+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Конденсатор

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости. Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов.

По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1nF = 0.000000001 = 10-9 F
  • 1pF = 0.000000000001 = 10-12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют

переходным периодом заряда конденсатора.

Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу τ (тау). За один τ конденсатор заряжается или разряжается на 63%. За пять τ конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:

Устройство конденсатора. От чего зависит емкость?

Емкость плоского конденсатора зависит от трех основных факторов:

  • Площадь пластин — A
  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ɛ

Площадь пластин

Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.

Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как

относительная диэлектрическая проницаемость ɛ. Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.

Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала (напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно, понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Бумага – от 2.5 до 3.5
  • Стекло – от 3 до 10
  • Слюда – от 5 до 7
  • Порошки оксидов металлов – от 6 до 20

Номинальное напряжение

Второй по значимости характеристикой после емкости является

максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Конденсатор: формулы для конденсаторов

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица – фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме.

Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q – заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов емкости плоского конденсатора используется формула:


в которой ε = 8,854187817 х 10-12 ф/м представляет собой постоянную величину. Прочие величины: ε – является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S – означает площадь обкладки, а d – зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде: W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: Wэл = CU2/2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: Uc = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома Iзар = Е/Ri, поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора – способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: Iут = U/Rd, где Iут, – это ток утечки, U – напряжение, прилагаемое к конденсатору, а Rd – сопротивление изоляции.

Переходные процессы в цепях постоянного тока с конденсатором

ПЕРЕХОДНЫМ ПРОЦЕССОМ называется процесс перехода от одного установившегося в цепи режима к другому. Примером такого процесса является зарядка и разрядка конденсатора. В ряде случаях законы постоянного тока можно применять и к изменяющимся токам, когда изменение тока происходит не слишком быстро. В этих случаях мгновенное значение силы тока будет практически одно и то же во всех поперечных сечениях цепи. Такие токи называют квазистационарными

РАЗРЯДКА КОНДЕНСАТОРА. Если обкладки заряженного конденсатора ёмкости С замкнуть через сопротивление R, то через это сопротивление потечёт ток. Согласно закону Ома для однородного участка цепи

IR=U,

где I и U – мгновенные значения силы тока в цепи и напряжения на обкладках конденсатора. Учитывая, что и , преобразуем закон Ома к виду

(1)

В этом дифференциальном уравнении переменные разделяются, и после интегрирования получим закон изменения заряда конденсатора со временем

, (2)

где q0 — начальный заряд конденсатора, е — основание натурального логарифма. Произведение RC, имеющее размерность времени, называется время релаксации t . Продифференцировав выражение (2) по времени, найдём закон изменения тока:

, (3)

где I0 — сила тока в цепи в момент времени t = 0. Из уравнения (3) видно, что t есть время, за которое сила тока в цепи уменьшается в е раз.

Зависимость от времени количества теплоты, выделившегося на сопротивлении R при разряде конденсатора можно найти из закона Джоуля-Ленца:

(4)

ЗАРЯДКА КОНДЕСАТОРА.

Считаем, что первоначально конденсатор не заряжен. В момент времени t = 0 ключ замкнули, и в цепи пошёл ток, заряжающий конденсатор. Увеличивающиеся заряды на обкладках конденсатора будут всё в большей степени препятствовать прохождению тока, постепенно уменьшая его. Запишем закон Ома для этой замкнутой цепи:

.

После разделения переменных уравнение примет вид:

Проинтегрировав это уравнение с учётом начального условия

q = 0 при t = 0 и с учётом того, что при изменении времени от 0 до t заряд изменяется от 0 до q, получим

, или после потенцирования

q = . (4)

Анализ этого выражения показывает, что заряд приближается к своему максимальному значению, равному С, асимптотически при t ® ?.

Подставляя в формулу (4) функцию I(t) = dq/dt, получим

. (5)

Из закона сохранения энергии следует, что при зарядке конденсатора для любого момента времени работа источника тока dАист рана сумме количества джоулевой теплоты dQ, выделившейся на резисторе R и изменению энергии конденсатора dW:

dAист= dQ + dW,

где dAист =Idt, dQ =I2Rdt, dW =d. Тогда для произвольного момента времени t имеем:

Аист(t)==. (6)

Q(t)=. (7)

W(t) ==. (8)

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:

В реальных электрических цепях постоянного тока, содержащих конденсаторы, переходные процессы разрядки и зарядки конденсаторов проходят за время порядка 10–6 – 10-3 с. Для того,чтобы сделать доступными для наблюдения и измерения электрические параметры при переходных процессах в настоящей компьютерной модели это время значительно увеличено за счёт увеличения ёмкости конденсатора.

ЭКСПЕРИМЕНТ 1

Определение ёмкости конденсатора методом разрядки

1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашего варианта.

Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).

2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.

3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.

4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.

5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.

6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.

7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.

8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.

9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.

10. Проделайте опыты п. п.8, 9 ещё 4 раза.

Таблица 1. Суммарное значение э.д.с. источников тока

Вариант

1

2

3

4

5

6

7

8

Э.д.с.,В

50

49

48

47

46

45

44

43

Таблица 2. Определение сопротивления лампы.

№п/п

I, А

U, В

R, Ом

Номер

опыта

1

2

3

4

5

Среднее

значение

I0, А

It, А

t, с

C, Ф

Таблица 3. Результаты измерений и расчётов.

ОБРАБОТКА РЕЗУЛЬТАТОВ:

1. По закону Ома для участка цепи Л1-Л4: и результатам измерений, приведённым в таблице 2, определите сопротивление одной лампы.

2. По формуле (при разрядке конденсатора квазистационарный ток протекает по 6 последовательно соединённым лампам) определите ёмкость конденсатора и запишите эти значения в таблицу 3.

3. Рассчитайте погрешности измерений и сформулируйте выводы по результатам проделанной работы.

ЭКСПЕРИМЕНТ 2

Изучение зависимости от времени количества тепла, выделившегося на нагрузке при разряде конденсатора

  1. Выполняя действия, аналогичные описанным в эксперименте 1, зарядите конденсатор до напряжения, соответствующего суммарному значению э.д.с. для вашего варианта.
  2. Нажмите кнопку «Стоп» и отключите ключ К.
  3. Проведите 5-ти секундный процесс частичного разряда конденсатора через подключённые лампы. Для этого нажмите синхронно кнопку «Старт» и кнопку запуска секундомера и через 5 секунд нажатием кнопки «Стоп» остановите процесс разрядки конденсатора.
  4. Запишите показания амперметра в таблицу 4 и вновь зарядите конденсатор до первоначального напряжения.
  5. Последовательно увеличивая длительность процесса разрядки конденсатора на 5 с, проделайте эти опыты до времени разрядки, соответствующему полному исчезновению заряда на конденсаторе. (Напряжение на конденсаторе и ток разрядки через лампы должен быть близким к нулю). Результаты измерений тока разрядки запишите в соответствующие ячейки таблицы 4.

Таблица 4. Результаты измерений и расчетов

Время разрядки t, с

5

10

15

20

5n

Ток разряда I через t с, А

Кол-во тепла Q за t с, Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ:

  1. Для каждого времени разрядки вычислите по формуле (4) количество тепла, выделившегося на шести лампах и запишите эти значения в соответствующие ячейки третьей строки табл. 4. Полезный совет: для расчёта Q воспользуйтесь программой MS Exсel.
  2. Постройте график зависимости количества выделившегося тепла Q к данному моменту времени от длительности процесса разрядки конденсатора t.
  3. Сравните рассчитанное количество тепла, выделившееся к моменту полного разряда конденсатора с его теоретическим значением, равным .
  4. Сделайте выводы по графику и ответу и проведите расчёт погрешностей измерений.

ЭКСПЕРИМЕНТ 3

Проверка закона сохранения энергии в процессе зарядки конденсатора через сопротивление

Рис.3

  1. Соберите в рабочей части экрана опыта схему, показанную на рис.3. Вольтметр, включённый параллельно 5-ти лампам, будет показывать напряжение на внешнем сопротивлении, а амперметр – силу тока через нагрузку и источники тока. Напряжение на конденсаторе определяется программой автоматически и указывается в вольтах на экране монитора над конденсатором.
  2. Установите суммарную э.д.с. источников тока, соответствующую значению, приведённому в табл.1 для вашего варианта.
  3. При разомкнутом ключе К нажмите кнопку «Старт».
  4. Нажатием кнопки мыши замкните ключ К и начните процесс зарядки конденсаторов. Одновременно с замыканием ключа включите секундомер.
  5. Через время релаксации t = RС нажатием кнопки «Стоп» остановите процесс и запишите показания электроизмерительных приборов в таблицу 5.
  6. Нажмите кнопку «Выбор» и обнулите показания напряжений на всех конденсаторах и на электроизмерительных приборах.
  7. Повторите эти измерения ещё 4 раза и заполните две верхних строки таблицы 5.

Таблица 5. Результаты измерений и расчетов

№ опыта

1

2

3

4

5

Среднее

I, A

Uc, B

UR, B

Аист, Дж

DW, Дж

Q, Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ:

  1. По формулам 6, 7, 8 и измеренным значениям напряжения на конденсаторе Uc рассчитайте величины работу источника тока Аист, изменение энергии конденсатора DW и выделившегося на нагрузке количества тепла Q через время заряда, равного времени релаксации.
  2. Проверьте выполнение закона сохранения энергии в процессе зарядки конденсатора по формуле: Аист =DW + Q.
  3. Сделайте выводы по итогам работы.

Вопросы и задания для самоконтроля

Вопросы и задания для самоконтроля

  1. Что представляет собой конденсатор и от чего зависит его ёмкость?
  2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.
  3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?
  4. Какой ток называется квазистационарным?
  5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов
  6. Что такое время релаксации?
  7. Объясните принцип работы экспериментальной установки.
  8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.
  9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.
  10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.
  11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.
  12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.
  13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.
  14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.

Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс

Физика, 11 класс

Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока

Перечень вопросов, рассматриваемых на уроке:

Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;

Устройство и принцип действия генератора переменного тока и трансформатора;

Автоколебания;

Проблемы передачи электроэнергии и способы повышения эффективности её использования.

Глоссарий по теме

Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами.

Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.

Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.

В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:

N- число витков.

Возникает ЭДС индукции который меняется по гармоническому закону.

ЭДС индукции в рамке равна:

Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.

В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.

Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т. к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.

Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.

Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.

Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.

Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.

Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:

Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.

Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.

Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».

k– коэффициент трансформации.

U1 иU2 – напряжения на первичной и на вторичной обмотке.

N1 и N2— число витков на первичной и на вторичной обмотке.

Если k < 1 — трансформатор повышающий,

k > 1 — трансформатор понижающий.

КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:

Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.

Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.

Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.

 Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция

Разбор тренировочных заданий

1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.

Дано:

N=50

ω=180 рад/с

B=0,4 Тл

S=0,02 м2

_________

Ԑm=?

Решение:

Ответ: 72 В.

2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.

Дано:

L=0,08 Гн

ν= 1000 Гц

U=100 В

__________

Im=?

Решение:

Напишем закон Ома для переменного тока

Т.к. ХC и R равны нулю, то

Учитывая, что , получаем:

Найдем амплитудное значение напряжения:

Подставим числовые данные в формулу для расчета амплитуды силы тока:

Ответ: Im = 0,3 А.

изменение силы тока в цепи

 

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Конденсатор в цепи переменного тока

В отличии от постоянного переменный ток может идти и через цепь, в которой присутствует конденсатор. Рассмотрим следующий опыт.

Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения.

Подключим к ним с помощью переключателя цепь, состоящую из лампочки и конденсатора. Причем лампочка и конденсатор подключены последовательно.

рисунок

При включении питания от источника постоянного тока (АА’) лампочка не загорится. Если подключить цепь к источнику тока с переменным напряжением (BB’), то лампочка будет гореть. При условии, что емкость конденсатора достаточно велика.

В цепи происходит периодическая зарядка и разрядка конденсатора. В то время, когда конденсатор перезаряжается, ток проходит по цепи и нагревает нить накаливания лампочки. 

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

рисунок

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

u = φ1-φ2 = q/C,

u = Um*cos(ω*t).

Имеем:

q/C = Um*cos(ω*t).

Выражаем заряд:

q = C*Um*cos(ω*t).

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = Um*C*ω*cos(ω*t+pi/2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной pi/2. Получается, что колебания силы тока опережают по фазе колебания напряжения на pi/2. Это представлено на следующем рисунке.

рисунок

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Im = Um*C*ω.

Введем следующее обозначение:

Xc = 1/(C*ω).

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

I = U/Xc.

Xc — величина, называемая емкостным сопротивлением.

Нужна помощь в учебе?



Предыдущая тема: Активное сопротивление: действующие значения силы тока и напряжения
Следующая тема:&nbsp&nbsp&nbspКатушка индуктивности в цепи переменного тока: индуктивное сопротивление

Заряд конденсатора формула через емкость и напряжение. Зарядка конденсатора от источника постоянной эдс. Способы соединения элементов

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

Известно, что емкость плоского конденсатора определяется из такого выражения:

В результате энергия определяется как:

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

Теперь выражение принимает полностью понятный вид:

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Относится к «Про электронику и схемотехнику»

Зарядка конденсатора от источника постоянной ЭДС

Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теор етический интерес, как метод расчета энерги и конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.

Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна e (Рис. 145). Полное электрическое сопротивление цепи (включающее и внутренне сопротивление источника) обозначим R . При замыкании ключа в цепи пойдет электрический ток, благодаря которому на обкладках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе и резисторе U R = I R равна ЭДС источника , что приводит к уравнению

. (1)

В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи , что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени

. (2)

Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин

.

Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t и (t + Delta t ), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Delta e = 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Delta, поэтому полученное уравнение приобретает вид

.

Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)

. (3)

Математический смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I 0 = I(0).

С уравнениями такого типа мы познакомились в «математическом отступлении» , поэтому здесь его анализ проведем кратко. В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна . Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения и ток в цепи прекратится.

Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае

. (4)

Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.

Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности. Это парадокс можно исключить, если принять во внимание дискретность электрического заряда. Кроме того, заряд конденсатора, подключенного к батарее с течением времени случайным образом изменяется, флуктуирует, поэтому рассматриваемое уравнение описывает некоторые усредненные характеристики процесса. Тем не менее, полученная оценка времени RC широко применяется в приближенных расчетах, часто ее называют просто временем зарядки конденсатора .

Рассмотрим теперь превращения различных форм энерги и в данном процессе. Понятно, что причиной тока в цепи и как следствие зарядки конденсатора являются сторонние силы источника. На первый взгляд, энергетический баланс включает определенное противоречие: если источник сообщил конденсатору заряд q , то сторонние силы совершили при этом работу A 0 = q e , при этом энерги я конденсатора стала равной , что в два раза меньше работы совершенной источником. Противоречие исчезает, если принять во внимание, что в процессе зарядки по цепи течет электрический ток, поэтому на резисторе выделяется некоторое количество теплоты, то есть часть энерги и источника переходит в тепловую. Мысленно разобьем время зарядки на малые промежутки Delta t i (i = 1,2,3…). Перепишем уравнение (1) в виде

, (5)

и умножим его на величину малой порции заряда, переносимого за малый промежуток времени Delta t i , Delta q i = I i Delta t i . В результате получим

. (6)

Здесь обозначено q i — заряд конденсатора перед перенесением рассматриваемой порции заряда. Каждый член полученного уравнения имеет явный физический смысл :

— работа сторонних сил по перемещению порции заряда?q i ; — увеличение энерги и конденсатора при увеличении его заряда на Delta q i ; — количество теплоты, выделившееся на резисторе, при протекании

порции заряда Delta q i .

Таким образом, закон сохранения энерги и, выражаемый уравнением баланса (6) для малого промежутка времени оказывается выполненным, следовательно, он будет выполнен и для всего процесса зарядки. Просуммируем выражение (5) по всем промежуткам времени зарядки, в результате чего получим:

— полная работа сторонних сил по перенесению электрического заряда, равного стационарному заряду конденсатора; — энерги я заряженного конденсатора; наконец, — количество выделившейся на резисторе теплоты.

Принимая во внимание уравнение (3) и формулы из «математического отступления» , последнюю сумму можно выразить в виде

. (6)

Эта сумма же может быть вычислена графически. Формула (1) задает зависимость напряжения на резисторе U R = I R от заряда конденсатора. Эта зависимость линейна, ее график (Рис. 147) является отрезком прямой линии. За малый промежуток времени через резистор протечет малый заряд Delta q i , при этом выделится количество теплоты , которое численно равно площади узкой полоски, выделенной на рисунке. Полное количество теплоты, выделившейся при прохождении всего заряда численно равно площади треугольника под графиком зависимости U R (q ), то есть

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости . Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1µF = 0.000001 = 10 -6 F
  • 1nF = 0.000000001 = 10 -9 F
  • 1pF = 0.000000000001 = 10 -12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).


Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.


В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.


Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.


Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.


В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.


Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки (ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу τ (тау). За один τ конденсатор заряжается или разряжается на 63%. За пять τ конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:


Устройство конденсатора. От чего зависит емкость?

Емкость плоского конденсатора зависит от трех основных факторов:

  • Площадь пластин — A
  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ɛ

Площадь пластин

Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.


Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как относительная диэлектрическая проницаемость ɛ . Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.


Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала (напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно, понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Бумага – от 2.5 до 3.5
  • Стекло – от 3 до 10
  • Слюда – от 5 до 7
  • Порошки оксидов металлов – от 6 до 20

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора . Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

Ёмкость цилиндрического конденсатора:

Ёмкость плоского конденсатора:

Емкость сферического конденсатора:

В формуле мы использовали:

Электрическая ёмкость (ёмкость конденсатора)

Потенциал проводника (Напряжение)

Конденсатор — фундаментальный электронный компонент (наряду с резистором и катушкой индуктивности), предназначенный для накопления электрической энергии. Лучшей аналогией его работы будет сравнение с аккумуляторной батареей. Однако основой устройства последней являются обратимые химические реакции, а накопление заряда на обкладках конденсатора имеет исключительно электрическую природу.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Таким образом в фотовспышке реализуется способность конденсатора накопить для импульса энергию из батареи питания. Аккумулятор фотокамеры также является устройством, накапливающим энергию, но из-за химической природы накопления генерирует и отдаёт её медленно.

Ёмкость, заряд и напряжение

Свойство конденсатора сохранять заряд на пластинах в виде электростатического поля называется ёмкостью. Чем больше площадь обкладок и меньше расстояние между ними, тем большее количество заряда они способны накопить и, соответственно, обладают большей ёмкостью. При подаче напряжения на конденсатор отношение заряда Q к напряжению V даст значение ёмкости С. Формула заряда конденсатора будет выглядеть так:

Мера электрической ёмкости — фарад (Ф). Эта единица всегда положительная и не имеет отрицательных значений. 1 Ф равен ёмкости конденсатора, который способен сохранить заряд в 1 кулон на пластинах с напряжением в 1 вольт.

Фарад — очень большая единица измерения, для удобства использования применяют в основном её дольные меры:

  • Микрофарад (мкФ): 1мкФ=1/1000000 Ф.
  • Нанофарад (нФ): 1нФ=1/1000000000 Ф.
  • Пикофарад (пФ): 1пФ=1/000000000000 Ф.

Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость — используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):

  • вакуум: 1,0000;
  • воздух: 1,0006;
  • бумага: 2,5-3,5;
  • стекло: 3-10;
  • оксиды металлов 6-20;
  • электротехническая керамика: до 80.

Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические . В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.

Главные особенности этой конструкции состоят в том, что она позволяет накапливать сравнительно внушительный заряд при небольших габаритах и является полярным электрическим накопителем. То есть включается в электрическую цепь с соблюдением полярности.

Энергия, которую способны накопить большинство конденсаторов, обычно невелика — не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.

Максимальное напряжение на конденсаторе формула. Энергия заряженного конденсатора. применение конденсаторов

Печать

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости . Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1µF = 0.000001 = 10 -6 F
  • 1nF = 0.000000001 = 10 -9 F
  • 1pF = 0.000000000001 = 10 -12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Устройство конденсатора

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.

Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ?Vc/?t – Изменение напряжения на конденсаторе за отрезок времени

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.


Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки (ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу ? (тау). За один ? конденсатор заряжается или разряжается на 63%. За пять ? конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:

Устройство конденсатора. От чего зависит емкость?

Емкость плоского конденсатора зависит от трех основных факторов:

  • Площадь пластин — A
  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ?


Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.

Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как относительная диэлектрическая проницаемость? . Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.

Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала (напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно, понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Бумага – от 2.5 до 3.5
  • Стекло – от 3 до 10
  • Слюда – от 5 до 7
  • Порошки оксидов металлов – от 6 до 20

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора . Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Если соединить резистор и конденсатор, то получится пожалуй одна из самых полезных и универсальных цепей.

О многочисленных способах применения которой я сегодня и решил рассказать. Но вначале про каждый элемент в отдельности:

Резистор — его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим — они не слишком велики. Ток через резистор определяется законом ома — I=U/R , где U напряжение на выводах резистора, R — его сопротивление.

Конденсатор штука поинтересней. У него есть интересное свойство — когда он разряжен то ведет себя почти как короткое замыкание — ток через него течет без ограничений, устремляясь в бесконечность. А напряжение на нем стремится к нулю. Когда же он заряжен, то становится как обрыв и ток через него течь перестает, а напряжение на нем становится равным заряжающему источнику. Получается интересная зависимость — есть ток, нет напряжения, есть напряжение — нет тока.

Чтобы визуализировать себе этот процесс, представь ган… эмм.. воздушный шарик который наполняется водой. Поток воды — это ток. Давление воды на упругие стенки — эквивалент напряжения. Теперь смотри, когда шарик пуст — вода втекает свободно, большой ток, а давления еще почти нет — напряжение мало. Потом, когда шарик наполнится и начнет сопротивляться давлению, за счет упругости стенок, то скорость потока замедлится, а потом и вовсе остановится — силы сравнялись, конденсатор зарядился. Есть напряжение натянутых стенок, но нет тока!

Теперь, если снять или уменьшить внешнее давление, убрать источник питания, то вода под действием упругости хлынет обратно. Также и ток из конденсатора потечет обратно если цепь будет замкнута, а напряжение источника ниже чем напряжение в конденсаторе.

Емкость конденсатора. Что это?
Теоретически, в любой идеальный конденсатор можно закачать заряд бесконечного размера. Просто наш шарик сильней растянется и стенки создадут большее давление, бесконечно большое давление.
А что же тогда насчет Фарад, что пишут на боку конденсатора в качестве показателя емкости? А это всего лишь зависимость напряжения от заряда (q = CU). У конденсатора малой емкости рост напряжения от заряда будет выше.

Представь два стакана с бесконечно высокими стенками. Один узкий, как пробирка, другой широкий, как тазик. Уровень воды в них — это напряжение. Площадь дна — емкость. И в тот и в другой можно набузолить один и тот же литр воды — равный заряд. Но в пробирке уровень подскочит на несколько метров, А в тазике будет плескаться у самого дна. Также и в конденсаторах с малой и большой емкостью.
Залить то можно сколько угодно, но напряжение будет разным.

Плюс в реале у конденсаторов есть пробивное напряжение, после которого он перестает быть конденсатором, а превращается в годный проводник:)

А как быстро заряжается конденсатор?
В идеальных условиях, когда у нас бесконечно мощный источник напряжения с нулевым внутренним сопротивлением, идеальные сверхпроводящие провода и абсолютно безупречный конденсатор — этот процесс будет происходить мгновенно, с временем равным 0, равно как и разряд.

Но в реальности всегда существуют сопротивления, явные — вроде банального резистора или неявные, такие как сопротивление проводов или внутреннее сопротивление источника напряжения.
В этом случае скорость заряда конденсатора будет зависить от сопротивлений в цепи и емкости кондера, а сам заряд будет идти по экспоненциальному закону .


А у этого закона есть пара характерных величин:

  • Т — постоянная времени , это время при котором величина достигнет 63% от своего максимума. 63% тут взялись не случайно, тут прямая завязка на такую формулу VALUE T =max—1/e*max.
  • 3T — а при троекратной постоянной значение достигнет 95% своего максимума.

Постоянная времени для RC цепи Т=R*C .

Чем меньше сопротивление и меньше емкость, тем быстрей конденсатор заряжается. Если сопротивление равно нулю, то и время заряда равно нулю.

Рассчитаем за сколько зарядится на 95% конденсатор емкостью 1uF через резистор в 1кОм:
T= C*R = 10 -6 * 10 3 = 0.001c
3T = 0.003c через такое время напряжение на конденсаторе достигнет 95% от напряжения источника.

Разряд пойдет по тому же закону, только вверх ногами. Т.е. через Твремени в на конденсаторе остаенется всего лишь 100% — 63% = 37% от первоначального напряжения, а через 3T и того меньше — жалкие 5%.

Ну с подачей и снятием напряжения все ясно. А если напряжение подали, а потом еще ступенчато подняли, а разряжали также ступеньками? Ситуация тут практически не изменится — поднялось напряжение, конденсатор дозарядился до него по тому же закону, с той же постоянной времени — через время 3Т его напряжение будет на 95% от нового максимума.
Чуть понизилось — подразрядился и через время 3Т напряжение на нем будет на 5% выше нового минимума.
Да что я тебе говорю, лучше показать. Сварганил тут в мультисиме хитровыдрюченный генератор ступечнатого сигнала и подал на интегрирующую RC цепочку:


Видишь как колбасится:) Обрати внимание, что и заряд и разряд, вне зависимости от высоты ступеньки, всегда одной длительности!!!

А до какой величины конденсатор можно зарядить?
В теории до бесконечности, этакий шарик с бесконечно тянущимися стенками. В реале же шарик рано или поздно лопнет, а конденсатор пробьет и закоротит. Вот поэтому у всех конденсаторов есть важный параметр — предельное напряжение . На электролитах его часто пишут сбоку, а на керамических его надо смотреть в справочниках. Но там оно обычно от 50 вольт. В общем, выбирая кондер надо следить, чтобы его предельное напряжение было не ниже того которое в цепи. Добавлю что при расчете конденсатора на переменное напряжение следует выбирать предельное напряжение в 1.4 раза выше. Т.к. на переменном напряжении указывают действующее значение, а мгновенное значение в своем максимуме превышает его в 1.4 раза.

Что следует из вышеперечисленного? А то что если на конденсатор подать постоянное напряжение, то он просто зарядится и все. На этом веселье закончится.

А если подать переменное? То очевидно, что он будет то заряжаться, то разряжаться, а в цепи будет туда и обратно гулять ток. Движуха! Ток есть!

Выходит, несмотря на физический обрыв цепи между обкладками, через конденсатор легко протекает переменный ток, а вот постоянному слабо.

Что нам это дает? А то что конденсатор может служить своего рода сепаратором, для разделения переменного тока и постоянного на соответствующие составляющие.

Любой изменяющийся во времени сигнал можно представить как сумму двух составляющих — переменной и постоянной.


Например, у классической синусоиды есть только переменная часть, а постоянная равна нулю. У постоянного же тока наоборот. А если у нас сдвинутая синусоида? Или постоянная с помехами?

Переменная и постоянная составляющие сигнала легко разделяются!
Чуть выше я тебе показал как конденсатор дозаряжается и подразряжается при изменениях напряжения. Так что переменная составляющая сквозь кондер пройдет на ура, т.к. только она заставляет конденсатор активно менять свой заряд. Постоянная же как была так и останется и застрянет на конденсаторе.

Но чтобы конденсатор эффективно разделял переменную составляющую от постоянной частота переменной составляющей должна быть не ниже чем 1/T

Возможны два вида включения RC цепочки:
Интегрирующая и дифференцирующая . Они же фильтр низких частот и фильтр высоких частот.

Фильтр низких частот без изменений пропускает постоянную составляющую (т.к. ее частота равна нулю, ниже некуда) и подавляет все что выше чем 1/T. Постоянная составляющая проходит напрямую, а переменная составляющая через конденсатор гасится на землю.
Такой фильтр еще называют интегрирующей цепочкой потому, что сигнал на выходе как бы интегрируется. Помнишь что такое интеграл? Площадь под кривой! Вот тут она и получается на выходе.

А дифференцирующей цепью ее называют потому, что на выходе у нас получается дифференциал входной функции, который есть не что иное как скорость изменения этой функции.


  • На участке 1 происходит заряд конденсатора, а значит через него идет ток и на резисторе будет падение напряжения.
  • На участке 2 происходит резкое увеличение скорости заряда, а значит и ток резко возрастет, а за ним и падение напряжения на резисторе.
  • На участке 3 конденсатор просто удерживает уже имеющийся потенциал. Ток через него не идет, а значит на резисторе напряжение тоже равно нулю.
  • Ну и на 4м участке конденсатор начал разряжаться, т.к. входной сигнал стал ниже чем его напряжение. Ток пошел в обратную сторону и на резисторе уже отрицательное падение напряжения.

А если подать на вход прямоугольнй импульс, с очень крутыми фронтами и сделать емкость конденсатора помельче, то увидим вот такие иголки:

прямоугольник. Ну, а чо? Правильно — производная от линейной функции есть константа, наклон этой функции определяет знак константы.

Короче, если у тебя сейчас идет курс матана, то можешь забить на богомерзкий Mathcad, отвратный Maple, выбросить из головы матричную ересь Матлаба и, достав из загашников горсть аналоговой рассыпухи, спаять себе истинно ТРУЪ аналоговый компьютер:) Препод будет в шоке:)

Правда на одних только резисторах кондерах интеграторы и диффернциаторы обычно не делают, тут юзают операционные усилители. Можешь пока погуглить на предмет этих штуковин, любопытная вещь:)

А вот тут я подал обычный приямоугольный сигнал на два фильтра высоких и низких частот. А выходы с них на осциллограф:

Вот, чуть покрупней один участок:

При старте кондер разряжен, ток через него вваливат на полную, а напряжение на нем мизерное — на входе RESET сигнал сброса. Но вскоре конденсатор зарядится и через время Т его напряжение будет уже на уровне логической единицы и на RESET перестанет подаваться сигнал сброса — МК стартанет.
А для AT89C51 надо с точностью наоборот RESET организовать — вначале подать единицу, а потом ноль. Тут ситуация обратная — пока кондер не заряжен, то ток через него течет большой, Uc — падение напряжения на нем мизерное Uc=0. А значит на RESET подается напряжение немногим меньше напряжения питания Uпит-Uc=Uпит.
Но когда кондер зарядится и напряжение на нем достигнет напряжения питания (Uпит=Uс), то на выводе RESET уже будет Uпит-Uc=0

Аналоговые измерения
Но фиг сними с цепочками сброса, куда прикольней использовать возможность RC цепи для замера аналоговых величин микроконтроллерами в которых нет АЦП.
Тут используется тот факт, что напряжение на конденсаторе растет строго по одному и тому же закону — экспоненте. В зависимости от кондера, резистора и питающего напряжения. А значит его можно использовать как опорное напряжение с заранее известными параметрами.

Работает просто, мы подаем напряжение с конденсатора на аналоговый компаратор, а на второй вход компаратора заводим измеряемое напряжение. И когда хотим замерить напряжение, то просто вначале дергаем вывод вниз, чтобы разрядить конденсатор. Потом возвращем его в режим Hi-Z, cбрасываем и запускаем таймер. А дальше кондер начинает заряжаться через резистор и как только компаратор доложит, что напряжение с RC догнало измеряемое, то останавливаем таймер.


Зная по какому закону от времени идет возрастание опорного напряжения RC цепи, а также зная сколько натикал таймер, мы можем довольно точно узнать чему было равно измеряемое напряжение на момент сработки компаратора. Причем, тут не обязательно считать экспоненты. На начальном этапе зарядки кондера можно предположить, что зависимость там линейная. Или, если хочется большей точности, аппроксимировать экспоненту кусочно линейными функциями, а по русски — отрисовать ее примерную форму несколькими прямыми или сварганить таблицу зависимости величины от времени, короче, способов вагон просто.

Если надо заиметь аналоговую крутилку, а АЦП нету, то можно даже компаратор не юзать. Дрыгать ножкой на которой висит конденсатор и давать ему заряжаться через перменный резистор.

По изменению Т, которая, напомню T=R*C и зная что у нас С = const, можно вычислить значение R. Причем, опять же необязательно подключать тут математический аппарат, в большинстве случаев достаточно сделать замер в каких-нибудь условных попугаях, вроде тиков таймера. А можно пойти другим путем, не менять резистор, а менять емкость, например, подсоединяя к ней емкость своего тела… что получится? Правильно — сенсорные кнопки!

Если что то непонятно, то не парься скоро напишу статью про то как прикрутить к микроконтроллеру аналоговую фиговину не используя АЦП. Там подробно все разжую.

Как и любая система заряжен-ных тел, конденсатор обладает энер-гией. Вычислить энергию заряжен-ного плоского конденсатора с одно-родным полем внутри него не-сложно.

Энергия заряженного конденса-тора.

Для того чтобы зарядить конденсатор, нужно совершить рабо-ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра-бота равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со-держащую лампу накаливания, рас-считанную на напряжение в не-сколько вольт (рис. 4). При раз-рядке конденсатора лампа вспыхи-вает. Энергия конденсатора пре-вращается в другие формы: тепло-вую, световую.

Выведем формулу для энергии плоского конденсатора .

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру-гой пластины (рис. 5). Согласно формуле W p = qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

Можно доказать, что эти форму-лы справедливы для энергии любого конденсатора, а не только для плос-кого.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче-ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря-женность.

Так как напряженность электри-ческого поля прямо пропорциональ-на разности потенциалов

(U = Ed), то согласно формуле

энергия конденсатора прямо пропор-циональна напряженности электри-ческого поля внутри него: W p ~ E 2 . Детальный расчет дает следующее значение для энергии поля, приходя-щейся на единицу объема, т.е. для плотности энергии:

где ε 0 — электрическая постоянная

Применение конденсаторов.

Энер-гия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, акку-муляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического при-менения. Они имеют одно важное свойство: конденсаторы могут на-капливать энергию более или менее длительное время, а при разрядке через цепь малого сопротивления они отдают энергию почти мгновенно. Именно это свойство используют широко на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заря-жаемого предварительно специаль-ной батареей. Возбуждение кванто-вых источников света — лазеров осу-ществляется с помощью газораз-рядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроем-кости.

Однако основное применение кон-денсаторы находят в радиотехнике. С этим вы познакомитесь в XI классе.

Энергия конденсатора пропор-циональна его электроемкости и квадрату напряжения между плас-тинами. Вся эта энергия сосредото-чена в электрическом поле. Плот-ность энергии поля пропорциональна квадрату напряженности поля.

Рис. 1 Рис. 2

ЗАКОНЫ ПОСТОЯННОГО ТОКА.

Неподвижные электрические заряды редко используются на практике. Для того чтобы заставить электрические заряды слу-жить нам, их нужно привести в движение — создать электрический ток. Электрический ток освещает квартиры, приводит в дви-жение станки, создает радиоволны, циркулирует во всех электрон-но-вычислительных машинах.

Мы начнем с наиболее простого случая движения заряжен-ных частиц — рассмотрим постоянный электрический ток.

ЭЛЕКТРИЧЕСКИЙ ТОК. СИЛА ТОКА

Дадим строгое определение тому, что называют электрическим током.

Напомним, какой величиной ха-рактеризуется ток количественно.

Найдем, как быстро движутся электроны по проводам в вашей квартире.

При движении заряженных час-тиц в проводнике происходит перенос электрического заряда с одного места в другое. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не про-исходит (рис.1). Электриче-ский заряд перемещается через по-перечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в упорядоченном движении (рис. 2). В этом случае говорят, что в проводнике устанавливается электрический ток.

Из курса физики VIII класса вы знаете, что электрическим током называют упорядоченное (направ-ленное) движение заряженных частиц.

Электрический ток возникает при упорядоченном перемещении свобод-ных электронов или ионов.

Если перемещать нейтральное в целом тело, то, несмотря на упо-рядоченное движение огромного чис-ла электронов, и атомных ядер, электрический ток не возникает. Полный заряд, переносимый через любое сечение проводника, будет при этом равным нулю, так как заряды разных знаков с одинаковой средней скоростью.

Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению дви-жения частиц.

Действия тока. Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем дей-ствиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которо-му течет ток, нагревается.

Во-вторых, электрический ток мо-жет изменять химический состав проводника, например, выделять его химические составные части (медь из раствора медного купороса и т.д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и на-магниченные тела. Это действие то-ка называется магнитным. Так, маг-нитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химиче-ского и теплового является основ-ным, так как проявляется у всех без исключения проводников. Хими-ческое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсут-ствует у сверхпроводников.

Сила тока.

Если в цепи уста-навливается электрический ток, то это означает, что через поперечное сечение проводника все время пере-носится электрический заряд. Заряд, перенесенный в единицу времени, служит основной количественной ха-рактеристикой тока, называемой си-лой тока.

Таким образом, сила тока равна отношению заряда q, переносимого через поперечное сечение провод-ника за интервал времени t, к этому интервалу времени. Если сила тока со временем не меняется, то ток на-зывают постоянным.

Сила тока, подобно заряду, ве-личина скалярная. Она может быть как положительной, так и отрица-тельной. Знак силы тока зависит от того, какое из направлений вдоль проводника принять за положитель-ное. Сила тока / > 0, если направ-ление тока совпадает с условно вы-бранным положительным направле-нием вдоль проводника. В против-ном случае /

Сила тока зависит от заряда, переносимого каждой частицей, кон-центрации частиц, скорости их направленного движения и площади поперечного сечения проводника. По-кажем это.

Пусть проводник (рис. 3) имеет поперечное сечение площадью S. За положительное направление в проводнике примем направление сле-ва направо. Заряд каждой частицы равен q 0 . В объеме проводника, ограниченном поперечными сечениям-и 1 и 2, содержится nSl частиц, где п — концентрация частиц. Их общий заряд q = q Q nSl. Если частицы движутся слева направо со средней скоростью υ, то за время

Все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение 2. Поэтому сила тока равна:

формуле (2) где е — модуль заряда электрона.

Пусть, например, сила тока I = 1 А, а площадь по-перечного сечения проводника S = 10 -6 м 2 . Модуль заряда электрона е = 1,6 — 10 -19 Кл. Число электронов в 1 м 3 меди равно числу атомов в этом объеме, так как один из ва-лентных электронов каждого атома меди коллективизирован и является свободным. Это число есть п = 8,5 · 10 28 м -3 Следовательно,

Рис №1. Рис №2 Рис №3

УСЛОВИЯ, НЕОБХОДИМЫЕ ДЛЯ СУЩЕСТВОВАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Что необходимо для создания электрического тока? Подумайте над этим сами и только потом прочтите этот параграф.

Для возникновения и существо-вания постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряжен-ных частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах , то их перемещение не приведет к по-явлению электрического тока.

Наличия свободных зарядов еще недостаточно для возникновения то-ка. Для создания и поддержания упорядоченного движения, заряжен-ных частиц необходима, во-вторых, сила, действующая на них в опре-деленном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротив-ления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молеку-лами электролитов .

На заряженные частицы, как мы знаем, действует электрическое поле с силой . Обычно именно электрическое поле внутри провод-ника служит причиной, вызываю-щей и поддерживающей упорядочен-ное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между конца-ми проводника в соответствии с фор-мулой существует разность потенциалов. Когда разность потен-циалов не меняется во времени, то в проводнике устанавливается по-стоянный электрический ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минималь-ного — на другом. Это уменьшение потенциала можно обнаружить на простом опыте.

Возьмем в качестве проводника не очень сухую деревянную палку и подвесим ее горизонтально. (Такая палка хотя и плохо, но все же про-водит ток.) Источником напряжения пусть будет электростатическая ма-шина, Для регистрации потенциала различных участков проводника от-носительно земли можно использо-вать листочки металлической фоль-ги, прикрепленные к палке. Один полюс машины соединим с землей, а второй — с одним концом проводни-ка (палки). Цепь окажется незамк-нутой. При вращении рукоятки ма-шины мы обнаружим, что все лис-точки отклоняются на один и тот же угол (рис. 1).

Значит, потен-циал всех точек проводника отно-сительно земли одинаков. Так и должно быть при равновесии заря-дов на проводнике. Если теперь дру-гой конец палки заземлить, то при вращении рукоятки машины карти-на изменится. (Так как земля — проводник, то заземление провод-ника делает цепь замкнутой.) У за-земленного конца листочки вообще не разойдутся: потенциал этого кон-ца проводника практически равен потенциалу земли (падение потен-циала в металлической проволоке мало). Максимальный угол расхож-дения листочков будет у конца про-водника, присоединенного к машине (рис. 2). Уменьшение угла рас-хождения листочков по мере удале-ния от машины свидетельствует о падении потенциала вдоль провод-ника.

Электрический ток может быть получен только в веществе, в котором имеются свободные заряженные частицы. Чтобы они пришли в движение, нужно создать в проводнике электрическое поле.

Рис №1 Рис №2

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ. СОПРОТИВЛЕНИЕ

В VIII классе изучался закон Ома . Этот закон прост, однако столь важен, что его необходимо повторить.

Вольт — амперная характеристика.

В предыдущем параграфе было уста-новлено, что для существования то-ка в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяет-ся этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряженность электриче-ского поля в проводнике и, следо-вательно, тем большую скорость на-правленного движения приобретают заряженные частицы. Согласно фор-муле, это означает увеличение силы тока.

Для каждого проводника — твер-дого, жидкого и газообразного — существует определенная зависи-мость силы тока от приложенной разности потенциалов на концах про-водника. Эту зависимость выражает так называемая вольт — амперная ха-рактеристика проводника. Ее нахо-дят, измеряя силу тока в проводнике при различных значениях напряже-ния. Знание вольт — амперной характе-ристики играет большую роль при изучении электрического тока.

Закон Ома.

Наиболее простой вид имеет вольт — амперная характеристи-ка металлических проводников и растворов электролитов. Впервые (для металлов) ее установил немец-кий ученый Георг Ом, поэтому зависимость силы тока от напря-жения носит название закона Ома. На участке цепи, изображенной на рисунке 109, ток направлен от точки 1 к точке 2. Разность потен-циалов (напряжение) на концах проводника равна: U = φ 1 — φ 2. Так как ток направлен слева направо, то напряженность электрического поля направлена в ту же сторону и φ 1 > φ 2

Согласно закону Ома для участка цепи сила тока прямо пропорцио-нальна приложенному напряжению U и обратно пропорциональна сопро-тивлению проводника R:

Закон Ома имеет очень простую форму, но доказать эксперименталь-но его справедливость довольно трудно. Дело в том, что разность по-тенциалов на участке металлическо-го проводника даже при большой силе тока мала, так как мало сопро-тивление проводника.

Электрометр, о котором шла речь, непригоден для измерения столь малых напряжений: его чув-ствительность слишком мала. Нужен несравненно более чувствительный прибор. Тогда, измеряя силу тока амперметром, а напряжение чув-ствительным электрометром, можно убедиться в том, что сила тока пря-мо пропорциональна напряжению. Применение же обычных приборов для измерения напряжения — вольт-метров — основано на использовании закона Ома.

Принцип устройства, вольтметра такой же, как и ампер-метра. Угол поворота стрелки прибо-ра пропорционален силе тока. Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он под-ключен. Поэтому, зная сопротивле-ние вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в воль-тах.

Сопротивление. Основная элек-трическая характеристика проводни-ка — сопротивление. От этой вели-чины зависит сила тока в провод-нике при заданном напряжении. Со-противление проводника представля-ет собой как бы меру противо-действия проводника установлению в нем электрического тока. С помощью закона Ома можно определить сопротивление проводника:

Для этого нужно измерить напря-жение и силу тока.

Сопротивление зависит от мате-риала проводника и его геометри-ческих размеров. Сопротивление про-водника длиной l с постоянной пло-щадью поперечного сечения S равно:

где р — величина, зависящая от рода вещества и его состояния (от тем-пературы в первую очередь). Вели-чину р называют удельным сопро-тивлением проводника. Удельное со-противление численно равно сопро-тивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.

Единицу сопротивления провод-ника устанавливают на основе зако-на Ома и называют ее ом. Провод-ник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нем 1 А.

Единицей удельного сопротивле-ния является 1 Ом?м. Удельное со-противление металлов мало. Диэлектрики обладают очень большим удельным сопротивлением. В табли-це на форзаце приведены примеры значений удельного сопротивления некоторых веществ.

Значение закона Ома.

Закон Ома определяет силу тока в электриче-ской цепи при заданном напря-жении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока. Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротив-ления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Закон Ома — основа всей элект-ротехники постоянных токов. Формулу — надо хорошо понять и твердо запомнить.


ЭЛЕКТРИЧЕСКИЕ ЦЕПИ. ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЯ ПРОВОДНИКОВ

От источника тока энергия может быть передана по проводам к устрой-ствам, потребляющим энергию: Элек-трической лампе, радиоприемнику и др. Для этого составляют электри-ческие цепи различной сложности. Электрическая цепь состоит из источника энергии, устройств, по-требляющих электрическую энергию, соединительных проводов и выклю-чателей для замыкания цепи. Часто и электрическую цепь включают приборы, контролирующие силу тока и напряжение на различных участ-ках цепи, — амперметры и вольт-метры.

К наиболее простым и часто встречающимся соединениям провод-ников относятся последовательное и параллельное соединения.

Последовательное соединение проводников.

При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. На рисунке 1 показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления R 1 , и R 2 . Это могут быть две лампы, две обмотки элект-родвигателя и др.

Сила тока в обоих проводниках одинакова, т. е. (1)

так как в проводниках электриче-ский заряд в случае постоянного тока не накапливается и через любое поперечное сечение проводника за определенное время проходит один и тот же заряд.

Напряжение на концах рассмат-риваемого участка цепи складывает-ся из напряжений на — первом и вто-ром проводниках:

Надо надеяться, что с доказатель-ством этого простого соотношения вы справитесь сами.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями R 1 и R 2 , можно до-казать, что полное сопротивление всего участка цепи при последова-тельном соединении равно:

Это правило можно применить для любого числа последовательно соединенных проводников.

Напряжения на проводниках и их сопротивления при последователь-ном соединении связаны соотноше-нием:

Докажите это равенство.

Параллельное соединение про-водников.

На рисунке 2 показано параллельное соединение двух про-водников 1 и 2с сопротивлениями R 1 и R 2 . В этом случае электриче-ский ток 1 разветвляется на две час-ти. Силу тока в первом и втором про-водниках обозначим через I 1 и I 2 . Так как в точке а — разветвлении проводников (такую точку называют узлом) — электрический заряд не на-капливается, то заряд, поступающий в единицу времени в узел, равен заряду, уходящему из узла за это же время. Следовательно, I = I 1 + I 2

Напряжение U на концах про-водников, соединенных параллельно, одно и то же.

В осветительной сети поддержи-вается напряжение 220 или 127 В. На это напряжение рассчитаны при-боры, потребляющие электрическую энергию. Поэтому параллельное сое-динение — самый распространенный способ соединения различных потре-бителей. В этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размы-кает цепь.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями R 1 и R 2 , можно доказать, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных провод-ников:

Сила тока в каждом из провод-ников и сопротивления проводников при параллельном соединении свя-заны соотношением

Различные проводники в цепи соединяются друг с другом после-довательно или параллельно. В пер-вом случае сила тока одинакова во всех проводниках, а во втором слу-чае одинаковы напряжения на про-водниках. Чаще всего к осветитель-ной сети различные потребители тока подключаются параллельно.

ИЗМЕРЕНИЕ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Как измерить силу тока ампер-метром, а напряжение вольтметром, должен знать каждый.

Измерение силы тока.

Для изме-рения силы тока в проводнике ам-перметр включают последовательно с этим проводником (рис. 1). Но нужно иметь в виду, что сам ампер-метр обладает некоторым сопротив-лением R a . Поэтому сопротивление участка цепи с включенным ампер-метром увеличивается, и при неиз-менном напряжении сила тока умень-шается в соответствии с законом Ома. Чтобы амперметр оказывал как можно меньшее влияние на силу тока, измеряемую им, его сопротив-ление делают очень малым. Это нужно помнить и никогда не пытать-ся измерять силу тока в освети-тельной сети, подключая амперметр к розетке. Произойдет короткое за-мыкание; сила тока при малом со-противлении прибора достигнет столь большой величины, что обмотка ам-перметра сгорит.

Измерение напряжения.

Для того чтобы измерить напряжение на участке цепи с сопротивлением R, к нему параллельно подключают вольтметр. Напряжение на вольтметре совпа-дает с напряжением на участке цепи (рис. 2).

Если сопротивление вольтметра R B , то после включения его в цепь сопротивление участка будет уже не R, а . Из-за этого измеряемое напряжение на участ-ке цепи уменьшится. Для того чтобы вольтметр не вносил заметных иска-жений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Вольтметр можно вклю-чать в сеть без риска, что он сгорит, если только он рассчитан на напря-жение, превышающее напряжение сети.

Амперметр включают последова-тельно с проводником, в котором измеряют силу тока. Вольтметр включают параллельно проводнику, на котором измеряют напряжение.

РАБОТА И МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Электрический ток получил такое широкое применение потому, что он несет с собой энергию. Эта энергия может быть превращена в любую форму.

При упорядоченном движении за-ряженных частиц в проводнике электрическое поле совершает ра-боту; ее принято называть работой тока. Сейчас мы напомним сведения о работе и мощности тока из курса физики VIII класса.

Работа тока.

Рассмотрим произ-вольный участок цепи. Это, может быть однородный проводник, напри-мер нить лампы накаливания, обмот-ка электродвигателя и др. Пусть за время t через поперечное сечение проводника проходит заряд q. Тогда электрическое поле совершит работу A = qU.

Так как сила тока , то эта работа равна:

Работа тока на участке цепи равна произведению силы тока, на-пряжения и времени, в течение ко-торого совершалась работа.

Согласно закону сохранения энергии эта работа должна быть рав-на изменению энергии рассматри-ваемого участка цепи. Поэтому энер-гия, выделяемая на данном участке цепи за время At, равна работе тока (см. формулу (1)).

В случае если на участке цепи не совершается механическая рабо-та и ток не производит химических действий, происходит только нагре-вание проводника. Нагретый про-водник отдает теплоту окружающим телам.

Нагревание проводника происхо-дит следующим образом. Электриче-ское поле ускоряет электроны. После столкновения с ионами кристалличе-ской решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов око-ло положений равновесия возраста-ет. Это и означает увеличение внут-ренней энергии. Температура про-водника при этом повышается, и он начинает передавать теплоту окру-жающим телам. Спустя небольшое время после замыкания цепи процесс устанавливается, и температура пе-рестает изменяться со временем. К проводчику за счет работы элект-рического поля непрерывно поступа-ет энергия. Но его внутренняя энер-гия остается неизменной, так как проводник передает окружающим те-лам количество теплоты, равное ра-боте тока. Таким образом, формула (1) для работы тока определяет количество теплоты, передаваемое проводником другим телам.

Если в формуле (1) выразить либо напряжение через силу тока, либо силу тока через напряжение с помощью закона Ома для участка цепи, то получим три эквивалентные формулы:

(2)

Формулой A = I 2 R t удобно пользоваться для последовательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При парал-лельном соединении удобна формула , так как напряжение на всех проводниках одинаково.

Закон Джоуля — Ленца.

Закон, определяющий количество теплоты, которое выделяет проводник с то-ком в окружающую среду, был впервые установлен эксперименталь-но английским ученым Д. Джоу-лем (1818-1889) и русским ученым Э. X. Ленцем (1804-1865). Закон Джоуля — Ленца был сформулиро-ван следующим образом: количество теплоты, выделяемое проводником с током, равно произведению квад-рата силы тока, сопротивления про-водника и времени прохождения то-ка по проводнику:

(3)

Мы получили этот закон с по-мощью рассуждений, основанных на законе сохранения энергии. Формула (3) позволяет вычислить количе-ство теплоты, выделяемое на любом участке цепи, содержащем какие угодно проводники.

Мощность тока.

Любой электри-ческий прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу вре-мени. Поэтому наряду с работой то-ка очень важное значение имеет по-нятие мощность тока. Мощность то-ка равна отношению работы тока за время t к этому интервалу времени.

Согласно этому определению

(4)

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если исполь-зовать закон Ома для участка цепи:

На большинстве приборов ука-зана потребляемая ими мощность.

Прохождение по проводнику электрического тока сопровождается выделением в нем энергии. Эта энер-гия определяется работой тока: про-изведением перенесенного заряда и напряжения на концах проводника.

ЭЛЕКТРОДВИЖУЩАЯ СИЛА.

Любой источник тока характеризуется электродвижущей силой, или ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?

Соедините проводником два ме-таллических шарика, несущих за-ряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис. 1). Но этот ток будет очень кратковремен-ным. Заряды быстро нейтрализуют-ся, потенциалы шариков станут одинаковыми, и электрическое поле ис-чезнет.

Сторонние силы.

Для того чтобы ток был постоянным, надо поддер-живать постоянное напряжение меж-ду шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со сто-роны электрического поля шариков. В таком устройстве на заряды, кро-ме электрических сил, должны дей-ствовать силы не электростатического происхождения (рис. 2). Одно лишь электрическое поле заряжен-ных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростати-ческого происхождения (т. е. кулоновских), называют сторонними си-лами.

Вывод о необходимости сторон-них сил для поддержания посто-янного тока в цепи станет еще оче-виднее, если обратиться к закону сохранения энергии. Электростатиче-ское поле потенциально. Работа это-го поля при перемещении заряжен-ных частиц вдоль замкнутой электри-ческой цепи равна нулю. Прохож-дение же тока по проводникам сопровождается выделением энер-гии — проводник нагревается. Сле-довательно, в любой цепи должен быть какой-то источник энергии, по-ставляющий ее в цепь. В нем, по-мимо кулоновских сил, обязательно должны действовать сторонние не- потенциальные силы. Работа этих сил вдоль замкнутого контура долж-на быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энер-гию и отдают ее затем проводникам электрической цепи.

Сторонние силы приводят в дви-жение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальваниче-ских элементах, аккумуляторах и т.д.

При замыкании цепи создается электрическое поле во всех провод-никах цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрица-тельному), а во всей остальной цепи их приводит в движение электриче-ское поле (см. рис. 2).

Аналогия между электрическим током и течением жидкости.

Чтобы лучше понять механизм возникнове-ния тока, обратимся к сходству меж-ду электрическим током в провод-нике и течением жидкости по трубам.

На любом участке горизонталь-ной трубы жидкость течет за счет разности давлений на концах участ-ка. Жидкость перемещается в сторо-ну уменьшения давления. Но сила давления в жидкости — это вид сил упругости, которые являются потен-циальными, подобно кулоновским силам. Поэтому работа этих сил на замкнутом пути равна нулю и одни эти силы не способны вызвать длительную циркуляцию жидкости по трубам. Течение жидкости сопро-вождается потерями энергии вслед-ствие действия сил трения. Для цир-куляции воды необходим насос.

Поршень этого насоса действует на частички жидкости и создает по-стоянную разность давлений на вхо-де и выходе насоса (рис. 3). Благодаря этому жидкость течет по трубе. Насос подобен источнику тока, а роль сторонних сил играет сила, действующая на воду со стороны движущегося поршня. Внутри на-соса жидкость течет от участков с меньшим давлением к участкам с большим давлением. Разность дав-лений аналогична напряжению.

Природа сторонних сил.

Природа сторонних сил может быть разнооб-разной. В генераторах электростанций сторонняя сила — это сила, дей-ствующая со стороны магнитного поля на электроны в движущемся проводнике. Об этом кратко гово-рилось в курсе физики VIII класса.

В гальваническом элементе, на-пример элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кис-лоте. В раствор переходят положи-тельно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной — кислоте.) Между цинковым и мед-ным электродами появляется раз-ность потенциалов, которая обуслов-ливает ток в замкнутой электриче-ской цепи.

Электродвижущая сила.

Дейст-вие сторонних сил характеризуется важной физической величиной, на-зываемой электродвижущей силой (сокращенно ЭДС).

Электродви-жущая сила в замкнутом контуре представляет собой отношение рабо-ты сторонних сил при перемещении заряда вдоль контура к заряду:

Электродвижущую силу выража-ют в вольтах.

Можно говорить об электродви-жущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единич-ного заряда) не во всем контуре, а только на данном участке. Электро-движущая сила гальванического эле-мента есть работа сторонних сил при перемещении единичного положи-тельного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть вы-ражена через разность потенциалов, так как сторонние силы не потенциальные и их работа зависит от формы траектории. Так, например, работа сторонних сил при переме-щении заряда между клеммами ис-точника тока вне самого источника равна нулю.

Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совер-шают работу 1,5 Дж при переме-щении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС

Рис №1 Рис №2 Рис №3

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Электродвижущая сила опреде-ляет силу тока в замкнутой электри-ческой цепи с известным сопротив-лением.

Спомощью закона сохранения энергии найдем зависимость силы тока от ЭДС и сопротивления.

Рассмотрим простейшую полную (замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или гене-ратора) и резистора сопротивле-нием R (рис. 1). Источник тока имеет ЭДС εи сопротивление r. Сопротивление источника часто на-зывают внутренним сопротивлением в отличие от внешнего сопротивле-ния R цепи. В генераторе r — это сопротивление обмоток, а в гальва-ническом элементе — сопротивление раствора электролита и электродов.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R + r цепи. Эта связь может быть установлена теоретически, если использовать за-кон сохранения энергии и закон Джоуля — Ленца.

Пусть за время t через попе-речное сечение проводника пройдет электрический заряд q. Тогда рабо-ту сторонних сил при перемещении заряда?qможно записать так: А ст = ε · q. Согласно определению силы тока q = It. Поэтому

(1)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых r и R, выделяется некоторое количество теплоты. По закону Джоуля — Лен-ца оно равно:

Q = I 2 R · t + I 2 r · t. (2)

Согласно закону сохранения энергии A = Q. Приравнивая (1) и (2), получим:

ε = IR + Ir (3)

Произведение силы тока и сопро-тивления участка цепи часто назы-вают падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внут-реннем и внешнем участках замкну-той цепи.

Обычно закон Ома для замкну-той цепи записывают в форме

(4)

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Формула заряда конденсатора

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

Заряд конденсатора связан с энергией поля (W) внутри него:

Из формулы (6) следует, что заряд можно выразить как:

Рассмотрим последовательное соединение из N конденсаторов (рис. 1).

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

Примеры решения задач по теме «Заряд конденсатора»

ru.solverbook.com

Формула емкости конденсатора, С

Если q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками, то величина C, равная:

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

где – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

ru.solverbook.com

Ёмкость конденсатора — Все формулы

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

Ёмкость цилиндрического конденсатора:

Ёмкость плоского конденсатора:

Емкость сферического конденсатора:

В формуле мы использовали:

Электрическая ёмкость (ёмкость конденсатора)

Потенциал проводника (Напряжение)

Потенциал

Относительная диэлектрическая проницаемость

Электрическая постоянная

Площадь одной обкладки

Расстояние между обкладками

xn--b1agsdjmeuf9e.xn--p1ai

Заряд конденсатора, теория и примеры задач

Определение и заряд конденсатора

Возможность конденсатора накопить электрический заряд зависит от главной характеристики конденсатора – емкости (C).

По своему назначению конденсатор можно уподобить батарейке. Однако существует принципиальное отличие в принципах работы этих элементов. Отличаются, также максимальные емкости и скорости зарядки и разряда конденсатора и батарейки.

Если к конденсатору присоединить источник напряжения (рис.1), то на одной из пластин конденсатора станут накапливаться отрицательные заряды (электроны), на другой положительные частицы (положительные ионы). Между обкладками конденсатора находится диэлектрик, вследствие этого, заряды не могут перебраться на противоположную пластину. Однако заметим, что электроны двигаются от источника тока до пластины конденсатора.

При первоначальном соединении конденсатора и источника тока на обкладках конденсатора много свободного места. Это означает, что сопротивление току этот момент времени минимально, сам ток максимален. В ходе зарядки конденсатора сила тока в цепи постепенно падает, до того момента пока не закончится свободное место на обкладках. При полной зарядке конденсатора ток в цепи прекратится.

Время, которое затрачивается на зарядку конденсатора от нулевого заряда (максимального тока) до полностью заряженного конденсатора (минимальная или нулевая сила тока) называют переходным периодом заряда конденсатора. На практике процесс зарядки конденсатора считают законченным, если сила тока уменьшилась до 1% от начальной величины.

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

Примеры решения задач


ru.solverbook.com

Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

При последовательном соединении конденсаторов емкость батареи вычисляют как:

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

Примеры решения задач по теме «Электроемкость конденсатора»

ru.solverbook.com

Как найти заряд конденсатора 🚩 как определить величину заряда 🚩 Естественные науки

В обычном (без плагинов и модов) варианте Minecraft такого понятия, как конденсатор, не существует. Вернее, устройство, выполняющее его функции, имеется, но название у него совершенно другое — компаратор. Некоторая путаница в этом плане произошла еще в период разработки такого прибора. Сперва — в ноябре 2012-го — представители Mojang (компании-создателя игры) объявили о скором появлении в геймплее конденсатора. Однако через месяц они высказались уже о том, что как такового этого прибора не будет, а вместо него в игре будет компаратор.

Подобное устройство существует для проверки заполненности расположенных позади него контейнеров. Таковыми могут быть сундуки (в том числе в виде ловушек), варочные стойки, раздатчики, выбрасыватели, печи, загрузочные воронки и т.п.

Помимо этого, его часто используют для сравнения двух сигналов редстоуна между собою — он выдает результат в соответствии с тем, как было запрограммировано в данной цепи, и с тем, какой режим выбран для самого механизма. В частности, компаратор может разрешить зажигание факела, если первый сигнал больше либо равен другому.

Также порой конденсатор-компаратор устанавливают рядом с проигрывателем, подключая его входом к последнему. Когда в звуковоспроизводящем устройстве проигрывается какая-либо пластинка, вышеупомянутый прибор будет выдавать сигнал, равный по силе порядковому номеру диска.

Скрафтить такой компаратор несложно, если имеется достаточно трудно добываемый ресурс — адский кварц. Его надо поставить в центральный слот верстака, над ним и по бокам от него установить три красных факела, а в нижнем ряду — такое же количество каменных блоков.

В большом количестве модов попадаются конденсаторы, имеющие самое разное предназначение. К примеру, в Galacticraft, где у геймеров есть возможность слетать на многие планеты для ознакомления с тамошними реалиями, появляется рецепт крафта кислородного конденсатора. Он служит для создания механизмов вроде коллектора и накопителя газа для дыхания, а также рамки воздушного шлюза. Для его изготовления четыре стальных пластины размещаются по углам верстака, в центре — оловянная канистра, а под нею — воздуховод. Остальные три ячейки занимают пластины из олова.

В JurassiCraft существует конденсатор потока — некий телепорт, позволяющий переместиться в удивительный игровой мир, кишащий динозаврами. Для создания такого прибора нужно поместить в два крайних вертикальных ряда шесть железных слитков, а в средний — два алмаза и между ними единицу пыли редстоуна. Дабы устройство заработало, надо поставить его на свинью либо вагонетку, а затем щелкнуть по нему правой клавишей мыши, быстро запрыгнув туда. При этом требуется поддержание высокой скорости устройства.

С модом Industrial Craft2 у игрока появляется возможность создавать как минимум два вида тепловых конденсаторов — красный и лазуритовый. Они служат исключительно для охлаждения ядерного реактора и для накопления его энергии и хороши для циклических сооружений такого типа. Остужаются они сами, соответственно, красной пылью или лазуритом.

Красный теплоконденсатор делается из семи единиц пыли редстоуна — их надо установить в виде буквы П и расставить под ними теплоотвод и теплообменник. Крафтинг же лазуритового устройства чуть посложнее. Для его создания четыре единицы пыли редстоуна расставляются по углам станка, в центр пойдет блок лазурита, по бокам от него — два красных тепловых конденсатора, сверху — теплоотвод реактора, а снизу — его же теплообменник.

В ThaumCraft, где сделан акцент на настоящем чародействе, конденсаторы тоже используются. Например, один из них — кристаллический — существует для аккумуляции и отдачи магии. Причем, что интересно, создавать его и многие другие вещи разрешено лишь после изучения особого элемента геймплея — исследования, проводимого за специальным столом и с определенными приборами.

Делается такой конденсатор из восьми тусклых осколков, в центр которых на верстаке помещается мистический деревянный блок. К сожалению, подобный прибор — равно как и его составляющие — просуществовал лишь до ThaumCraft 3, а в четвертой версии мода был упразднен.

www.kakprosto.ru

Соединение конденсаторов: формулы

Содержание:
  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Смешанное соединение

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

С=Co*ε, где:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

C=(2π*l*R*ε)/d, где:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

C=(4π*l*R1*R2*ε)/(R2-R1), где:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Способы соединения элементов

Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.

Параллельное соединение

Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.

При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:

где C1-Cn – параметры деталей, участвующих в параллельном соединении.

Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.

Последовательное соединение

Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.

При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.

Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.

Рассчитываются эти параметры следующим образом:

  • Допустимое напряжение:

Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;

  • Общая ёмкость:

1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.

Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).

Смешанное соединение

Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:

  1. определяются группы элементов, соединённые параллельно;
  2. для каждой группы в отдельности рассчитывается эквивалентные значения;
  3. рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
  4. получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.

Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.

Видео

Цепи постоянного тока

, содержащие резисторы и конденсаторы

1. Устройство синхронизации в системе стеклоочистителей прерывистого действия автомобиля основано на постоянной времени RC и использует конденсатор емкостью 0,500 мкФ и переменный резистор. В каком диапазоне R должно изменяться для достижения постоянных времени от 2,00 до 15,0 с?

2. Кардиостимулятор срабатывает 72 раза в минуту, каждый раз, когда конденсатор емкостью 25,0 нФ заряжается (батареей, включенной последовательно с резистором) до 0,632 от его полного напряжения.В чем ценность сопротивления?

3. Продолжительность фотографической вспышки связана с постоянной времени RC , которая составляет 0,100 мкс для определенной камеры. (а) Если сопротивление импульсной лампы составляет 0,0400 Ом во время разряда, каков размер конденсатора, обеспечивающего его энергию? (б) Какова постоянная времени зарядки конденсатора, если сопротивление зарядки составляет 800 кОм?

4. Конденсаторы емкостью 2,00 и 7,50 мкФ могут быть подключены последовательно или параллельно, как и конденсатор емкостью 25 мкФ.0- и резистор 100 кОм. Вычислите четыре постоянные времени RC , которые можно получить при последовательном соединении полученной емкости и сопротивления.

5. После двух постоянных времени, какой процент конечного напряжения, ЭДС, находится на первоначально незаряженном конденсаторе C , заряженном через сопротивление R ?

6. Резистор 500 Ом, незаряженный конденсатор 1,50 мкФ и ЭДС 6,16 В соединены последовательно. а) Каков начальный ток? (b) Какова постоянная времени RC ? (c) Каков ток через одну постоянную времени? (d) Какое будет напряжение на конденсаторе после одной постоянной времени?

7.Дефибриллятор сердца, используемый на пациенте, имеет постоянную времени RC 10,0 мс из-за сопротивления пациента и емкости дефибриллятора. (a) Если дефибриллятор имеет емкость 8,00 мкФ, каково сопротивление пути, проходящего через пациента? (Вы можете пренебречь емкостью пациента и сопротивлением дефибриллятора.) (B) Если начальное напряжение составляет 12,0 кВ, сколько времени потребуется, чтобы упасть до 6,00 × 10 2 В?

8. У монитора ЭКГ постоянная времени RC должна быть меньше 1.00 × 10 2 мкс, чтобы иметь возможность измерять изменения напряжения за небольшие промежутки времени. (а) Если сопротивление цепи (в основном из-за сопротивления груди пациента) составляет 1,00 кОм, какова максимальная емкость цепи? (б) Будет ли сложно на практике ограничить емкость до значения, меньшего, чем значение, указанное в (а)?

9. На рис. 7 показано, как истекающий резистор используется для разряда конденсатора после отключения электронного устройства, что позволяет человеку работать с электроникой с меньшим риском поражения электрическим током.а) Что такое постоянная времени? (b) Сколько времени потребуется, чтобы снизить напряжение на конденсаторе до 0,250% (5% от 5%) от его полного значения после начала разряда? (c) Если конденсатор заряжен до напряжения В 0 через сопротивление 100 Ом, рассчитайте время, необходимое для повышения до 0,865 В 0 (Это примерно две постоянные времени)

Рисунок 7.

10. Используя точную экспоненциальную обработку, найдите, сколько времени требуется, чтобы разрядить конденсатор емкостью 250 мкФ через резистор 500 Ом до 1.00% от исходного напряжения.

11. Используя точную экспоненциальную обработку, найдите, сколько времени требуется для зарядки первоначально незаряженного конденсатора 100 пФ через резистор 75,0 МОм до 90,0% от его конечного напряжения.

12. Integrated Concepts Если вы хотите сфотографировать пулю, летящую со скоростью 500 м / с, то очень короткая вспышка света, производимая разрядом RC через импульсную лампу, может ограничить размытие. Предполагая, что перемещение 1,00 мм за одну постоянную RC является приемлемым, и учитывая, что вспышка приводится в действие конденсатором емкостью 600 мкФ, какое сопротивление в импульсной лампе?

13. Integrated Concepts Мигающая лампа в рождественской серьге основана на разряде конденсатора RC через его сопротивление. Эффективная продолжительность вспышки составляет 0,250 с, в течение которых она дает в среднем 0,500 Вт при среднем 3,00 В. а) Какую энергию она рассеивает? б) Сколько заряда проходит через лампу? (c) Найдите емкость. (г) Какое сопротивление лампы?

14. Integrated Concepts Конденсатор емкостью 160 мкФ, заряженный до 450 В, разряжается через 31.Резистор 2 кОм. (а) Найдите постоянную времени. (b) Рассчитайте повышение температуры резистора, учитывая, что его масса составляет 2,50 г, а его удельная теплоемкость [латекс] 1,67 \ frac {\ text {кДж}} {\ text {кг} \ cdotº \ text {C}} \\ [/ latex], учитывая, что большая часть тепловой энергии сохраняется за короткое время разряда. (c) Рассчитайте новое сопротивление, предполагая, что это чистый углерод. (d) Кажется ли это изменение сопротивления значительным?

15. Необоснованные результаты (a) Рассчитайте емкость, необходимую для получения постоянной времени RC , равной 1.00 × 10 3 с резистором 0,100 Ом. б) Что неразумного в этом результате? (c) Какие допущения ответственны?

16. Создай свою проблему Рассмотрим вспышку фотоаппарата. Постройте задачу, в которой вы вычисляете размер конденсатора, который накапливает энергию для лампы-вспышки. Среди факторов, которые необходимо учитывать, — это напряжение, приложенное к конденсатору, энергия, необходимая для вспышки, и соответствующий заряд, необходимый для конденсатора, сопротивление импульсной лампы во время разряда и желаемая постоянная времени RC .

17. Создайте свою проблему Рассмотрим перезаряжаемый литиевый элемент, который будет использоваться для питания видеокамеры. Постройте задачу, в которой вы вычисляете внутреннее сопротивление элемента во время нормальной работы. Кроме того, рассчитайте минимальное выходное напряжение зарядного устройства, которое будет использоваться для зарядки литиевого элемента. Среди факторов, которые следует учитывать, — ЭДС и полезное напряжение на клеммах литиевого элемента, а также ток, который он должен обеспечивать в видеокамере.

Расчет тока через группу конденсаторов

Каплевидный колпачок: Во многих случаях для выполнения различных задач в одной и той же точке цепи требуются конденсаторы различных технологий.Одна из наиболее распространенных комбинаций — алюминиевые электролитические и пленочные конденсаторы. Алюминиевые электролитические конденсаторы обрабатывают основную часть емкости, в то время как пленочные конденсаторы помогают забирать часть тока от алюминиевых электролитиков, при этом фильтруя более высокие частоты, которые не могут быть с алюминиевыми электролитиками.

Расчет текущего

Расчет тока через батарею конденсаторов — не сложный процесс, но к нему часто подходят неправильно, что приводит к более короткому сроку службы выбранных конденсаторов или чрезмерно спроектированной схеме, при которой теряются деньги и пространство.Каждый набор требований имеет золотую середину, где правильные значения емкости, частоты и напряжения позволяют получить наиболее эффективную схему с наибольшим сроком службы. Приведенные ниже шаги содержат уравнения и параметры, на которые следует обратить внимание при выборе конденсаторов, выдерживающих требования к напряжению, току и частоте.

Первым шагом является вычисление импеданса каждого конденсатора, который выбран для установки в батарею, с использованием приведенного ниже уравнения. Исходные конденсаторы могут быть выбраны на основе оценки того, как их параметры (ESR и ток пульсации) будут влиять на требования схемы (напряжение, частота, ток пульсаций).

Значения ESR можно получить из таблиц данных или напрямую от производителя, если они не указаны в таблице. KEMET предлагает KSIM, инструмент моделирования, который предоставляет такие параметры, как ESR, емкость, ток, напряжение и другие характеристики.

ESR необходимо указывать на частоте приложения. В большинстве таблиц данных указано ESR при 100 Гц, 10 кГц или 100 кГц, как показано на рисунках 1 и 2. Использование ESR, измеренного на другой частоте, приведет к завышению или недооценке конструкции.ESR определяет, какой ток потребляет деталь, и будет меняться при повышении и понижении частоты.

Рисунок 1: https://content.kemet.com/datasheets/KEM_F3046_C4AE_RADIAL.pdf

Рисунок 2: https://content.kemet.com/datasheets/KEM_A4011_PEG124.pdf

После того, как все импедансы каждого конденсатора рассчитаны, используйте следующее уравнение, чтобы найти общий импеданс батареи.

Следующий шаг — выяснить, какая часть общего тока через батарею будет проходить через каждый отдельный конденсатор или конденсаторную ветвь.Следующее уравнение показывает, как решить эту проблему.

Обратитесь к таблице данных или другим инструментам, чтобы проверить, какой будет ток пульсации для каждой части (пример показан на рисунке 3). Это значение также будет варьироваться в зависимости от частоты и должно быть больше расчетного значения, если вы хотите гарантировать срок службы, указанный производителем в таблице данных.

Рисунок 3: https://content.kemet.com/datasheets/KEM_A4011_PEG124.pdf

Если рассчитанное значение выше, чем указанная текущая мощность, указанная в таблице данных или поставщиком, есть несколько вариантов.

  • Проверьте на производстве, как это может повлиять на срок службы детали.
  • Добавьте дополнительные детали параллельно, чтобы уменьшить ток, идущий на детали в банке.
  • Посмотрите на разные части, у которых есть более высокие возможности.
    • Примечание. Конденсаторы с более низкими значениями ESR будут иметь более высокие характеристики пульсации тока.

Ниже приведен пример, который поможет определить, как решить эту проблему.

Параметры

  • Общая необходимая емкость: 800 мкФ
  • Приложенное напряжение: 450 В постоянного тока
  • Пульсационный ток: 20 шт.
  • Частота: 10 кГц
  • Температура окружающей среды: 65 ° C
  • Нет необходимости в прекращении или занимаемом месте

Первая оценка включает следующую настройку.Детали были выбраны на основе значений общей емкости, номинального напряжения и допустимого тока, указанных в таблицах данных.

1. Получите значения ESR из таблиц данных для деталей на основе конкретной используемой частоты. Частота, используемая в этом расчете, составляет 10 кГц.

http://www.kemet.com/Lists/ProductCatalog/Attachments/395/KEM_A4026_ALC40.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Примечание : Не во всех таблицах данных указано СОЭ на используемой частоте, но имейте в виду, что при уменьшении частоты СОЭ увеличивается.

2. Используйте следующие уравнения, чтобы найти полное сопротивление конденсаторов, подключенных параллельно.

3. Используйте следующее уравнение, чтобы найти полное сопротивление банка.

4. Используйте следующие уравнения, чтобы найти ток через каждый конденсатор.

5. Вернитесь к таблице данных, чтобы узнать о текущих возможностях каждой детали, чтобы то, что помещается на деталь (расчетное значение), было меньше, чем то, что указано в таблице.

http://www.kemet.com/Lists/ProductCatalog/Attachments/395/KEM_A4026_ALC40.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

На алюминиевом электролитическом элементе слишком большой ток, поэтому необходимо выбирать разные детали. Важно искать алюминиевые электролитические детали с более высокими значениями ESR и пленочные конденсаторы с более низкими значениями ESR, чтобы отводить больше тока от алюминиевых электролитов.

Параметры (без изменений)

  • Общая необходимая емкость: 800 мкФ
  • Приложенное напряжение: 450 В постоянного тока
  • Ток пульсации: 20Arms
  • Частота: 10 кГц
  • Температура окружающей среды: 65 ° C
  • Нет необходимости в прекращении или занимаемом месте

Вторая оценка включает следующую настройку. Детали были выбраны на основе значений общей емкости, номинального напряжения и допустимого тока, указанных в таблицах данных.Они также были выбраны с алюминиевыми электролитическими конденсаторами с более высокими значениями ESR и пленочными конденсаторами с более низкими значениями ESR для подачи большего тока на пленочные конденсаторы.

1. Получите значения ESR из таблиц данных для деталей на основе конкретной используемой частоты. Частота, используемая в этом расчете, составляет 10 кГц.

http://www.kemet.com/Lists/ProductCatalog/attachments/726/KEM_A4075_ALS70_71.pdf

http: // www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Примечание : Не во всех таблицах данных указано СОЭ на используемой частоте, но имейте в виду, что при уменьшении частоты СОЭ увеличивается.

2. Используйте следующие уравнения, чтобы найти полное сопротивление конденсаторов, подключенных параллельно.

3. Используйте следующее уравнение, чтобы найти полное сопротивление банка.

4. Используйте следующие уравнения, чтобы найти ток через каждый конденсатор.

5. Вернитесь к таблице данных, чтобы узнать о текущих возможностях каждой детали, чтобы то, что помещается на деталь (расчетное значение), было меньше, чем то, что указано в таблице.

http://www.kemet.com/Lists/ProductCatalog/attachments/726/KEM_A4075_ALS70_71.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Все рассчитанные значения ниже текущих возможностей, перечисленных в таблицах данных, так что это хорошая комбинация частей.

В заключение, использование первых четырех конденсаторов (серии ALC70 и C4AE) приводит к слишком большому току на алюминиево-электролитических конденсаторах. При такой конфигурации эти детали будут нагреваться, и их срок службы будет намного короче, чем ожидалось. Вторая конфигурация (серии ALC70 и C4AE) — хорошее решение, и срок службы деталей не пострадает. Если требуются детали меньшего размера, поиск можно продолжить, пробуя различные значения / конфигурации.

Конденсаторы

— учимся.sparkfun.com

Добавлено в избранное Любимый 75

Теория конденсаторов

Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно пропустить, если они вызывают у вас головную боль.

Как делается конденсатор

Схематический символ конденсатора на самом деле очень похож на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но между ними находится диэлектрик, чтобы они не соприкасались.

Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.

Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.

Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.

Емкость конденсатора — сколько в нем фарад — зависит от того, как он устроен. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.

Как работает конденсатор

Электрический ток — это поток электрического заряда, который электрические компоненты используют, чтобы загораться, вращаться или делать то, что они делают.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее заряженной положительно.

Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Неподвижные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на таком конденсаторе, крышка накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.

Зарядка и разрядка

Когда положительный и отрицательный заряды сливаются на пластинах конденсатора, конденсатор становится на заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд — потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

В какой-то момент обкладки конденсатора будут настолько заряжены, что просто не смогут принимать больше. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Здесь в игру вступает емкость , (фарады) конденсатора, которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.

Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они выйдут из конденсатора, и разрядит .

Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет накопление одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.

Расчет заряда, напряжения и тока

Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда конденсатора хранит в настоящее время , зависит от разности потенциалов (напряжения) между его пластинами. Это соотношение между зарядом, емкостью и напряжением можно смоделировать с помощью следующего уравнения:

Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличивать или уменьшать заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.

Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.

Расчет тока

Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , проходящего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро растет, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.

(Это некрасиво и касается вычислений. Это не все, что необходимо, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, так что переходите к следующей странице, если вам не нравится это уравнение. .) Уравнение для расчета тока через конденсатор:

Часть этого уравнения dV / dt представляет собой производную (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно, , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.



← Предыдущая страница
Условные обозначения и единицы

10.6: RC Circuits — Physics LibreTexts

При использовании камеры со вспышкой зарядка конденсатора, питающего вспышку, занимает несколько секунд.Световая вспышка разряжает конденсатор за крошечные доли секунды. Почему зарядка занимает больше времени, чем разрядка? Этот вопрос и несколько других явлений, связанных с зарядкой и разрядкой конденсаторов, обсуждаются в этом модуле.

Цепи сопротивления и емкости

Цепь RC — это цепь, содержащая сопротивление и емкость. Как показано в разделе «Емкость», конденсатор — это электрический компонент, который накапливает электрический заряд, накапливая энергию в электрическом поле.

На рисунке \ (\ PageIndex {1a} \) показана простая схема RC , в которой используется источник постоянного напряжения \ (ε \), резистор \ (R \), конденсатор \ (C \), и двухпозиционный переключатель. Схема позволяет конденсатору заряжаться или разряжаться в зависимости от положения переключателя. Когда переключатель перемещается в положение \ ( A \) , конденсатор заряжается, в результате получается схема, показанная на рисунке \ (\ PageIndex {1b} \). Когда переключатель перемещается в положение B , конденсатор разряжается через резистор.

Рисунок \ (\ PageIndex {1} \): (a) Схема RC с двухполюсным переключателем, который можно использовать для зарядки и разрядки конденсатора. (b) Когда переключатель перемещается в положение A , схема сводится к простому последовательному соединению источника напряжения, резистора, конденсатора и переключателя. (c) Когда переключатель перемещается в положение B , схема сводится к простому последовательному соединению резистора, конденсатора и переключателя. Источник напряжения снимается с цепи.

Зарядка конденсатора

Мы можем использовать правило петли Кирхгофа, чтобы понять заряд конденсатора. Это приводит к уравнению \ (\ epsilon — V_R — V_C = 0 \). Это уравнение можно использовать для моделирования заряда как функции времени при зарядке конденсатора. Емкость определяется как \ (C = q / V \), поэтому напряжение на конденсаторе равно \ (V_C = \ frac {q} {C} \). Согласно закону Ома падение потенциала на резисторе равно \ (V_R = IR \), а ток определяется как \ (I = dq / dt \).

\ [\ epsilon — V_R — V_C = 0, \]

\ [\ epsilon — IR — \ frac {q} {C} = 0, \]

\ [\ epsilon — R \ frac {dq} {dt} — \ frac {q} {C} = 0.{- \ frac {t} {\ tau}} \ right). \]

График зависимости заряда конденсатора от времени показан на рисунке \ (\ PageIndex {2a} \). Сначала обратите внимание, что по мере приближения времени к бесконечности экспонента стремится к нулю, поэтому заряд приближается к максимальному заряду \ (Q = C \ epsilon \) и имеет единицы кулонов. Единицы измерения RC — секунды, единицы времени. Эта величина известна как постоянная времени :

.

\ [\ tau = RC. \]

В момент времени \ (t = \ tau = RC \) заряд равен \ (1 — e ^ {- 1} = 1 — 0. {- t / \ tau } \).{-t / \ tau}) \).

Разряд конденсатора

Когда переключатель на рисунке \ (\ PageIndex {3a} \) перемещается в положение B , схема сокращается до схемы в части (c), и заряженному конденсатору позволяют разрядиться через резистор. График зависимости заряда конденсатора от времени показан на рисунке \ (\ PageIndex {3a} \). Использование правила петли Кирхгофа для анализа цепи при разряде конденсатора приводит к уравнению \ (- V_R -V_C = 0 \), которое упрощается до \ (IR + \ frac {q} {C} = 0 \).{-t / \ tau}. \]

Отрицательный знак показывает, что ток течет в направлении, противоположном току, наблюдаемому при зарядке конденсатора. На рисунке \ (\ PageIndex {3b} \) показан пример графика зависимости заряда от времени и тока от времени. График зависимости разности напряжений на конденсаторе и разницы напряжений на резисторе от времени показан на рисунках \ (\ PageIndex {3c} \) и \ (\ PageIndex {3d} \). Обратите внимание, что величины заряда, тока и напряжения экспоненциально уменьшаются, приближаясь к нулю с увеличением времени.

Рисунок \ (\ PageIndex {3} \): (a) Заряд конденсатора в зависимости от времени, когда конденсатор разряжается. (б) Ток через резистор в зависимости от времени. (c) Разность напряжений на конденсаторе. (d) Разность напряжений на резисторе.

Теперь мы можем объяснить, почему вспышка камеры , упомянутой в начале этого раздела, требует гораздо больше времени для зарядки, чем для разрядки: сопротивление при зарядке значительно больше, чем при разрядке. Внутреннее сопротивление батареи составляет большую часть сопротивления во время зарядки.По мере старения аккумулятора возрастающее внутреннее сопротивление делает процесс зарядки еще медленнее.

Пример \ (\ PageIndex {2} \): Осциллятор релаксации

Одним из применений схемы RC является релаксационный генератор, как показано ниже. Релаксационный генератор состоит из источника напряжения, резистора, конденсатора и неоновой лампы. Неоновая лампа действует как разомкнутая цепь (бесконечное сопротивление), пока разность потенциалов на неоновой лампе не достигнет определенного напряжения.При таком напряжении лампа действует как короткое замыкание (нулевое сопротивление), и конденсатор разряжается через неоновую лампу и излучает свет. В показанном релаксационном генераторе источник напряжения заряжает конденсатор до тех пор, пока напряжение на конденсаторе не станет 80 В. Когда это происходит, неон в лампе выходит из строя и позволяет конденсатору разряжаться через лампу, создавая яркую вспышку. После того, как конденсатор полностью разрядится через неоновую лампу, он снова начинает заряжаться, и процесс повторяется.{-t / \ tau}) = ln \ left (1 — \ frac {V_C (t)} {\ epsilon} \ right), \]

\ [t = — \ tau ln \ left (1 — \ frac {V_C (t)} {\ epsilon} \ right) = -5.05 \, s \ cdot ln \ left (1 — \ frac {80 \, V } {100 \, V} \ right) = 8.13 \, s. \]

Значение

Одним из применений генератора релаксации является управление световыми индикаторами, которые мигают с частотой, определяемой значениями для R и C . В этом примере неоновая лампа будет мигать каждые 8,13 секунды с частотой \ (f = \ frac {1} {T} = \ frac {1} {8.13 \, s} = 0,55 \, Гц \). Осциллятор релаксации имеет много других практических применений. Он часто используется в электронных схемах, где неоновая лампа заменяется транзистором или устройством, известным как туннельный диод. Описание транзистора и туннельного диода выходит за рамки этой главы, но вы можете рассматривать их как переключатели, управляемые напряжением. Обычно это разомкнутые переключатели, но при подаче правильного напряжения переключатель замыкается и проводит ток. «Выключатель» можно использовать для включения другой цепи, включения света или запуска небольшого двигателя.Осциллятор релаксации может быть использован для того, чтобы заставить мигать поворотники вашего автомобиля или ваш мобильный телефон вибрировать.

Цепи RC находят множество применений. Их можно эффективно использовать в качестве таймеров для таких приложений, как стеклоочистители прерывистого действия, кардиостимуляторы и стробоскопы. В некоторых моделях стеклоочистителей прерывистого действия используется переменный резистор для регулировки интервала между движениями стеклоочистителя. Увеличение сопротивления увеличивает постоянную времени RC , что увеличивает время между срабатываниями дворников.

Еще одно приложение — кардиостимулятор . Частота сердечных сокращений обычно контролируется электрическими сигналами, которые заставляют сердечные мышцы сокращаться и перекачивать кровь. Когда сердечный ритм ненормален (сердцебиение слишком высокое или слишком низкое), для исправления этого нарушения можно использовать кардиостимуляторы. У кардиостимуляторов есть датчики, которые обнаруживают движение тела и дыхание, чтобы увеличить частоту сердечных сокращений во время физических нагрузок, таким образом удовлетворяя повышенную потребность в крови и кислороде, а временная схема RC может использоваться для контроля времени между сигналами напряжения, подаваемыми на сердце.

Забегая вперед к изучению цепей переменного тока (цепей переменного тока), напряжения переменного тока изменяются как синусоидальные функции с определенными частотами. Ученые часто регистрируют периодические изменения напряжения или электрических сигналов. Эти сигналы напряжения могут исходить от музыки, записанной с помощью микрофона, или от атмосферных данных, собранных радаром. Иногда эти сигналы могут содержать нежелательные частоты, известные как «шум». RC Фильтры могут использоваться для фильтрации нежелательных частот.

В области изучения электроники популярное устройство, известное как таймер 555, выдает синхронизированные импульсы напряжения. Время между импульсами контролируется схемой RC . Это лишь некоторые из бесчисленных применений схем RC .

Пример \ (\ PageIndex {2} \): прерывистые работы дворников

Осциллятор релаксации используется для управления парой дворников. Релаксационный генератор состоит из конденсатора емкостью 10,00 мФ и переменного резистора (10,00 кОм), известного как реостат.Ручка, подключенная к переменному резистору, позволяет регулировать сопротивление от \ (0.00 \, \ Omega \) до \ (10.00 \, k \ Omega \). Выход конденсатора используется для управления переключателем, управляемым напряжением. Переключатель обычно разомкнут, но когда выходное напряжение достигает 10,00 В, переключатель замыкается, запитывая электродвигатель и разряжая конденсатор. Двигатель заставляет дворники один раз подметать лобовое стекло, и конденсатор снова начинает заряжаться. На какое сопротивление нужно регулировать реостат при периоде работы щеток стеклоочистителя 10.3 \, \ Omega) ln \ left (1 — \ frac {10 \, V} {12 \, V} \ right) = 179,18 \, s = 2,98 \, мин. \]

Схема RC имеет тысячи применений и очень важна для изучения. Его можно не только использовать для измерения времени в цепях, но и для фильтрации нежелательных частот в цепи и в источниках питания, например, в вашем компьютере, чтобы преобразовать переменное напряжение в постоянное.

Авторы и ссылки

  • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами.Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Мгновенный ток в конденсаторе

Если мы подключим конденсатор к источнику синусоидального напряжения, как на рис. , рис. 1 , Закон Кирхгофа требует, чтобы напряжение на конденсаторе было точно таким же, как приложенное напряжение. в каждое мгновение.

Напряжение на конденсаторе может измениться, только если конденсатор заряжается или разряжается.Следовательно, конденсатор на рисунке 1 должен заряжаться и разряжаться таким образом, чтобы напряжение на нем представляло собой синусоидальную волну, равную приложенному напряжению в каждый момент времени. Поскольку q = Cv,

\ [\ frac {dq} {dt} = C \ frac {dv} {dt} \]

По определению $ i = \ frac {dq} {dt} $. Следовательно,

\ [\ begin {matrix} i = C \ frac {dv} {dt} & {} & \ left (1 \ right) \\\ end {matrix} \]

Поскольку емкость зависит от такого физического таких факторов, как площадь пластин и диэлектрическая проницаемость материала между пластинами, емкость данной цепи не зависит от прошедшего времени.Поскольку мы можем рассматривать C в Уравнении 1 как константу, это уравнение показывает, что мгновенный ток на Рисунке 1 прямо пропорционален скорости, с которой изменяется напряжение на конденсаторе.

Рис. 1 Емкость в цепи переменного тока

Синяя синусоида на Рис. 2 представляет мгновенное напряжение на конденсаторе. Эта кривая показывает, что максимальное напряжение на конденсаторе возникает на π / 2 радиан после максимальной скорости изменения напряжения.В тот момент, когда напряжение на конденсаторе наибольшее, напряжение не растет и не падает. Следовательно, в этот момент мгновенный ток должен быть равен нулю.

Максимальная скорость изменения напряжения возникает, когда синусоида напряжения наиболее крутая. В этот момент напряжение составляет ноль , что указывает на то, что конденсатор только что закончил разряжать свой накопленный заряд и вот-вот начнет накапливать противоположный заряд. Следовательно, мгновенный ток имеет максимальное положительное значение в момент, когда напряжение на конденсаторе изменяется с отрицательной полярности на положительную.

Аналогично , ток достигает максимального отрицательного значения, когда напряжение изменяется с положительной на отрицательную полярность.

Рисунок 2 Мгновенный ток в конденсаторе

Мгновенный ток должен иметь синусоидальную форму, показанную красной кривой на Рисунок 2 , чтобы напряжение на конденсаторе соответствовало приложенному напряжению в каждом мгновенное.

Мгновенный ток имеет максимальное положительное значение в момент, когда напряжение на конденсаторе только начинает увеличиваться с нуля.Когда позже напряжение на емкости достигнет своего положительного пика π / 2 рад, мгновенный ток снова упадет до нуля. Следовательно,

Для того чтобы на конденсаторе возникло синусоидальное напряжение, ток через него должен быть синусоидальной волной, опережающей мгновенное напряжение на π / 2 радиан.

Следовательно, мгновенный ток в цепи Рис. 1 равен

\ [\ begin {matrix} {{i} _ {c}} = {{\ operatorname {I}} _ {m}} \ sin \ left (\ omega t + \ frac {\ pi} {2} \ right) & {} & \ left (2 \ right) \\\ end {matrix} \]

Где фазовый угол ωt + π / 2 измеряется в радианах.

Вы также можете прочитать: Мгновенный ток в идеальном индукторе

Уравнение i-v конденсатора в действии

Конденсатор — один из идеальных элементов схемы. Давайте представим уравнение конденсатора $ i $ — $ v $, чтобы посмотреть, что произойдет с напряжением, если мы включим ток.

Автор Вилли Макаллистер.


Содержание


Куда мы направляемся

Постоянный ток, протекающий через конденсатор, создает напряжение с прямым нарастанием.Такое поведение предсказывается интегральной формой уравнения конденсатора $ i $ — $ v $.


Обычное уравнение конденсатора $ i $ — $ v $ — это $ i $ как функция $ v $ в производной форме,

$ i = \ text C \, \ dfrac {dv} {dt}

$

$ \ text C $ — это емкость , физическое свойство конденсатора. $ \ text C $ — это коэффициент масштабирования, он говорит вам, сколько $ i $ вы получите за заданное количество $ dv / dt $.

Вы можете написать уравнение конденсатора $ i $ — $ v $ наоборот, указав $ v $ как функцию от $ i $.{\, ​​T} i \, dt + v_0 $

$ v_0 $ — напряжение на конденсаторе в начале интеграла при $ t = 0 $.

Обозначение времени немного сложно,

Little $ t $ — непрерывная временная переменная внутри интеграла.

Big $ T $ — это момент, когда вы хотите узнать напряжение на конденсаторе. $ T $ — верхний предел интеграла.

обозначение исчисления: $ di / dt $

$ i = \ text C \, \ dfrac {dv} {dt}

$

$ d $ — это расчетное обозначение «дифференциала» или «крошечного изменения…».{\, ​​T} i \, dt + v_0 $

Замкнутый $ \ int $ — еще один символ из исчисления. Это знак интеграла. По своему значению он аналогичен символу суммирования Sigma $ \ Sigma $. Интеграция противоположна производной.

В уравнении конденсатора знак интеграла означает, что вы складываете последовательность продуктов $ (i \ times dt) $ или (current $ \ times $ за крошечный интервал времени). Когда вы видите верхний и нижний пределы на символе интеграла, это делает его определенным интегралом . Это означает интегрировать в определенном диапазоне $ t $.{\, ​​T} i \, dt + v_0 $

Текущий импульс имеет резкие изменения, поэтому мы собираемся решить для $ v (t) $ тремя отдельными порциями: до, во время и после текущего импульса.

Перед пульсом

Перед текущим импульсом $ (t <0) $ ток не течет, поэтому на $ \ text C $ не накапливается заряд. Следовательно, $ v _ {(t <0)} = 0 $. Нам даже не пришлось использовать это уравнение.

Во время пульса

В любое время во время импульса тока $ (0 \ lt t \ lt 3 \, \ text {ms}) $ ток течет, заряд накапливается на $ \ text C $ и напряжение растет.{\, ​​T} i \, dt + v_0 $

Обратите внимание на временные переменные. Little $ t $ — это непрерывное время, интегрируемая переменная. Big $ T $ — это время, которое может накапливаться. Определенное интегральное время развертки $ t $ от $ 0 $ до некоторого времени накопления, big $ T $. Чтобы найти напряжение в конце импульса, мы устанавливаем большой $ T $ равным $ 3 \, \ text {ms} $.

$ i $ постоянно (верхняя часть импульса плоская) в течение этого времени, поэтому мы можем вывести его за пределы интеграла. Мы сказали, что конденсатор начался с заряда $ 0 $, поэтому $ v_0 $ равен нулю, и мы можем не указывать его.{-6} \, \ text F} = 2000 \, \ text {вольт / секунду} $

Для любой длительности импульса напряжение равно

$ v (T) = 2000 \, \ text {volts / s} \, \ cdot T $

Ширина нашего импульса составляет $ T = 3 \, \ text {ms} $, поэтому напряжение на конденсаторе возрастает до

$ v _ {(T = 3 \, \ text {ms})} = 2000 \, \ text {volts / sec} \, \ cdot \, 0.003 \, \ text {sec} = 6 \, \ text {volts } $

При постоянном токе $ 2 \, \ text {mA} $ напряжение на конденсаторе растет по прямой линии с наклоном $ 2000 \, \ text {volts / sec} $.Напряжение начинается с $ 0 \, \ text V $ и повышается до $ 6 \, \ text {volts} $ после $ 3 \, \ text {ms} $.

После импульса

Эта деталь довольно интересна, если вы не задумывались о ней раньше. После импульса ток падает до $ 0 $. Это означает, что заряд перестает накапливаться на конденсаторе. Это может показаться странным, но поскольку заряд не перемещается, накопившемуся на конденсаторе заряду некуда деваться, поэтому он остается на конденсаторе. Это означает, что нам следует ожидать, что напряжение на конденсаторе останется прежним.{\, ​​T} 0 \, dt + 6 $

Интеграл равен $ 0 $, и мы получаем

.

$ v (T) = 6 \, \ text V \ quad $ для любого значения $ T $.

Когда ток прекращается, заряд остается неизменным, поэтому напряжение на конденсаторе остается постоянным на уровне $ 6 \, \ text V $. Он остается там навсегда.

Общий ответ

Объединение трех частей вместе дает нам $ v (t) $ на нижнем графике,

Эта конфигурация схемы (источник тока, управляющий конденсатором) имеет прозвище.Он называется интегратором , потому что он накапливает или интегрирует заряд с течением времени. Он часто используется для генерации линейного напряжения.

Имитационная модель

Найдите ток и напряжение с помощью этой имитационной модели. Откройте ссылку и щелкните TRAN в верхней строке меню, чтобы выполнить имитацию переходных процессов. Источник тока моделируется как одиночный ИМПУЛЬС. (Дважды щелкните текущий источник, чтобы увидеть, как он определен.) Элементы управления масштабированием находятся в левой части окна светло-серым цветом.

Задача дизайна

Вот еще одна имитационная модель с источником тока, определенным иначе, как форма волны PWL (кусочно-линейная). Время и ток вводятся в виде списка пар [время, ток], разделенных запятыми, например: -1 с, 0,0 с, 0,1 нс, 2 мс, 3 мс, 2 мс, 3 мс, 0,5 с, 0.

Посмотрите, можете ли вы изменить форму волны тока, чтобы напряжение конденсатора упало до $ 0 \ text V $ в другом $ 3 \, \ text {ms} $. Вы собираетесь купить что-то вроде этого,

показать ответ

Дважды щелкните текущий источник и введите его в PWL «список чередующихся значений времени и значений, разделенных запятыми».

-1 с, 0,0 с, 0,1 нс, 2 м, 3 мс, 2 м, 3 мс, -2 м, 6 мс, -2 м, 6 мс, 0,10 с, 0

Источник тока заряжает конденсатор на $ 3 \, \ text {ms} $, и напряжение нарастает. Затем он меняет направление, чтобы снять плату еще за $ 3 \, \ text {ms} $. Напряжение — это еще один рост, на этот раз с отрицательной крутизной, так как заряд удален.

Сводка

Если вы подаете постоянный ток в конденсатор, он создает напряжение, имеющее форму прямой кривой. Мы использовали интегральную форму уравнения конденсатора $ i $ — $ v $, чтобы предсказать это.

Подход к решению этой схемы является хорошим примером того, как инженеры делят проблему на мелкие кусочки, решают каждую простую часть и собирают полный ответ. Когда вы сталкиваетесь с такой сложной проблемой, как эта, первым вашим инстинктом должно быть: «Как я могу разрубить это на части?»

Конденсаторы

и формулы для расчета емкости

Конденсаторы — это пассивные устройства. в электронных схемах для хранения энергии в виде электрического поля.Они комплимент индукторы, хранящие энергию в виде магнитного поля. Идеальный конденсатор является эквивалентом разомкнутой цепи (бесконечное сопротивление) для постоянного тока (DC) и представляет собой импеданс (реактивное сопротивление) для переменные токи (AC), зависящие от частоты тока (или напряжения). Реактивное сопротивление (сопротивление току расход) конденсатора обратно пропорционален частоте сигнала, воздействующего на него. Конденсаторы изначально были называемые «конденсаторами» по причине, восходящей к временам Лейденской банки, когда считалось, что электрические заряды накапливаться на пластинах в процессе конденсации.

Свойство емкости, которая препятствует изменению напряжения, используется для передачи сигналов с компонент с более высокой частотой, предотвращая прохождение сигналов компонентов с более низкой частотой. Обычное применение конденсатор в РЧ (радиочастотной) цепи — это место, где есть напряжение смещения постоянного тока, которое необходимо заблокировать от присутствия в цепи, позволяя прохождению радиочастотного сигнала. Источники питания постоянного тока используют большие значения емкости параллельно с выходом. клеммы для сглаживания низкочастотных пульсаций из-за выпрямления и / или переключения форм сигналов.

При использовании последовательно (левый рисунок) или параллельно (правый рисунок) с его комплемент схемы, индуктор, комбинация индуктор-конденсатор образует контур, который резонирует на определенной частоте это зависит от значений каждого компонента. В последовательной цепи сопротивление протеканию тока на резонансной частоте равен нулю с идеальными компонентами. В параллельной цепи (справа) сопротивление току бесконечно с идеальными компонентами.

Реальные конденсаторы, состоящие из физических компонентов, демонстрируют больше, чем просто емкость, когда присутствует в цепи переменного тока.Слева показана модель симулятора общей схемы. Он включает в себя собственно идеальный конденсатор с параллельным резистивным подключением. компонент («Утечка»), реагирующий на переменный ток. Эквивалентный резистивный компонент постоянного тока (‘ESR’) последовательно с идеальным конденсатором и эквивалентной последовательной индуктивной составляющей («ESL») присутствует из-за металлических выводов (если они есть) и характеристик поверхностей пластин. Эта индуктивность в сочетании с емкостью создает резонансную частоту, на которой конденсатор выглядит как чистое сопротивление.

Когда рабочая частота увеличивается за пределы резонанса (также известного как собственная резонансная частота или SRF), схема ведет себя как индуктивность, а не как емкость. Следовательно, требуется тщательное рассмотрение SRF, когда выбор конденсаторов. Симуляторы типа SPICE используют эту или даже более сложную модель для облегчения более точных расчетов. в широком диапазоне частот.

Уравнения для последовательного и параллельного объединения конденсаторов приведены ниже.Для конденсаторов приведены дополнительные уравнения. различной конфигурации. Как показывают эти цифры и формулы, емкость — это мера способности двух поверхностей. для хранения электрического заряда. Разделенный и изолированный диэлектриком (изолятором), чистый положительный заряд накапливается на одна поверхность и чистый отрицательный заряд хранится на другой поверхности. В идеальном конденсаторе заряд будет храниться бесконечно; однако реальные конденсаторы постепенно теряют заряд из-за токов утечки через неидеальный диэлектрик.


Общая емкость последовательно соединенных конденсаторов равна обратной величине сумма обратных величин индивидуальных емкостей. Держите единицы постоянными.

Емкость (C в фарадах) двух параллельных пластин равной площади равна произведению площади (A, в метрах) одной пластины. расстояние (d, в метрах), разделяющее пластины, и диэлектрическая проницаемость (ε, в Фарадах на метр) пространства. разделение пластин.ε, полная диэлектрическая проницаемость, является произведением диэлектрической проницаемости свободного пространства, ε 0 , и относительная диэлектрическая проницаемость материала ε r . Обратите внимание, что единицы измерения длины и площади могут быть метрическими. или английский, если они согласованы.

Коэффициент рассеяния (DF), также известный как тангенс потерь (tan δ), взаимозаменяемо определяется как величина, обратная коэффициенту качества (QF) или отношению эквивалентного последовательного сопротивления (ESR) и емкостного реактивного сопротивления (X C ).Это показатель степени потери накопленного заряда. DF обычно используется в низкочастотных приложениях, в то время как tan δ чаще используется в высокочастотных приложениях.


Общая емкость параллельно соединенных конденсаторов равна сумме индивидуальных емкости. Держите единицы постоянными.

Следующие физические константы и механические размерные переменные применимы к уравнениям на этой странице.Единицы для уравнений показаны в скобках в конце уравнений; например, означает, что длина дана в дюймах, а индуктивность — в единицах Генри. Если единицы не указаны, то можно использовать любые, если они согласованы для всех объектов; т.е. все измерители, все мкФ, пр.

C = емкость
L = индуктивность
W = энергия
ε r = относительная диэлектрическая проницаемость (безразмерная)
ε 0 = 8,85 x 10 -12 Ф / м (диэлектрическая проницаемость свободного пространства)
µ r = Относительная проницаемость (безразмерная)
µ 0 = 4π x 10 -7 Гн / м (проницаемость свободного пространства)

1 метр = 3.2808 футов <—> 1 фут
= 0,3048 метра
1 мм = 0,03937 дюйма <—> 1 дюйм
= 25,4 мм

Кроме того, точки (не путать с десятичными знаками) используются для обозначения умножения. во избежание двусмысленности.

Емкостное реактивное сопротивление (X C , в Ω) обратно пропорциональна частоте (ω в радианах / сек или f в Гц) и емкости (C в фарадах).Чистая емкость имеет фазовый угол -90 ° (напряжение отстает от тока с фазовым углом 90 °).

Заряд (Q, в кулонах) конденсатора Пластины — это произведение емкости (C в фарадах) и напряжения (V в вольтах) на устройстве.

Энергия (Вт, в Джоулях) хранится в конденсаторе представляет собой половину произведения емкости (C в фарадах) на напряжение (V в вольтах) на устройстве.

Ток действительно течет «через» идеальный конденсатор. Напротив, заряд, накопленный на его пластинах, передается в подключенную цепь, тем самым облегчая ток. поток. И наоборот, сетевое напряжение, приложенное к пластинам, вызывает протекание тока в подключенной цепи по мере накопления заряда. на тарелках.

Добротность безразмерная. отношение реактивного сопротивления к сопротивлению в конденсаторе.

Связанные страницы по RF Cafe
— Конденсаторы и Расчет емкости
— Конденсатор Цветовые коды
— Преобразование емкости
— Конденсаторные диэлектрики
— Стандартные значения конденсаторов
— Производители конденсаторов
— Благородное искусство разъединения

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *