT Система заземления
В этом случае источник питания подключается непосредственно к земле, а конец нагрузки или монтажные металлоконструкции также напрямую подключаются к земле. Следовательно, в случае воздушной линии обратным путем для линии будет масса земли. Нейтральный и заземляющий проводники должны быть разделены во время установки, поскольку распределитель мощности обеспечивает только нейтраль питания или защитный провод для подключения к потребителю.

Система заземления IT
Распределительная система не имеет заземления или имеет только высокоомное соединение. Основная особенность системы заземления IT заключается в том, что в случае короткого замыкания между фазами и землей система может продолжать работать без перебоев. Это называется «первой ошибкой». Таким образом, обычная защита от заземления неэффективна для этой системы, и этот тип не предназначен для электроснабжения потребителей, он используется для систем распределения электроэнергии, таких как подстанции или генераторы.

TN-S Система заземления
Заземляющий и нейтральный проводники разделены по всей распределительной системе. Защитный проводник — это металлическое покрытие кабеля, питающего установку. Все открытые токопроводящие части установки подключаются к этому защитному проводу или через главный зажим заземления установки.

Система заземления TN-C
Нейтраль и защитное заземление объединены в один провод по всей системе.Все открытые и токопроводящие части установки подключены к PEN-проводу. В соответствии с параграфом 8 (4) Правил электробезопасности, качества и непрерывности электроснабжения 2002 года, «Потребитель не должен совмещать нейтральную и защитную функции в одном проводе в установке своего потребителя».

TN-C-S Система заземления
Нейтраль и защитное заземление объединены в одном проводе в части системы. Этот тип заземления также известен как многократное защитное заземление.PEN-проводник системы питания заземляется в двух или более точках, и может потребоваться заземляющий электрод на установке потребителя или рядом с ним. Все открытые токопроводящие части установки подключаются к PEN-проводнику через главный заземляющий зажим и нейтральный зажим, и эти зажимы соединяются вместе.

Вы можете просмотреть наш широкий ассортимент оборудования для заземления, заземления и заземления здесь, посетив нас по адресу www.axis-india.com

TN Systems

TN Systems: основы

В системах TN нейтральная точка системы электропитания заземлена.В США и Канаде эта система заземления называется « Solid Garded Wye ».

Если нейтральная точка или средняя точка недоступны или недоступны, линейный провод должен быть заземлен; это то, что североамериканцы называют Дельта с заземлением в углу; он редко используется в Европе.

Заземление нейтрали — это первая характеристика системы TN. Второй заключается в том, что открытые проводящие части установки должны быть подключены защитным проводом к главному заземляющему зажиму установки, который должен быть подключен к заземленной точке системы электроснабжения.

По сути: нейтральная точка заземлена (или заземлена), и все открытые проводящие части подключены непосредственно к нейтральной точке.

Причина, по которой все открытые проводящие части связаны с нейтральной точкой, заключается в создании петли замыкания , имеющей высокое значение тока замыкания .

TN Systems: как гарантируется безопасность

Создание замкнутого контура недостаточно для защиты людей от поражения электрическим током. Причина создания петли неисправности состоит в том, чтобы убедиться, что в случае неисправности существует циркуляция тока высокого значения в петле неисправности .

У высокого значения тока есть «миссия»: открыть защиту на стороне фидера и обесточить цепь до того, как неисправность станет опасной для человека.

Таблица 41.1 в 411.3.2.2 предписывает максимальное время отключения.

[IEC 60364-4-41] 411.3.2.2 Максимальное время отключения, указанное в таблице 41.1, должно применяться к конечным цепям с номинальным током, не превышающим:

  • 63 A с одной или несколькими розетками и
  • 32 А для питания только фиксированного подключенного токоведущего оборудования.

50 Vac 0 ≤ 120 Vac

120 В перем. Тока 0 ≤ 230 В перем. Тока

230 В перем. Тока 0 ≤ 400 В перем. Тока

U O > 400 Vac

TN

0,8 с

0,4 с

0,2 с

0,1 с

В случае сетевого напряжения 230 В переменного тока между фазой и нейтралью, причина, по которой указывается время в 0,4 секунды, заключается в том, что 0,4 секунды — это максимальное время, в течение которого человек может находиться под напряжением 92 В переменного тока.Это нормативное напряжение прикосновения в системе TN, работающей от 230/400 В переменного тока.

