+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Контроллер солнечной панели — схема подключения своими руками МРРТ, ШИМ

Для чего нужен контроллер заряда для солнечной батареи?

Аккумуляторы, которые используются в комплекте солнечных батарей для накопления заряда, имеют ряд собственных особенностей. Они нуждаются в создании определенных условий в процессе зарядки. Необходимо своевременно ограничить ток и напряжение, не допустить слишком сильного разряда и исключить перезарядку АКБ. Обеспечить эти условия может специальное устройство, наблюдающее за блоком батарей и своевременно прекращающее все процессы, когда они достигают критических значений.

Это устройство — контроллер солнечной батареи, обеспечивающий сохранность и долговечность аккумуляторов. Обойтись без этих приборов невозможно, так как бесконтрольный заряд или разрядка всегда заканчиваются выходом АКБ из строя.

Задачи, которые решают контроллеры заряда для солнечных батарей:

  • выполнение диспетчерских функций, определение текущего режим работы и изменение его при возникновении соответствующих условий
  • ограничение величины заряда, предотвращение излишнего поглощения электроэнергии
  • наблюдение за расходованием и своевременный перевод батарей в режим зарядки

Есть контроллеры, совмещающие функции источника питания. К ним подключаются низковольтные потребители, например — осветительные приборы или иная нагрузка подобного типа. Такие системы работают в малом составе и не используются в качестве полноценного источника питания для бытовой или хозяйственной техники.

Применяемые на практике виды

Существует две разновидности контроллеров, применяемых в солнечных системах:

  • PWM (в русскоязычных источниках их иногда именуют ШИМ — широтно-импульсная модуляция)
  • MPPT (аббревиатура с английского Maximum Power Point Tracking — отслеживание максимальной границы мощности)

Контроллеры, созданные на базе ШИМ, считаются устаревшими. Некоторые модели уже сняли с производства, но в продаже еще много образцов таких приборов. Они вполне эффективны и работоспособны, но по функциональным возможностям уступают новым и более совершенным контроллерам MPPT.

Специалисты отмечают, что старые виды контроллеров больше подходят для частных солнечных батарей, рассчитанных на питание сравнительно небольшого количества потребителей. Новые образцы ориентированы на работу с большими количествами панелей, дающих значительное количество энергии.

Их недостатком считают:

  • высокая цена, ограничивающая возможности массового покупателя
  • сложность настройки, требующей участия опытного специалиста

Контроллеры типа MPPT широко рекламируют, но получить заметный выигрыш в производительности и эффективности можно только на больших и мощных солнечных комплексах.

Структурные схемы контроллеров

Контроллер заряда солнечной батареи

Контроллер заряда солнечной батареи

Разбираться в принципиальных схемах приборов могут не все пользователи. Но это и не обязательно, вполне достаточно понять принцип их работы на уровне блоков или узлов прибора. Рассмотрим структурные схемы двух разновидностей контроллеров:

Устройства PWM

На входе контроллера установлен стабилизатор и токоограничивающий резистор. Этим достигается защита от превышения входного сигнала и нарушения режима работы устройства. Допустимый уровень входного сигнала у каждого прибора свой, он указан в паспортных данных. Значение определяется спецификой контроллера, зависит от особенностей схемы и параметров прибора.

После этого ток проходит через блок из двух силовых транзисторов, где происходит преобразование значений напряжения и тока. Управление этими процессами производится через микросхему драйвера, при помощи чипа контроллера. Сам драйвер предназначен для коррекции режима работы транзисторов. Одна из основных задач — регулировка уровня мощности нагрузки, предотвращающая глубокий разряд аккумуляторов.

Помимо этих компонентов в состав схемы входит датчик температуры. Он обеспечивает поддержание заданного температурного режима работы прибора, ограничивая его мощность по необходимости. Перегрев весьма опасен для контроллера, поэтому датчик относят к основным узлам схемы.

Приборы MPPT

Контроллер заряда аккумулятора от солнечной батареи, созданный по схеме MPPT, представляет собой более сложное устройство, чем PWM. Увеличено количество узлов и деталей, поскольку более тщательное выполнение алгоритмов работы требует определенных ресурсов. Основная функция устройства заключается в определении максимальной мощности солнечных батарей в текущих условиях и соответствующей перенастройке их работы.

Компараторы производят сопоставление значений напряжения и тока, определяя максимально возможную выходную мощность. По умолчанию сканирование происходит 1 раз в 2 часа, но режим можно перенастроить на более частую проверку.

Производится определение точки максимальной мощности (ТММ), определяющей напряжение, при котором выходные показатели будут максимально высокими. Заряд АКБ происходит в 4 этапа:

  • объемный. Это первый этап после ночного перерыва. Аккумуляторы активно накапливают энергию, используя всю энергию солнечных батарей
  • повышающий. Начинается сразу по достижении максимального заряда аккумуляторов. Напряжение заряда снижается, чтобы исключить нагрев и выделение газов. Этот режим, как правило, длится 1-3 часа, после чего следует переход на следующую стадию зарядки
  • плавающий. Этот этап необходим для поддержания заряда на максимальном уровне и недопущения перегрева или газоотделения, а также снижения количества накопленной энергии. Если нагрузка начинает требовать повышенной отдачи, контроллер переводит систему из плавающего режима в повышающий. Как только мощность на выходе упадет, будет вновь задействован плавающий режим
  • выравнивание. Этап, при котором происходит выравнивание плотности электролита, восстановление состояния электродов, переработка сульфата свинца

Работа контроллеров MPPT зависит от окружающей температуры. В жару выработка энергии падает, при сильном охлаждении процессы в аккумуляторах замедляются, что грозит выходом их из строя. Встроенный датчик температуры постоянно контролирует состояние и дает команду на соответствующую корректировку режима работы.

Использование контроллеров MPPT рекомендовано при мощности системы от 200 В или при нестабильном производстве энергии. Постоянное определение максимальной эффективности улучшает работу комплекса и позволяет обходиться без установки дополнительных модулей.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

  • присоединение аккумуляторов к соответствующим клеммам прибора. Важно проследить за соблюдением полярности
  • в точке подключения плюсового провода необходимо установить предохранитель
  • к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
  • на выход нагрузки включить сигнальную лампу

Важно! Нарушать эту последовательность нельзя. Если сначала подключить солнечные модули, можно вывести контроллер солнечного заряда из строя, поскольку ему будет некуда отдавать полученное напряжение.

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед присоединением рекомендуется еще раз выполнить несложный расчет (разделить максимальное значение силы тока на 4 и прибавить около 10-15 % на запас прочности). Это позволит обеспечить штатную работу коммутации, исключить нагрев и опасность возникновения пожара.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Контроллеры такого типа работают только на запуск или остановку зарядки АКБ при падении или повышении заряда. Они не учитывают дополнительные условия работы, не определяют оптимальный режим, выполняя только функции триггера, настроенного на переключение при достижении минимального и максимального значений.

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Что лучше выбрать?

Выбор типа контроллера производится исходя из мощности и производительности системы. Если они невелики, можно ограничиться установкой контроллера PWM. Это дешевле и проще.

Однако, если комплект выдает значительную мощность и обеспечивает питание чувствительных приборов потребления, лучшим решением станет использование контроллера MPPT. Он гораздо дороже, но способен настроить максимально эффективную работу комплекса оборудования. В любом случае, окончательный выбор обусловлен возможностями владельца и особенностями имеющегося солнечного комплекса.

Видео-инструкция по сборке своими руками

Рекомендуемые товары

energo.house

Какой контроллер для солнечных батарей установить с вашими панелями



Основной сложностью использования солнечной энергии в быту является ее накопление. Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

  • ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.

    Контроллер ON/OFF


    В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками.
  • ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
  • MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.

Какой выбирать



Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.

Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

  • Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ — простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
  • MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

Видео, контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ — такая перспектива уже не кажется раумной. Собрать качественный MPPT — контроллер в домашних условиях — вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

 Дополнения к видео: схема контроллера, расположение деталей на печатной плате:

Схема контроллера солнечной батареи
LAY печатной платы
Расположение деталей на плате



Как выбрать солнечную панель — обзор важных параметров Окупаются ли солнечные батареи для частного дома Фотомануал: солнечная батарея своими руками шаг за шагом Подбираем аккумулятор для солнечной электростанции

electricadom.com

Контроллер заряда солнечной батареи: виды и подключение

Содержание:

  1. Основные функции и работа контроллера
  2. Простейшие контроллеры типа Откл/Вкл (или On/Off)
  3. Контроллеры для аккумуляторов типа PWM
  4. Устройства МРРТ
  5. Порядок подключения контроллеров PWM
  6. Порядок подключения устройств МРРТ
  7. Видео

Хозяева загородных коттеджей все чаще используют комплекты гелиосистем, как один из альтернативных источников электрической энергии. В ее состав входят фотоэлектрические элементы, аккумуляторная батарея, контроллер заряда солнечной батареи, инвертор и другое оборудование. Данные системы могут работать автономно или вместе с основными электрическими сетями. Во всех случаях аккумулятор накапливает заряд, а потом отдает его потребителям, когда это необходимо.

Контроллер обслуживает аккумуляторную батарею, не допуская ее перезарядки или чрезмерного разряда. Известны различные типы и модификации данных устройств, применяемых в условиях того или иного места эксплуатации. Для того чтобы сделать наиболее оптимальный выбор контроллера, нужно знать его конструктивные особенности и принцип работы.


Основные функции и работа контроллера

Устройство, контролирующее заряд, можно смело назвать одним из основных компонентов солнечных электростанций. Конструктивно, он является прибором электронного типа, функционирующим на основе специального чипа. Данный чип осуществляет контроль над действием всей системы, а его первоочередная задача состоит в управлении процессом зарядки аккумуляторной батареи. Таким образом, предотвращается избыточный ток или полный разряд аккумулятора.

Когда степень заряженности выходит на максимальный уровень, подача электричества от солнечных фотоэлементов сокращается и опускается до уровня, обеспечивающего компенсацию саморазряда. В случае сильной разрядки контроллер автоматически отключает батарею от нагрузки. После того как уровень заряда оказывается восстановлен, нагрузка снова подключается к источнику тока.

Электрическая энергия, выработанная солнечными батареями, может передаваться на аккумулятор по разным схемам. Один из способов предусматривает прямую передачу тока, без каких-либо коммутационных и регулирующих устройств. В результате такой подачи, напряжение на клеммах станет постепенно расти, и в конце концов оно достигнет определенного уровня, в зависимости от конструкции АКБ и температуры окружающей среды. То есть, на начальной стадии зарядки такая схема полностью себя оправдывает.

Однако, после того как заряд превысит рекомендуемое значение, в батарее возникают негативные процессы. Ток, продолжающий поступать, приводит к росту напряжения и последующей перезарядке. Из-за этого нагрев электролита резко увеличивается, после чего он закипает и начинается интенсивный выброс дистиллированной воды, превратившейся в пар. В некоторых случаях емкости могут полностью высохнуть, что приводит к резкому снижению ресурса аккумулятора.

Во избежание подобных ситуаций зарядный ток ограничивается с помощью контроллеров. Эту операцию можно выполнять вручную, однако такой способ требует постоянного контроля напряжения по приборам и своевременного переключения. Поэтому в реальных условиях он практически не используется, поскольку существует автоматика.

Для ограничения тока используются разные контроллеры – от простых до более сложных. Условно они разделяются на следующие типы:

  • Приборы, где применяется схема обычного включения-отключения в зависимости от состояния напряжения на клеммах АКБ.
  • Устройства, использующие широтно-импульсные преобразования (ШИМ).
  • Контроллеры заряда солнечной батареи, сканирующий точки с максимальной мощностью (МРРТ).

Каждое из этих устройств следует рассмотреть более подробно, чтобы в дальнейшем не ошибиться и правильно выбрать нужный.


Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.


Контроллеры для аккумуляторов типа PWM

Более технологичным и эффективным считаются контроллеры заряда аккумулятора от солнечной батареи типа PWM, сокращенное название которого получилось от Pulse-Width Modulation. В переводе на русский язык данное устройство относится к категории ШИМ, то есть в его работе используется широтно-импульсная модуляция тока.

Основной функцией прибора является устранение проблем, возникающих при неполной зарядке. Полного уровня удается достичь благодаря возможности понижения тока, когда он достигает максимального значения. Зарядка становится более продолжительной, но и эффект от нее значительно выше.

Работа контроллера осуществляется следующим образом. Перед входом в прибор электрический ток попадает в стабилизирующий компонент и резистивную разделительную цепочку. На этом участке потенциалы входного напряжения выравниваются, обеспечивая тем самым защиту самого контроллера. В разных моделях граничное входное напряжение может отличаться.

Далее в работу включаются силовые транзисторы, ограничивающие ток и напряжение до установленных значений. Они находятся под управлением чипа, использующего микросхему драйвера. После этого выходное напряжение транзисторов приобретает нормальные параметры, подходящие для зарядки аккумулятора. Данная схема дополняется температурным датчиком и драйвером. Последний компонент воздействует на силовой транзистор, выполняющий регулировку мощности подключенной нагрузки.

Таким образом, АКБ оказывается защищенной от глубокой разрядки. Температурный датчик контролирует степень нагрева наиболее важных деталей контроллера. В случае повышения температуры более чем это установлено в настройках, происходит автоматическое отключение всех цепочек активного питания. В результате, батарея поддерживается в хорошем состоянии, а срок ее эксплуатации значительно увеличивается.


Устройства МРРТ

Наиболее эффективными и стабильными считаются контроллеры для солнечной батареи модификации МРРТ – Maximum Power Point Tracking. Данные устройства осуществляют слежение за мощностью заряда по достижении максимального предела. В этом процессе используются сложные алгоритмы контроля показаний напряжения и тока, устанавливается наиболее оптимальное соотношение характеристик, обеспечивающих максимальную эффективность солнечной системы.

В процессе эксплуатации практически установлено, что контроллер для солнечных батарей mppt является более совершенным и существенно отличается от других моделей. По сравнению с приборами PWM, он эффективнее примерно на 35%, соответственно на столько же продуктивнее получается и сама система.

Более высокое качество и надежность таких устройств достигается за счет сложной схемы, дополненной компонентами, обеспечивающими тщательный контроль в соответствии с условиями эксплуатации. Специальные схемы выполняют слежение и сравнение уровней тока и напряжения, после чего определяется максимальная выходная мощность.

Главной особенностью контроллеров МРРТ является способность настройки солнечной панели на максимальную мощность вне зависимости от погоды в данный момент. Таким образом, батарея работает более эффективно и обеспечивает необходимый заряд АКБ.


Порядок подключения контроллеров PWM

Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

  • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
  • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
  • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
  • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.


Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.


electric-220.ru

Солнечные батареи своими руками

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Выбор контроллера

Солнечный контроллер, подключенный к солнечным батареям и аккумулятору, обеспечивает своевременную подзарядку аккумуляторной батареи (АКБ), защищает ее от преждевременной деградации и выполняет следующие функции:

  • Автоматическое подключение АКБ к фотоэлектрическим модулям для подзарядки.
  • Автоматическое отключение аккумулятора от фотоэлектрических панелей (ФЭП) при достижении максимального уровня зарядки (защита аккумулятора от перезаряда).
  • Автоматическое отсоединение АКБ от потребителей электроэнергии при достижении недопустимого уровня разряда (защита аккумулятора от глубокого разряда).
  • Повторное подключение нагрузки к аккумулятору при восполнении уровня его заряда.

Контроллер способен автоматически отключать нагрузку, подключаемую на выход «Load» устройства. К этому выходу подключаются маломощные потребители постоянного тока (например, светодиодные лампы). 

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Максимально допускаемая нагрузка на выход «Load» указывается производителем в паспорте устройства.

Все потребители переменного тока (бытовые электроприборы, электроинструмент и т. д.) не имеют прямого подключения ни контроллеру, ни к солнечным панелям. Они через инвертор подключаются к аккумуляторной батарее.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

При такой схеме подключения от глубокого разряда аккумулятор защищается не контроллером, а инвертором. К вопросам переразряда АКБ и способов защиты от него с помощью инвертора мы вернемся чуть позже.

Разновидности контроллеров

Основная задача солнечного контроллера состоит в том, чтобы обеспечивать режимы зарядки аккумуляторной батареи (силу тока и уровень напряжения), соответствующие типу АКБ и ее состоянию. Простейший контроллер типа «on-off» способен выполнять лишь 2 операции: автоматически включать или отключать аккумулятор от фотоэлектрических панелей. Но простейшие устройства в наше время активно вытесняются с рынка более продвинутыми контроллерами. Наиболее популярны сегодня контроллеры двух типов: ШИМ (PWM) – устройства широтно-импульсной модуляции, и МРРТ – устройства отслеживания точки максимальной мощности. Рассмотрим особенности перечисленных контроллеров.

Контроллеры типа «on-off»

Рассмотрим рабочий цикл простейшего контроллера типа «on-off», который подключен к автомобильному аккумулятору – 12 В. Когда напряжение аккумулятора упадет ниже номинала, а напряжение СБ достигнет зарядных значений, контроллер подключит аккумулятор к солнечной батарее. В этот момент начнется процесс зарядки АКБ (накопления), который будет продолжаться, пока напряжение на аккумуляторе не вырастет до 14,4 В. Определив, что напряжение на клеммах АКБ достигло указанного значения, контроллер отключит аккумулятор от солнечных батарей. Затем цикл повторится. Контроллер типа «on-off» не позволяет полностью зарядить аккумуляторную батарею, ведь для полного заряда на ее клеммы необходимо подавать напряжение – 14,4 В, в течение нескольких часов (этот период называется стадией абсорбции). Максимальный уровень зарядки при таком цикле не превысит 60–70%, а регулярный недозаряд приведет к значительному сокращению срока службы АКБ. Как видим, недостатки контроллеров типа «on-off» – налицо.

Контроллеры ШИМ

Контроллеры ШИМ позволяют заряжать АКБ на 100% благодаря оптимизированному рабочему циклу, который подразделяется на 4 стадии.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

  1. На начальной стадии зарядки аккумулятор получает всю мощность, генерируемую фотоэлектрическими панелями.
  2. Стадия накопления характеризуется постепенным ростом напряжения на клеммах АКБ. Накопление заряда осуществляется при постоянной силе тока.
  3. Когда напряжение на клеммах АКБ достигнет своего максимального значения, контроллер переведет зарядные параметры в режим абсорбции. Подаваемое напряжение на этой стадии остается постоянным, а зарядный ток постепенно уменьшается. Это позволяет аккумулятору накопить максимальное количество энергии, избежав перегрева и закипания.
  4. Уравновешивающий заряд (режим float). На этой стадии аккумулятор поддерживается в заряженном состоянии.

Параметры зарядного тока и напряжения устанавливаются контроллером автоматически.

По типу регулировки существуют контроллеры двух типов: регулируемые и с неизменными заводскими настройками. Для своей системы лучше выбирать устройства с возможностью настройки по типу и емкости АКБ, а также по другим зарядным параметрам, рекомендованным производителями аккумуляторов.

ШИМ контроллеры рекомендуется использовать в системах с небольшой мощностью солнечных батарей (ориентировочно: от 100 Вт до 500 Вт). Это условие вполне соответствует параметрам домашних фотоэлектрических панелей. Тем не менее, контроллеры ШИМ в настоящее время постепенно вытесняются с рынка более совершенными устройствами МРРТ, изначально создаваемыми для мощных солнечных батарей.

Контроллеры МРРТ

Алгоритм работы контроллеров МРРТ следующий: устройство в реальном времени отслеживает параметры электрического тока на выходе из солнечной батареи, определяя значения в паре ток-напряжение, при которых мощность, получаемая от фотоэлектрических панелей, будет максимальна. Одновременно контроллер отслеживает стадию зарядки аккумулятора и подает на его клеммы ток с необходимыми параметрами.

Автоматическое определение точки максимальной эффективности заряда помогает увеличить коэффициент использования солнечной энергии на 20-30%. При этом контроллеры МРРТ позволяют подключать к системе солнечные батареи, номинальное напряжение которых значительно выше напряжения АКБ. Это гарантирует, что даже в пасмурную погоду напряжение СБ будет превышать зарядное напряжение аккумулятора. То есть в солнечный день контроллер будет автоматически понижать высокое входное напряжение, а при недостатке солнечного света АКБ будет заряжаться за счет запаса по напряжению СБ.

Используя контроллеры МРРТ, солнечные модули целесообразно соединять между собой последовательно. Это позволяет получить на выходе из СБ более высокое напряжение и за счет снижения сопротивления уменьшить сечение кабелей, соединяющих фотоэлектрические панели с контроллером.

Для того чтобы правильно выбрать контроллер для той или иной солнечной электростанции, необходимо знать характеристики источника тока и аккумулятора. Но есть по этому поводу и общие рекомендации, разработанные производителями:

  • Контроллеры МРРТ, учитывая их сравнительно высокую стоимость, следует использовать при мощности солнечных батарей – от 500 Вт и выше (это будет экономически целесообразно).
  • Контроллер ШИМ подойдет для солнечных батарей небольшой мощности, у которых номинальное напряжение соответствует номиналу АКБ (например, для 12-ти вольтовых АКБ подходят панели с номиналом 17-22 В, а для 24-ти вольтовых АКБ – панели номиналом 34-45 В).
  • Контроллер МРРТ разработан для СБ, напряжение которых гораздо выше напряжения АКБ (это позволяет создавать запас напряжения и обеспечивать заряд аккумулятора даже в пасмурную погоду).

Допустимые величины входного напряжения и силы тока указаны в технических характеристиках контроллера. Ими следует руководствоваться, выбирая устройство для своей системы.

Недостаток мощности в системах, работающих на контроллерах ШИМ, можно компенсировать установкой дополнительной солнечной панели. Это может быть дешевле, чем установка более производительного контроллера МРРТ.

Выбор аккумулятора

Выбирая аккумуляторы для солнечных батарей можно руководствоваться разными соображениями:

  • Те, у кого есть средства и возможности, приобретают долговечные и, в то же время, дорогостоящие щелочные аккумуляторы – никелево-кадмиевые (НК) или никелево-железные (НЖ).
  • Кто-то приобретает специализированные гелевые батареи, изготовленные по технологии GEL, которые в сравнении с привычными стартерными АКБ служат гораздо дольше, но и стоят дороже.
  • Те же, кто предпочитает наиболее доступный вариант, используют стартерные автомобильные АКБ.

Учитывая, что выбор АКБ во многом зависит от реальных возможностей владельца СБ, то давать какие-либо рекомендации в этом плане очень трудно. Тем не менее, перечислить преимущества и недостатки различных батарей следует.

Кислотные (автомобильные) АКБ

Стартерные АКБ – самые дешевые и доступные для большинства покупателей батареи. Несмотря на довольно внушительную емкость, эти АКБ являются буферными: они изначально рассчитаны на кратковременный неглубокий разряд и быструю подзарядку до полной емкости. При этом они совершенно не предназначены для работы в условиях циклического режима и глубокой разрядки. Отсюда вытекают недостатки представленных аккумуляторов.

Для того чтобы срок службы автомобильного аккумулятора приблизить к максимальному, необходимо создать условия, при которых его разряд не будет превышать 20-30% от номинальной емкости. Одновременно следует обеспечить немедленную подзарядку АКБ. Реализовать подобный цикл в системах автономного питания довольно сложно, поэтому на практике АКБ разряжают не более чем на 50%. Разряжать батарею более чем на 80% нельзя, т.к. это очень быстро приводит к выходу аккумулятора из строя.

В таблице представлена зависимость напряжения холостого хода от степени разряда свинцово-кислотной батареи.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Таблица дает примерное понимание величины напряжения, при котором следует отключать нагрузку от АКБ (напряжение отсечки). Примерным оно считается потому, что напряжение аккумулятора, подключенного к нагрузке, всегда ниже напряжения холостого хода батареи. Параметры холостого хода замеряются, спустя несколько часов после отключения нагрузки. Устанавливая напряжение отсечки, лучше руководствоваться рекомендациями производителей АКБ и показаниями контроллера (большинство устройств показывает процент заряженности батареи).

Щелочные аккумуляторы

Щелочные АКБ рассчитаны на циклический режим работы (что оптимально для автономных систем электроснабжения): они способны постепенно отдавать свою энергию, пока не наступит их полный разряд.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

И чем глубже будет разряжена такая батарея, тем большую емкость она наберет во время подзарядки (это называется эффектом памяти).

Существенный недостаток щелочных аккумуляторов состоит в том, что при малых токах они плохо заряжаются или не заряжаются вовсе. Решить подобную проблему можно, правильно рассчитав мощность солнечных панелей и установив подходящий контроллер.

Вывод: если есть такая возможность, то для солнечных панелей лучше приобретать щелочные аккумуляторы.

Гелевые аккумуляторы

Если недостатки автомобильных аккумуляторов для потребителя неприемлемы, а приобрести подходящий щелочной аккумулятор у него нет возможности, то выбор делается в пользу свинцово-кислотных гелевых батарей. По своим характеристикам они оптимально подходят для автономных систем солнечной и ветровой энергетики, не требуют обслуживания, а срок их службы составляет 10 лет. Недостатком гелевых батарей считается их высокая стоимость.

Существуют еще литий-железо-фосфатные АКБ (литий-ионные). Они, кстати, признаны самыми лучшими батареями для автономных систем.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Беря во внимание «заоблачную стоимость этих устройств, в самодельных системах их используют лишь единицы.

Расчет емкости аккумуляторов

Рассчитать требуемую емкость аккумуляторных батарей для автономной системы электроснабжения довольно просто. Для этого нам понадобятся следующие исходные параметры:

  1. Емкость аккумуляторов (А*ч), которые планируется использовать в системе.
  2. Напряжение на рабочих клеммах АКБ (В).
  3. Суммарная нагрузка на аккумуляторы (Вт).

Чтобы вычислить параметры АКБ, которая понадобится для вашей системы, емкость аккумулятора и нагрузку на батарею целесообразно перевести в одну систему измерений. То есть Ампер*час нам нужно перевести в кВт*час.

Переводить емкость АКБ в количество энергии принято следующим образом: нужно умножить номинальное напряжение батареи (например, 12 В) на ее паспортную емкость (например, 190А*ч).

12(В) * 190(А*ч) = 2280 Вт*ч = 2,28 кВт*ч.
 
Расчеты показывают, что одна свинцово-кислотная автомобильная батарея емкостью 190А*ч при разряде сможет отдать примерно 1,14 кВт*ч электроэнергии, разрядившись при этом на 50% (с учетом потерь электроэнергии это значение можно округлить до 1 кВт*ч). При этом щелочной аккумулятор с аналогичной емкостью (который не боится полного разряда) за один цикл сможет отдать в 2 раза больше электроэнергии.

Много это или мало – все зависит от нагрузки на батарею. Например, если нагрузка на 12-ти вольтовый аккумулятор емкостью 190 А*ч будет равна 100 Вт, то все потребители, подключенные к батарее, смогут непрерывно работать в течение 10-ти часов. После чего аккумулятору потребуется обязательная подзарядка.

Оптимальным запасом емкости считается запас электроэнергии, позволяющий в течение суток обеспечивать питание нагрузки без дополнительной подзарядки аккумулятора. Минимальным запасом считается количество энергии, позволяющее потребителям «пережить» темное время суток (если за ночь потребляется 1 кВт*ч, то и в АКБ должно накапливаться соответствующее количество электроэнергии).

Рассчитывая параметры АКБ, следует соотносить их с техническими характеристиками солнечных панелей. При этом всегда необходимо учитывать неизбежные потери электричества и природные факторы:

  • Ток, потребляемый инвертором без нагрузки – зависит от КПД устройства (например, если инвертор, подключаемый к 12-ти вольтной АКБ, без нагрузки потребляет 2А, то за 10 часов работы он потребит 20А*ч, или 0,24 кВт).
  • Сопротивление проводников.
  • Естественное снижение паспортной емкости АКБ в процессе эксплуатации (когда показатель емкости снижается до 60% от первоначальной величины, ресурс батареи считается исчерпанным).
  • Потери, отражающие КПД аккумулятора (например, свинцово-кислотные АКБ в процессе зарядки потребляют примерно на 20% больше электроэнергии, чем потом отдают) – эти потери должны быть учтены при расчете мощности фотоэлектрических панелей.
  • Неравномерное количество солнечных дней в разное время года и т. д.

Внимательного расчета требуют аккумуляторы, к которым подключаются приборы с большими пусковыми токами.

На практике для расчета емкости АКБ целесообразно использовать онлайн калькуляторы солнечной энергии, учитывающие совокупность перечисленных параметров.

Увеличить емкость можно, используя несколько аккумуляторных батарей, соединенных параллельно.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Если батарей много, то следует использовать последовательно-параллельное соединение.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Выбирая тип соединения АКБ, нельзя выпускать из вида два немаловажных параметра: выходное напряжение контроллера и входное напряжение инвертора. Они должны соответствовать суммарному напряжению аккумуляторных батарей.

Если в одной системе используются несколько аккумуляторов, то все они должны быть из одной партии (с одинаковой емкостью и одинаковым внутренним сопротивлением). Несоблюдение этой рекомендации может привести к разбалансу отдельных батарей и к их преждевременному выходу из строя.

Объединяя несколько аккумуляторов в одну батарею, следует придерживаться еще одного правила.

Раз в месяц желательно тестером проверять емкость всех аккумуляторов. Это поможет вовремя обнаружить испорченный аккумулятор и принять меры для того, чтобы избежать угрозы разбаланса.

Аккумуляторы открытого типа следует устанавливать в вентилируемом помещении. Это убережет ваше здоровье от едких испарений. Если такой возможности нет, то необходимо использовать закрытые батареи (герметичные).

Температура в помещении, где установлены аккумуляторы, должна соответствовать определенным значениям. Если, к примеру, щелочные никель-кадмиевые АКБ менее прихотливы (их можно использовать при температурах от -20ºС до +45ºС без потери емкости), то для эксплуатации свинцово-кислотных (СК) аккумуляторов оптимальная температура окружающей среды равна +20ºС. А вот что касается герметичных свинцово-кислотных батарей: повышение их эксплуатационной температуры на каждые 10ºС сокращает срок службы АКБ в 2 раза (инструкция по эксплуатации свинцово-кислотных батарей п. 10.10).

Для того чтобы уберечь аккумуляторы от глубокого разряда в облачные дни, батареи можно периодически подзаряжать от другого источника (например, от дизельного генератора или ветрогенератора).

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Системы автономного электроснабжения, работающие от солнечных панелей и генератора, принято называть гибридными. Гибридные электростанции являются самым оптимальным решением для организации автономного электроснабжения.

Выбор инвертора

Основная функция инвертора заключается в преобразовании стандартного напряжения и постоянного тока аккумуляторных батарей в бытовой переменный ток напряжением 220В. График напряжения на выходе из инвертора имеет синусоидальную форму. И в зависимости от того, какие потребители будут подключены к питанию от СБ, инвертор должен выдавать напряжение либо с правильной синусоидальной формой графика (чистый синус), либо с модифицированным синусом (меандр). Как именно ведет себя график напряжения на выходе из инвертора? Это зависит от особенностей устройства.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Некоторые электроприборы стабильно работают и на «модифицированном синусе»: электронагреватели, компьютеры, устройства с импульсными источниками питания (например, определенные модели телевизоров). Тем не менее, опытные рекомендуется приобретать инверторы, дающие на выходе «чистый синус». Форма выходного сигнала, как правило, указывается в характеристиках устройства.

Выбирая инвертор, следует обращать внимание не только на форму выходного сигнала, но и на мощность устройства. Рабочая (номинальная) мощность должна быть на 25-30% выше суммарной мощности постоянно задействованных в работу потребителей. При этом пиковая мощность инвертора должна превышать мощность возможной кратковременной нагрузки на прибор. Речь идет о нагрузке, которая возникнет в случае одновременного включения нескольких потребителей, обладающих большой пусковой мощностью (холодильник, электродвигатель насоса и т. д.).

В характеристиках инвертора, как правило, указывается еще и максимальная мощность. Она меньше пиковой, но больше номинальной. Этот параметр обозначает допускаемую кратковременную нагрузку, при которой устройство проработает в течение нескольких минут (5-10 мин) и при этом не выйдет из строя.

КПД инвертора также имеет большое значение при выборе устройства. Он определяет потери электроэнергии во время работы устройства и может варьироваться в следующих пределах: 85-95% (в зависимости от модели). Рекомендуется выбирать устройство с КПД – от 90% и выше. Ведь за инвертор мы заплатим один раз, а за его низкий КПД платить придется постоянно.

Инверторы, подключаемые напрямую к свинцово-кислотным аккумуляторам, должны защищать АКБ от глубокого разряда. В большинство современных инверторов подобная функция встроена. При этом порог отсечки нагрузки может быть установлен заводом-изготовителем, а может регулироваться пользователем.

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций

Помимо обычных преобразователей, в системах автономного питания часто используются гибридные и комбинированные инверторы. Комбинированные – способны совмещать функции контроллера и инвертора. Гибридные – позволяют осуществлять питание потребителей как от сети, так и от аккумуляторов. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о