+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Таблицы выбора сечения жилы при прокладке электрических проводов в резиновой или пластиковой (в том числе ПВХ=PVC) изоляции в зависимости от тока и нагрузки. Подходят для сетей 220/380В. Выбор сечения кабеля удлинителя в зависимости от длины и нагрузки.

Таблицы выбора сечения жилы при прокладке электрических проводов в резиновой или пластиковой (в том числе ПВХ=PVC) изоляции в зависимости от тока и нагрузки. Подходят для сетей 220/380В. Выбор сечения кабеля удлинителя в зависимости от длины и нагрузки.

ИТАК:

ПУЭЭ, Глава 1 нормирует допустимые длительные токи через различные виды проводов и кабелей. Другие главы регламентируют способы прокладки и прочие детали. Тем не менее мы приведем 3 таблицы для оперативного выбора площади сечения токопроводящей жилы кабеля (провода) для сетей 220/380В в зависимости от тока, нагрузки, температуры окружающей среды и способа прокладки, которыми сами пользуемся.

  • Выбираем сечения жилы (каждой) для рабочего тока или нагрузки (запоминаем ток, если прикидывали нагрузку) одиночного провода при температуре жил +65, окружающего воздуха +25 и земли + 15°С
  • Если температура не та, то смотрим поправочный коэффициент на ток в зависимости от температуры окружающей среды — если цепь вторичная = цепь управления, сигнализации, контроля, автоматики и релейной защиты электроустановок — то следующий пункт пропускаем
  • Если проводов более 1 , то смотрим поправочный коэффициент на ток в зависимости от способа прокладки
  • Делаем выбор еще раз, с учетом поправок, если нужно

Таблица 1. Выбора сечения жилы при одиночной прокладке проводов при температуре жил +65, окружающего воздуха +25 и земли + 15°С

Проложенные открыто, не пучком (в воздухе)

Проложенные в трубе

Сечение
жилы
мм2

Медь

Алюминий

Медь

Алюминий

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

А

1х220в

3х380в

А

1х220в

3х380в

А

1х220в

3х380в

А

1х220в

3х380в

0,5

11 2,4

0,75

15 3,3

1,0

17 3,7 6,4 14 3,0 5,3

1,5

23 5,0 8,7 15 3,3 5,7

2,0

26 5,7 9,8 21 4,6 7,9 19 4,1 7,2 14,0 3,0 5,3

2,5

30
6,6
11,0 24 5,2 9,1 21 4,6 7,9 16,0 3,5 6,0

4,0

41 9,0 15,0 32 7,0 12,0 27 5,9 10,0 21,0 4,6 7,9

6,0

50 11,0 19,0 39 8,5 14,0 34 7,4 12,0 26,0 5,7 9,8

10,0

80 17,0 30,0 60 13,0 22,0 50 11,0 19,0 38,0 8,3 14,0

16,0

100 22,0 38,0 75 16,0 28,0 80 17,0 30,0 55,0 12,0 20,0

25,0

140 30,0 53,0 105 23,0 39,0 100 22,0 38,0 65,0 14,0 24,0

35,0

170 37,0 64,0 130 28,0 49,0 135 29,0 51,0 75,0 16,0 28,0

Таблица 2. Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха

Условная темпратура среды, °С  

Нормированная температура жил, °С  

Поправочные коэффициенты на токи при расчетной температуре среды, °С

-5 и ниже

  0

  +5

  +10

  +15

  +20

  +25

  +30

  +35

  +40

  +45

  +50

15
80
1,14 1,11 1,08 1,04 1,00 0,96 0,92 0,88 0,83 0,78 0,73 0,68
25 80 1,24 1,20 1,17 1,13 1,09 1,04 1,00 0,95 0,90 0,85 0,80 0,74
25 70 1,29 1,24 1,20 1,15 1,11
1,05
1,00 0,94 0,88 0,81 0,74 0,67
15 65 1,18 1,14 1,10 1,05 1,00 0,95 0,89 0,84 0,77 0,71 0,63 0,55
25 65 1,32 1,27 1,22 1,17 1,12 1,06 1,00 0,94 0,87 0,79 0,71 0,61
15 60 1,20 1,15 1,12 1,06 1,00 0,94 0,88 0,82 0,75 0,67 0,57 0,47
25 60 1,36 1,31 1,25 1,20 1,13 1,07 1,00 0,93 0,85 0,76 0,66 0,54
15 55 1,22 1,17 1,12 1,07 1,00 0,93 0,86 0,79 0,71 0,61 0,50 0,36
25 55 1,41 1,35 1,29 1,23 1,15 1,08 1,00 0,91 0,82 0,71 0,58 0,41
15 50 1,25 1,20 1,14 1,07 1,00 0,93 0,84 0,76 0,66 0,54 0,37
25 50 1,48 1,41 1,34 1,26 1,18 1,09 1,00 0,89 0,78 0,63 0,45

Таблица 3. Снижающие коэффициенты допустимых длительных токов в зависимости от способа прокладки (в пучках, в коробах, в лотках)

Снижающий коэффициент допустимых длительных токов для проводов, прокладываемых пучками в лотках и коробах

Снижающий коэффициент допустимых длительных токов для для проводов, прокладываемых в коробах и лотках

  • Допустимые длительные токи для проводов проложенных в коробах, а также в лотках пучками, должны приниматься как для проводов, проложенных в трубах.
  • При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов
    • 0,68 для 5 и 6 проводов.
    • 0,63 для 7-9 проводов.
    • 0,6 для 10-12 проводов.
Количество проложенных проводов Снижающий коэффициент для проводов, питающих
Способ прокладки   одно жильных   много жильных отдельные электро приемники с коэффициен том использова ния до 0,7 группы электро приемников и отдельные приемники с коэф фициентом исполь зования более 0,7
Многослойно и пучками . . .  До 4 1,0
2 5-6 0,85
3-9 7-9 0,75
10-11 10-11 0,7
12-14 12-14 0,65
15-18 15-18 0,6
Однослойно 2-4 2-4 0,67
5 5 0,6
  • Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.
  • Допустимые длительные токи для проводов, прокладываемых в коробах, следует принимать как для одиночных проводов, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в таблице.
  • При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

Расчет сечения кабеля по нагрузке – таблица допустимых нагрузок, фото, видео урок как рассчитать необходимое сечение кабеля

Содержание статьи

Введение

Кабелем называют провод, покрытый изоляцией, который служит для передачи электроэнергии от источника к потребителю. Сегодняшний рынок готов предложить покупателям множество видов подобных проводов: алюминиевых, медных, одножильных, многожильных, с одинарной и двойной изоляцией, с сечением от 0,35 мм2 до 25 мм2 и более. Но чаще всего для подключения бытовых потребителей применяют кабеля толщиной от 0,5 до 6 “квадрат” – этого вполне достаточно для питания любой техники.


Классический кабель для проводки в квартире

Почему необходимо подбирать изолированные проводники, а не покупать первый попавшийся? Все дело в том, что от толщины проводника зависит сила тока, которую он может выдержать. К примеру, допустимый ток для медных проводов толщиной 1 мм составляет до 8 Ампер, алюминиевого – до 6 ампер.

Почему бы просто не купить провод максимальной толщины? Потому что чем толще, тем дороже. К тому же толстый кабель нужно где-то прятать, вырезать под него штробу в потолке и стенах, делать отверстия в перегородках. Одним словом, нет никакого смысла переплачивать, ведь вы не будете ездить за хлебом на КАМАЗе.

Если вы выберете провод меньшего диаметра, то он просто не выдерживает силу тока, проходящую через него, и начнет греться. Это приводит к плавлению изоляции, короткому замыканию и возгоранию. Поэтому никогда не следует торопиться, выбирая качественный кабель для подключения любых приборов – сначала подумайте, что именно будет работать на новой линии, а затем уже выбирайте толщину и тип кабеля.

Что такое сечение провода и как его определить

Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.

Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.

Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.

Для чего нужен расчет сечения кабеля

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Правильному подбору проводника посвящёна отдельная глава в ПУЭ: «Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны».

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( «Правила устройства электроустановок«). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно «Правилам устройства электроустановок«, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на ступень больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².

Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.

Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².

Выбираем по мощности

Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.

Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.

Таблица 1.Подбор сечения провода по мощности для кабеля с медными жилами

Сечение токопроводящей жилы, мм² Для кабеля с медными жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75.9
50 175 38.5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Таблица 2.Подбор сечения провода по мощности для кабеля с алюминиевыми жилами

Сечение токопроводящей жилы, мм² Для кабеля с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,2

Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.

В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:

  • высокая прочность;
  • упругость;
  • стойкость к окислению;
  • электропроводность больше, чем у алюминия.

Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.

Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.

Как рассчитать по току

Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ (ПУЭ-7 п.1.3.10-1.3.11 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ).

Таблица 3.Электрический ток для медных проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечение проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Для расчета алюминиевых проводов применяют таблицу.

Таблица 4.Электрический ток для алюминиевых проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечения проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Кроме электрического тока, понадобится выбрать материал проводника и напряжение.

Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.

Выбор сечения провода по длине

Вы должны знать о том, что длина провода (кабеля) влияет на напряжение. Чем длиннее линия, тем больше потеря напряжения. Чтобы этого избежать нужно увеличивать сечение проводника. Как это все подсчитать?

Пример.

У вас в быту есть некие потребители электроэнергии, в сумме они составляют 5000 Вт или 5 кВт. Длина до этих потребителей от автоматического выключателя равно 25 м. Так как электроэнергия поступает по одному проводу, а возвращается по другому проводу, то длина увеличивается вдвое и равна 50 м.

Дальше нам нужно найти силу тока (I). Как найти вы уже знаете. Нужно мощность разделить на напряжение:

I=P/U

I = 5000/220 = 22,72 А

С помощью силы тока (А) или мощности (Р) в таблице 2 определяем сечение провода. По таблице это 1,5 мм² медного провода.

Так как провод имеет свое сопротивление (R) мы производим расчет с учетом следующих данных по формуле:

R = p × L/S

где:

R – сопротивление проводника, Ом;

p – удельное сопротивление, Ом · мм²/м;

L – длина провода, м;

S – площадь поперечного сечения, мм².

Из формулы: величина (р) это всегда постоянная величина. Для меди она равна 0,0175, а для алюминия – 0,0281.

Вычисляем:

R = 0,0175 × 50/1,5 = 0,583 Ом

Теперь нужно высчитать потери напряжения по формуле:

dU = I·R

где,

dU – потеря напряжения, В;

I– сила тока, А;

R– сопротивление проводника, ОМ.

dU = 22,72 × 0,583 = 13,24 В

После этого расчета нужно узнать процентное соотношение потерь напряжения. Если оно будет выше 5 %, то проводник следует выбрать на одну позицию выше ссылаясь на таблицу 2.

Считаем:

13,24 В / 220 В × 100% = 6,01%

Так как процентное соотношение потерь напряжения выше 5%, то сечение провода (кабеля) вместо 1.5 мм² выбираем 2.5 мм².

Вот и весь расчет.

Как видите не так трудно все это сделать. Один раз стоит посчитать и все. После такого расчета вы будите полностью уверены, что подобранные вами провода или кабели не подведут вас и прослужат многие годы.

Открытая и закрытая прокладка проводов

Как все мы знаем, при прохождении тока по проводнику он нагревается. Чем больше ток, тем больше тепла выделяется. Но, при прохождении одного и того же тока, по проводникам, с разным сечением, количество выделяемого тепла изменяется: чем меньше сечение, тем больше выделяется тепла.

В связи с этим, при открытой прокладке проводников его сечение может быть меньше — он быстрее остывает, так как тепло передается воздуху. При этом проводник быстрее остывает, изоляция не испортится. При закрытой прокладке ситуация хуже — медленнее отводится тепло. Потому для закрытой прокладке — в кабель каналах, трубах, в стене — рекомендуют брать кабель большего сечения.

Выбор сечения кабеля с учетом типа его прокладки также можно провести при помощи таблицы. Принцип описывали раньше, ничего не изменяется. Просто учитывается еще один фактор.

Выбор сечения кабеля в зависимости от мощности и типа прокладки

И напоследок несколько практических советов. Отправляясь на рынок за кабелем, возьмите с собой штангенциркуль . Слишком часто заявленное сечение не совпадает с реальностью. Разница может быть в 30-40%, а это очень много. Чем вам это грозит? Выгоранием проводки со всеми вытекающими последствиями. Потому лучше прямо на месте проверять действительно ли у данного кабеля требуемое сечение жилы (диаметры и соответствующие сечения кабеля есть в таблице выше). А подробнее про определение сечения кабеля по его диаметру можно прочесть тут.

Как вычислить сечение многожильного провода

Многожильный провод, или как его называют еще многопроволочный или гибкий, представляет собой свитые вместе одножильные проволочки. Для вычисления сечения многожильного провода нужно сначала вычислить сечение одной проволочки, а затем полученный результат умножить на их число.

Рассмотрим пример. Есть многожильный гибкий провод, в котором 15 жил диаметром 0,5 мм. Сечение одной жилы равно 0,5 мм×0,5 мм×0,785 = 0,19625 мм2, после округления получим 0,2 мм2. Так как у нас в проводе 15 проволочек , то для определения сечения кабеля нужно перемножить эти числа. 0,2 мм2×15=3 мм2. Осталось по таблице определить, что такой многожильный провод выдержит ток 20 А.

Можно оценить нагрузочную способность многожильного провода без замера диаметра отдельного проводника, измеряв общий диаметр всех свитых проволочек. Но так как проволочки круглые, то между ними находятся воздушные зазоры. Для исключения площади зазоров нужно полученный по формуле результат сечения провода умножить на коэффициент 0,91. При замере диаметра надо проследить, чтобы многожильный провод не сплющился.

Рассмотрим на примере. В результате измерений многожильный провод имеет диаметр 2,0 мм. Рассчитаем его сечение: 2,0 мм×2,0 мм×0,785×0,91 = 2,9 мм2. По таблице (смотри ниже) определяем, что данный многожильный провод выдержит ток величиной до 20 А.

О выборе марки кабеля для домашней электропроводки

Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди. Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.

А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод. Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее. Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.

После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.

Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.

Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах. Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.

Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.

Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской. Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным. Для внутренней проводки удобнее применять плоский кабель ВВГ.

При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов. Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А. А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Источники

  • https://knigaelektrika.ru/elektroprovodka/provoda-i-kabeli/tablica-secheniy-provodov-po-mochnosti-i-toky.html
  • https://YDoma.info/ehlektrotekhnika/vybor-podgotovka-montazh-provoda/electricity-vybor-secheniya-provoda.html
  • https://odinelectric.ru/wiring/kak-rasschitat-neobhodimoe-sechenie-provoda-po-moshhnosti-nagruzki
  • https://electromc.ru/vybor-secheniya-provoda/
  • https://stroychik.ru/elektrika/vybor-secheniya-kabelya

[свернуть]

HowElektrik

Таблица нагрузок по сечению кабеля

Нагрузка, которую способен выдержать кабель с жилами определенного сечения рассчитывается достаточно просто. Для получения точных цифр в теории нужно знать только физические свойства материала проводника, который использовался при изготовлении кабеля, и закон Ома. Однако, на практике в большинстве случаев при математических расчётах приходится делать определённые поправки. Они вносятся вследствие влияния ряда внешних факторов, уменьшающих показатели проводимости металлической жилы.

Таблица стандартных нагрузок токопроводящих жил различного сечения

Указанные данные взяты из норм, рассчитанных в лабораторных условиях и опубликованных в ГОСТ Р 50571.5.52-2011. Исходные условия тестирования кабеля предусматривали температуру проводящего материала на уровне 70 °С, а температура внешней среды соответствовала показателю 30 °С. Данные для проводников проложенных в земле, фиксировались при температуре среды 20 °С.

 

Таблица выше показывает силу тока, которую способна выдержать медная жила определенного сечения, в зависимости от типа монтажа. Существует 7 основных наиболее распространенных способов прокладки электропроводки, каждый из которых применяется в тех или иных условиях эксплуатации электрической сети.

Зная силу тока, которую способна выдержать жила, можно рассчитать максимальную нагрузку участка проводки. Для этого значение силы тока умножается на 220 В, и полученная цифра покажет наибольшее значение совокупной мощности всех единовременно подключенных в сеть электроприборов.

Эта ознакомительная таблица представляет значения силы тока для кабеля с алюминиевыми жилами. При изготовлении полностью новой электропроводки в квартире рекомендуется использовать медные проводники. Алюминий практически вышел из обихода ремонтных бригад, так как по современным стандартам долговечности и надежности медь значительно его превосходит.

Пример расчёта максимальной нагрузки для участка электропроводки

Например, наиболее распространённое сечение медных жил для электропроводки в квартирах составляет 2,5 мм. Исходя из табличных данных, приведенных выше, такой провод при стандартном способе монтажа способен выдержать ток порядка 27 А. И теоретически проводку изготовленную из такого кабеля можно нагружать на 27А х 220В = 5940 Вт.

Однако, в реальности стандартные табличные данные следует принимать с поправкой, вводя уменьшающий коэффициент 0,7 от исходного значения. То есть, в рассматриваемом примере теоретические 27 А после умножения на 0,7 превращаются в 18,9 А. В результате общая нагрузка на такой участок электросети не должна превышать 18,9А х 220В = 4158 Вт.

Во время проектирования домашней электросистемы важно учитывать мощность, на которую рассчитан автоматический выключатель в распределительном щитке квартиры. Наиболее распространенные автоматы устанавливаются на 16 А, что ограничивает совместную нагрузку одновременно включенных в сеть приборов расчетным значением 16А х 220В = 3520 Вт.

Принимая во внимание ограничения установленного автомата, можно сделать вывод, что сечение кабеля должно соответствовать не только мощности бытовой техники, работающей одновременно, но и силе тока, на которую рассчитано автоматическое защитное устройство. Нет никакого смысла увеличивать сечение жил электропроводки в сети более того значения, которое на входе имеет распределительный щиток в конкретной квартире.

Помочь в планировании нагрузки при проектировке электропроводки может таблица с примерными показателями мощности, которую потребляют наиболее распространенные бытовые электроприборы.

Почему так важно использовать уменьшающие коэффициенты?

Дело в том, что в процессе монтажа кабеля скорее всего будут допущены определенные неточности, либо последует несоблюдение допустимых показателей углов изгиба жилы. Медный и алюминиевый провод теряет свои характеристики при сильном сгибании, поэтому все углы при прокладке проводки строго нормированы и не должны выходить за определенные значения.

Длительность эксплуатации электропроводки исчисляется десятками лет, на протяжении которых материал токопроводящих жил неизбежно подвергается коррозии. Этот процесс идёт медленно, но верно и через 20-30 лет характеристики кабеля уже будут не такими хорошими, какими они были при обустройстве новой электросети.

Выбор сечения провода | Электрик

Но что же на самом деле такое «сечение» и как его измерить на практике?

Не стоит думать что сечение провода это его диаметр…

Площадь поперечного сечения (S) кабеля рассчитывается по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.

Безопасная эксплуатация состоит в том, что в случае если вы подберете сечение не соответственное его токовым перегрузкам, то это приведет к чрезмерному перегреву электропровода, плавлению изоляции, короткому замыканию и пожару.

Поэтому к вопросу о выборе сечения электропровода нужно отнестись довольно серьезно. 

Что нужно знать для правильного выбора провода?

Главным признаком, по которому планируют провод, считается его продолжительно разрешенная токовая перегрузка. Не вдаваясь в пространные рассуждения, это такая величина тока, которую он способен пропускать в протяжении долгого времени.

Чтоб отыскать значение номинального тока, нужно подсчитать мощность всех подключаемых электрических приборов в жилище. Рассмотрим пример расчета сечения электропровода для обыкновенной двухкомнатной жилплощади. Список нужных устройств и их примерная мощность указана в таблице.

Принимая во внимание значение тока, сечение электропровода находят по таблице. В случае если окажется что расчетное и табличное значения токов не совпадают, то в данном случае подбирают наиблежайшее большее значение. К примеру расчетное значение тока составляет 23 А, избираем по таблице наиблежайшее большее 27 А — с сечением 2.5 мм2 (для медного многожильного электропровода прокладываемого по воздуху).

Предлагаю вашему вниманию таблицы возможных токовых нагрузок кабелей с медными и алюминиевыми жилами с изоляцией из поливинилхлоридного пластика.

Важно! Для четырехжильных и пятижильных кабелей, у которых все жилы одинакового сечения при применении их в четырех-проводных сетях значение из таблицы необходимо помножить на коэффициент 0,93.

К примеру у Вас трехфазная нагрузка мощностью Р=15 кв-т Нужно выбрать медный кабель (прокладка по воздуху). Как высчитать сечение? Сначала нужно высчитать токовую нагрузку отталкиваясь от этой мощности, чтобы достичь желаемого результата можем использовать формулу для трехфазной сети: I = P / √3 · 380 = 22.8 ≈ 23 А.

По таблице токовых нагрузок избираем сечение 2.5 мм2 (ему допускаемый ток 27А). Хотя потому что кабель у Вас четырехжильный (либо пяти- здесь уже особенной разницы нет) сообразно указаний ГОСТ 31996—2012 подобранное значение тока необходимо помножить на коэффициент 0.93. I = 0.93 * 27 = 25 А. Что возможно для нашей нагрузки (расчетного тока).

Хотя в виду того что почти все изготовители отпускают кабели с заниженным сечением в этом случае я бы рекомендовал брать кабель с запасом, с сечением намного выше — 4 мм2.

Важно! Когда нагрузка именуется в кВт — то идет речь о общей нагрузке. То есть для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем 3. Когда значение нагрузки названо в амперах (А) — речь практически постоянно идет о нагрузке на 1 жилу (либо фазу).

Какой провод лучше использовать медный или алюминиевый?

На сегодня для монтажа как открытой проводки так и скрытой, конечно широкой известностью пользуются медные электропровода. Медь, сравнивая с алюминием, наиболее эффективна:

1) она прочнее, более мягенькая и в местах перегиба не ломается по сравнению с алюминием;

2) менее подвержена коррозии и окислению. Соединяя алюминий в разветвительной коробке, места скрутки с течением времени окисляются, что и ведет к утрате контакта;

3) проводимость меди повыше нежели алюминия, при схожем сечении медный провод способен вынести огромную токовую нагрузку нежели алюминиевый. 

Недочетом медных проводов считается их большая цена. Цена их в 3-4 раза выше алюминиевых. Хотя медные электропровода по цене дороже все таки они считаются наиболее всераспространенными и пользующимися популярностью в применении нежели алюминиевые. 

Расчет сечения медных проводов и кабелей

Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на случае двухкомнатной жилплощади. 

Как понятно, вся нагрузка разделяется на 2 группы: силовую и осветительную.

В нашем случае главной силовой нагрузкой станет розеточная группа установленная в столовой и в ванной комнате. Потому что там устанавливается более сильная техника (электрочайник, микроволновка, морозильник, бойлер, стиральная машинка и т.д.).

Для данной розеточной группы выбираем провод сечением 2.5мм2. Если соблюдать условие, что силовая нагрузка станет разбросана по различным розеткам. Что это означает? К примеру в столовой для включения всей домашней техники необходимо 3-4 розетки присоединенных медным электропроводом сечением 2.5 мм2 каждая. 

В случае если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 станет мало, в данном случае необходимо применять провод сечением 4-6 мм2. В жилых комнат для питания электророзеток применяют провод сечением 1.5 мм2 но завершающий выбор необходимо брать на себя в последствии соответственных расчетов.

Питание всей осветительной нагрузки производится электропроводом сечением 1.5 мм2.

Нужно осознавать что мощность на различных участках проводки станет различной, в соответствии с этим и сечение питающих проводов также разным. Самое большое его значение станет на вводном участке жилплощади, потому что через него проходит вся нагрузка. Сечение вводного питающего электропровода подбирают 4 – 6 мм2.

При монтаже проводки используют электропровода и кабели марки ПВС, ВВГнг, ППВ, АППВ.

Наиболее распространенные марки проводов и кабелей:

ППВ — медный плоский двух- либо трехжильный с одинарной изоляцией для прокладки скрытой либо недвижной открытой электропроводки;

АППВ — алюминиевый плоский двух- либо трехжильный с одинарной изоляцией для прокладки скрытой либо недвижной открытой электропроводки;

ПВС — медный круглый, численность жил — до 5, с двойной изоляцией для прокладки открытой и скрытой электропроводки;

ШВВП – медный круглый со скрученными жилами с двойной изоляцией, эластичный, для включения домашних устройств к источникам питания;

ВВГ — кабель медный круглый, до 4 жил с двойной изоляцией для прокладки в земле;

ВВП — кабель медный круглый одножильный с двойной изоляцией для прокладки в воде.

Как можно заметить, выбор для прокладки проводки не велик и ориентируется зависимо от того, какой формы кабель наиболее подходит для монтажа, круглой либо плоской. Кабель круглой формы комфортнее прокладывается через стенки, в особенности в случае если делается ввод с улицы в здание. Понадобится просверлить отверстие чуток больше поперечника кабеля, а при большей толщине стенки это делается актуальным. Для внутренней электропроводки комфортнее использовать тонкий кабель ВВГ.

Таблица нагрузок по сечению кабеля: выбор, расчет

От правильного выбора сечения электропроводки зависит комфорт и безопасность в доме. При перегрузке нагрузки проводник перегревается, и изоляция может расплавиться, что приведет к возгоранию или короткому замыканию. Но сечение больше необходимого брать невыгодно, так как цена кабеля увеличивается.

Как правило, он рассчитывается в зависимости от количества потребителей, от которого сначала определяется общая мощность, потребляемая квартирой, а затем результат умножается на 0.75. В ПУЭ применяется таблица нагрузок по сечению кабеля. Он может легко определить диаметр жил, который зависит от материала и проходящего тока. Как правило, используются медные жилы.

Сечение жилы кабеля должно совпадать с точно рассчитанным — в сторону увеличения типоразмеров. Наиболее опасно, когда это занижено. Тогда проводник постоянно перегревается, и изоляция быстро выходит из строя. А если установить соответствующий автоматический выключатель, то это будет часто происходить.

Если поперечное сечение провода слишком велико, это будет стоить дорого. Хотя определенный инвентарь необходим, так как в будущем, как правило, необходимо подключать новое оборудование. Рекомендуется применять коэффициент безопасности около 1,5.

Расчет общей мощности

Общая мощность, потребляемая квартирой, приходится на основной ввод, который поступает в распределительный щит, а после разветвляется на линии:

  • освещение;
  • группы розеток;
  • Отдельные мощные электроприборы.

Поэтому наибольшее сечение силового кабеля — у входа. На исходящих линиях он уменьшается в зависимости от нагрузки. В первую очередь определяется суммарная мощность всех нагрузок. Это несложно, так как это указано на корпусах всей бытовой техники и в паспортах к ним.

Вся мощность добавлена. Аналогично производятся расчеты для каждого контура. Специалисты предлагают умножить сумму на понижающий коэффициент 0,75. Это связано с тем, что все устройства не подключены к сети одновременно.Другие предлагают выбрать секцию большего размера. Это создает резерв для последующего ввода в эксплуатацию дополнительных электроприборов, которые можно будет приобрести в будущем. Следует отметить, что такой вариант расчета кабеля более надежен.

Как определить сечение провода?

Во всех расчетах отображается сечение кабеля. По его диаметру легче определить, используются ли следующие формулы:

  • S = π D² / 4 ;
  • D = √ (4 × S / π).

Где π = 3,14.

В многожильном проводе сначала нужно рассчитать количество проводов (N). Затем измеряется диаметр (D) одного из них, после чего определяется площадь поперечного сечения:

S = N × D² / 1,27.

Многожильные провода используются там, где требуется гибкость. Для стационарной прокладки используются более дешевые неразъемные жилы.

Как выбрать кабель по мощности?

Для подбора проводки применяется таблица нагрузок по сечению кабеля:

  • При разомкнутой линии 220 В и суммарной мощности 4 кВт медный провод 1.Принимается поперечное сечение 5 мм². Этот размер обычно используется для проводки освещения.
  • При мощности 6 кВт требуются жилы большего сечения 2,5 мм². Провод используется для розеток, к которым подключена бытовая техника.
  • Для мощности 10 кВт требуется проводка сечением 6 мм². Обычно он предназначен для кухни, где подключается электрическая плита. Подход к такой нагрузке вынесен отдельной строкой.

Какие кабели лучше?

Электрики известной немецкой кабельной марки NUM для офисных и жилых помещений.В России выпускают кабели более низких по характеристикам марок, хотя могут иметь одно и то же название. Их можно отличить по наплыву соединения в пространство между прожилками или по его отсутствию.

Проволока выпускается монолитная и многопроволочная. Каждая жила, как и вся скрутка снаружи, изолирована ПВХ, а наполнитель между ними сделан негорючим:

  • Итак, кабель NUM используется внутри помещений, потому что изоляция на улице разрушается под воздействием солнечных лучей. лучи.
  • А в качестве внутренней и внешней электропроводки широко используется кабель марки BBG. Достаточно дешево и надежно. Для прокладки в земле использовать не рекомендуется.
  • Проволока марки ВВГ изготавливается плоская и круглая. Между стержнями заполнитель не наносится.
  • Кабель ВВГнг-П-LS изготавливается с внешней оболочкой, не поддерживающей горение. Жилы делают круглыми до сечения 16 мм², а сверху — секторными.
  • Марки кабелей ПВС и ШВВП изготавливаются многопроволочными и используются в основном для подключения бытовой техники.Его часто используют в качестве домашней электропроводки. На улице нельзя использовать многожильные жилы из-за коррозии. Кроме того, изгибная изоляция трескается при низкой температуре.
  • На улице под землей проложить бронированные и стойкие кабели АВБШв и ВБШв. Броня изготовлена ​​из двух стальных лент, что увеличивает надежность кабеля и делает его устойчивым к механическим воздействиям.

Определение токовой нагрузки

Более точным результатом является расчет сечения кабеля по мощности и току, где геометрические параметры связаны с электрическими.

При домашней электропроводке необходимо учитывать не только активную нагрузку, но и реактивную нагрузку. Сила тока определяется по формуле:

I = P / (U ∙ cosφ).

Реактивная нагрузка создается люминесцентными лампами и двигателями электроприборов (холодильник, пылесос, электроинструмент и т. Д.).

Пример расчета сечения токоведущего кабеля

Разберемся, что делать, при необходимости определим сечение медного кабеля для подключения бытовой техники общей мощностью 25 кВт и трехфазных автоматов для 10 кВт.Это соединение осуществляется пятижильным кабелем, проложенным в земле. Питание дома производится от трехфазной сети.

С учетом реактивной составляющей мощность бытовых приборов и оборудования составит:

  • P срок службы. = 25 / 0,7 = 35,7 кВт;
  • П обор. = 10 / 0,7 = 14,3 кВт.

Определены токи на входе:

  • I срок службы. = 35,7 × 1000/220 = 162 А;
  • I обор. = 14,3 × 1000/380 = 38 А.

Если однофазные нагрузки распределены равномерно по трем фазам, у одной будет ток:

I f = 162/3 = 54 А.

На каждой фазе будет токовая нагрузка:

I f = 54 + 38 = 92 А.

Все оборудование одновременно работать не будет. С учетом запаса по каждой фазе есть ток:

I f = 92 × 0,75 × 1.5 = 103,5 А.

В пятижильном кабеле учитываются только фазные жилы. Для кабеля, проложенного в земле, можно определить сечение жил 16 мм² на ток 103,5 А (таблица нагрузок по сечению кабеля).

Точный расчет силы тока позволяет снизить затраты, так как требуется меньшее поперечное сечение. При более грубом расчете кабеля на мощность сечение жилы будет 25 мм2, что обойдется дороже.

Падение напряжения на кабеле

Проводники имеют сопротивление, которое необходимо учитывать. Это особенно важно для кабелей большой длины или небольших сечений. Установлены нормы ПЭУ, согласно которым падение напряжения на кабеле не должно превышать 5%. Расчет производится следующим образом.

  1. Определяется сопротивление проводника: R = 2 × (ρ × L) / с.
  2. Имеется падение напряжения: Имеем площадку . = I × R. По отношению к линейной в процентах это будет: Have % = (U pad. / У лин. ) × 100.

В формулах использованы следующие формулы:

  • ρ — удельное сопротивление, Ом × мм² / м;
  • S — площадь поперечного сечения, мм².

Коэффициент 2 показывает, что ток протекает через две жилы.

Пример расчета кабеля на падение напряжения

Например, необходимо рассчитать падение напряжения на проводе с поперечным сечением жилы 2,5 мм², длиной 20 м.Необходимо подключить сварочный трансформатор мощностью 7 кВт.

  • Сопротивление провода: R = 2 (0,0175 × 20) / 2,5 = 0,28 Ом .
  • Сила тока в проводнике: I = 7000/220 = 31,8 A .
  • Падение напряжения при переноске: Имейте площадку . = 31,8 × 0,28 = 8,9 В .
  • Процент падения напряжения: У % = (8,9 / 220) × 100 = 4,1 %.

Переноска подходит для сварочного аппарата по требованиям правил эксплуатации электроустановок, так как процент падения напряжения на нем находится в пределах нормы.Однако его величина на подводящей проволоке остается большой, что может отрицательно сказаться на процессе сварки. Здесь необходимо проверить нижний предел допустимого напряжения питания сварочного аппарата.

Заключение

Для надежной защиты электропроводки от перегрева при длительном превышении номинального тока сечения кабелей рассчитываются на длительно допустимые токи. Расчет упрощается, если по сечению кабеля приложить таблицу нагрузок. Более точный результат получается, если расчет основан на максимальной токовой нагрузке.А для стабильной и продолжительной работы в цепи электропроводки устанавливается автоматический выключатель.

Подробная ошибка IIS 8.5 — 404.11

Ошибка HTTP 404.11 — не найдено

Модуль фильтрации запросов настроен на отклонение запроса, содержащего двойную escape-последовательность.

Наиболее вероятные причины:
  • Запрос содержал двойную escape-последовательность, а фильтрация запросов настроена на веб-сервере, чтобы отклонять двойные escape-последовательности.
Что можно попробовать:
  • Проверьте параметр configuration/system.webServer/security/[email protected] в файле applicationhost.config или web.confg.
Подробная информация об ошибке:
Модуль RequestFilteringModule
Уведомление BeginRequest
Обработчик StaticFile
Код ошибки 0x200000000
Запрошенный URL https: // www.generalcable.com:443/assets/documents/latam%20documents/mexico%20site/nuestros%20mercados/utilities/electric-utility.pdf?ext=.pdf
Physical Path C: \ inetpub \ GCKentico \ assets \ documents \ latam% 20documents \ mexico% 20site \ nuestros% 20mercados \ utilities \ electric-utility.pdf? ext = .pdf
Метод входа в систему Еще не определено
Пользователь входа в систему Еще не определено
Каталог отслеживания запросов C: \ inetpub \ logs \ FailedReqLogFiles
Дополнительная информация:
Это функция безопасности.Не изменяйте эту функцию, пока не полностью осознаете масштаб изменения. Перед изменением этого значения следует выполнить трассировку сети, чтобы убедиться, что запрос не является вредоносным. Если сервер разрешает двойные escape-последовательности, измените параметр configuration/system.webServer/security/[email protected] Это могло быть вызвано неправильным URL-адресом, отправленным на сервер злоумышленником.

Просмотр дополнительной информации »

Эластичность: напряжение и деформация | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Закон штата Гука.
  • Объясните закон Гука, используя графическое представление между деформацией и приложенной силой.
  • Обсудите три типа деформаций, такие как изменение длины, сдвиг в сторону и изменение объема.
  • Опишите на примерах модуль Юнга, модуль сдвига и модуль объемной упругости.
  • Определите изменение длины с учетом массы, длины и радиуса.

Теперь мы переходим от рассмотрения сил, влияющих на движение объекта (таких как трение и сопротивление), к тем, которые влияют на форму объекта.Если бульдозер втолкнет машину в стену, машина не двинется с места, но заметно изменит форму. Изменение формы из-за приложения силы — это деформация . Известно, что даже очень небольшие силы вызывают некоторую деформацию. При малых деформациях наблюдаются две важные характеристики. Во-первых, объект возвращается к своей исходной форме, когда сила снимается, то есть деформация является упругой для небольших деформаций. Во-вторых, размер деформации пропорционален силе, то есть при малых деформациях соблюдается закон Гука.В форме уравнения Закон Гука определяется как

.

F = k Δ L ,

, где Δ L — величина деформации (например, изменение длины), вызванная силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта и направления сила. Обратите внимание, что эта сила является функцией деформации Δ L — она ​​не постоянна, как кинетическая сила трения.Переставляем это на

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

дает понять, что деформация пропорциональна приложенной силе. На рисунке 1 показано соотношение по закону Гука между удлинением Δ L пружины или человеческой кости. Для металлов или пружин область прямой линии, к которой относится закон Гука, намного больше. Кости хрупкие, эластичная область небольшая, а перелом резкий. В конце концов, достаточно большое напряжение материала приведет к его разрушению или разрушению.

Закон Гука

F = кΔL ,

, где Δ L — величина деформации (например, изменение длины), вызванная силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта и направления сила.

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

Рис. 1. График зависимости деформации ΔL от приложенной силы F.Прямой отрезок — это линейная область, в которой соблюдается закон Гука. Наклон прямой области [латекс] \ frac {1} {k} [/ latex]. Для больших сил график изогнут, но деформация остается упругой — ΔL вернется к нулю, если сила будет устранена. Еще большие силы деформируют объект до тех пор, пока он не сломается. Форма кривой возле трещины зависит от нескольких факторов, в том числе от того, как прикладывается сила F . Обратите внимание, что на этом графике наклон увеличивается непосредственно перед трещиной, указывая на то, что небольшое увеличение F дает большое увеличение L около трещины.

Константа пропорциональности k зависит от ряда факторов материала. Например, гитарная струна из нейлона растягивается при затягивании, а удлинение Δ L пропорционально приложенной силе (по крайней мере, для небольших деформаций). Более толстые нейлоновые и стальные струны меньше растягиваются при одной и той же приложенной силе, что означает, что они имеют больший размер k (см. Рисунок 2). Наконец, все три струны возвращаются к своей нормальной длине, когда сила снимается, при условии, что деформация мала.Большинство материалов будут вести себя таким образом, если деформация будет меньше примерно 0,1% или примерно 1 часть на 10 3 .

Рис. 2. Одна и та же сила, в данном случае груз (w), приложенная к трем различным гитарным струнам одинаковой длины, вызывает три различных деформации, показанные заштрихованными сегментами. Левая нить из тонкого нейлона, посередине — из более толстого нейлона, а правая — из стали.

Потянитесь немного

Как бы вы измерили константу пропорциональности k резиновой ленты? Если резинка растянулась на 3 см, когда к ней была прикреплена 100-граммовая масса, то насколько она растянулась бы, если бы две одинаковые резинки были прикреплены к одной и той же массе — даже если соединить их параллельно или, наоборот, если связать вместе последовательно?

Теперь мы рассмотрим три конкретных типа деформаций: изменение длины (растяжение и сжатие), сдвиг в сторону (напряжение) и изменения объема.Все деформации считаются небольшими, если не указано иное.

Изменение длины — растяжение и сжатие: модуль упругости

Изменение длины Δ L происходит, когда к проволоке или стержню прилагается сила, параллельная его длине L 0 , либо растягивая (натяжение), либо сжимая. (См. Рисунок 3.)

Рис. 3. (a) Напряжение. Стержень растягивается на длину ΔL , когда сила прилагается параллельно его длине. (б) Сжатие.Тот же стержень сжимается силами той же величины в противоположном направлении. Для очень малых деформаций и однородных материалов значение ΔL примерно одинаково при одинаковой величине растяжения или сжатия. При больших деформациях площадь поперечного сечения изменяется при сжатии или растяжении стержня.

Эксперименты показали, что изменение длины (Δ L ) зависит только от нескольких переменных. Как уже отмечалось, Δ L пропорциональна силе F и зависит от вещества, из которого изготовлен объект.Кроме того, изменение длины пропорционально исходной длине L 0 и обратно пропорционально площади поперечного сечения проволоки или стержня. Например, длинная гитарная струна растягивается больше, чем короткая, а толстая струна растягивается меньше, чем тонкая. Мы можем объединить все эти факторы в одно уравнение для Δ L :

[латекс] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex],

, где Δ L — изменение длины, F — приложенная сила, Y — коэффициент, называемый модулем упругости или модулем Юнга, который зависит от вещества, A — площадь поперечного сечения, и L 0 — исходная длина.В таблице 1 перечислены значения Y для нескольких материалов — те, которые имеют большой Y , как говорят, имеют большую прочность на разрыв , потому что они меньше деформируются при заданном растяжении или сжатии.

Таблица 1. Модули упругости
Материал Модуль Юнга (растяжение – сжатие) Y (10 9 Н / м 2 ) Модуль сдвига S (10 9 Н / м 2 ) Модуль объемной упругости B (10 9 Н / м 2 )
Алюминий 70 25 75
Кость — напряжение 16 80 8
Кость — компрессия 9
Латунь 90 35 75
Кирпич 15
Бетон 20
Стекло 70 20 30
Гранит 45 20 45
Волосы (человеческие) 10
Твердая древесина 15 10
Чугун литой 100 40 90
Свинец 16 5 50
Мрамор 60 20 70
Нейлон 5
Полистирол 3
Шелк 6
Паутинка 3
Сталь 210 80 130
Сухожилие 1
Ацетон 0.7
Этанол 0,9
Глицерин 4,5
Меркурий 25
Вода 2,2

Модули Юнга не указаны для жидкостей и газов в таблице 1, потому что они не могут быть растянуты или сжаты только в одном направлении. Обратите внимание, что есть предположение, что объект не ускоряется, поэтому на самом деле существуют две приложенные силы величиной F , действующие в противоположных направлениях.Например, струны на рисунке 3 натягиваются вниз силой величиной w и удерживаются потолком, который также оказывает силу величиной w .

Пример 1. Растяжение длинного троса

Подвесные тросы используются для перевозки гондол на горнолыжных курортах. (См. Рис. 4). Рассмотрим подвесной трос, длина которого без опоры составляет 3 км. Рассчитайте степень растяжения стального троса. Предположим, что кабель имеет диаметр 5,6 см и максимальное натяжение, которое он может выдержать, равно 3.0 × 10 6 Н.

Рис. 4. Гондолы перемещаются по подвесным тросам на горнолыжном курорте Гала Юдзава в Японии. (Источник: Руди Херман, Flickr)

Стратегия

Сила равна максимальному натяжению, или F = 3,0 × 10 6 Н. Площадь поперечного сечения π r 2 = 2,46 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.{2}} \ right) \ left (\ text {3020 m} \ right) \\ & = & \ text {18 m}. \ End {array} [/ latex]

Обсуждение

Это довольно большая длина, но только около 0,6% от длины без опоры. В этих условиях влияние температуры на длину может быть важным.

Кости в целом не ломаются от растяжения или сжатия. Скорее они обычно ломаются из-за бокового удара или изгиба, что приводит к срезанию или разрыву кости. Поведение костей при растяжении и сжатии важно, поскольку оно определяет нагрузку, которую кости могут нести.Кости классифицируются как несущие конструкции, такие как колонны в зданиях и деревья. Несущие конструкции обладают особенностями; колонны в здании имеют стальные арматурные стержни, а деревья и кости — волокнистые. Кости в разных частях тела выполняют разные структурные функции и подвержены разным нагрузкам. Таким образом, кость в верхней части бедра расположена в виде тонких пластин, разделенных костным мозгом, в то время как в других местах кости могут быть цилиндрическими и заполненными костным мозгом или просто твердыми.Люди с избыточным весом имеют тенденцию к повреждению костей из-за длительного сжатия костных суставов и сухожилий.

Другой биологический пример закона Гука встречается в сухожилиях. Функционально сухожилие (ткань, соединяющая мышцу с костью) должно сначала легко растягиваться при приложении силы, но обеспечивать гораздо большую восстанавливающую силу для большего напряжения. На рисунке 5 показана зависимость напряжения от деформации человеческого сухожилия. Некоторые сухожилия имеют высокое содержание коллагена, поэтому деформация или изменение длины относительно невелико; другие, например, опорные сухожилия (например, в ноге), могут изменять длину до 10%.Обратите внимание, что эта кривая напряжения-деформации является нелинейной, поскольку наклон линии изменяется в разных областях. В первой части растяжения, называемой областью пальца, волокна сухожилия начинают выравниваться в направлении напряжения — это называется разжим . В линейной области фибриллы будут растянуты, а в области разрушения отдельные волокна начнут разрываться. Простую модель этой взаимосвязи можно проиллюстрировать параллельными пружинами: разные пружины активируются при разной длине растяжения.Примеры этого приведены в задачах в конце этой главы. Связки (ткань, соединяющая кость с костью) ведут себя аналогичным образом.

Рис. 5. Типичная кривая «напряжение-деформация» для сухожилия млекопитающих. Показаны три области: (1) область пальца ноги (2) линейная область и (3) область разрушения.

В отличие от костей и сухожилий, которые должны быть прочными и эластичными, артерии и легкие должны быть легко растяжимыми. Эластичные свойства артерий важны для кровотока. Когда кровь выкачивается из сердца, давление в артериях увеличивается, и стенки артерий растягиваются.Когда аортальный клапан закрывается, давление в артериях падает, и артериальные стенки расслабляются, чтобы поддерживать кровоток. Когда вы чувствуете свой пульс, вы чувствуете именно это — эластичное поведение артерий, когда кровь хлынет через каждый насос сердца. Если бы артерии были жесткими, вы бы не почувствовали пульс. Сердце также является органом с особыми эластичными свойствами. Легкие расширяются за счет мышечного усилия, когда мы вдыхаем, но расслабляемся свободно и эластично, когда мы выдыхаем. Наша кожа особенно эластична, особенно для молодых.Молодой человек может подняться от 100 кг до 60 кг без видимого провисания кожи. С возрастом снижается эластичность всех органов. Постепенное физиологическое старение за счет снижения эластичности начинается в начале 20-х годов.

Пример 2. Расчет деформации: насколько укорачивается нога, когда вы стоите на ней?

Рассчитайте изменение длины кости верхней части ноги (бедренной кости), когда мужчина весом 70,0 кг поддерживает на ней 62,0 кг своей массы, предполагая, что эта кость эквивалентна стержню, равному 40.0 см в длину и 2,00 см в радиусе.

Стратегия

Сила равна поддерживаемому весу, или F = мг = (62,0 кг) (9,80 м / с 2 ) = 607,6 Н, а площадь поперечного сечения равна π r 2 = 1,257 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.

Решение

Все величины, кроме Δ L , известны.{-5} \ text {m.} \ End {array} [/ latex]

Обсуждение

Это небольшое изменение длины кажется разумным, поскольку, по нашему опыту, кости жесткие. Фактически, даже довольно большие силы, возникающие при напряженных физических нагрузках, не сжимают и не сгибают кости в больших количествах. Хотя кость более жесткая по сравнению с жиром или мышцами, некоторые из веществ, перечисленных в таблице 1, имеют более высокие значения модуля Юнга Y . Другими словами, они более жесткие и обладают большей прочностью на разрыв.

Уравнение изменения длины традиционно переставляют и записывают в следующем виде:

[латекс] \ displaystyle \ frac {F} {A} = Y \ frac {\ Delta {L}} {L_0} [/ latex].

Отношение усилия к площади, [латекс] \ frac {F} {A} [/ латекс], определяется как напряжение (измеряется в Н / м 2 ), а отношение изменения длины к длина, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

В этой форме уравнение аналогично закону Гука с напряжением, аналогичным силе, и деформацией, аналогичной деформации. Если снова переписать это уравнение к виду

[латекс] \ displaystyle {F} = YA \ frac {\ Delta {L}} {L_0} [/ latex],

мы видим, что он совпадает с законом Гука с константой пропорциональности

[латекс] \ displaystyle {k} = \ frac {YA} {L_0} [/ latex].

Эта общая идея о том, что сила и вызываемая ею деформация пропорциональны небольшим деформациям, применима к изменениям длины, боковому изгибу и изменениям объема.

Напряжение

Отношение силы к площади, [латекс] \ frac {F} {A} [/ латекс], определяется как напряжение, измеренное в Н / м 2 .

Штамм

Отношение изменения длины к длине, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

Боковое напряжение: Модуль сдвига

На рисунке 6 показано, что подразумевается под боковым напряжением или усилием сдвига .Здесь деформация называется Δ x , и она перпендикулярна L 0 , а не параллельна, как при растяжении и сжатии. Деформация сдвига аналогична растяжению и сжатию и может быть описана аналогичными уравнениями. Выражение для деформации сдвига : [latex] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex], где S — модуль сдвига ( см. Таблицу 1) и F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .Опять же, чтобы препятствовать ускорению объекта, на самом деле есть две равные и противоположные силы F , приложенные к противоположным граням, как показано на рисунке 6. Уравнение логично — например, легче согнуть длинный тонкий карандаш (маленький A ), чем короткий толстый, и оба гнутся легче, чем аналогичные стальные стержни (большие S ).

Рис. 6. Сила сдвига прилагается перпендикулярно длине L 0 и параллельно области A , создавая деформацию Δx.Вертикальные силы не показаны, но следует иметь в виду, что в дополнение к двум силам сдвига, F , должны существовать поддерживающие силы, чтобы объект не вращался. Искажающие эффекты этих поддерживающих сил игнорируются при этом лечении. Вес объекта также не показан, поскольку он обычно незначителен по сравнению с силами, достаточно большими, чтобы вызвать значительные деформации.

Деформация сдвига

[латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex],

, где S — модуль сдвига, а F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .

Изучение модулей сдвига в таблице 1 выявляет некоторые характерные закономерности. Например, для большинства материалов модули сдвига меньше модулей Юнга. Кость — замечательное исключение. Его модуль сдвига не только больше, чем модуль Юнга, но и такой же, как у стали. Это одна из причин того, что кости могут быть длинными и относительно тонкими. Кости могут выдерживать нагрузки, сопоставимые с бетонными и стальными. Большинство переломов костей возникает не из-за сжатия, а из-за чрезмерного скручивания и изгиба.

Позвоночный столб (состоящий из 26 позвоночных сегментов, разделенных дисками) обеспечивает основную опору для головы и верхней части тела. Позвоночник имеет нормальную кривизну для стабильности, но эту кривизну можно увеличить, что приведет к увеличению силы сдвига на нижние позвонки. Диски лучше выдерживают силы сжатия, чем силы сдвига. Поскольку позвоночник не является вертикальным, вес верхней части тела влияет на обе части. Беременным женщинам и людям с избыточным весом (с большим животом) необходимо отвести плечи назад, чтобы поддерживать равновесие, тем самым увеличивая искривление позвоночника и тем самым увеличивая сдвигающий компонент напряжения.Увеличенный угол из-за большей кривизны увеличивает поперечные силы вдоль плоскости. Эти более высокие усилия сдвига увеличивают риск травмы спины из-за разрыва дисков. Пояснично-крестцовый диск (клиновидный диск под последними позвонками) особенно подвержен риску из-за своего расположения.

Модули сдвига для бетона и кирпича очень малы; они слишком изменчивы, чтобы их можно было перечислить. Бетон, используемый в зданиях, может выдерживать сжатие, как в колоннах и арках, но очень плохо противостоит сдвигу, который может возникнуть в сильно нагруженных полах или во время землетрясений.Современные конструкции стали возможны благодаря использованию стали и железобетона. Практически по определению жидкости и газы имеют модуль сдвига, близкий к нулю, потому что они текут в ответ на силы сдвига.

Пример 3. Расчет силы, необходимой для деформации: гвоздь не сильно изгибается под нагрузкой

Найдите массу картины, висящей на стальном гвозде, как показано на рисунке 7, учитывая, что гвоздь изгибается только на 1,80 мкм. (Предположим, что модуль сдвига известен с двумя значащими цифрами.)

Рис. 7. Гвоздь, вид сбоку с прикрепленным к нему изображением. Гвоздь очень слабо прогибается (показанный намного больше, чем на самом деле) из-за срезающего воздействия поддерживаемого веса. Также показано направленное вверх усилие стенки на гвоздь, иллюстрирующее равные и противоположные силы, приложенные к противоположным поперечным сечениям гвоздя. См. Пример 3 для расчета массы изображения.

Стратегия

Сила F на гвоздь (без учета собственного веса гвоздя) — это вес изображения w .Если мы сможем найти w , то масса изображения будет просто [latex] \ frac {w} {g} [/ latex]. Уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] может быть решено для F .

Решение

Решая уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] для F , мы видим, что все остальные величины могут быть найдены :

[латекс] \ displaystyle {F} = \ frac {SA} {L_0} \ Delta {x} [/ latex]

S находится в таблице 1 и составляет S = 80 × 10 9 Н / м 2 .{-6} \ text {m} \ right) = 51 \ text {N} [/ latex]

Эта сила 51 Н составляет вес w изображения, поэтому масса изображения [латекс] m = \ frac {w} {g} = \ frac {F} {g} = 5.2 \ text {kg} [ /латекс].

Обсуждение

Это довольно массивное изображение, и впечатляет то, что гвоздь прогибается всего на 1,80 мкм — величину, которую невозможно обнаружить невооруженным глазом.

Изменение объема: модуль объемной упругости

Объект будет сжиматься во всех направлениях, если внутренние силы приложены равномерно ко всем его поверхностям, как показано на рисунке 8.Относительно легко сжимать газы и чрезвычайно сложно сжимать жидкости и твердые тела. Например, воздух в винной бутылке сжимается, когда она закупорена. Но если вы попытаетесь закупорить бутылку с полными краями, вы не сможете сжать вино — некоторые из них необходимо удалить, чтобы вставить пробку. Причина такой разной сжимаемости заключается в том, что атомы и молекулы разделены большими пустыми пространствами в газах, но плотно упакованы в жидкостях и твердых телах. Чтобы сжать газ, вы должны сблизить его атомы и молекулы.Чтобы сжать жидкости и твердые тела, вы должны действительно сжать их атомы и молекулы, и очень сильные электромагнитные силы в них препятствуют этому сжатию.

Рис. 8. Внутренняя сила на всех поверхностях сжимает этот куб. Его изменение в объеме пропорционально силе на единицу площади и его первоначальному объему и связано со сжимаемостью вещества.

Мы можем описать сжатие или объемную деформацию объекта уравнением. Во-первых, отметим, что сила, «приложенная равномерно», определяется как имеющая одинаковое напряжение или отношение силы к площади [латекс] \ frac {F} {A} [/ латекс] на всех поверхностях.Произведенная деформация представляет собой изменение объема Δ V , которое, как было обнаружено, ведет себя очень аналогично сдвигу, растяжению и сжатию, обсуждавшимся ранее. (Это неудивительно, поскольку сжатие всего объекта эквивалентно сжатию каждого из его трех измерений.) Связь изменения объема с другими физическими величинами определяется выражением [latex] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex], где B — объемный модуль упругости (см. Таблицу 1), V 0 — исходный объем, а [латекс] \ frac {F} {A} [/ latex] — это сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.Обратите внимание, что объемные модули для газов не приводятся.

Какие есть примеры объемного сжатия твердых тел и жидкостей? Одним из практических примеров является производство алмазов промышленного качества путем сжатия углерода с чрезвычайно большой силой на единицу площади. Атомы углерода перестраивают свою кристаллическую структуру в более плотно упакованный узор алмазов. В природе аналогичный процесс происходит глубоко под землей, где чрезвычайно большие силы возникают из-за веса вышележащего материала. Еще один естественный источник больших сжимающих сил — давление, создаваемое весом воды, особенно в глубоких частях океанов.Вода воздействует на все поверхности погружаемого объекта и даже на саму воду. На больших глубинах вода ощутимо сжата, как показано в следующем примере.

Пример 4. Расчет изменения объема с деформацией: насколько вода сжимается на глубинах Великого океана?

Рассчитайте частичное уменьшение объема [латекс] \ left (\ frac {\ Delta {V}} {V_0} \ right) [/ latex] для морской воды на глубине 5,00 км, где сила на единицу площади составляет 5,00 × 10 7 Н / м 2 .

Стратегия

Уравнение [латекс] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex] является правильным физическим соотношением. Все величины в уравнении, кроме [latex] \ frac {\ Delta {V}} {V_0} [/ latex], известны.

Решение

Решение неизвестного [латекса] \ frac {\ Delta {V}} {V_0} [/ latex] дает [latex] \ displaystyle \ frac {\ Delta {V}} {V_0} = \ frac {1} {B } \ frac {F} {A} [/ латекс].

Замена известных значений значением модуля объемной упругости B из таблицы 1,

[латекс] \ begin {array} {lll} \ frac {\ Delta {V}} {V_0} & = & \ frac {5.2} \\ & = & 0.023 = 2.3 \% \ end {array} [/ latex]

Обсуждение

Хотя это можно измерить, это не является значительным уменьшением объема, учитывая, что сила на единицу площади составляет около 500 атмосфер (1 миллион фунтов на квадратный фут). Жидкости и твердые вещества чрезвычайно трудно сжимать.

И наоборот, очень большие силы создаются жидкостями и твердыми телами, когда они пытаются расшириться, но им это мешает, что эквивалентно их сжатию до меньшего, чем их нормальный объем.Это часто происходит, когда содержащийся в нем материал нагревается, поскольку большинство материалов расширяются при повышении их температуры. Если материалы сильно стеснены, они деформируют или ломают свой контейнер. Другой очень распространенный пример — замерзание воды. Вода, в отличие от большинства материалов, при замерзании расширяется, и она может легко сломать валун, разорвать биологическую клетку или сломать блок двигателя, который встанет у нее на пути.

Другие типы деформаций, такие как кручение или скручивание, ведут себя аналогично рассмотренным здесь деформациям растяжения, сдвига и объемной деформации.

Сводка раздела

  • Закон Гука определяется выражением [латекс] F = k \ Delta {L} [/ latex], где [латекс] \ Delta {L} [/ latex] — величина деформации (изменение длины), F — приложенная сила, а k — константа пропорциональности, которая зависит от формы и состава объекта, а также направления силы. Связь между деформацией и приложенной силой также может быть записана как [latex] \ displaystyle \ Delta L = \ frac {1} {Y} \ frac {F} {A} {L} _ {0} [/ latex] , где Y — это модуль Юнга , который зависит от вещества, A — площадь поперечного сечения, а [латекс] {L} _ {0} [/ latex] — исходная длина.
  • Отношение усилия к площади, [латекс] \ frac {F} {A} [/ латекс], определяется как напряжение , измеренное в Н / м 2 .
  • Отношение изменения длины к длине, [латекс] \ frac {\ Delta L} {{L} _ {0}} [/ latex], определяется как деформация (безразмерная величина). Другими словами, [латекс] \ текст {напряжение} = Y \ times \ text {напряжение} [/ латекс].
  • Выражение деформации сдвига [латекс] \ displaystyle \ Delta x = \ frac {1} {S} \ frac {F} {A} {L} _ {0} [/ latex], где S — модуль сдвига и F — это сила, приложенная перпендикулярно [латексу] {L} _ {\ text {0}} [/ latex] и параллельно площади поперечного сечения A .
  • Связь изменения объема с другими физическими величинами определяется выражением [latex] \ displaystyle \ Delta V = \ frac {1} {B} \ frac {F} {A} {V} _ {0} [/ latex ], где B — объемный модуль, [latex] {V} _ {\ text {0}} [/ latex] — исходный объем, а [latex] \ frac {F} {A} [/ latex] — сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.

Концептуальные вопросы

  1. Эластичные свойства артерий важны для кровотока. Объясните важность этого с точки зрения характеристик кровотока (пульсирующего или непрерывного).
  2. Что вы чувствуете, когда щупаете пульс? Измерьте частоту пульса в течение 10 секунд и 1 минуты. Есть ли разница в 6 раз?
  3. Изучите различные типы обуви, включая спортивную обувь и шлепанцы. С точки зрения физики, почему нижние поверхности устроены именно так? Какие различия будут иметь для этих поверхностей сухие и влажные условия?
  4. Ожидаете ли вы, что ваш рост будет отличаться в зависимости от времени суток? Почему или почему нет?
  5. Почему белка может спрыгнуть с ветки дерева на землю и убежать целой, а человек может сломать кость при таком падении?
  6. Объясните, почему беременные женщины часто страдают растяжением спины на поздних сроках беременности.
  7. Уловка старого плотника, чтобы не допустить сгибания гвоздей при забивании их в твердый материал, заключается в том, чтобы крепко удерживать центр гвоздя плоскогубцами. Почему это помогает?
  8. Когда стеклянная бутылка, полная уксуса, нагревается, и уксус, и стекло расширяются, но уксус расширяется значительно больше с температурой, чем стекло. Бутылка разобьется, если наполнить ее до плотно закрытой крышки. Объясните, почему, а также объясните, как воздушный карман над уксусом предотвратит разрыв.(Это функция воздуха над жидкостями в стеклянных контейнерах.)

Задачи и упражнения

  1. Во время циркового представления один артист качается вверх ногами, свешиваясь на трапеции, держа другого, также перевернутого, за ноги. Если восходящая сила, действующая на более низкую спортсменку, в три раза превышает ее вес, насколько растягиваются кости (бедра) в ее верхних конечностях? Вы можете предположить, что каждый из них эквивалентен одинаковому стержню длиной 35,0 см и радиусом 1,80 см. Ее масса 60.0 кг.
  2. Во время схватки борец 150 кг ненадолго встает на одну руку во время маневра, призванного сбить с толку его и без того умирающего противника. Насколько укорачивается длина кости плеча? Кость может быть представлена ​​однородным стержнем длиной 38,0 см и радиусом 2,10 см.
  3. (a) «Грифель» в карандашах представляет собой состав графита с модулем Юнга примерно 1 × 10 9 Н / м 2 . Вычислите изменение длины грифеля в автоматическом карандаше, если постучите им прямо по карандашу с силой 4.0 Н. Шнур диаметром 0,50 мм и длиной 60 мм. б) разумен ли ответ? То есть согласуется ли это с тем, что вы наблюдали при использовании карандашей?
  4. Антенны для телевещания
  5. — самые высокие искусственные сооружения на Земле. В 1987 году физик весом 72,0 кг разместил себя и 400 кг оборудования на вершине одной антенны высотой 610 м для проведения гравитационных экспериментов. Насколько была сжата антенна, если считать ее эквивалентом стального цилиндра радиусом 0,150 м?
  6. (a) На сколько стоит 65.Альпинист весом 0 кг натягивает нейлоновую веревку диаметром 0,800 см, когда она висит на 35,0 м ниже скалы? б) Соответствует ли ответ тому, что вы наблюдали для нейлоновых веревок? Имел бы смысл, если бы веревка была на самом деле эластичным шнуром?
  7. Полый алюминиевый флагшток высотой 20,0 м по жесткости эквивалентен твердому цилиндру диаметром 4,00 см. Сильный ветер изгибает полюс так же, как горизонтальная сила в 900 Н. Насколько далеко в сторону прогибается верхняя часть шеста?
  8. По мере бурения нефтяной скважины каждая новая секция бурильной трубы выдерживает собственный вес, а также вес трубы и бурового долота под ней.Рассчитайте растяжение новой стальной трубы длиной 6,00 м, которая поддерживает 3,00 км трубы, имеющей массу 20,0 кг / м, и буровое долото 100 кг. Труба эквивалентна по жесткости сплошному цилиндру диаметром 5 см.
  9. Рассчитайте усилие, которое настройщик рояля применяет для растяжения стальной рояльной струны на 8,00 мм, если изначально проволока имеет диаметр 0,850 мм и длину 1,35 м.
  10. Позвонок подвергается действию силы сдвига 500 Н. Найдите деформацию сдвига, принимая позвонок в виде цилиндра 3.00 см в высоту и 4,00 см в диаметре.
  11. Диск между позвонками позвоночника подвергается действию силы сдвига 600 Н. Найдите его деформацию сдвига, принимая модуль сдвига 1 × 10 9 Н / м 2 . Диск эквивалентен сплошному цилиндру высотой 0,700 см и диаметром 4,00 см.
  12. При использовании ластика для карандашей вы прикладываете вертикальное усилие 6,00 Н на расстоянии 2,00 см от соединения ластика с твердой древесиной. Карандаш имеет диаметр 6,00 мм и держится под углом 20 °.0º к горизонтали. а) Насколько дерево прогибается перпендикулярно своей длине? б) Насколько он сжат в продольном направлении?
  13. Чтобы рассмотреть влияние проводов, подвешенных на столбах, мы возьмем данные из рисунка 9, на котором были рассчитаны натяжения проводов, поддерживающих светофор. Левая проволока образовывала угол 30,0 ° ниже горизонтали с вершиной своего столба и выдерживала натяжение 108 Н. Полый алюминиевый столб высотой 12,0 м эквивалентен по жесткости сплошному цилиндру диаметром 4,50 см.а) Насколько он наклонен в сторону? б) Насколько он сжат?

    Рисунок 9. Светофор подвешен на двух тросах. (б) Некоторые из задействованных сил. (c) Здесь показаны только силы, действующие на систему. Также показана схема свободного движения светофора. (d) Силы, проецируемые на вертикальную ( y ) и горизонтальную ( x ) оси. Горизонтальные составляющие натяжения должны компенсироваться, а сумма вертикальных составляющих натяжений должна равняться весу светофора.{-2} [/ латекс]). Какую силу на единицу площади вода может оказывать на емкость при замерзании? (В этой задаче допустимо использовать объемный модуль упругости воды.) (B) Удивительно ли, что такие силы могут разрушать блоки двигателя, валуны и тому подобное?

  14. Эта проблема возвращается к канатоходцу, изученному на рисунке 10, который создал натяжение 3,94 × 10 3 Н в канате, образующем угол 5,0 ° ниже горизонтали с каждой опорной стойкой. Подсчитайте, насколько это натяжение растягивает стальную проволоку, если она изначально была длиной 15 м и 0.50 см в диаметре.

    Рис. 10. Вес канатоходца вызывает провисание каната на 5,0 градуса. Интересующая здесь система — это точка на проволоке, на которой стоит канатоходец.

  15. Полюс на Рисунке 11 находится под изгибом 90,0º в линии электропередачи и поэтому подвергается большей силе сдвига, чем полюса на прямых участках линии. Натяжение в каждой линии составляет 4,00 × 10 4 Н при показанных углах. Шест 15,0 м в высоту, 18,0 см в диаметре и, как считается, имеет вдвое меньшую жесткость, чем древесина твердых пород.(а) Рассчитайте сжатие полюса. (б) Найдите, насколько он изгибается и в каком направлении. (c) Найдите натяжение троса, используемого для удержания вехи прямо, если она прикреплена к верхней части столба под углом 30,0 ° к вертикали. (Ясно, что растяжка должна быть в направлении, противоположном изгибу.)

Рис. 11. Этот телефонный столб находится под углом 90 ° к линии электропередачи. Оттяжка прикрепляется к вершине мачты под углом 30º к вертикали.

Глоссарий

сила сопротивления: F D , оказывается пропорциональной квадрату скорости объекта; математически

[латекс] \ begin {array} \\ F _ {\ text {D}} \ propto {v} ^ 2 \\ F _ {\ text {D}} = \ frac {1} {2} C \ rho {Av } ^ 2 \ end {array} [/ latex],

, где C — коэффициент лобового сопротивления, A — площадь объекта, обращенного к жидкости, а ρ — плотность жидкости.

Закон Стокса: F s = 6 πrη v , где r — радиус объекта, η — вязкость жидкости, а v — величина объекта. скорость.

Решения проблем и упражнения

1. 1.90 × 10 −3 см

3. (а) 1 мм; (б) Это кажется разумным, поскольку кажется, что поводок немного сжимается, когда вы на него нажимаете.

5. (а) 9 см; (б) Это кажется разумным для нейлоновой веревки для лазания, поскольку она не должна сильно растягиваться.

7. 8,59 мм

9. 1.49 × 10 −7 м

11. (а) 3.99 × 10 −7 м; (б) 9.67 × 10 −8 м

13. 4 × 10 6 Н / м 2 . Это примерно 36 атм, больше, чем может выдержать обычная банка.

15. 1,4 см


Расчет сечения кабеля. Таблица расчета сечения кабеля

Для долгой и надежной кабельной связи ее необходимо правильно подобрать и рассчитать.Электрики при установке электропроводки в основном выбирают сечение жил, исходя в основном из опыта. Иногда это приводит к ошибкам. Расчет сечения кабеля необходим, прежде всего, с точки зрения электробезопасности. Будет неправильно, если диаметр проводника будет меньше или больше необходимого.

Сечение кабеля занижено.

Этот случай наиболее опасен, так как жилы перегреваются от большой плотности тока, при этом плавится изоляция и происходит короткое замыкание.В этом случае также может выйти из строя электрооборудование, может возникнуть пожар, и рабочие могут попасть под напряжение. Если установить на кабель автоматический выключатель, он будет срабатывать слишком часто, что создаст некоторый дискомфорт.

Сечение кабеля больше требуемого

Здесь главный фактор — экономия. Чем больше сечение провода, тем он дороже. Если вы сделаете проводку всей квартиры с большой наценкой, это обойдется в крупную сумму. Иногда рекомендуется сделать основной ввод большей секции, если предполагается дальнейшее увеличение нагрузки на домашнюю сеть.

Если вы установите соответствующую машину для кабеля, следующие линии будут перегружены, если на одной из них не сработает автоматический выключатель.

Как рассчитать сечение кабеля?

Перед установкой желательно рассчитать сечение кабеля по нагрузке. Каждый проводник имеет определенную мощность, которая не должна быть меньше, чем у подключенных электроприборов.

Расчет мощности

Самый простой способ — рассчитать общую нагрузку на подводящий провод.Расчет сечения кабеля по нагрузке сводится к определению суммарной мощности потребителей. Каждый из них имеет свой номинал, указанный на корпусе или в паспорте. Затем общая мощность умножается на коэффициент 0,75. Это связано с тем, что нельзя включать все инструменты одновременно. Для окончательного определения необходимого размера используется таблица расчета сечения кабеля.

Расчет текущего поперечного сечения кабеля

Более точным методом является расчет текущей нагрузки.Расчет сечения кабеля производится через определение протекающего по нему тока. Для однофазной сети применяется следующая формула:

I расч. = P / (U nom ∙ cosφ),

Где P — мощность нагрузки, U ном. — напряжение сети (220 В).

Если общая мощность активных нагрузок в доме 10 кВт, то расчетный ток I расч. = 10000/220 ≈ 46 А. При расчете текущего сечения кабеля делается поправка на условия прокладки шнура (указанные в некоторых специальных таблицах), а также на перегрузку при включении электроприборов с помощью около 5 А с шагом . = 46 + 5 = 51 А.

Толщина прожилок определяется справочно. Расчет сечения кабеля по таблицам позволяет легко найти нужный размер на длительно допустимый ток. Для трехжильного кабеля, который проталкивается через дом по воздуху, вы должны выбрать значение в сторону большего стандартного сечения. Это 10 мм 2 . Правильность самостоятельного расчета можно проверить, применив онлайн-калькулятор — расчет сечения кабеля, который можно найти на некоторых ресурсах.

Обогрев кабеля с прохождением тока

При работе нагрузки в кабеле выделяется тепло:

Q = I 2 Rn Вт / см,

Где I — ток, R — электрическое сопротивление, n — количество жил.

Из выражения следует, что величина выходной мощности пропорциональна квадрату тока, проходящего через провод.

Расчет допустимого тока с учетом температуры нагрева жилы.

Кабель нельзя нагревать бесконечно, так как тепло рассеивается в окружающую среду.В конце концов наступает равновесие и устанавливается постоянная температура проводников.

Для установившегося процесса имеет место следующее соотношение:

P = Δt / ΣS = (t — t ср ) / (ΣS),

Где Δt = t x -t cp — разница между температурой среды и сердечника, а ΣS — температурное сопротивление.

Длительно допустимый ток, протекающий по кабелю, находится из выражения:

I добавить = √ ((t дополнительный — t cp ) / (RnΣS)),

Где t доп. — допустимая температура нагрева жилы (зависит от типа кабеля и способа прокладки).Обычно это 70 градусов в штатном режиме и 80 в аварийном режиме.

Условия отвода тепла при проложенном кабеле

При прокладке кабеля в любой среде теплоотвод определяется его составом и влажностью. Расчетное удельное сопротивление грунта обычно принимается равным 120 Ом ∙ ° C / Вт (глина с песком при влажности 12-14%). Для уточнения необходимо знать состав среды, после чего по таблицам можно найти сопротивление материала.Для увеличения теплопроводности траншею засыпают глиной. Не допускается наличие строительного мусора и камней.

Теплоотдача кабеля по воздуху очень низкая. Еще больше портится при прокладке в кабельном канале, где появляются дополнительные воздушные прослойки. Здесь следует уменьшить текущую нагрузку по сравнению с номинальным током. Технические характеристики кабелей и проводов указывают на допустимую температуру короткого замыкания 120 ° C для ПВХ-изоляции.Сопротивление грунта составляет 70% от общего и является основным в расчетах. Со временем проводимость утеплителя увеличивается из-за его высыхания. Это необходимо учитывать при расчетах.

Падение напряжения в кабеле

Из-за того, что жилы имеют электрическое сопротивление, часть напряжения идет на их нагрев, а к потребителю приходит меньше, чем было в начале линии. В результате потенциал теряется по длине провода из-за тепловых потерь.

Кабель следует выбирать не только по сечению, чтобы обеспечить его работоспособность, но и учитывать расстояние, на которое передается энергия. Увеличение нагрузки приводит к увеличению тока через проводник. В этом случае потери увеличиваются.

На прожекторы подается небольшое напряжение. Если немного уменьшится, это сразу заметно. Если провода выбраны неправильно, лампочки, расположенные дальше от блока питания, выглядят тусклыми.Напряжение значительно снижается на каждом последующем участке, что отражается на яркости освещения. Поэтому необходимо рассчитывать сечение кабеля по длине.

Самая важная часть кабеля — это потребитель, расположенный дальше остальных. Потери учитываются преимущественно для этой нагрузки.

На участке L жилы падение напряжения составляет:

ΔU = (Pr + Qx) L / UH,

Где P и Q — активная и реактивная мощность, r и x — активное и реактивное сопротивление секции L, а U n — номинальное значение напряжения, при котором обычно работает нагрузка.

Допустимая ΔU от источников питания до основных вводов не превышает ± 5% для освещения жилых домов и силовых цепей. От входа до нагрузки потери не должны быть более 4%. Для линий с большой протяженностью необходимо учитывать индуктивное сопротивление кабеля, которое зависит от расстояния между соседними проводниками.

Способы подключения потребителей

Нагрузки могут подключаться разными способами. Наиболее распространены следующие методы:

  • В конце сети;
  • Потребители распределяются по линии равномерно;
  • К удлиненному участку подключается линия с равномерно распределенными нагрузками.

Пример 1

Мощность прибора 4 кВт. Длина кабеля 20 м, удельное сопротивление ρ = 0,0175 Ом ∙ мм 2 .

Ток определяется из соотношения: I = P / U nom = 4 ∙ 1000/220 = 18,2 А.

Затем берется таблица расчета сечения кабеля и выбирается подходящий размер. Для медной проволоки это будет S = 1,5 мм 2 .

Формула для расчета сечения кабеля: S = 2ρl / R.По нему можно определить электрическое сопротивление кабеля: R = 2 ∙ 0,0175 ∙ 20 / 1,5 = 0,46 Ом.

По известному значению R можно определить ΔU = IR / U ∙ 100% = 18,2 * 100 ∙ 0,46 / 220 ∙ 100 = 3,8%.

Результат расчета не превышает 5%, а значит, потери будут приемлемыми. В случае больших потерь было бы лучше увеличить сечение жил кабеля, выбрав более крупное из стандартной серии — 2.5 мм 2 .

Пример 2

Три цепи освещения подключены параллельно друг другу к одной фазе трехфазной линии, уравновешенной нагрузками, состоящими из четырехжильного кабеля 70 мм 2 длиной 50 м и проводящего ток 150 А. На каждую световодную линию длиной 20 м проходит ток 20 А.

Межфазные потери при действующей нагрузке составляют: ΔU фаз = 150 ∙ 0,05 ∙ 0,55 = 4,1 В. Теперь необходимо определить потери между нейтралью и фазой, так как освещение подключено. до 220 В: ΔU fn = 4, 1 / √3 = 2.36 В.

На одной подключенной осветительной цепи падение напряжения составит: ΔU = 18 ∙ 20 ∙ 0,02 = 7,2 В. Суммарные потери определяются через сумму U итого = (2,4 + 7,2) / 230 ∙ 100 = 4,2%. Расчетное значение ниже допустимого убытка, который составляет 6%.

Вывод

Для защиты жил от перегрева при длительной нагрузке по таблицам сечение кабеля рассчитывается на длительно допустимый ток. Кроме того, нужно правильно рассчитать провода и кабели, чтобы потери напряжения в них были не больше нормы.В этом случае с ними суммируются потери в силовой цепи.

Эксперимент по испытанию на растяжение | Материаловедение и инженерия

Одним из широко используемых и признанных свойств материала является прочность материала. Но что означает слово «сила»? «Сила» может иметь много значений, поэтому позвольте Давайте подробнее рассмотрим, что подразумевается под прочностью материала. Мы будем смотреть в очень простом эксперименте, который дает много информации о силе или механическое поведение материала, называемое испытанием на растяжение.

Основная идея испытания на растяжение заключается в размещении образца материала между двумя креплениями. так называемые «захваты», которые зажимают материал. Материал имеет известные размеры, например длину. и площадь поперечного сечения. Затем мы начинаем прикладывать вес к материалу, захваченному за один конец, а другой конец закреплен. Мы продолжаем увеличивать вес (часто называемый нагрузку или силу), одновременно измеряя изменение длины образца.

Испытание на растяжение

Очень упрощенный тест можно сделать дома.

Если у вас есть способ подвесить один конец какого-либо материала к твердой точке, которая не двигаться, то на другой конец можно повесить гири.

Измерьте изменение длины при добавлении веса, пока деталь не начнет растягиваться и наконец ломается.

Результатом этого теста является график зависимости нагрузки (количества веса) от смещения. (количество растянутых). Поскольку вес, необходимый для растяжения материала, зависит от по размеру материала (и, конечно, свойствам материала), сравнение между материалами может быть очень сложно. Умение провести правильное сравнение может быть очень важно для тех, кто занимается проектированием конструкций, в которых материал должен выдерживать определенные силы.

Площадь поперечного сечения

Нам нужен способ напрямую сравнивать различные материалы, чтобы определить «прочность» мы сообщаем независимо от размера материала. Мы можем сделать это, просто разделив нагрузка, приложенная к материалу (вес или сила) начальным поперечным сечением площадь.Мы также делим величину его перемещения (смещение) на начальную длину материал. Это создает то, что ученые-материаловеды называют инженерным стрессом (нагрузка деленное на начальную площадь поперечного сечения) и инженерной деформации (смещение деленное на исходную длину). Глядя на инженерный отклик на напряжение-деформацию материал, мы можем сравнивать прочность различных материалов, независимо от их размеры.

Чтобы использовать реакцию «напряжение-деформация» при проектировании конструкций, мы можем разделить нагрузку мы хотим с помощью инженерного напряжения определить площадь поперечного сечения, необходимую для уметь удерживать этот груз. Например, стальная проволока 4340 диаметром 1/8 дюйма может удерживать маленькая машина. Опять же, не всегда все так просто. Нам нужно понять разные значения «силы» или инженерного напряжения.

Теперь все становится сложнее. Давайте посмотрим, что подразумевается под разными значения прочности, а также посмотрите на другие важные свойства, которые мы можем получить с помощью этого простого контрольная работа. Самый простой способ — изучить график зависимости инженерного напряжения от инженерного. напряжение. Ниже показан график испытания на растяжение обычного стального резьбового стержня. являясь хорошим примером общего испытания металла на растяжение.Единицы техники Напряжение составляет тыс. фунтов на квадратный дюйм , что означает тысячу фунтов на квадратный дюйм. Обратите внимание на ссылку на область в единицы. Единицы измерения деформации, конечно, безразмерны, поскольку мы делим расстояние по расстоянию.

Расположение графика 1: эластичная область

Давайте обсудим некоторые важные области графика.Во-первых, точка на графике цифра 1 обозначает конец упругой области кривой. До этого точка, материал растягивается эластично или обратимо.

Все материалы состоят из набора атомов. Эластичность можно лучше понять посредством изображения атомы связаны пружинами.Когда мы натягиваем материал, пружины между атомами удлиняется, и материал удлиняется. Эластичная часть кривая — прямая линия. Прямая линия означает, что материал вернется до первоначальной формы после снятия нагрузки.

Расположение графика 2: 0.Предел текучести смещения 2%

Следующая часть интересующей кривой — это точка 2. В этой точке кривая имеет начал наклоняться или больше не является линейным. Эта точка известна как смещение 0,2%. предел текучести. Это указывает на прочность материала, когда он начинает постоянно изменить форму.Он определяется как значение напряжения, при котором линия того же наклон как начальная часть (упругая область) кривой, которая смещена деформацией 0,2% или значение 0,002 деформации пересекает кривую.

В нашем примере предел текучести смещения 0,2% составляет 88 тыс. Фунтов на квадратный дюйм.

Это очень важный аспект силы.Это в основном говорит нам о количестве стресса мы можем нанести до того, как материал начнет постоянно менять форму, надев его путь к возможной неудаче. Те, кто проектирует детали, которые используются в стрессовых условиях, должны убедитесь, что напряжение или сила со стороны детали никогда не превышают этого значения.

Местоположение графика 3: Максимальное выдерживаемое напряжение

По мере продвижения от точки 2 нагрузка или «напряжение» на материал увеличивается, пока мы не достигают максимального приложенного напряжения, при этом материал деформируется или меняет форму равномерно по всей длине колеи.Когда мы достигаем точки 3, мы можем определить растяжение прочность или максимальное напряжение (или нагрузка), которую может выдержать материал. Это не очень полезный свойство, так как материал в этот момент необратимо деформировался. После того, как мы достигнем в этот момент напряжение начинает резко снижаться. Это соответствует локализованному деформация, которая наблюдается по заметному «сужению» или уменьшению диаметра и соответствующее поперечное сечение образца в очень маленькой области.Если мы выпустим нагрузка в этой области, материал будет немного пружинить, но все равно пострадает постоянное изменение формы.

Местоположение графика 4: Отказ или перелом

Наконец, следуя кривой, мы в конечном итоге достигаем точки, где материал разрывается. или терпит неудачу.Здесь интересна конечная степень изменения формы материала. Это «пластичность» материала. Определяется пересечением линии номер 4, имеющий тот же наклон, что и линейный участок кривой, с деформацией ось.

Наш пример показывает деформацию 0.15. Изменение длины на 15% — это величина «пластичности».

Когда образец раскалывается или ломается, нагрузка снимается. Следовательно, атомы упруго растянутые вернутся в свои ненагруженные позиции. Другая информация о механическом реакцию материала также можно получить из испытания на излом.

Испытания на растяжение — композиты

Если тянуть за материал до тех пор, пока он не разорвется, можно найти много информации о различная прочность и механическое поведение материала.В этом виртуальном эксперименте мы исследуем поведение при растяжении трех различных композитных волокнистых материалов. У них схожее использование, но очень разные свойства.

Процедура

Материал захватывается с обоих концов устройством, которое медленно тянет в продольном направлении. на кусок, пока он не сломается.Сила тяги называется нагрузкой, которая наносится на график против изменения длины материала или смещения. Нагрузка преобразуется в напряжение значение, и смещение преобразуется в значение деформации.

О материалах

Материалом для испытаний являются композиты из стекловолокна, кевлара® и углеродного волокна.Композиты представляют собой комбинации двух или более отдельных материалов с целью производства материал, обладающий уникальными свойствами, которых нет ни в одном материале.

Все эти композиты используют эпоксидную смолу в качестве матрицы, которая «склеивает» ткань, как композиция. волокон соответствующих материалов.

Эпоксидные смолы — это термореактивные сетчатые полимеры, которые очень твердые и прочные, но хрупкая сторона.

Все ткани имеют одинаковый «вес», который является мерой размера или веса ткани. квадратного двора.Пример волокнистого материала из стекловолокна показан выше. левый. Кевлар очень похож, за исключением того, что он имеет желтый цвет. Углерод имеет черный цвет цвет. Образцы, используемые в этом случае, представляют собой плоские прутки, вырезанные из более крупного материала с использованием водоструйная пила. Три образца показаны внизу слева.

Свойства материала

Свойства материала Стекловолокно Кевлар® Углеродное волокно
Плотность P E E
Предел прочности F G E
Прочность на сжатие G P E
Жесткость F G F
Сопротивление усталости G-E E G
Сопротивление истиранию F E F
Шлифование / обработка E P E
Электропроводность P P E
Термостойкость E F E
Влагостойкость G F G
Совместимость смол E F E
Стоимость E F P

P = плохо, G = хорошо, F = удовлетворительно, E = отлично

Эксперимент

Описание: Устройство тянет за каждый конец материала, пока он не сломается.

Стекловолокно 00:00
Кевлар 01:10
Углеродное волокно 03:09

Видео 5 минут 5 секунд без звука.

Исполнительный продюсер Эд Лайтила
Ведущий Стивен Форселл
Видеограф Бритта Лундберг

Окончательные данные

Исходные данные для стекловолокна

Смещение увеличивается от нуля до немногим более 5 мм.Нагрузка увеличивается почти линейно от 0 до примерно 12 кН перед почти вертикальным падением.

Исправленные данные для стекловолокна

Инженерное напряжение увеличивается от нуля до примерно 0.10. Инженерное напряжение возрастает. линейно от нуля до примерно 170 МПа, предел прочности. Модуль составляет 1,7 ГПа.

Исправленные данные для кевлара

Инженерное напряжение увеличивается от нуля до примерно 0.11. Инженерное напряжение возрастает. линейно от нуля до примерно 265 МПа, предел прочности. Модуль составляет 2,3 ГПа.

Исправленные данные для углеродного волокна

Инженерное напряжение увеличивается от нуля до примерно 0.10. Инженерное напряжение возрастает. линейно от нуля до примерно 580 МПа, предел прочности. Модуль составляет 5,7 ГПа.

Выводы

Композитный материал из углеродного волокна имеет гораздо более высокий предел прочности и модуль упругости. эластичнее, чем другие материалы.Обратите внимание, что все они ломаются «хрупко», так как кривая является линейной до тех пор, пока она не разорвется или не сломается без изгиба кривой при высокие нагрузки. Следовательно, во время этого не происходит постоянного изменения первоначальной формы. тест, и, следовательно, никакой пластичности.

Виртуальные примеры

Вы видели эксперименты с композитными материалами.Сравните композитный материал кривые растяжения с кривыми для полимера и стали.

Сталь для испытаний на растяжение

Стальной образец с шейкой имеет постоянную зависимость напряжения от деформации.Стресс увеличивается почти вертикально, затем постепенно опускается.

Полимер для испытаний на растяжение

Образец растягивающегося полимера имеет прерывистую зависимость напряжения от деформации.В напряжение увеличивается почти вертикально, затем падает и неравномерно увеличивается.

Фотогалерея

Ниже представлены оптические фотографии разбитых или расколотых образцов, а также крупные планы. поверхности излома, снятые с помощью растрового электронного микроскопа.Изучение этих поверхности излома также являются очень важной частью материаловедения и инженерии, что делает это областью специализации.

Код 310, 312 Карточки | Quizlet

Более трех токоведущих проводников.Если количество токопроводящих проводов в кабельной канавке или кабеле превышает три, или если однопроводные или многожильные кабели установлены без соблюдения зазора на непрерывную длину более 600 мм (24 дюйма) и не установлены в кабельных каналах, допустимая допустимая допустимая токовая нагрузка составляет каждый проводник должен быть уменьшен, как показано в Таблице 310.15 (B) (3) (a). Каждый токопроводящий проводник из параллельного набора проводников считается токонесущим проводником.

Если проводники разных систем, как предусмотрено в 300.3, установлены в общей кабельной канавке или кабеле, поправочные коэффициенты, указанные в таблице 310.15 (B) (3) (a), должны применяться только к количеству силовых и осветительных проводов (статьи 210, 215, 220 и 230).

(1) Если проводники установлены в кабельных лотках, положения 392.80 должны соответствовать

(2) Коэффициенты корректировки не применяются к проводникам в кабельных каналах, длина которых не превышает 600 мм (24 дюйма)

(3) Коэффициенты корректировки должны не применяется к подземным проводам, входящим в траншею или выходящим из нее, если эти проводники имеют физическую защиту в виде жесткого металлического канала, промежуточного металлического канала, жесткого канала из поливинилхлорида (ПВХ) или трубопровода из армированной термореактивной смолы (RTRC), длина которого не превышает 3.05 м (10 футов), и если количество проводов не превышает четырех.

(4) Коэффициенты корректировки не применяются к кабелю типа AC или к кабелю MC при следующих условиях:
a. Кабели не имеют общей внешней оболочки.
г. Каждый кабель имеет не более трех токоведущих жил.
г. Проводники выполнены из меди 12 AWG
d. Не более 20 токоведущих проводов устанавливают без выдержки, укладывают в стопку или кладут на «уздечные кольца».
Исключение к (4): Если кабели, соответствующие требованиям 310.15 (B) (3) (4) (от a до c с более чем 20 токоведущими контактами, проложены на длине более 600 мм (24 дюйма) без соблюдения зазора, они уложены друг на друга), или поддерживаются на стяжных кольцах, должен применяться 60-процентный поправочный коэффициент.

(b) расстояние между дорожками качения. Расстояние между дорожками качения должно быть сохранено.

(c) Дорожки качения и кабели, подвергающиеся воздействию солнечного света на крышах. Под воздействием прямого солнечного света на крышах или над ними, кабельные каналы или кабели должны быть установлены на минимальном расстоянии от крыши до низа кабельного канала или кабеля 23 мм (7/8 дюйма).Если расстояние от крыши до низа кабельного канала составляет менее 23 мм (7/8 дюйма), к температуре наружного воздуха следует добавить температурный сумматор 33 ° C (60 ° F), чтобы определить соответствующую температуру окружающей среды для применения поправочных коэффициентов. в Таблице 310.15 (B) (2) (a) или Таблице 310.15 (B) (2) (b)

NEC Таблицы и таблицы заполнения кабелепроводов для ЛОР и жестких ПВХ-каналов. 80

Chapman Electric предлагает широкий выбор труб и кабелепроводов для удовлетворения ваших потребностей в электрических или подземных проектах.

NEC устанавливает стандарты для процента объема, который можно безопасно поместить в кабелепровод. Приведенная ниже диаграмма взята из таблицы 1 главы 9 Национального электротехнического кодекса.

Процент поперечного сечения кабелепровода и трубок для проводов

Количество разъемов Все типы проводников
1 53%
2 31%
Более 2 40%

Используйте приведенные ниже таблицы, чтобы определить количество проводов, которые можно вставить в трубку кабелепровода, при соблюдении стандартов NEC.

Таблицы заполнения кабелепровода ЛОР (электрические неметаллические трубки)

Максимальное количество концентрических многожильных проводников в электрических неметаллических трубках (ENT)

Тип Проводник
Размер
1/2 дюйма (16 мм) 3/4 дюйма (21 мм) 1 дюйм (27 мм) 1-1 / 4 дюйма (35 мм) 1- 1/2 дюйма (41 мм) 2 дюйма (53 мм)
RHH, RHW, RHW-2
AWG / kcmil
14 3 6 10 19 26 43
12 2 5 9 16 22 36
10 1 4 7 13 17 29
8 1 1 3 6 9 15
6 1 1 6 5 7 12
4 1 1 2 4 6 9
3 1 1 1 3 5 8
2 0 1 1 3 4 7
1 0 1 1 1 3 5
TW 14 7 13 22 40 55 92
12 5 10 17 31 42 71
10 4 7 13 23 32 52
8 1 4 7 13 17
RHH *, RHW *, RHW-2 *,
THHW, THW, THW-2
14 4 8 15 27 37 61
RHH *, RHW *, RHW-2 *,
THHW, THW
12 3 7 12 21 29 49
10 3 5 9 17 23 38
RHH *, RHW *, RHW-2 *,
THHW, THW, THW-2
8 1 3 5 10 14 23
RHH *, RHW *, RHW-2 *,
TW, THW, THHW, THW-2
6 1 2 4 7 10 17
4 1 1 3 5 8 13
3 1 1 2 5 7 11
2 1 1 2 4 6 9
1 0 1 1 3 4 6
1/0 0 1 1 2 3 5
2/0 0 1 1 1 3 5
3/0 0 0 1 1 2 4
4/0 0 0 1 1 1 3
250 0 0 1 1 1 2
300 0 0 0 1 1 2
350 0 0 0 1 1 1
400 0 0 0 1 1 1
500 0 0 0 1 1 1
600 0 0 0 0 1 1
700 0 0 0 0 1 1
750 0 0 0 0 1 1
800 0 0 0 0 1 1
900 0 0 0 0 0 1
1000 0 0 0 0 0 1
1250 0 0 0 0 0 0
1500 0 0 0 0 0 0
1750 0 0 0 0 0 0
2000 0 0 0 0 0 0
FEP, FEPB, PFA,
PFAH, TFE
14 10 18 31 56 77 128
12 7 13 23 41 56 93
10 5 9 16 29 40 67
8 3 5 9 17 23 38
6 1 4 6 12 16 27
4 1 2 4 8 11 19
3 1 1 4 7 9 16
2 1 1 3 5 8 13
THHN, THWN, THWN-2 14 10 18 32 58 80 132
12 7 13 23 42 58 96
10 4 8 15 26 36 60
8 2 5 8 15 21 35
6 1 3 6 11 15 25
4 1 1 4 7 9 15
3 1 1 3 5 8 13
2 1 1 2 5 6 11
1 1 1 1 3 5 8
1/0 0 1 1 3 4 7
2/0 0 1 1 2 3 5
3/0 0 1 1 1 3 4
4/0 0 0 1 1 2 4
250 0 0 1 1 1 3
300 0 0 1 1 1 2
350 0 0 0 1 1 2
400 0 0 0 1 1 1
500 0 0 0 1 1 1
600 0 0 0 1 1 1
700 0 0 0 0 1 1
750 0 0 0 0 1 1
800 0 0 0 0 1 1
900 0 0 0 0 1 1
1000 0 0 0 0 0 1
PFA, PFAH, TFE 1 1 1 1 4 5 9
PFA, PFAH,
TFE, Z
1/0 0 1 1 3 4 7
2/0 0 1 1 2 4 6
3/0 0 1 1 1 3 5
4/0 0 1 1 1 2 4
Z 14 12 22 38 68 93 154
12 8 15 27 48 66 109
10 5 9 16 29 40 67
8 3 6 10 18 25 42
6 1 4 7 13 18 30
4 1 3 5 9 12 20
3 1 1 3 6 9 15
2 1 1 3 5 7 12
1 1 1 2 4 6 10
XHH, XHHW,
XHHW-2, ZW
14 7 13 22 40 55 92
12 5 10 17 31 42 71
10 4 7 13 23 32 52
8 1 4 7 13 17 29
6 1 3 5 9 13 21
4 1 1 4 7 9 15
3 1 1 3 6 8 13
2 1 1 2 5 6 11
XHH, XHHW, XHHW-2 1 1 1 1 3 5 8
1/0 0 1 1 3 4 7
2/0 0 1 1 2 3 6
3/0 0 1 1 1 3 5
4/0 0 0 1 1 2 4
250 0 0 1 1 1 3
300 0 0 1 1 1 3
350 0 0 1 1 1 2
400 0 0 0 1 1 1
500 0 0 0 1 1 1
600 0 0 0 1 1 1
700 0 0 0 1 1 1
750 0 0 0 1 1 1
800 0 0 0 1 1 1
900 0 0 0 1 1 1
1000 0 0 0 0 0 1
1250 0 0 0 0 0 1
1500 0 0 0 0 0 1
1750 0 0 0 0 0 0
2000 0 0 0 0 0 0

Максимальное количество крепежных проводов (концентрических многожильных проводников) в электрических неметаллических трубках (ЛОР)

Тип Проводник
Размер
1/2 дюйма (16 мм) 3/4 дюйма (21 мм) 1 дюйм (27 мм) 1-1 / 4 дюйма (35 мм) 1- 1/2 дюйма (41 мм) 2 дюйма (53 мм)
FFH-2, RFH-2, RFHH-3
SF-2, SFF-2
18 6 12 21 39 53 88
16 5 10 18 32 45 74
18 8 15 27 49 67 111
16 7 13 22 40 55 92
14 5 10 18 32 45 74
SF-1, SFF-1 18 15 28 48 86 119 197
RFH-1, RFHH-2, TF,
TFF, XF, XFF
18 11 20 35 64 88 145
RFHH-2, TF, TFF,
XF, XFF
16 9 16 29 51 71 117
XF, XFF 14 7 13 22 40 55 92
ТФН, ТФФН 18 18 33 57 102 141 233
16 13 25 43 78 107 178
PF, PFF, PGF, PGFF,
PAF, PTF, PTFF, PAFF
18 17 31 54 97 133 221
16 13 24 42 75 103 171
14 10 18 31 56 77 128
ZF, ZFF, ZHF,
HF, HFF
18 22 40 70 125 172 285
16 16 29 51 92 127 210
14 12 22 38 68 93 154
КФ-2, КФФ-2 18 31 58 101 182 250 413
16 22 41 71 128 176 291
14 15 28 49 88 121 200
12 10 19 33 60 83 138
10 7 13 22 40 55 92
КФ-1, КФФ-1 18 38 69 121 217 298 493
16 26 49 85 152 209 346
14 18 33 57 102 141 233
12 12 22 38 68 93 154
10 7 14 24 44 61 101
XF, XFF 12 3 7 12 21 29 49
10 3 5 9 17 23 38

2-часовой огнестойкий RHH-кабель имеет керамическую изоляцию, диаметр которой намного больше, чем у других RHH-проводов.См. Таблицы заполнения кабелепровода изготовителя. * Типы RHH, RHW и RHW-2 без внешнего покрытия.

Информация взята из приложения C NEC, таблица C.2

Максимальное количество компактных проводников в электрических неметаллических трубках (ЛОР)

Тип Проводник
Размер
1/2 дюйма (16 мм) 3/4 дюйма (21 мм) 1 дюйм (27 мм) 1-1 / 4 дюйма (35 мм) 1- 1/2 дюйма (41 мм) 2 дюйма (53 мм)
THW, THW-2, THHW 8 1 3 6 11 15 25
6 1 2 4 8 11 19
4 1 1 3 6 8 14
2 1 1 2 4 6 10
1 0 1 1 3 4 7
1/0 0 1 1 3 4 6
2/0 0 1 1 2 3 5
3/0 0 1 1 1 3 4
4/0 0 0 1 1 2 4
250 0 0 1 1 1 3
300 0 0 1 1 1 2
350 0 0 0 1 1 2
400 0 0 0 1 1 1
500 0 0 0 1 1 1
600 0 0 0 1 1 1
700 0 0 0 0 1 1
750 0 0 0 0 1 1
900 0 0 0 0 1 1
1000 0 0 0 0 0 1
THHN, THWN,
THWN-2
8 0 0 0 0 0 0
6 1 4 7 12 17 28
4 1 2 4 7 10 17
2 1 1 3 5 7 12
1 1 1 2 4 5 9
1/0 1 1 1 3 5 8
2/0 0 1 1 2 4 6
3/0 0 1 1 1 3 5
4/0 0 1 1 1 2 4
250 0 0 1 1 1 3
300 0 0 1 1 1 3
350 0 0 1 1 1 2
400 0 0 0 1 1 2
500 0 0 0 1 1 1
600 0 0 0 1 1 1
700 0 0 0 1 1 1
750 0 0 0 1 1 1
900 0 0 0 0 1 1
1000 0 0 0 0 1 1
XHHW, XHHW-2
THWN-2
8 2 4 8 14 19 32
6 1 3 6 10 14 24
4 1 2 4 7 10 17
2 1 1 3 5 7 12
1 1 1 2 4 5 9
1/0 1 1 1 3 5 8
2/0 0 1 1 3 4 7
3/0 0 1 1 2 3 5
4/0 0 1 1 1 3 4
250 0 0 1 1 1 3
300 0 0 1 1 1 3
350 0 0 1 1 1 3
400 0 0 1 1 1 2
500 0 0 0 1 1 1
600 0 0 0 1 1 1
700 0 0 0 1 1 1
750 0 0 0 1 1 1
900 0 0 0 0 1 1
1000 0 0 0 0 1 1

Компактная скрутка — результат производственного процесса, в котором стандартный проводник сжимается до такой степени, что практически устраняются промежутки (пустоты между многожильными проволоками).

Информация взята из приложения C NEC, таблица C.2 (А)

Максимальное количество проводников в жестком кабелепроводе из ПВХ, спецификация 80

Тип Проводник
Размер
1/2 «
(16
мм)
3/4″
(21
мм)
1 «
(27
мм)
1-1 / 4 «
(35
мм)
1-1 / 2″
(41
мм)
2 «
(53
мм)
2-1 / 2″
(63
мм)
3 »
(78
мм)
3-1 / 2 дюйма
(91
мм)
4 дюйма
(103
мм)
5 дюймов (129
мм)
6 дюймов (155
мм)
RHH, RHW, RHW-2 14 3 5 9 17 23 39 56 88 118 153 243 349
12 2 4 7 14 19 32 46 73 98 127 202 290
10 1 3 6 11 15 26 37 59 79 103 163 234
8 1 1 3 6 8 13 19 31 41 54 85 122
6 1 1 2 4 6 11 16 24 33 43 68 98
4 1 1 1 3 5 68 12 19 26 33 53 77
3 0 1 1 3 4 7 11 17 23 29 47 67
2 0 1 1 13 4 6 9 14 20 25 41 58
1 0 1 1 1 2 4 6 9 13 17 27 38
1/0 0 0 1 1 1 3 5 8 11 15 23 33
2/0 0 0 1 1 1 3 4 7 10 13 20 29
3/0 0 0 0 1 1 1 3 6 8 11 17 25
4/0 0 0 0 1 1 2 3 5 7 9 15 21
250 0 0 0 1 1 1 2 4 5 7 11 16
300 0 0 0 1 1 1 2 3 5 6 10 14
350 0 0 0 1 1 1 1 3 4 5 9 13
400 0 0 0 0 1 1 1 3 4 5 8 12
500 0 0 0 0 1 1 1 2 3 4 7 10
600 0 0 0 0 0 1 1 1 3 3 6 8
700 0 0 0 0 0 1 1 1 2 3 5 7
750 0 0 0 0 0 1 1 1 2 3 5 7
800 0 0 0 0 0 1 1 1 2 3 4 7
1000 0 0 0 0 0 1 1 1 1 2 4 5
1250 0 0 0 0 0 0 1 1 1 1 3 4
1500 0 0 0 0 0 0 1 1 1 1 2 4
1750 0 0 0 0 0 0 0 1 1 1 2 3
2000 0 0 0 0 0 0 0 1 1 1 1 3
TW 14 6 1 20 35 49 82 118 185 250 324 514 736
12 5 9 15 27 38 63 91 142 192 248 394 565
10 3 6 11 20 28 / td> 47 67 106 143 185 294 421
8 1 3 6 11 15 / td> 26 37 59 79 103 163 234
RHH *, RHW *, RHW-2 *,
THHW, THW, THW-2
14 4 8 13 23 32 55 79 123 166 215 341 490
RHH *, RHW *, RHW-2 *,
THHW, THW
12 3 6 10 19 26 44 63 99 133 173 274 394
10 2 5 8 15 20 34 49 77 104 135 214 307
RHH *, RHW *, RHW-2 *,
THHW, THW, THW-2
18 1 3 5 9 12 20 29 46 62 81 128 184
RHH *, RHW *, RHW-2 *,
TW, THW, THHW, THW-2
6 1 1 3 7 9 16 22 35 48 62 98 141
4 1 1 3 5 7 12 17 16 35 46 73 105
3 1 1 2 4 6 10 14 22 30 39 63 90
2 1 1 1 3 5 8 12 19 26 33 53 77
1 0 1 1 2 3 6 8 13 18 23 37 54
1/0 0 1 1 1 3 5 7 11 15 20 32 46
2/0 0 1 1 1 2 4 6 10 13 17 27 39
3/0 0 0 1 1 1 3 5 8 11 14 23 33
4/0 0 0 1 1 1 3 4 7 9 12 19 27
250 0 0 0 1 1 2 3 5 7 9 15 22
300 0 0 0 1 1 1 3 5 6 8 13 19
350 0 0 0 1 1 1 2 4 6 7 12 17
400 0 0 0 1 1 1 2 4 5 7 10 15
500 0 0 0 1 1 1 1 3 4 5 9 13
600 0 0 0 0 1 1 1 2 3 4 7 10
700 0 0 0 0 1 1 1 2 3 4 6 9
750 0 0 0 0 0 1 1 1 3 4 6 8
800 0 0 0 0 0 1 1 1 3 3 6 8
900 0 0 0 0 0 1 1 1 2 3 5 7
1000 0 0 0 0 0 1 1 1 2 3 5 7
1250 0 0 0 0 0 1 1 1 1 2 4 5
1500 0 0 0 0 0 0 1 1 1 1 3 4
1750 0 0 0 0 0 0 1 1 1 1 3 4
2000 0 0 0 0 0 0 1 1 1 1 2 3
THHN, THWN, THWN-2 < 14 9 17 28 51 70 118 170 265 358 464 736 1055
12 6 12 20 37 51 86 124 193 261 338 537 770
10 4 7 13 23 32 54 78 122 164 213 338 485
8 2 4 7 13 18 31 45 70 95 123 195 279
6 1 3 5 9 13 22 32 51 68 89 141 202
4 1 1 3 6 8 14 20 31 42 54 86 124
3 1 1 3 5 7 12 17 26 35 46 73 105
2 1 1 2 4 6 10 14 22 30 39 61 88
1 0 1 1 3 4 7 10 16 22 29 45 65
1/0 0 1 1 2 3 6 9 14 18 24 38 55
2/0 0 1 1 1 3 5 7 11 15 20 32 46
3/0 0 1 1 1 2 4 6 9 13 17 26 38
4/0 0 0 1 1 1 3 5 8 10 14 22 31
250 0 0 1 1 1 3 4 6 8 11 18 25
300 0 0 0 1 1 1 3 5 7 9 15 22
350 0 0 0 1 1 1 3 5 6 8 13 19
400 0 0 0 1 1 1 3 4 6 7 12 17
500 0 0 0 1 1 1 2 3 5 6 10 14
600 0 0 0 0 1 1 1 3 4 5 8 12
700 0 0 0 0 1 1 1 2 3 4 7 10
750 0 0 0 0 1 1 1 2 3 4 7 9
800 0 0 0 0 1 1 1 2 3 4 6 9
900 0 0 0 0 0 1 1 1 3 3 6 8
1000 0 0 0 0 0 1 1 1 2 3 5 7
FEP, FEPB, PFA,
PFAH, TFE
14 8 16 27 49 68 115 164 257 347 450 714 1024
12 6 12 20 36 50 84 120 188 253 328 521 747
10 4 8 14 26 36 60 86 135 182 235 374 536
8 2 5 8 15 20 34 49 77 104 135 214 307
6 1 3 6 10 14 24 35 55 74 96 152 218
4 1 2 4 7 10 17 24 38 52 67 106 153
3 1 1 3 6 8 14 20 32 43 56 89 127
2 1 1 3 5 7 12 17 26 35 46 73 105
PFA, PFAH, TFE 1 1 1 1 3 5 8 11 18 25 32 51 73
PFA, PFAH,
TFE, Z
1/0 0 1 1 3 4 7 10 15 20 27 42 61
2/0 0 1 1 2 3 5 8 12 17 22 35 50
3/0 0 1 1 1 2 4 6 10 14 18 29 41
4/0 0 0 1 1 1 4 5 8 11 15 24 34
Z 14 10 19 33 59 82 138 198 310 418 542 860 1233
12 7 14 23 42 58 98 141 220 297 385 610 875
10 4 8 14 26 36 60 86 135 182 235 374 536
8 3 5 9 16 22 38 54 85 115 149 236 339
6 2 4 6 11 16 26 38 60 80 104 166 238
4 1 2 4 8 11 18 26 41 55 72 114 164
3 1 2 3 5 8 13 19 30 40 52 83 119
2 1 1 2 5 6 11 16 25 33 43 69 99
1 0 1 2 4 5 9 13 20 27 35 56 80
XHH,
XHHW,
XHHW-2,
ZW
14 6 11 20 35 49 82 118 185 2502 324 514 736
12 5 9 15 27 38 63 91 142 192 248 394 565
10 3 6 11 20 28 47 67 106 143 185 294 421
8 1 3 6 11 15 26 37 59 79 103 163 234
6 1 2 4 8 11 19 28 43 59 76 121 173
4 1 1 3 6 8 14 20 31 42 55 87 125
3 1 1 3 5 7 12 17 26 36 47 74 106
2 1 1 2 4 6 10 14 22 30 39 62 89
XHH,
XHHW,
XHHW-2
1 0 1 1 3 4 7 10 16 22 29 46 66
1/0 0 1 1 2 3 6 9 14 19 24 39 56
2/0 0 1 1 1 3 5 7 11 16 20 32 46
3/0 0 1 1 1 2 4 6 9 13 17 27 38
4/0 0 0 1 1 1 3 5 8 11 14 22 32
250 0 0 1 1 1 3 4 6 9 11 18 26
300 0 0 1 1 1 2 3 5 7 10 15 22
350 0 0 0 1 1 1 3 5 6 8 14 20
400 0 0 0 1 1 1 3 4 6 7 12 17
500 0 0 0 1 1 1 2 3 5 6 10 14
600 0 0 0 0 1 1 1 3 4 5 8 11
700 0 0 0 0 1 1 1 2 3 4 7 10
750 0 0 0 0 1 1 1 2 3 4 6 9
800 0 0 0 0 1 1 1 1 3 4 6 9
900 0 0 0 0 0 1 1 3 3 5 8
1000 0 0 0 0 0 1 1 1 2 3 5 7
1250 0 0 0 0 0 1 1 1 1 2 4 6
1500 0 0 0 0 0 0 1 1 1 1 3 5
1750 0 0 0 0 0 0 1 1 1 1 3 4
2000 0 0 0 0 0 0 1 1 1 1 2 4

Компактная скрутка — результат производственного процесса, в котором стандартный проводник сжимается до такой степени, что практически устраняются промежутки (пустоты между многожильными проволоками).

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.