Важно отметить, что:

[IEC 60364-4-41] 411.3.2.3 В системах TN время отключения не превышает 5 с для распределительных цепей и для цепей, не охваченных 411.3.2.2.

Системы

TN являются распространенной системой заземления нейтрали низкого напряжения во всем мире. В Европе разрешены как системы TN, так и системы TT. В США и Канаде системы TT запрещены.

Сломанный PEN

Не паникуйте, эта статья не о сломанных шариковых ручках, а о сломанных PEN-проводниках в заземляющих устройствах PME.

Что такое PEN-проводник?

Провод с защитной заземленной нейтралью (PEN) — это одиночный провод, который выполняет комбинированную функцию обеспечения нейтрального и защитного заземляющего проводника в системе заземления TN-C-S.

PEN-проводник обычно, но не исключительно, используется с системой заземления питания LV PME.Проводник может быть либо отдельным от линейных проводов, как в случае с воздушной линией, либо объединен в многожильный кабель в виде ряда проводников, намотанных вокруг линейных проводов для формирования брони, как в концентрическом кабеле. Медная оболочка концентрического кабеля, показанная на рисунке 1, представляет собой PEN-проводник.


Фигура
1 : Концентрический кабель

Если кабель питания имеет отдельный защитный провод, TN-S?

Из-за характера устройства заземления PME распределителям не следует использовать устройства заземления TN-C-S и TN-S в одной и той же сети.Однако при ремонте или изменении распределительной сети иногда поврежденные 4-жильные кабели можно заменить на 3-жильные.

Иногда предполагается, что, если кабель питания имеет отдельный защитный провод, установка имеет схему заземления TN-S. Это не обязательно правильно; если он поставляется из распределительной сети, установщик должен предположить, что это TN-C-S, если оператор распределительной сети (DNO) не подтвердил в письменной форме, что это устройство заземления TN-S.

Что такое схема заземления PME?

Схема защитного множественного заземления (PME) — это форма TN-CS, как показано на рисунке 3. Она относится к схеме заземления, обеспечиваемой распределителем, где она заканчивается в вырезе в источнике потребителей TN-CS. установка.

«Множественный» в PME означает, что вдоль кабельной трассы может быть установлено несколько заземляющих электродов, чтобы гарантировать, что сопротивление PEN-проводника относительно земли находится в пределах значений, требуемых DNO, в технической рекомендации ENA G12 / 4 указано 20 Ом.

Буква «S» обозначает разделение нейтрали и земли на стороне установки. Точка звезды заземляется распределителем, обычно в сливном ящике трансформатора, как показано на Рисунке 2.


Рисунок 2
: Соединение нейтрали трансформатора с землей внутри защитной коробки трансформатора

Рисунок 3 : Система TN-C-S с PME

Что такое схема заземления PNB?

Схема защитного заземления нейтрали (PNB) также является разновидностью TN-C-S и может использоваться в зависимости от индивидуальных требований DNO.Провод PEN или CNE подключается только к одной точке, удаленной от трансформатора, между трансформатором и выводами питания потребителя.

Техническая рекомендация ENA G12 / 4 рекомендует, чтобы расстояние между соединением с землей и входом потребителей было не более 40 м, однако, чтобы свести к минимуму риск повышения напряжения в случае обрыва нейтрали, это соединение должно быть выполнено как как можно ближе к клеммам питания потребителей. Обычно он располагается в распределительном щите потребителей НН вместе с заземляющим проводом нейтрали, см. Рисунок 4.Однако учтите, что нейтраль и земля разделены на стороне потребителя установки.


Рисунок 4
: Нейтраль — Земля в распределительном щите низкого напряжения потребителей

Рисунок 5 : Руководство IET 8 Система TN-C-S с PNB

Каковы обязанности дистрибьютора PME?

Электрические распределительные сети регулируются Положениями о качестве и непрерывности электроснабжения (ESQCR) 2002 (с поправками), которые являются нормативным актом.Ассоциация энергетических сетей (ENA) дает рекомендации для дистрибьюторов в своей технической рекомендации G12, выпуск 4, «Требования к применению защитного многократного заземления в низковольтных сетях».

ESQCR не позволяет дистрибьюторам предоставлять клеммы заземления PME для определенных установок, таких как металлоконструкции в трейлере или лодке, а также на заправочных станциях. Хотя, если это часть более крупного объекта, средства PME могут быть предусмотрены для постоянных зданий при условии, что независимое заземление отделено от PME.

Каковы требования BS 7671: 2018 + A1: 2020 для систем PME?

Требования ESQCR повторяются в BS 7671: 2018 + A1: 2020 в следующих разделах:

  • Раздел 708 — Электромонтаж в автодомах / кемпингах
  • Раздел 709 — Марины и аналогичные места
  • Раздел 730 — Береговые устройства береговых электрических соединений для судов внутреннего плавания
  • Раздел 740 — Временное электрооборудование сооружений, развлекательных устройств и киосков на ярмарочных площадях, в парках развлечений и цирках.

Установки, на которых может быть разрешено заземление PME, но должны быть приняты особые меры предосторожности, в том числе:

  • Раздел 702 — Бассейны плавательные и прочие бассейны
  • Раздел 704 — Сооружения на стройплощадках и сносе
  • Раздел 705 — Помещения для сельского хозяйства и садоводства
  • Раздел 711 — Выставки, шоу, стенды
  • Раздел 717 — Мобильные или передвижные единицы.

Когда в 1966 году было опубликовано 14 -е издание Правил электропроводки IEE, в Приложении 5 было подтверждено введение систем заземления PME, как показано на Рисунке 6.


Рисунок 6
: Приложение 5 к 14 -е издание IEE Правила электромонтажа

В Правило 411.4.2 стандарта BS 7671: 2008 + A3: 2015 было добавлено примечание: « PE- и PEN-проводники могут дополнительно подключаться к земле, например, в точке входа в здание», поскольку это допустимо в соответствии с правилами по безопасности, качеству и непрерывности электроснабжения (ESQCR), , но до этого в соответствии с «Правилами поставки 1988 года» для потребителя было неприемлемо заземлять нейтраль DNO.

Правило 543.4 стандарта BS 7671: 2018 + A1: 2020 устанавливает требования к комбинированным защитным и нейтральным проводникам (PEN). В примечании говорится, что «Правило 8 (4) ESQCR запрещает использование проводов PEN в установках потребителей».

Поправка 1 к BS 7671: 2018 была опубликована в феврале 2020 года, Поправка применялась только к Разделу 722, который касается зарядки электромобилей. Основное изменение в этой Поправке — включение дополнительных методов защиты от разомкнутых проводов PEN для зарядных устройств электромобилей с использованием устройств, которые обнаруживают пониженное или повышенное напряжение в распределительной сети.

Требования к защитному соединению установок с заземлением PME указаны в таблице 54.8 стандарта BS 7671: 2018 + A1: 2020. Требования более жесткие, чем для систем TN-S, чтобы выдерживать любые отклоняемые токи нейтрали, которые могут существовать из-за разомкнутого PEN-проводника.

Интересно, что Правило 114.1 BS 7671: 2018 + A1: 2020 гласит, что для поставки, предоставляемой в соответствии с Правилами безопасности, качества и непрерывности электроэнергии (ESQCR), «считается, что соединение с землей нейтрали поставка постоянная.’

В то время как в распределительной сети происходит разрыв PEN-проводника, его последствия могут иметь серьезные последствия для электроустановки потребителей. Каждую установку следует оценивать индивидуально, и если риск контакта человека с токопроводящими частями, подключенными к заземляющему устройству PME и заземлению, неприемлем, необходимо принять дополнительные меры защиты.

Какие проблемы с PME?

В случае обрыва PEN-проводника распределителя (обрыв цепи) отклоненные нейтральные токи и опасные напряжения прикосновения могут появиться на любых металлических конструкциях, подключенных к главной клемме заземления (MET) установки.

Риск поражения электрическим током увеличивается для людей на открытом воздухе, поскольку они могут контактировать с Землей, возможно даже босиком, что снизит сопротивление тела Земле и увеличит ток прикосновения.

Примеры зон риска включают водопроводные краны и электрооборудование класса I, подключенное к МЕТ. Возгорание также может быть опасным из-за теплового эффекта посторонних проводящих частей, таких как водопроводные и газовые трубы, вызванного отводимым нейтральным током.

Дополнительную информацию можно найти в IEC 60479-1: 2018 Влияние тока на людей и домашний скот и IEC / TR 60479-5 Пороговые значения напряжения прикосновения для физиологических эффектов.

Какие напряжения могут появляться на заземленных металлоконструкциях PME в условиях холостого хода PEN?

В условиях PEN разомкнутой цепи напряжение между нейтралью и землей будет зависеть от соотношения баланса нагрузки в распределительной сети. В некоторых случаях это может быть до 230 В.Это становится более сложным, если принять во внимание коэффициент мощности. В данной статье коэффициент мощности не учитывался.

Закон Кирхгофа гласит, что сумма токов, текущих в узел, равна сумме токов, вытекающих из узла. В трехфазной распределительной системе общая нейтраль — это точка звезды.

Если нагрузка не сбалансирована, в нейтральном проводе будет течь ток, который будет векторной суммой линейных токов.Если PEN-проводник становится разомкнутым, нейтральный ток не может течь. Напряжения между линией и нейтралью «смещаются» до тех пор, пока не будет достигнута точка баланса, что устраняет необходимость в токе нейтрали. Говорят, что звездная точка «плавает» в положение, при котором достигается баланс.

Это проиллюстрировано на векторной диаграмме на рисунке 7. Расстояние от центральной точки треугольника до смещенной точки звезды трех фаз указывает напряжение прикосновения к Земле; 64 В. Точка звезды переместилась в сторону наиболее нагруженной фазы, в данном случае L3.


Рисунок 7
: Фазорная диаграмма

Это состояние вызовет перенапряжение в одних фазах и пониженное — в других, а также может привести к неисправности или повреждению оборудования, не предназначенного для работы при повышенном или пониженном напряжении. Это динамическая ситуация, поскольку оборудование, установленное на поврежденных фазовых сбоях, также повлияет на нагрузку и баланс сети, и, следовательно, напряжение на земле также изменится.

Постановление 442.3 BS 7671: 2018 + A1: 2020 предоставляет информацию о напряжении напряжения промышленной частоты в случае потери нейтрального проводника в системе TN или TT.

Трехфазная симметричная сеть

В трехфазной симметричной сети нет тока нейтрали, где нет тройных гармоник. Однако следует помнить, что любая электрическая установка, включающая несколько однофазных нагрузок, вряд ли будет или останется сбалансированной в течение определенного периода времени.

Также следует помнить, что напряжение относительно земли будет зависеть от соотношения баланса в распределительной сети, а не только от установки потребителей.

Сценарий 1 Нормальные рабочие условия


Рисунок 8
: Нормальные рабочие условия

В нормальных условиях эксплуатации путь тока возвращается от каждого объекта через провод PEN к распределительному трансформатору, в таких условиях нет напряжения между нейтралью PME и землей.

Сценарий 2 Обрыв провода PEN в однофазной части кабеля


Рисунок 9
: Разомкнутый PEN-проводник в однофазной части кабеля

В случае разомкнутой цепи PEN-проводника на однофазной части кабеля обратный путь проходит через постороннюю проводящую часть, такую ​​как металлическая водопроводная труба, общая с соседней установкой.Это вызовет напряжение прикосновения между любыми подключенными к земле оголенными и посторонними проводящими частями, напряжение будет изменяться в зависимости от сопротивления обратного пути.

Сценарий 3 Обрыв провода PEN в трехфазном участке кабеля


Рисунок 10
: Разомкнутый PEN-проводник в трехфазном участке кабеля

Если PEN-проводник обрывается на участке трехфазного кабеля, обратный путь будет через соседнюю установку, обратно к фазе L2.Это означает, что в однофазной установке может существовать до 400 В. Напряжение на земле будет выше, если распределительная сеть не сбалансирована.

В реальном мире ситуация, вероятно, будет намного более сложной, поскольку многие переменные влияют на уровень напряжения прикосновения и отклоненный нейтральный ток. Возможно, что объединенные токи нейтрали для нескольких установок могут вернуться через одну установку.

Эта ситуация, которую трудно обнаружить, приводит к тому, что напряжение относительно земли до 230 В и напряжение между токоведущими проводниками до 400 В присутствует в любой точке в тех установках, на которые влияет обрыв нейтрального проводника.

Какие меры предосторожности можно предпринять, чтобы ограничить рост напряжения на клемме заземления потребителя в случае обрыва PEN-проводника?

Если последствия разрыва цепи PEN-проводника представляют недопустимый риск, следует принять дополнительные меры защиты; но давайте посмотрим на практичность.

Дополнительный заземляющий электрод

Метод защиты, который может смягчить эффект разомкнутого PEN-проводника, заключается в подключении дополнительного заземляющего электрода с достаточно низким значением сопротивления, чтобы поддерживать напряжение прикосновения ниже значения, которое разработчик считает приемлемым.Требуемое значение сопротивления можно рассчитать в соответствии с нагрузкой на установку по следующей формуле:

Таблица 14.1 : Руководство IET 5 Защита от поражения электрическим током

Таблица 14.1, извлеченная из Руководства IET 5 Защита от поражения электрическим током, предоставляет типичные значения сопротивления, необходимые для снижения напряжения прикосновения до 50 В и 100 В соответственно. На практике и в зависимости от требований к нагрузке, этих значений сопротивления может быть трудно достичь с помощью заземляющего электрода, и, вероятно, потребуется установка специальных заземляющих устройств, таких как заземляющие маты.Например, для электрической установки с максимальной потребляемой мощностью 7 кВт потребуется заземляющий электрод с сопротивлением 2,1 Ом, чтобы поддерживать напряжение прикосновения ниже 50 вольт.

В секторе автомагистрали при установке уличной мебели, такой как уличное освещение, светофоры и дорожные знаки, подключенные к заземляющему устройству PME, обычной практикой является установка дополнительного заземляющего электрода, обычно на опорной стойке и последней стойке цепи.

Дополнительную информацию по расчету сопротивления дополнительных заземляющих электродов можно найти в Руководстве № 5 IET, защита от поражения электрическим током.

TT Устройство заземления

Если риск обрыва цепи PEN-проводника неприемлем, заземление TT является надежным и эффективным методом. Заземляющий электрод может быть установлен для создания схемы заземления TT, как для части, так и для всей установки. BS 7671: 2018 + A1: 2020 обычно требует значения сопротивления менее 200 Ом с установленными УЗО для защиты от короткого замыкания. Однако установка заземляющего устройства TT сопряжена с риском, следует проявлять осторожность, чтобы не повредить подземные сооружения, находящиеся под землей, такие как кабели и трубы.Чертежи местоположения сервисов потребуются для определения местоположения существующих подземных коммуникаций.

Также важно обеспечить соблюдение требований в отношении минимального безопасного расстояния от других систем заземления или подземных проводящих частей, подключенных к другим системам заземления. Это необходимо для предотвращения появления напряжения на заземляющем устройстве TT в случае разрыва цепи PEN-проводника. У DNO есть свои требования, поэтому важно их проверить.

Дополнительную информацию можно найти в BS 7430: 2011 + A1: 2015 Практические правила по защитному заземлению электрических установок.

Как узнать, есть ли в установке, над которой я работаю, PEN-проводник с разомкнутой цепью?

Перед началом работы с любой установкой следует принять меры предосторожности, чтобы определить, существует ли какое-либо опасное напряжение прикосновения на токопроводящих частях перед началом работы, это особенно важно при работе на открытом воздухе и при контакте с землей.

Перед отключением проводов заземления или защитного заземления особенно важно убедиться в отсутствии утечки тока нейтрали.Это все еще может произойти, даже если установка изолирована.

Не существует одного простого теста, чтобы указать, есть ли провод PEN с разомкнутой цепью или нет. Есть много переменных, которые будут влиять на показания, такие как место разрыва в проводе PEN, соотношение нагрузки сети и совместимость посторонних проводящих частей с другими установками. Однако приведенные ниже методы тестирования могут указать на наличие проблемы.

Как часть процедуры безопасной изоляции, испытание для определения наличия напряжения должно проводиться между проводниками обычным образом.Простое бесконтактное устройство индикации напряжения, более известное как «стержень напряжения», также может использоваться для определения напряжения без необходимости привязки к Земле. Следует отметить, что «стандартное» бесконтактное устройство индикации напряжения, используемое большинством электриков, имеет порог срабатывания, превышающий 200 вольт переменного тока. Следовательно, напряжение прикосновения 70 вольт или более может остаться незамеченным и стать причиной травмы. Доступны однополюсные устройства индикации напряжения с различными напряжениями, некоторые из них могут обнаруживать напряжения до 50 вольт или меньше.

Однако важно понимать, что использование только обнаружения напряжения может не обнаруживать наличие разомкнутого PEN-проводника, если отведенный нейтральный ток возвращается через альтернативный путь. Только когда заземляющий провод будет отключен, цепь будет разорвана, и напряжение может быть обнаружено, и трубопровод станет под напряжением. Это может быть чрезвычайно опасной ситуацией, так как в зависимости от устройства распределительной сети может протекать несколько ампер.

Индикация отклоненных нейтральных токов может быть идентифицирована с помощью стандартного амперметра-клещей путем тестирования тока, протекающего в заземляющем проводе, когда установка питает подключенную нагрузку, как показано на Рисунке 11. Он также может быть размещен вокруг трубопроводов внутри установка для обнаружения наличия отклоненного нейтрального тока.


Рисунок 11
: Токоизмерительные клещи

В установке может быть некоторая утечка тока.В зависимости от установленного оборудования он может быть в районе нескольких миллиампер. Прохождение нескольких ампер указывает на обрыв цепи PEN-проводника.

Местоположение разрыва нейтрального проводника определяет, будет ли отведенный нейтральный ток «импортировать» или «экспортировать» из установки. Если ток увеличивается с нагрузкой на установку, это указывает на обрыв PEN-проводника на установке, так как нейтральный ток «экспортируется», как показано на Рисунке 12.Принимая во внимание, что, если отклоненный нейтральный ток все еще может быть обнаружен в заземляющем проводе с изолированной установкой, это будет означать, что отклоненный нейтральный ток «импортируется» из других установок в распределительной сети, как показано на Рисунке 13.


Рисунок 12
: Экспорт отведенного тока нейтрали

Рисунок 13 : Импортированный нейтральный ток

Что мне делать, если я подозреваю обрыв провода PEN?

Отведенные нейтральные токи могут вызвать возгорание и / или поражение электрическим током.При работе с установкой, если есть подозрение на разрыв PEN-проводника, необходимо немедленно сообщить об этом электрическому распределителю по телефону, используя номер службы экстренной помощи 105. Звонок будет автоматически перенаправлен на номер службы экстренной помощи местного DNO для данного района.

Сводка

Несмотря на то, что выпуск разомкнутого PEN-проводника является обязанностью дистрибьютора, это может иметь серьезные последствия для электроустановки потребителя. В зависимости от условий установки и возможных последствий следует применять дополнительные защитные меры.

PME подходит для многих применений, но следует проявлять осторожность, когда возможен контакт с истинной землей и металлическими конструкциями, заземленными PME.

Чтобы определить, требуются ли дополнительные защитные меры, проектировщику необходимо оценить риск.

Перед началом работы проведите испытание, чтобы определить, находятся ли токопроводящие части под напряжением.

Если есть подозрение на обрыв PEN-проводника, немедленно позвоните по номеру 105, чтобы незамедлительно сообщить об аварийной ситуации местному распределителю электроэнергии.

Оборудование и установка ИТ-систем в больницах

Электробезопасность больниц — тема, которую нельзя воспринимать как должное. Важно знать, что такое ИТ-системы и как их можно использовать в больницах.

В этой статье вы узнаете об их важности и получите рекомендации, которые помогут предпринять действия и приступить к обеспечению большей электрической защиты критических участков вашей больницы.

Мы также хотим поделиться с вами, что в ETKHO мы являемся специалистами в области поддержки, оборудования и установки ИТ-систем в больницах , мы являемся вашим партнером в области электробезопасности в медицинских центрах.

Если вам нужна диагностика, консультация и приобретение оборудования , которое гарантирует правильную электрическую работу вашего оборудования, свяжитесь с нами.

Прежде всего, что такое ИТ-система?

IT-системы отличаются тем, что все активные компоненты заземлены через высокий импеданс.

Причина, по которой применяется с высоким импедансом , связана с метрологическими аспектами, чтобы не подвергать опасности электрическую безопасность, в данном случае больницы.

Таким образом, заземление массы электроустановки может выполняться как вместе, так и по отдельности.

Различия между системами TN и TT

Прежде чем двигаться дальше, необходимо установить различия между системами TN и TT, поскольку это позволяет нам лучше понять ИТ-системы и их применение в больницах.

В связи с этим в системах TN нейтральная точка питающего трансформатора заземлена, только с низким импедансом, и именно через защитный проводник массы электроустановки подключаются к рабочему заземлению сети.

С другой стороны, в системах TT, хотя нейтральная точка заземлена с низким импедансом, массы электроустановки заземлены независимо от заземления системы.

Основная особенность изолированной системы заземления

Обратите внимание, что источник питания в незаземленных IT-системах требует использования отдельного источника питания или трансформатора. Это может быть генератор или аккумулятор .

Это связано с тем, что не будет активного низкоомного проводника , подключенного к земле , так что в случае контакта с землей не произойдет сильноточного отказа.

В этих условиях возникает только небольшой ток повреждения, и его величина будет напрямую зависеть от сопротивления изоляции, а также от емкости провода. Компоненты системы также необходимо учитывать в отношении заземления .

Таким образом, главной особенностью является монитор изоляции для ИТ-систем , фактически, правила требуют его использования.

В ETKHO мы можем предоставить вам комплексную установку ИТ-систем со всеми их компонентами, включая монитор изоляции .

Однако на одном примере вы можете лучше понять вышеупомянутое. Предположим, что в исправной заземленной сети 2390 В переменного тока, которая сама по себе имеет низкие возможности заземления, человек идет и касается токоведущего токопроводящего корпуса, удара электрическим током не будет.

Текущий переданный человеку практически незаметен. Это связано с тем, что падение напряжения, возникающее из-за тока короткого замыкания в проекционной линии, которая подключена к корпусу, определяет контактное напряжение.

Причина этого в том, что ток короткого замыкания, как правило, очень низкий, а сопротивление защитного проводника также минимально, поэтому нет высоких контактных напряжений.

Однако заземленная система больше основана на аргументе о том, что должен генерироваться высокий ток короткого замыкания, так что в случае отказа происходит быстрое отключение источника питания.

Вот почему для больниц важно иметь защитные устройства , такие как дифференциальные выключатели, с помощью которых можно выключить систему непосредственно перед тем, как она вызовет какое-либо повреждение.

Каковы преимущества заземленных ИТ-систем в больницах?

Наконец, мы предлагаем вам список преимуществ, которые вы можете получить в своем медицинском центре при внедрении адекватной ИТ-системы:

  • Это упрощает выявление сбоев во время оказания медицинских услуг
  • Если изоляция происходит сбой, он также может быть обнаружен во время работы установки.
  • Если произойдет нарушение изоляции , система продолжит работать без каких-либо проблем или рисков
  • Вы можете обеспечить большую защиту пациентов, медицинского персонала и других людей
  • Снижается риск поражения электрическим током, поскольку уменьшаются токи отказа
  • Снижение затрат на испытания
  • Для периодических проверок нет необходимости отключать, и испытания дифференциальной защиты больше не нужны , а также измерение изоляции RISO
  • Вы также даете медицинскому центру дополнительную защиту от пожара
  • По постоянный мониторинг изоляции, опасности и, следовательно, затраты на страхование снижаются

Заключение

Теперь, когда у вас есть общие знания об ИТ-системах , их важности, различиях между TN и TT систем, основные характеристики ИТ-системы, среди прочего, вы можете Оцените преимущества, которые он предлагает вашему медицинскому центру.

Вот почему в ETKHO мы стремимся обеспечивать поддержку, установку и даже предлагать диагностику, что ведет к улучшению электрооборудования медицинских центров , потому что мы знаем, что лучшие условия позволяют лучше обслуживать и сводить риски к нулю. .

Наконец, мы хотим объяснить, что в ETKHO мы предлагаем изоляционные панели для ИТ-систем, которые являются эффективными, поскольку могут обеспечивать защищенную изолированную систему электропитания для хирургических отделений и других отделений интенсивной терапии, обозначенных как влажные. расположение процедур.

Эта панель состоит из:

  • Автоматический выключатель
  • Медицинский изолирующий трансформатор
  • Защита трансформатора
  • Наблюдатель за изоляцией
  • Локатор нарушения изоляции для каждой линии
  • Общая шина первого этажа
  • Автоматические выключатели

Приглашаем вас на свяжитесь с нами, чтобы узнать больше .

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *