+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Назначение, устройство и работа магнитного пускателя

Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.

Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.

Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили

контакторы. Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию. Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.

Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.

Принцип работы магнитного пускателя.

Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.

Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют —

приставка контактная.

Блок контактов или приставка контактная.

Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.

Контактная система приставки состоит из двух пар

нормально замкнутых и двух пар нормально разомкнутых контактов.

Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4, которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.

Нормально разомкнутый (NO) контакт в нерабочем состоянии всегда разомкнут, то есть, не замкнут. На рисунке он обозначен парой

1–2, и чтобы через него прошел ток контакт необходимо замкнуть.

Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4, и чтобы прекратить прохождение тока через него, надо контакт разомкнуть.

Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется, а нормально замкнутый 3-4 разомкнется. О чем показывает рисунок ниже.

Вернемся к блоку контактов.
В исходном состоянии, когда магнитный пускатель обесточен, нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC

и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.

Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся, а нормально замкнутые разомкнутся.

Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.

Магнитный пускатель.

Магнитный пускатель состоит как бы из верхней и нижней части.

В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.

Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.

Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.

Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.

Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.

Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:

Сектор №1.

В первом секторе дана общая информация о пускателе и его область применения:

50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;

Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.

Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения, являющиеся стандартными: АС1, АС2, АС3, АС4. Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.

Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.

Категория применения АС-1

– неиндуктивные или слабо индуктивные нагрузки, печи, сопротивления. Например: лампы накаливания, ТЭНы.

Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.

Сектор №2.

В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.

Сектор №3.

Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно.

Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2.

Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки.

Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2. Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.

Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1; 3L2–4T2; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор. Причем контакты 1L1; 3L2; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1; 4Т2; 6Т3 являются выходящими – к ним подключается нагрузка. Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.

Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.

Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.

Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя, а во второй части мы рассмотрим схемы подключения магнитного пускателя.
А пока досвидания.
Удачи!

Устройство и принцип работы магнитного пускателя | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Контактор (он же магнитный пускатель) имеет достаточно широкое применение как в быту (например, для обогрева кровли), так и в промышленности (например, для пуска двигателя). Поэтому сегодня наша статья посвящена магнитному пускателю. В данной статье мы рассмотрим такие вопросы, как устройство и принцип работы контактора. 

Устройство контактора (магнитного пускателя)

Конструктивно магнитный пускатель (контактор) состоит из следующих элементов:

 

• корпус контактора;

• неподвижная часть стального сердечника, выполненного из листов электротехнической стали;

• два короткозамкнутых кольца, установленных на неподвижном сердечнике, которые обеспечивают уменьшение вибраций при включении пускателя. При попадании грязи на поверхность пускатель во включенном состоянии будет сильно гудеть;

• силиконовая прокладка, которая уменьшает уровень шума при срабатывании пускателя;

• катушка с выводами (клеммами) для подключения провода питания;

• возвратная пружина;

• подвижная часть стального сердечника, выполненного из листов электротехнической стали;

• траверса с подпружиненными контактами, которая установлена на подвижной части сердечника;

• верхние и нижние клеммы с неподвижными контактами для подключения провода или кабеля, а также коммутации силовых цепей.

Работа пускателя

Рассмотрим принцип работы магнитного пускателя с тремя силовыми и одним дополнительным нормально открытым контактом на примере схемы управления электродвигателем — прямой пуск.

 

Нажимая кнопку «Пуск», мы замыкаем цепь, и ток поступает на катушку контактора. Катушка создает магнитный поток, при этом происходит втягивание якоря, который является подвижной частью сердечника. Якорь увлекает за собой траверсу, обеспечивая коммутацию контактов, установленных на ней, с неподвижными контактами. Благодаря этому ток начинает протекать постоянно по трем силовым и одному дополнительному контакту.

 

Когда мы нажимаем кнопку «Стоп», цепь, питающая катушку пускателя, размыкается, магнитное поле пропадает, и происходит отталкивание якоря пружиной. В итоге траверса возвращается в исходное состояние, что вызывает размыкание силовых и дополнительных контактов.

 

Таким образом, мы рассмотрели устройство магнитного пускателя и принцип работы. Также вы можете посмотреть наше видео, в котором подробно показаны конструкция и работа магнитного пускателя.

Схема магнитного пускателя. Принцип работы

Для включения освещения применяются выключатели, для бытовых электроприборов — кнопки и переключатели. Это электрооборудование объединяет одно: они потребляют небольшую мощность. А также – не включаются дистанционно или устройствами автоматики. Эти задачи решаются с помощью магнитных пускателей.

Cхема магнитного пускателя. Устройство

Пускатель состоит из двух частей, расположенных в одном корпусе: электромагнита управления и контактной системы.

Электромагнит управления включает в себя катушку с магнитопроводом, включающим в себя подвижную и неподвижную части, удерживаемых в разомкнутом состоянии пружиной. При подаче напряжения на катушку подвижная часть магнитопровода притягивается к неподвижной. Подвижная часть механически связана с контактной системой.

В контактную систему входят подвижные и неподвижные группы контактов. При подаче напряжения на катушку пускателя магнитопровод притягивает подвижные контакты к неподвижным и силовые цепи замыкаются. При снятии напряжения с катушки под действием пружины подвижная часть магнитопровода вместе с контактами приводятся в исходное положение.

Устройство магнитного пускателя и его работа

К силовым контактам пускателя добавляется дополнительная контактная группа, предназначенная для использования в цепях управления. Контакты ее выполняются нормально разомкнутыми (обознаются номерами «13» и «14») или нормально замкнутыми («23» и «24»).

Маркировка контактов пускателя

Электрические характеристики магнитных пускателей

Номинальный ток пускателя – это ток, выдерживаемый силовыми контактами в течение продолжительного времени. У некоторых моделей устаревших пускателей для разных диапазонов токов меняются габаритные размеры или «величина».

Номинальное напряжение – напряжение питающей сети, которое выдерживает изоляция между силовыми контактами.

Напряжение катушки управления – рабочее напряжение, на котором работает катушка управления пускателя. Выпускаются пускатели с катушками, работающие от сети постоянного или переменного тока.

Управление пускателем не обязательно питается напряжением силовых цепей, в некоторых случаях схемы управления имеют независимое питание. Поэтому катушки управления выпускаются на широкий ассортимент напряжений.

Напряжения катушек управления пускателей
Переменный ток123648110220380
Постоянный ток123648110220

Реверсивный магнитный пускатель, кнопочная станция

Самое распространенное применение пускателей – управление электродвигателями. Изначально и название устройства образовано от слова «пуск». В схемах используются дополнительные контакты, встроенные в корпус: для подхвата команды от кнопки «Пуск». Нормально замкнутыми контактами кнопки «Стоп» цепь питания катушки разрывается, и пускатель отпадает.

Типовая схема управления пускателем

Выпускаются реверсивные блоки, имеющие в своем составе два обычных пускателя, соединенные электрически и механически. Механическая блокировка не позволяет им включиться одновременно. Электрические соединения обеспечивают реверс двух фаз при работе разных пускателей, а также исключение возможности подачи питания на обе катушки управления одновременно.

Внешний вид реверсивного магнитного пускателяСхема управления реверсивным магнитным пускателем

Для удобства монтажа пускатели выпускают в корпусах совместно с кнопками управления. Для подключения достаточно подсоединить к ним кабель питания и отходящий кабель.

Пускатель в корпусе с кнопками управления

В других случаях для управления работой используются кнопочные станции, коммутирующие цепь катушки управления и связанные с пускателем контрольным кабелем. Для обычных пускателей используются две кнопки, объединенные в одном корпусе – «Пуск» и «Стоп», для реверсивных – три: «Вперед», «Назад» и «Стоп». Кнопку «Стоп» для быстрого отключения в случае аварии или опасности выполняют грибовидной формы.

Виды кнопочных станций

В зависимости от назначения пускатели выполняют трех- или четырехполюсными. Но есть и аппараты, имеющие один или два полюса.

Производители дополняют линейку выпускаемых аппаратов аксессуарами, расширяющими их возможности. К ним относятся:

  • дополнительные контактные блоки, позволяющие подключать к схеме управления сигнальные лампы и формировать команды, зависящие от состояния пускателя, для работы других устройств;
  • блоки выдержки времени, задерживающие срабатывание или отключение пускателя;
  • наборы аксессуаров, превращающих два пускателя в сборку реверсивных;
  • контактные площадки, позволяющие подключить к пускателю кабели большего сечения.
Магнитный пускатель с тепловым реле

Для защиты электродвигателей от перегрузок совместно с пускателями применяются тепловые реле. Производители выпускают их под соответствующие модели аппаратов. Тепловое реле содержит контакт, размыкающийся при срабатывании и разрывающий цепь питания катушки пускателя. Для повторного включения контакт нужно вернуть в исходное положение нажатием кнопки на корпусе. Для защиты от коротких замыканий перед пускателем устанавливается автоматический выключатель, отстроенный от пусковых токов электродвигателя.

Оцените качество статьи:

Принцип работы магнитного пускателя и его техничекие характеристики

Освещение в доме мы включаем обыкновенным выключателем, при этом через него проходит ток небольшой величины. Для включения мощных нагрузок однофазных на 220 Вольт и 3 фазных на 380 Вольт используются специальные коммутирующие электротехнические аппараты— магнитные пускатели. Они позволяют дистанционно при помощи кнопок (можно сделать и от обычного выключателя) включать-выключать мощные нагрузки, например освещение целой улицы или мощный электродвигатель.

В квартирах пускатели не используются, за то довольно часто применяются на производстве, в гаражах на даче для запуска, защиты и реверсирования асинхронных электрических двигателей. Да же из названия понятно, что главное его предназначение заключается в запуске электродвигателей. А кроме того вместе с тепловым реле, магнитный пускатель защищает мотор от ошибочных включений и повреждений в аварийных ситуациях: возникновении перегрузок, нарушении изоляции обмоток, пропадании одной фазы и т. п.

Часто пускатели устанавливаются для включения и выключения не только двигателей, но и других много киловаттных нагрузок- уличное освещение, обогреватели и т. п.

После пропадания электричества он сам отключится и включится только после повторного нажатия кнопки «Пуск». Но если использовать для дома простейшую схему управления при помощи обычного выключателя, тогда во включенном его положении всегда будет срабатывать пускатель. Он работает по принципу реле, только в отличие от него управляет мощными нагрузками до 63 Киловатт, при больших используется контактор. Для автоматизации управления, например уличным освещением можно к контактам катушки подключить управляющие таймеры, датчики движения или освещения.

Устройство и принцип работы магнитного пускателя

Основой является электромагнитная система, состоящая из катушки, неподвижной части сердечника и подвижной- якоря, который крепится к изоляционной траверсе с подвижными контактами. К неподвижным контактам при помощи болтовых соединений подключаются с одной стороны провода от электросети, а с другой- к нагрузке.

Для осуществления защиты от ошибочных включений устанавливаются по бокам или сверху над основными- блок контакты, которые например в реверсивной схеме с двумя пускателями при включении одного пускателя, блокируют включение второго. Если включится сразу два, то возникнет межфазное короткое замыкание, потому что изменение направления вращения асинхронного двигателя достигается благодаря замене местами 2 фаз. То есть со стороны подключения электродвигателя между пускателями делаются перемычки с чередованием на одном из них 2 фаз. Так же одна пара блок контактов необходима для удержания во включенном состоянии пускателя после отпускания кнопки «Пуск». Подробно схему подключения Мы рассмотрим в следующей статье.

Принцип работы пускателя довольно прост. Для включения необходимо подать рабочее напряжение на катушку. Она при включении потребляет по цепи управления очень маленький ток, их мощность находится в пределах от 10 до 80 Ватт, в зависимости от величины.

При включении катушка намагничивает сердечник и происходит втягивание якоря, который при этом замыкает главные и вспомогательные контакты. Цепь замыкается и электрический ток начинает протекать через подключенную нагрузку.

Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.

Между пускателем и 3 фазным асинхронным двигателем устанавливается тепловое реле, которое защищает его то токов перегрузки во внештатных ситуациях.

Внимание, тепловое реле не защищает от коротких замыканий, поэтому требуется установка перед пускателем необходимой величины автоматического выключателя.

Принцип работы теплового реле прост— оно подбирается под определенный рабочий ток двигателя, при превышении его предела происходит нагревание и размыкание биметаллических контактов, которые размыкают цепь управления с отключением пускателя. Схема подключения будет рассмотрена в следующей статье.

Технические характеристики магнитных пускателей.

Основные технические характеристики можно узнать из условного обозначения, состоящего чаще всего из трех букв и четырех цифр . Например, ПМЛ-Х Х Х Х:

      1. Первые две буквы обозначают- пускатель магнитный.
      2. Третья буква указывает на серию или тип пускателя. Бывают ПМЛ, ПМЕ, ПМУ, ПМА…
      3. Первая после букв цифра указывает на величину пускателя по номинальному току:
        Величина, первая цифра1234567
        Номинальный ток10 или 16 А25 А40 А63 или 80 А125 А160 А250 А
      4. Вторая цифра — наличие тепловой защиты и характеристику работы электродвигателя.
        12345
        Реверсивный — —дадада
        С тепловым реледада да
        Электрическая блокировка —естьесть
        Механическая блокировка естьесть
      5. Третья цифра указывает на наличие кнопок и степень защиты.
        01234
        В корпуседададада
        С кнопками «пуск» и «стоп»дада
        Класс защищенностиIP00IP54IP54IP54IP40
        Сигнальные лампы —есть

        IP54- брызго- и пылезащитный корпус, IP40- только пылезащитный корпус.

      6. Четвертая цифра — количество контактов вспомогательной цепи.
        01234
        Количество замкнутых контактов1233 5
        Количество разомкнутых контактов12311

При покупке обращайте и на другие параметры:

  • Самый важный параметр- это рабочее напряжение катушки оно может быть как переменным 24, 36, 42, 110, 220 ил 380 Вольт, так и постоянным. Для домашнего хозяйства берите с катушкой на переменное напряжение величиной 380 Вольт для подключения 3 фазных электромоторов, и на 220 В- для подключения других нагрузок. Будьте внимательны всегда проверяйте величину напряжения только на корпусе самой катушки, а не пускателя.
  • Не менее важно обратить на тип крепления— под болты или на Din рейку.
  • Класс износостойкости обозначается буквами «А» (3 мл. рабочих циклов), «Б» (1.5 мл. циклов) и «В» (300 тыс. циклов).
  • Рабочее напряжение коммутации главных контактов- 380 или 660 Вольт.
  • Ток теплового реле. Должен соответствовать мощности электрического двигателя. Для других устройств нет необходимости в установке теплового реле.

Предлагаю  в сводной таблице ознакомиться с основными  характеристиками самых распространенных пускателей серии ПМЛ.

Есть еще целый ряд не существенных параметров- потребляемый ток катушки, максимальный ток вспомогательных контактов. На них не стоит обращать внимание при покупке.

Магнитный пускатель принцип действия , устройство, определение

Автор Alexey На чтение 6 мин. Просмотров 791 Опубликовано Обновлено

Ручные рубильники, которые использовались для коммутации трёхфазных электродвигателей на заре электротехники, отличаются низкой электробезопасностью и требуют прокладки силовых линий непосредственно к пульту управления.

Поэтому был изобретён магнитный пускатель, лишённый вышеописанных недостатков, позволяющий осуществлять включение нагрузки дистанционно, дающий возможность воплощать автоматическое управление работой мощного оборудования.

Часто в литературе и в каталогах применяют название «электромагнитный пускатель», или его сокращённый аналог: «эл. пускатель».

Предназначение устройства

Функцией магнитного пускателя является дистанционный запуск, поддержание работы, остановка (иногда принудительная) и реверс электродвигателей с короткозамкнутым ротором.

Существует некая двузначность в трактовке разницы между контактором и пускателем – очень часто в среде электриков эти два понятия являются идентичными и взаимозаменяемыми ввиду того, что выполняют одну и ту же функцию – коммутацию силовых цепей.

контактная группа пускателя

Не вдаваясь в технические подробности, стоит заметить, что контактор, коммутирующий постоянные или переменные токи с различным количеством фаз, является составной частью различного управляющего оборудования, тогда как магнитный пускатель – это законченное устройство, предназначенное для ручного и полуавтоматического управления трёхфазными электродвигателями.

Конструктивно магнитный пускатель состоит из контактора, кнопок управления, теплового реле, защитного пыле и влагозащищённого корпуса, систем индикации. Часто в комплектацию магнитного пускателя входит дополнительная контактная приставка.

Пускатели разделяются на различные величины по току

И пример обозначения ПМЛ каждой цифры :

Путаница в названиях

Несмотря на однозначное определение, данное в ГОСТ, на рынке и в каталогах можно встретить множество контакторов, обозначаемых производителями и менеджерами как магнитные пускатели.

контактор его же называют пускателем

Также в сети есть множество поисковых запросов типа «магнитные пускатели ПМЛ, ПМЕ, ПМА, ПМ12» и т. д., фактически являющиеся коммутационными аппаратами (контакторами), для работы которых требуется подключение как минимум кнопочного поста.

кнопки на пускатель

Например, ПМЛ 1100 не выглядит законченным устройством, но его серия, первые две буквы которой часто расшифровывают как «пускатель магнитный» означает, что данное коммутационное устройство можно использовать при компоновке эл. пускателя.

Исходя из этого, заказывая подобные устройства в сети интернет, следует внимательно изучать технические характеристики приобретаемого изделия, для уверенности в том, что в его комплектацию входит кнопочный пост управления, тепловое реле и корпус, чтобы не пришлось их приобретать дополнительно, получив в посылке один лишь контактор, являющийся главной составляющей электромагнитного пускателя.

Принцип действия и внутреннее устройство контактора

Благодаря знаниям из школьного курса физики на интуитивном уровне можно понять, как работает эл. пускатель, исходя из его названия.

Благодаря небольшому току, и зачастую неопасному для человека напряжению, в катушке создается магнитное поле, притягивающее сердечник с подвижными контактами, замыкающими силовую цепь, тем самым запуская двигатель.

Характерной отличительной чертой, отличающей контактор эл. пускателя от электромагнитного реле является то, что электрическая цепь разрывается одновременно в двух местах при помощи контактного мостика.

клеммы схематично магнитного пускателя

В реальности, изделия серий ПМЛ, ПМЕ состоят из двух блоков.

В нижней части, являющейся основанием, находится электромагнитная катушка с клеммами подключения, одетая на Ш-образный сердечник, и съёмная возвратная пружина.

Короткозамкнутые кольца на неподвижном сердечнике усиливают магнитный поток и предотвращают дребезг якоря. Силиконовая подкладка смягчает ударные воздействия на корпус пускателя.

В верхней части, именуемой также контактным блоком, имеются неподвижные контакты и подвижный магнитный якорь с жёстко прикреплёнными к нему подпружиненными контактными пластинами.

Принцип работы пускателя

Включение контактора осуществляется подачей с помощью кнопки «Пуск» напряжения на катушку, после чего происходит одновременное замыкание, как силовых контактных мостиков, так и дополнительного контакта, шунтирующего кнопку «Пуск» (подключаемого к ней параллельно).

Такое подключение с использованием дополнительного контакта, через который удерживающее напряжение подается на катушку, на сленге электриков называется «самоподхватом», позволяющим отпустить кнопку запуска.

Выключение контактора происходит при разрыве с помощью кнопки «Стоп» цепи управляющей катушки – магнитное поле исчезает и подвижный якорь возвращается в исходное состояние благодаря воздействию пружин.

Схема подключения и маркировка корпуса

подключение контактора на 22о в

Ниже, для наглядности приведена схема подключения контактора с катушкой, рассчитанной для работы от напряжения 220В.

Если применяется катушка, рассчитанная на напряжение 380В, то нулевой провод в таком магнитном пускателе не требуется – в этом случае вывод А1 подключается вместо ноля на входе питания к одной из двух фаз, незадействованных для подключения дополнительного контакта.

Наглядная схема подключения магнитного пускателя

Данный дополнительный контактный мостик обозначают буквами «NO», что означает нормально открытый (разомкнутый) контакт. На корпусе контактора всегда указывается схема устройства и маркировка контактов.

Предназначение данных клемм становится понятным исходя из рисунка ниже:

Также на корпусе контактора указывают величину пускателя, рабочие напряжения, коммутируемые токи, иногда мощность подключаемой нагрузки. Кроме этого, должен указываться завод – изготовитель и соответствие нормативным документам, типа ГОСТ, ТУ.

Обозначения характеристик на контакторе

Дополнительные устройства

Как уже говорилось выше, магнитный пускатель, помимо контактора, также комплектуется тепловым реле, включаемым последовательно в фазные цепи нагрузки.

Предназначением данного устройства является отключение контактора при длительных перегрузках, которое происходит при нагревании биметаллических пластин токами, превышающими допустимые параметры.

тепловые реле

При этом обеспечивается непродолжительное многократное превышение номинального тока при запуске, принудительной остановке или реверсе двигателя. Поскольку тепловые реле имеют регулировку времени отключения, данные устройства нельзя использовать для защиты от короткого замыкания.

Для подключения систем контроля и индикации, к контактору механическим способом присоединяют контактные приставки, размножающие контакты.

Для установки данной приставки на корпусе контактора, также как и на его подвижной части должны присутствовать крепления типа «ласточкин хвост«, в пазы которой вставляется данное дополнение.

Реверс электродвигателя

Для переключения направления вращения вала электрического двигателя с короткозамкнутым ротором необходимо изменить последовательность фаз. Поскольку при применении одного контактора невозможно осуществить подобное переключение (нереверсивный режим), то нужно использовать два контактора.

подключение двух магнитных пускателей для реверса двигателя

При этом обеспечивается возможность включения только одного контактора, исключающая срабатывание другого, что предотвращает междуфазное короткое замыкание.

реверсивный пускатель с кнопками включения

Для данной блокировки у контакторов должны присутствовать нормально замкнутые дополнительные контакты, через которые подключаются катушки управления смежных коммутаторов.

Магнитные пускатели с катушками управления

При включении одного устройства данный контакт окажется разомкнутым, поэтому, чтобы задействовать реверсивный контактор, сначала нужно нажать кнопку «Стоп», для возвращения нормально замкнутого контактного мостика в исходное состояние.

Если такой тип контактов отсутствует в контакторе, то собрать реверсивный магнитный пускатель можно применяя контактную приставку.

Реверсивный магнитный пускатель — особенности подключения и принцип работы

В современном мире всё более популярным становится использование разнообразного дополнительного оборудования обеспечивающего дистанционное управление самыми разными аппаратами. Среди них весьма востребован реверсивный магнитный пускатель, который осуществляет удаленное управление трехфазными асинхронными электродвигателями, при этом есть возможность произвести как их пуск, так и торможение. Кроме того при помощи реверсивного магнитного пускателя доступно управление любым потребителем питания (освещением, охлаждением, обогревом и т.д.).


Конструктивно реверсивный магнитный пускатель состоит из следующих элементов:


1. Контактор.
2. Тепловое реле.
3. Кожух.
4. Инструменты управления.

 

Принцип работы реверсивного магнитного пускателя

 

Подключение реверсивного магнитного пускателя и его работа происходит следующим образом. После осуществления команды «пуск» на панели управления устройства электрическая цепь замыкается, вследствие чего ток подаётся на катушку. В это время механическая блокирующая система срабатывает, подобным образом блокируются незадействованные контакты. Так как контакты кнопки тоже оказываются заблокированными, подобное действие позволяет не удерживать кнопку, а спокойно отпустить её. Вторая кнопка реверсивного магнитного пускателя, параллельно с запуском устройства, размыкает цепь, таким образом, её активация не даст никакого результата.

 

 

Для осуществления реверса необходимо активировать кнопку «стоп», нажатие которой обесточит обе катушки реверсивного магнитного пускателя, тем самым остановив функциональные операции оборудования. При таком действии все блокирующие устройства займут изначальное положение. Подобная последовательность позволяет активировать реверсивный магнитный пускатель вновь, без каких либо дополнительных действий. При выборе команды «пуск» произойдут вышеописанные действия, однако при этом будет использована вторая катушка, а первая окажется заблокированной.


Наиболее совершенный и безопасный реверсивный магнитный пускатель оснащен дополнительными блокировочными системными механизмами. Размещаются данные приспособления для блокирования рабочего момента, как правило, внутри кожуха (непосредственно под панелью управления) и предназначены для того чтобы не допустить срабатывания сразу обеих катушек. Согласно схеме реверсивного магнитного пускателя, если он снабжен электрической блокирующей системой, то использование механических блокировок вовсе необязательно.

 

 

Осуществление реверса происходит через полную остановку двигателя. Другими словами, при срабатывании реверсивного магнитного пускателя двигатель замедляется, после чего следует полная остановка, а затем осуществляется вращение в другую сторону. Однако при этом необходимо совпадение мощностей двигателя и реверсивного магнитного пускателя. Только при осуществлении данного процесса, реверс будет осуществлён правильно.

 

 

 

Если же остановка и реверс двигателя производится противовключением, то мощность оборудования должна быть значительно ниже максимально допустимой мощности реверсивного магнитного пускателя. Наиболее часто двигатель уступает по мощности пускателю в 1,5-2 раза. Во многом разница мощностей зависит от качества контактов магнитного пускателя, а точнее их износостойкости при работе в данных условиях.


Данный режим должен проходить без применения механических систем блокировки. Однако безопасность работы реверсивного магнитного пускателя в обязательном порядке должна обеспечиваться применением электрических систем блокировки. В целом же реверсивные магнитные пускатели являются технологичным и безопасным методом удалённого управления асинхронными электродвигателями.

назначение, устройство и принцип действия, защита и маркировка

Для человека, далекого от электротехники, бытовое устройство представляется каким-то черным ящиком, в котором что-то крутится. Про электродвигатель знают все, а вот как он связан с кнопками на панели — немногие. Между тем любая схема, в которой есть электродвигатель, содержит и устройство, замыкающее цепь и связывающее двигатель с той самой кнопкой включения. Называется это устройство магнитным пускателем, хотя правильное его название — электромагнитный пускатель.

Принцип работы

Чтобы электроприбор работал, необходимо обеспечить замкнутость цепи. Это обеспечивается не кнопкой, а коммутационным устройством, которое находится за ней. Видов таких устройств много, например:

  • контактор;
  • рубильник;
  • предохранитель;
  • реле.

Причем в одной цепи их может быть несколько. Так, предохранитель размыкает цепь при перегрузке, хотя после него в цепи стоят простые выключатели. Аварийное размыкание может быть обеспечено и тепловыми реле. А вот чтобы узнать, для чего нужен магнитный пускатель, стоит разобраться в его устройстве.

Внутреннее устройство

Такой коммутатор состоит из двух частей — подвижной и неподвижной. Неподвижная часть представляет собой катушку на якоре, стационарной половине сердечника, а также содержит неподвижные контакты. Подвижная часть — это вторая половина сердечника и подвижные контакты.

Когда вы нажимаете на кнопку, вы замыкаете цепь и ток проходит через катушку. Она притягивает к себе подвижную часть и кнопку можно отпустить: пока катушка под питанием, контакты будут сомкнуты. Если цепь разомкнуть кнопкой выключения, то подвижная часть пускателя вернется в исходное положение благодаря встроенной пружине. Словом, принцип работы магнитного пускателя прост.

Схемы подключения

Самая простая схема подключения трехфазного электродвигателя по принципу «включить и выключить» выглядит так:

На этой схеме обозначены:

  1. Пуск — кнопка включения.
  2. КМ-1 — магнитный пускатель.
  3. Р — тепловое реле.
  4. С — кнопка выключения.
  5. ПР — предохранитель.

Из рисунка видно, что-то место, под которым написаны две буквы — «БК» — останется замкнутым после того, как вы отпустите кнопку. Обратите внимание и на то, что двигатель берегут: в схему включены предохранитель и тепловое реле. В случае перегрева или замыкания цепь разомкнется.

На практике чаще встречаются те схемы, которые обеспечивают вращение двигателя в разные стороны — то есть с реверсом. Такую схему можно укомплектовать как разными коммутационными устройствами, так и одним реверсивным пускателем. Схема с реверсом упрощенно выглядит так:

Если присмотреться внимательно, то можно заметить, что при вращении двигателя в одну сторону блокируется вторая цепь — это можно заметить по обозначению КМ-1 на цепи, где стоит КМ-2, и наоборот. В жаргоне электриков это называется защитой от дурака.

Если двигатель включается в простую однофазную цепь, которая есть в любой квартире, то коммутационные устройства ставятся на фазу, и к ним добавляется сопротивление.

Ассортимент и маркировка устройств

На рынке таких коммутаторов можно встретить различные их модификации. Это обусловлено как многообразием устройств, в которых есть электродвигатели, так и параметрами цепей, где они работают. Магнитные пускатели есть практически везде: в системах принудительной вентиляции и кондиционерах, стиральных машинах и электроплитах с грилем, лифтах, а в последнее время некоторые потребители электроэнергии стали ставить их в щитки — они куда удобнее простых рубильников.

Чтобы правильно выбрать пускатель, стоит обратить внимание на следующее:

  • какие максимальные токи есть в вашей цепи;
  • нужен ли вам реверс;
  • куда вы поставите ваше коммутационное устройство.

Последнее имеет значение в том случае, если вы собрались установить пускатель в щиток около дома. Сейчас в продаже есть изделия, пригодные к установке на DIN-рейки.

Комплектуются пускатели по-разному. Так, большинство из них подключает двигатель по схеме «треугольник», так можно уменьшить пусковой ток. Ряд изделий содержит в себе и тепловые реле. На них стоит обратить внимание, когда ваш электродвигатель будет работать долго и перегреваться. Чтобы избежать поломки, ставят именно тепловое реле. Это простая биметаллическая пластина, которая при нагревании гнется в сторону: металлы, нагреваясь, по-разному расширяются, и цепь размыкается.

Поскольку проводка греется от тока, реле подбирают так, чтобы ток в его маркировке был на 10% больше номинального. В паспорте последнего значение этого номинала должно быть указано, а иногда и проставлено на корпусе. Значение тока на магнитном пускателе тоже указывается.

Как правило, пускатели упакованы в корпус. Он может быть различным и это определяет степень его защиты. При работе пускателя в герметичном корпусе основного устройства этот параметр не так важен, а вот, если он находится в щитке, куда попадает пыль или осадки, стоит озаботиться хорошей защитой. Загрязнение может привести к неприятной ситуации — устройство будет гудеть, а то и вовсе выйдет из строя.

Некоторые пускатели оснащаются варисторами, которые не допускают скачков напряжения в сети. Их целесообразно ставить в цепи тогда, когда вы живете в частном доме и при грозе у вас может выйти из строя вся техника, в первую очередь ваш компьютер.

Маркировка

Электромагнитные пускатели отечественного производства маркируются по ГОСТ 50030–4 -1−2002. В первую очередь необходимо обратить внимание на его контакты. Обозначения L1, L2, L3 и т. д. подводятся к цепи управления, а Т1, Т2, Т3 и последующие — к нагрузке. Количество контактов может быть разным, а схема их соединения содержится в паспорте и иногда на корпусе. Контакты А1 и А2 идут от катушки, а NO — вспомогательные, которые ставят в устройство, что называется на всякий случай. Некоторые изделия можно даже наращивать: ряд производителей выпускает контактные приставки.

Чаще всего маркировка пускателя начинается с аббревиатуры ПМЛ и четырех цифр.

Если устройство может работать в цепи 380 В, то на нем ставится величина тока нагрузки. Это первая цифра после ПМЛ, хотя на корпусе может быть поставлено и значение тока в прямой форме.

  • 0 — 6,3 Ампера;
  • 1 — 10 Ампер;
  • 2 — 25;
  • 3 — 40;
  • 4 — 63;
  • 5 — 100;
  • 6 — 160;
  • 7 — 250.

Наличие реверса и теплового реле также указывается цифрой, она вторая:

  • 1 — без реверса и без ТЛ;
  • 2 — без реверса с ТЛ;
  • 3 — с реверсом без ТЛ;
  • 4 — с реверсом с ТЛ;

Степеней защиты у устройства четыре: IP00, IP20, IP40, IP54, при этом первая из них предполагает открытую конструкцию, а последнее — пылебрызгозащитное исполнение. В зависимости от степени защиты, наличия кнопок и индикации изделие маркируется третьей цифрой так:

  • 0 — IP00 без кнопок;
  • 1 — IP54 с кнопкой «реле» возврата в исходное состояние после срабатывания;
  • 2 — IP54, «пуск» и «стоп»;
  • 3 — то же, что и 2, но с индикаторной лампочкой;
  • 4 — IP40 без кнопок;
  • 5 — IP40 с кнопками «пуск» и «стоп»;
  • 6 — IP20.

Наконец, четвертая цифра указывает количество контактов:

  • 0 — 1 замыкающий и 1 размыкающий;
  • 1 — 2 замыкающих и 2 размыкающих;
  • 2 — 3 и 1;
  • 3 — 4 и 1;
  • 4 — 5 и 1.

Цифрами 5 и 6 маркируют устройства для цепей постоянного тока как 1 замыкающий и 1 размыкающий соответственно.

Некоторые заводы указывают возможность крепления на рейку, категорию размещения и износостойкость, но чаще можно встретить именно четыре цифры.

У пускателей типа ПМ первые две цифры — это номер серии, а следующие три — номинал тока в вольтах. Шестая цифра указывает наличие реверса и теплового реле: 1, 2, 5, 6 значат то же самое, что и 1, 2, 3, 4 для ПМЛ, а значение седьмой полностью совпадают.

ПМЕ маркируются тремя цифрами: величиной тока, степенью защиты и наличием реверса с реле. Обозначения на ПМА примерно аналогичны таковым у ПМЛ.

Такое разнообразие маркировок объясняется тем, что магнитные пускатели — давно применяемые устройства и на одних заводах применяют старую маркировку, а на других новую, при этом порядок цифр может различаться. Поэтому ориентироваться стоит не столько на нее, сколько на различные таблицы и указания на корпусе, а также посмотреть паспорт изделия. Особенно это актуально для продукции зарубежного производства.

Контакторы и пускатели

Эти устройства ничем принципиально не отличаются от пускателей. Назначение, устройство, принцип действия у них те же. Отличие заключается в том, что контакторы предназначены для работы в цепях с высокими значениями токов и напряжений, поэтому их габариты соответствующие.

Защитного корпуса они не имеют, поэтому ставят их в закрытых помещениях, защищенных от внешнего воздействия.

Контакторы снабжены более мощными силовыми контактами и дугогасителями; у пускателей их нет.

Этими устройствами снабжены электровозы, трамваи, троллейбусы и промышленные предприятия, где они замыкают и размыкают силовые цепи.

Руководство по четырем основным функциям пускателя двигателя

Как безопасно управлять двигателем переменного тока?

Безопасность всегда является главным приоритетом в любой промышленной среде.

Фабрики и технологические предприятия представляют собой рабочие места с высоким риском, сталкивающиеся с реальной опасностью катастрофических событий, таких как пожары и взрывы.

Безопасное управление высокими уровнями электрического тока, протекающего через несколько двигателей переменного тока, которые питают современные промышленные объекты, имеет решающее значение для безопасности предприятия.

В любой установке с электродвигателями могут возникать разного рода неисправности. К ним относятся: короткие замыкания между фазами источника питания, перенапряжение источника питания и перегрузка двигателя, приводящая к скачку напряжения.

Последствия таких неисправностей варьируются от временных отключений и разрушения двигателя и его компонентов стартера до возгорания электрического тока.

Чтобы избежать таких повреждений — или, по крайней мере, ограничить их последствия — каждый двигатель должен быть защищен от:

  • короткие замыкания: предохранителями, магнитными выключателями и т. Д.
  • перегрузки: тепловые или электронные реле перегрузки, многофункциональные реле и т. Д.

В пускателе двигателя эти защитные элементы объединены с выключателем нагрузки и устройством управления. Чтобы они правильно выполняли свои функции, их следует согласовывать.

Ниже приводится краткое руководство по четырем основным функциям пускателя двигателя, за которым следует пояснение о важности обеспечения того, чтобы все они были скоординированы для правильной совместной работы.

1 — Отключение и отключение

Любой пускатель двигателя должен быть отключен от сети и изолирован для предотвращения повторного пуска. Возможность отключения питания и отключения позволяет безопасно проводить техническое обслуживание и ремонт двигателя, приводимого оборудования или его компонентов стартера.

В самом простом варианте это может быть обеспечено с помощью выключателя-разъединителя в верхней части схемы.

Однако производители предлагают множество устройств, которые могут выполнять эту функцию.Функции выключателя нагрузки и защиты от короткого замыкания (см. Ниже) часто объединены в одном устройстве, например выключателе нагрузки с предохранителями.

2 — Защита от короткого замыкания

Проблема с отключением электричества заключается в том, что оно любит течь. Он будет продолжать течь и может течь через воздух — это можно увидеть дома, когда вы увидите небольшую вспышку, когда вы выключаете свет ночью.

В домашних условиях нормальный ток нагрузки составляет всего несколько ампер, но при коротком замыкании он может достигать нескольких тысяч ампер.Автоматические выключатели в вашем распределительном щите способны отключать этот ток короткого замыкания.

В промышленной среде все увеличивается в масштабах. Нормальный ток нагрузки может составлять 1000 ампер, а предполагаемый ток короткого замыкания может превышать 100 000 ампер. Эти уровни энергии требуют правильного оборудования для предотвращения разрушительных взрывов и пожара.

Устройства защиты от короткого замыкания выбираются в соответствии с предполагаемым током короткого замыкания, который они могут потребовать сбросить.Они обнаруживают короткое замыкание и затем безопасным образом отключают питание. Функция обеспечивается автоматическим выключателем или предохранителями.

3 — Защита от перегрузки

Перегрузки вызваны тем, что двигатель потребляет больше мощности, чем он предназначен для использования, неизменно из-за того, что от него требуется работать больше, чем он должен: например, конвейерная лента движется тяжелее обычных предметов, или насос с засорением.

Защита от перегрузки обнаруживает избыточные токи от перегрузки и размыкает цепь, чтобы предотвратить перегрев и выгорание двигателя.

Сложность заключается в том, что двигатели при запуске потребляют большие токи. Устройство должно допускать кратковременные перегрузки, которые двигатель рассчитан выдерживать, но срабатывает, если перегрузка продолжается.

Эта защита обеспечивается электромеханическими или электронными реле перегрузки в сочетании с отключающим устройством, таким как автоматический выключатель или контактор. Его также можно использовать в электронных пускателях или приводах с регулируемой скоростью.

4 — Контроль

Это замыкание и размыкание электрической цепи под нагрузкой, чаще всего выполняется с помощью контактора — впервые изобретенного Telemecanique (часть Schneider Electric) в 1924 году.

Контактор имеет главные полюса, которые выполняют переключение. Эти полюса открываются и закрываются при включении электромагнита, называемого катушкой. Катушка обычно рассчитана на напряжение переменного или постоянного тока и имеет номинальное управляющее напряжение.

Повышенное или пониженное напряжение на катушке может иметь разрушительные последствия для контактора. Режим отказа обычно приводит к перегоранию катушки, которая просто отключает контактор, но может выйти из строя, если контактор заклинило замкнутым. Новые контакторы Tesys D Green имеют катушки, которые могут принимать переменный или постоянный ток и имеют широкий диапазон допусков по управляющему напряжению.

Координация очень важна

Четыре различные функции пускателя двигателя должны работать или координироваться вместе должным образом.

Одно устройство, известное как стартер-контроллер или устройство управления и защитной коммутации (CPS), такое как Tesys U, может использоваться для выполнения всех четырех функций.

Другие компоненты могут включать более одной функции в одном устройстве, и тогда могут использоваться комбинации двух или трех устройств. Например, магнитный прерыватель цепи, такой как GV2L, представляет собой устройство защиты от короткого замыкания и выключатель-разъединитель.В сочетании с отдельной перегрузкой и контактором он может выполнять все четыре функции всего с 3 компонентами.

Чтобы помочь разработчикам систем выбрать эти компоненты пускателя двигателя, все основные производители пускателей двигателей публикуют таблицы комбинаций для своего оборудования в своих каталогах.

Лица, устанавливающие пускатели двигателей, должны убедиться в наличии подлинной координации между этими компонентами.

Schneider тестирует эти комбинации и публикует таблицы согласования устройств, которые будут правильно работать вместе.

Если вы смешиваете и подбираете производителей, маловероятно, что комбинация была протестирована и может работать некорректно в случае неисправности.

Если комбинации неправильно скоординированы, результат может быть катастрофическим. Например, в условиях короткого замыкания автоматический выключатель может устранить неисправность, но энергия, которую он пропустил в процессе, могла вызвать взрыв или возгорание контактора.

Согласованные устройства

типа 1 гарантируют, что неисправность локализована в компонентах пускателя двигателя.Компоненты могут нуждаться в замене, но оператор защищен от повреждений, а панель защищена от любых других повреждений.

Согласованные устройства типа 2 являются улучшением по сравнению с типом 1, поскольку вы можете снова запустить установку. Возможно, вам придется удалить прихваточный шов на контакторе, но компоненты будут исправны.

Вот почему координация имеет решающее значение, и, если вы не уверены, универсальное решение, такое как TeSys U, может быть вашим лучшим выбором. TeSys U обеспечивает «полную координацию» — отсутствие риска повреждения, отсутствие риска контактного шва, просто бесперебойная работа без обслуживания.

Узнайте больше о TeSys U

Пускатели двигателей NEMA типа S (8536 8736 8606)

a {display: inline-block; background: # 42b4e6; color: #fff; padding: .8em 1.5em; font-weight: bold; text-align: center; border-radius: 0; border-color: #fff; border-style: solid; border-width: 0;} a {text-decoration: none;} @ media (max-width: 61.25em) {.cta-box> a {display: block; ширина: 56%; margin-bottom: 1em;}}]]>

Магнитные пускатели классов 8536 и 8736 типа S используются для переключения электродвигателей с различными реле перегрузки.Пускатели типа S доступны в размерах NEMA 00-7 и рассчитаны на работу при максимальном напряжении 600 В

  • Нормально разомкнутый контакт удерживающей цепи для трехпроводного управления предусмотрен в стандартной комплектации.
  • Типоразмер 00-2 В пускателях используется вспомогательный контакт класса 9999 SX11 в качестве контакта удерживающей цепи.
  • В пускателях типоразмеров 3-7 используется вспомогательный контакт класса 9999 SX6 в качестве контакта удерживающей цепи.
  • Класс 8536 Тип S Пускатели типоразмеров 00–6 в стандартной комплектации снабжены реле тепловой перегрузки из плавящегося сплава.
  • Сменные тепловые блоки доступны со стандартным расцеплением (класс 20) размером 00-6, быстрым расцеплением (класс 10) размерами 00-4 и медленным срабатыванием (класс 30) размерами 00-3.
  • В однофазных пускателях используется один тепловой блок; В трехфазных пускателях используются три тепловых блока.
  • Класс 8536 Пускатели размера 7 снабжены полупроводниковой MOTOR LOGICTM, которая включает:
  • Выбираемое отключение Class10/20
  • Обнаружение замыкания на землю и возможности связи для дальнейшего расширения • Нечувствительность к окружающей среде и защита от потери фазы, асимметрии фаз и перегрузки по току .
  • Твердотельные реле перегрузки Motor Logic ™ доступны для пускателей типоразмеров 00–7. Эти нечувствительные к окружающей среде реле перегрузки обеспечивают защиту от потери фазы и асимметрии фаз.
  • Биметаллические реле перегрузки также доступны для размеров 00-1. Версии с компенсацией окружающей среды и без компенсации поставляются с ручным и автоматическим сбросом, регулировкой тока отключения и контактом аварийной сигнализации. • Магнитные пускатели класса 8536 доступны в большом количестве следующих корпусов.
  • Кожух общего назначения NEMA, тип 1
  • NEMA, тип 3R, непромокаемый, влагостойкий для наружного использования
  • NEMA, тип 4 и 4X, водонепроницаемые и пыленепроницаемые
  • NEMA Type 4X Водонепроницаемое, пыленепроницаемое и коррозионно-стойкое стекло — полиэстер
  • NEMA Тип 7 и 9 с болтовым соединением и откидным верхом для опасных зон
  • NEMA Тип 9 с болтовым соединением для опасных зон
  • NEMA Тип 12 Пылезащищенный и герметичный для промышленного использования Катушки переменного тока
  • доступны для применения на частотах 50-60 Гц.
  • Постоянный ток 600 В переменного тока и 810 А, максимальный номинальный ток
  • NEMA Типоразмеры 00-4 поставляются с катушками, которые рассчитаны на удовлетворительную работу при линейном напряжении 85% — 110% от номинального напряжения
  • NEMA Типоразмеры 5, 6 и 7 поставляются с катушкой постоянного тока, управляемой цепью твердотельного выпрямителя, питаемой от источника переменного тока.

Для обеспечения гибкости аксессуары, устанавливаемые на месте или модифицируемые на заводе, включают вспомогательные контакты, силовые опоры, приспособления для пневматического таймера и станции управления, устанавливаемые на крышке

Базовые номера: 8536S 8536SA 8536SAG 8536SAG1 8536SAG3 8536SAO 8536SAO1 8536SAO3 8536SAOV 8536SA0 8536A0V 8536SBAV 8536SBG 8536SBG1 8536SBG2 8536SBG3 8536SBG4 8536SBGV 8536SBO 8536SBO1 8536SBO2 8536SBO3 8536SBOV 8536SB0 8536SB01 8536SB02 8536SB03 8536SB0V 8536SBW 8536SBW1 8536SBW2 8536SC 8536SCA 8536SCA1 8536SCA2 8536SCG 8536SCG1 8536SCG2 8536SCG3 8536SCG4 8536SCGV 8536SCO 8536SCO1 8536SCO3 8536SCOV 8536SC01 8536SC03 8536SC0V 8536SCW 8536SCW1 8536SCW2 8536SD 8536SDO 8536SDO1 8536SDO3 8536SD0 8536SD01 8536SD03 8536SDA 8536SDA1 8536SDA2 8536SDG 8536SDG1 8536SDG3 8536SDG4 8536SDGV 8536SDO 8536SDO1 8536SDO3 8536SDOV 8536SD0 8536SD01 8536SD03 8536SD0V 8536SDW 8536SDSEW1 8536SDWEA 8536SE 8536SDWEA 8536SE 8536SE 8536SDWEA 8536SE 8536SE 1 8536SEO2 8536SE02 8536SEO3 8536SE03 8536SF 8536SFO 8536SF0 8536SFO1 8536SF01 8536SG 8536SGO 8536SG0 8536SGO1 8536SG01 8736 8736S 8736SA 8736SAO 8736SA0 8736SAO1 8736SA01 8736SB 8736SBO 8736SB0 8736SBO1 8736SB01 8736SBO4 8736SB04 8736C 8736CO 8736C0 8736CO7 8736C07 8736CO8 8736C08 8736SD 8736SDO 8736SD0 8736SDO1 8736SD01 8736SDO2 8736SD02 8736SE 8736SEO 8736SE0 8736SEO1 8736SE01 8736SEO2 8736SE02 8736SF 8736SFO 8736SF0

Что такое комбинированный пускатель двигателя?

Комбинированные пускатели двигателей могут эффективно использоваться для размещения пускателя двигателя и устройств электрической защиты в одном корпусе.

Пускатели двигателей

предназначены для обеспечения безопасности пользователей при запуске или останове двигателя с помощью электромеханического переключателя. Это похоже на управление реле, но также обеспечивает защиту двигателя от перегрузки. Комбинированные пускатели двигателей могут быть полезны для обеспечения пользователей еще одним уровнем защиты. Они собирают:

  • Устройство управления, также известное как подрядчик
  • Обеспечивает защиту двигателя от перегрузки, которая помогает предотвратить перегрев двигателя
  • Защита от короткого замыкания

Он имеет дополнительную защиту от короткого замыкания, которая позволяет пуску реагировать на определенные неисправности для защиты двигателя.Неисправность может быть фатальной для вашего двигателя или может привести к необратимому повреждению двигателя. Таким образом, эта защита помогает предотвратить необратимое повреждение двигателя и избежать дорогостоящего ремонта. Защиту от короткого замыкания можно обеспечить с помощью:

Все эти элементы объединены в одном корпусе, что позволяет легко установить и получить доступ к соответствующим работникам при выполнении операций во время аварийных или обычных операций.

Как работает комбинированный пускатель двигателя?

Комбинированный пускатель двигателя обычно работает аналогично стандартному пускателю двигателя.Тем не менее, они могут безопасно переключать необходимое количество тока на двигатель и помогают предотвратить потребление двигателем тока, превышающего параметры безопасности.

С помощью защиты от короткого замыкания, имеющейся в комбинированном пускателе двигателя, схема получает все необходимое для работы с соответствующими мерами отказоустойчивости. Если вы используете комбинированный пускатель двигателя и размыкающий выключатель или автоматический выключатель, вы можете отключить все линии в случае неисправности любой фазы.Это может быть полезно для предотвращения однофазного переключения, которое может привести к дисбалансу напряжений и перегоранию двигателя.

Пускателем можно управлять вручную или электронным способом с помощью магнитных компонентов, и это полностью зависит от ваших эксплуатационных потребностей.

Ручные комбинированные пускатели электродвигателей

Комбинированные ручные пускатели электродвигателей просты в эксплуатации. Пользователю просто нужно нажать кнопку или повернуть ручку переключателя мощности, чтобы включить или выключить подключенный двигатель. Затем он управляет механическими связями, открывая или закрывая их, чтобы запустить или остановить двигатель.

Пускатели с ручным управлением

могут быть идеальным выбором, поскольку они предлагают:

  • Безопасная и эффективная работа
  • Меньшие размеры, что делает их пригодными для различных применений
  • Начальная стоимость ручного стартера сравнительно невысока
  • Автоматический выключатель / выключатель с предохранителем для обеспечения дополнительной отказоустойчивости

Магнитный пускатель комбинированного двигателя

Магнитные комбинированные пускатели двигателей

предлагают электромагнитное управление, что позволяет управлять ими дистанционно.Поэтому он идеально подходит для крупномасштабных операций. Однако нагрузку двигателя, подключенную к пуску двигателя, можно включить / выключить, используя более безопасное напряжение, обычно 120 В для ваших устройств управления.

Существуют различные типы комбинированных магнитных пускателей двигателей, имеющих определенную конфигурацию в цепи. Различные типы комбинированных магнитных пускателей двигателей:

  • Пускатели с прямым включением (DOL) или пускатели с прямым подключением к сети, нереверсивные (FVNR)
    • Это пускатель общего назначения с магнитным контактором для подключения полного напряжения источника питания к двигателю.Их можно использовать для двигателей, которым просто необходимо работать с фиксированной скоростью в одном направлении.
  • Реверсивные пускатели с прямым включением (DOL) или пускатели с реверсивным режимом полного напряжения (FVR)
    • Он также поставляется с той же утилитой, что и стандартные стартеры DOL, но также имеет возможность работать в прямом и обратном направлении. Таким образом, он особенно полезен для конвейерного оборудования, где требуется управление направлением.
  • Пускатели звезда-треугольник
    • Это двигатель пониженного напряжения, который подходит для более длительных циклов разгона и работы в больших масштабах.Он разработан для работы с трехфазными асинхронными двигателями и может переключать обмотки между треугольником и пусковым соединением для запуска двигателя.
  • Устройства плавного пуска
    • Обычно используются для управления электродвигателями переменного тока. Они помогают снизить крутящий момент и нагрузку во время фазы запуска и скачков электрического тока.

Зачем вам стартер комбинированного двигателя?

Использование комбинированного пускателя двигателя может обеспечить дополнительное спокойствие относительно безопасности цепи двигателя.Однако стандартные пускатели двигателей способны выполнять тот же процесс. Тем не менее, преимущества комбинированного пускателя двигателя могут быть полезны для обеспечения устройств повышенной защиты цепи, которые объединены в одном корпусе.

Комбинированный пускатель двигателя поставляется с автоматическим выключателем или разъединителем с плавким предохранителем и предлагает встроенную возможность защиты двигателя от короткого замыкания. Таким образом, он не только защищает ваш двигатель от перегорания из-за сбоя тока, но и обеспечивает все, что требуется цепи в соответствии со статьей 430 Национального электротехнического кодекса.

С помощью сбрасываемой защиты цепи вы сможете быстро перезагрузить двигатель и запустить его после устранения неисправности. Это означает, что вы сможете минимизировать время простоя двигателя и заставить его снова работать быстрее.

Комбинированный пускатель двигателя может использоваться по-разному:

  • Вентиляторы
  • Тепловые насосы
  • Водяные насосы
  • Компрессоры
  • Вентиляторы
  • Конвейерные ленты
  • Воздуходувки

Почему стоит покупать комбинированные пускатели электродвигателей от Spike Electric?

Мы являемся одним из крупнейших производителей складских запасов в Северной Америке, когда речь идет о комбинированных компонентах стартера двигателя.Мы предлагаем безопасные, надежные и эффективные энергетические решения.

Не стесняйтесь обращаться к нам, если у вас возникнут какие-либо вопросы.

Как работают стартеры

Стартер — принцип работы

Когда вы поворачиваете ключ в замке зажигания вашего автомобиля, двигатель заводится, а затем заводится. Однако заставить его заводиться на самом деле гораздо сложнее, чем вы думаете. Для этого требуется приток воздуха в двигатель, чего можно добиться только путем создания всасывания (двигатель делает это при переворачивании).Если ваш двигатель не вращается, значит, нет воздуха. Отсутствие воздуха означает, что топливо не может гореть. Стартер отвечает за переворачивание двигателя во время зажигания и позволяет всему остальному происходить. Когда вы включаете зажигание, стартер включается и вращает двигатель, позволяя ему всасывать воздух. На двигателе на конце коленчатого вала установлен маховик с зубчатым венцом, прикрепленным по краю. На стартере шестерня рассчитана на то, чтобы она входила в пазы зубчатого венца.Когда вы поворачиваете ключ зажигания, электромагнит внутри корпуса зацепляется и выталкивает шток, к которому прикреплена шестерня. Шестерня встречается с маховиком, и стартер вращается. Это раскручивает двигатель, всасывая воздух (а также топливо). Когда двигатель проворачивается, стартер выключается, и электромагнит останавливается. Шток снова втягивается в стартер, выводя шестерню из контакта с маховиком и предотвращая возможное повреждение.

Компоненты стартера и их функции:

Арматура

Якорь представляет собой электромагнит, установленный на приводном валу и подшипниках для опоры. Это ламинированный сердечник из мягкого железа, на который намотаны многочисленные витки или витки проводников.

Коммутатор

Коммутатор — это часть вала в задней части корпуса, по которой движутся щетки для проведения электричества. Коммутатор состоит из двух пластин, прикрепленных к оси якоря.Эти пластины обеспечивают два соединения для катушки электромагнита.

Кисти

Щетки проходят через секцию коммутатора в задней части корпуса, контактируя с контактами коммутатора и проводя электричество.

Соленоид

Соленоид состоит из двух катушек проволоки, намотанных вокруг подвижного сердечника. Соленоид действует как переключатель, замыкая электрическое соединение и соединяя стартер с аккумуляторной батареей автомобиля.

Плунжер

Плунжер работает, используя подключенный аккумулятор транспортного средства и соленоид, чтобы толкать плунжер вперед, который входит в зацепление с шестерней.

Рычаг вилки

Вилка рычага соединена с плунжером, поэтому, когда плунжер продвигается вперед, вилка рычага соединяется с ней. Затем этот процесс активирует шестерню.

Шестерня

Шестерня представляет собой уникальное сочетание шестерни и пружины. После включения стартера шестерня выдвигается в картер коробки передач и входит в зацепление с маховиком.Это раскручивает двигатель, чтобы начать процесс сгорания.

Катушки возбуждения

Корпус удерживает поля стартера в корпусе винтами. Он может состоять из двух-четырех катушек возбуждения, соединенных последовательно. Питание от батареи преобразует катушки в электромагнит, который затем поворачивает якорь. Когда катушки якоря запитаны, вокруг якоря создается магнитное поле.

См. Наши новые ссылки на ассортимент Типы пускателей двигателя

| Типы контакторов двигателей

Контакторы двигателей и Пускатели двигателей — это пилотные устройства, используемые для управления большими токовыми нагрузками.Для больших токовых нагрузок, таких как обогреватели, огни парковки и электродвигатели, требуется большой ток во время запуска. Чтобы не подвергать оператора и легкие устройства управления, такие как обычные домашние выключатели света, этим высоким токам, используются контакторы и пускатели двигателей. Подрядчики, как показано на Рисунке 1, и пускатели двигателей, как показано на Рисунке 2, напрямую подключаются к нагрузкам, которыми нужно управлять, как мощная лампа или трехфазный промышленный двигатель. Устройство управления или система управления используются для управления подрядчиком или пускателем двигателя.

Рис.1: Контактор двигателя

Рис.2: Пускатель двигателя с электронными перегрузками

Принцип работы контактора и пускателя двигателя

Контакторы и пускатели двигателя содержат катушку с проволокой, намотанную вокруг сердечника из мягкого железа. При подаче напряжения на катушку пилотного устройства создается электромагнитное поле. Это электромагнитное поле используется пилотным устройством для включения и выключения нагрузок. Ток, используемый для питания катушки, намного меньше тока, необходимого для работы нагрузки.Это означает, что нагрузка может потреблять 30 А при запуске контактора или пускателя двигателя, но она будет управляться током, который составляет всего около 0,2 А или 200 мА. Безопаснее работать с низким током, чем с большим током, который потенциально может нанести вред оператору или оборудованию.

Номинал и размер контактора и пускателя двигателя

Контакторы и пускатели двигателей бывают разных размеров и номиналов, чтобы соответствовать широкому спектру приложений и операций.Применения могут варьироваться от пускателя, который используется для включения сверлильного станка, до контактора, который используется для управления электрическим котлом . Важно знать, что не только контактор или двигатель любого размера будет достаточным для работы с нагрузками; При работе с контакторами и пускателями двигателей специалисты по обслуживанию и установщики должны соблюдать инструкции по установке пилотных устройств. Один важный ориентир, который следует знать, — это сила тока обслуживаемой нагрузки. Это определит выбор правильного размера пилотного устройства NEMA (Национальная ассоциация производителей электрооборудования) или IEC (Международная электротехническая коалиция).Также важно знать среду, в которой будет установлено устройство. Это гарантирует, что можно выбрать правильный корпус, чтобы избежать перебоев в работе пилотного устройства. Хотя эти пилотные устройства выполняют одну и ту же работу, они не могут выполнять одну и ту же функцию.

Контактор двигателя

Следующий раздел включает подробное обсуждение контакторов. Контакторы бывают двух видов: ручного и магнитного исполнения. Ручные контакторы и пускатели двигателей предназначены для работы с нагрузкой от среднего до низкого, когда оператору безопаснее находиться в непосредственной близости от нагрузки, которую необходимо включать и выключать.Магнитные контакторы и пускатели двигателей используются для автоматизации и дистанционного управления нагрузками, которые могут пропускать слишком большой ток для безопасной работы.

Принцип работы ручного контактора

Ручные контакторы — это пилотное устройство, используемое для работы с нагрузками, которым не требуется защита от перегрузки, такими как нагревательные элементы, или с нагрузками, которые имеют внутреннюю защиту от перегрузки, такими как однофазные двигатели переменного тока. Ручные контакторы сконструированы с тумблером включения и выключения для управления подключенными к ним нагрузками, это означает, что требуется, чтобы кто-то физически нажал кнопку для подачи питания на нагрузки.Контакторы с ручным управлением лучше подходят для средних нагрузок, потому что контакты, встроенные в блоки, способны выдерживать большой ток в течение длительного периода времени, по сравнению с обычным переключателем, который рассчитан на работу с более низким током и не может обрабатывать большое количество тока. ток в течение длительного времени.

Рис.3: Ручной контактор двигателя

Принцип работы магнитного контактора

Магнитные контакторы , как показано на рисунке 4, содержат соленоид, который представляет собой катушку из проволоки, намотанную вокруг или окруженную железным сердечником.Для работы магнитного контактора требуются два источника напряжения; один из источников — облегчить работу нагрузки (например, нагревателей или станков). Второе напряжение, необходимое для управления работой соленоида, называется управляющим напряжением . Управляющее напряжение обычно ниже, чем в цепи электропитания, и поступает от управляющего трансформатора. Типичное напряжение, используемое для управления соленоидом, составляет от 24 В до 120 В переменного тока, но могут использоваться другие напряжения, в зависимости от конструкции, предпочтений и ситуации.

Рис.4: Контактор с магнитным двигателем

Выбор номинальной мощности магнитного контактора

Магнитные контакторы выбираются на основе номинальной силы тока . Номинальная сила тока . — это сила тока, которую использует контакт из серебряного сплава для безопасной передачи и передачи электроэнергии без повреждения контакторов или электропроводки.

Типы магнитных контакторов

Контакторы также бывают разных физических конфигураций .Контакторы могут иметь один набор контакторов для однофазного режима, в котором один токопроводящий провод может замыкать или размыкать контактор, или два набора контактов, чтобы замыкать или размыкать два горячих проводника в однофазном режиме. Контакторы могут иметь до четырех наборов контактов, которые нормально разомкнуты, но могут быть изменены на нормально замкнутые в соответствии с определенным порядком работы. Все магнитные контакторы содержат соленоид с двумя выводами, расположение которых важно для обеспечения правильной работы контактора. Напряжение соленоида должно соответствовать управляющему напряжению, слишком высокое напряжение вызовет сгорание соленоида, и в результате контакты не смогут размыкаться или замыкаться. При слишком низком напряжении контактор не будет работать, потому что магнитное поле недостаточно сильное, чтобы втянуть якорь.

Пускатель двигателя

В промышленности используются два типа пускателей двигателей; они включают ручной пускатель двигателя и магнитный пускатель двигателя. Каждый пускатель выполняет одну и ту же функцию, которая заключается в включении или отключении линии питания, обслуживающей нагрузку, подключенную к управляющему устройству, и обеспечению защиты нагрузки от перегрузки. Разница между ручным и магнитным пускателем двигателя заключается в том, как они управляют включением и отключением питания нагрузки.

Принцип работы ручного пускателя двигателя

Ручной пускатель , , как показано на рисунке 5, представляет собой контактор, который не включает катушку и действует больше как переключатель, чем контактор.Ручной пускатель двигателя состоит из оператора, который может включать в себя селекторный переключатель или набор кнопок, которые размыкают и замыкают контакты пилотного устройства. Название «Ручной пускатель двигателя» означает, что для управления контактами требуется кто-то, но перегрузочные контакты ручного пускателя двигателя автоматически управляют нагрузкой; в случае перегрева из-за механического отказа или высоких температур окружающей среды.

Рис.5: Схема ручного пускателя двигателя

Принцип работы магнитного пускателя двигателя

Магнитные пускатели двигателя , как показано на Рис. пилотное устройство.Магнитный пускатель двигателя используется чаще, потому что его можно использовать в операциях, требующих автоматического управления нагрузкой, а магнитный контактор можно активировать дистанционно с помощью устройств управления или с помощью комплекса операций устройства управления.

Рис.6: Схема электрических соединений магнитного пускателя двигателя

Магнитный пускатель двигателя имеет три линейных клеммы с маркировкой L1, L2 и L3. Здесь подача питания на пускатель двигателя. Клеммы в нижней части пускателя двигателя имеют маркировку T1, T2 и T3, которые также называют стороной нагрузки, которая подключается к обслуживаемой нагрузке.Для включения и выключения нагрузки катушка должна быть подключена к нормально замкнутому контакту перегрузки, который обычно подключается с помощью заводского провода, установленного на агрегате. Нормально замкнутый контакт не считается вспомогательным контактом; поэтому его нельзя использовать ни для чего другого в цепи управления. Магнитный пускатель двигателя также содержит нормально разомкнутый вспомогательный контакт, который подключается к системе управления, что позволяет включать и отключать магнитную катушку.Вспомогательные контакты будут одной стороной подключаться непосредственно к клемме магнитной катушки, которая иногда подключается к полевым устройствам, которые переключают работу магнитной катушки. При использовании устройств мгновенного управления для управления нагрузкой, подключенной к пускателю магнитного двигателя, противоположная вспомогательная нормально разомкнутый контакт используется для герметизации катушки пилотного устройства. Когда используется уплотнение, это называется трехпроводным управлением и пускателем двигателя.Когда уплотнение не используется, это называется двухпроводным управлением .

Что такое пускатель двигателя

Основная функция пускателя двигателя — запускать и останавливать двигатель, к которому он подключен. Это специально разработанные электромеханические переключатели, похожие на реле. Основное различие между реле и стартером состоит в том, что стартер содержит защиту двигателя от перегрузки.

Таким образом, пускатель имеет двоякое назначение: автоматически или вручную переключать мощность на двигатель и в то же время защищать двигатель от перегрузки или неисправностей.

Пускатели двигателей доступны в различных номиналах и размерах в зависимости от номинала и размера двигателя (двигатель переменного тока). Эти статеры безопасно переключают необходимую мощность на двигатель, а также не позволяют двигателю потреблять большие токи.

В этой статье мы рассмотрим только пускатели двигателей переменного тока, так как они очень интересны в промышленности и коммерческом применении.

Зачем нужно подключать стартер к асинхронному двигателю?

Для асинхронного двигателя (трехфазного) необходим статор для ограничения пускового тока.В трехфазном асинхронном двигателе ЭДС, индуцированная ротором, пропорциональна скольжению (это относительная скорость между статором и ротором) асинхронного двигателя. Эта ЭДС ротора пропускает ток через ротор.

Когда двигатель находится в состоянии покоя (при запуске), скорость двигателя равна нулю, и, следовательно, скольжение максимальное. Это вызывает очень высокую ЭДС в роторе при пуске, и, таким образом, через ротор течет очень большой ток.

Поскольку ротору требуется большой ток, обмотка статора потребляет очень большой ток от источника питания.Этот начальный потребляемый ток может быть в 5-8 раз больше тока полной нагрузки двигателя.

Этот большой ток при запуске двигателя может повредить обмотки двигателя, а также этот ток может вызвать большое падение напряжения в линии.

Эти скачки напряжения могут повлиять на другие устройства, подключенные к той же линии. Следовательно, необходим пускатель для ограничения этого пускового тока, чтобы избежать повреждения двигателя, а также другого прилегающего оборудования.

Пускатель — это устройство, которое снижает начальный высокий ток двигателя за счет снижения напряжения питания, подаваемого на двигатель.Такое уменьшение применяется в течение очень короткого времени, и как только двигатель ускоряется, значение скольжения уменьшается, и, следовательно, затем применяется нормальное напряжение.

Помимо защиты от пускового тока, пускатель двигателя также обеспечивает защиту от перегрузки, однофазное переключение и защиту от низкого напряжения.

Защита от перегрузки необходима, потому что двигатель потребляет больший ток в состоянии перегрузки, и это вызывает чрезмерное нагревание обмоток. Это дополнительное тепло сокращает срок службы двигателя и может вызвать возгорание обмоток и, как следствие, возгорание.

Все пусковые устройства снабжены некоторыми элементами защиты от перегрева для ограничения высокого тока во время перегрузки. Большинство этих устройств работают по принципу синхронизированной перегрузки, при которой ток перегрузки допускается на короткое время (очень несколько секунд), а затем останавливается двигатель, если ток существует дольше этого времени.

Большинство пускателей оснащены биметаллическими полосами для выполнения этой операции.

Некоторые двигатели мощностью менее 5 л. С. Подключаются напрямую (с помощью стартера DOL) без снижения напряжения питания (в исходном состоянии), но они имеют защиту от перегрузки, низкого напряжения и однофазную защиту.Это связано с тем, что такие двигатели могут непродолжительное время выдерживать высокий пусковой ток.

Как работает стартер двигателя?

По сути, пускатель — это коммутационное устройство, состоящее из электрических контактов (как входящих, так и выходных). По принципу действия пускатели в основном делятся на устройства с ручным и электрическим приводом.

Ручной стартер состоит из рычага сбоку, который можно включить или выключить. Обычно они используются для двигателей меньшего размера, поскольку они не могут работать удаленно.

Пускатели этого типа заставляют двигатели перезапускаться сразу после отключения питания. Эта мгновенная работа двигателя после сбоя питания может привести к протеканию опасных токов в двигатель и, следовательно, двигатель будет поврежден. По этой причине большинство пускателей оснащено электрическими выключателями.

В пускателях с электрическим приводом для переключения токоведущих проводов используются электромеханические реле. Эти реле называются контакторами.Когда катушка контактора находится под напряжением, она создает электромагнитное поле, которое подтягивает контакты переключателя.

И когда катушка обесточена, контакты возвращаются в нормальное положение пружинным устройством. Обычно пускатели двигателей снабжены кнопками (кнопками пуска и останова) для включения и выключения катушки, чтобы контакты работали. Эти пускатели с электрическим приводом не будут перезапускаться после сбоя питания до тех пор, пока не будет нажата кнопка пуска.

Типы пускателей двигателей

В пускателях двигателей используются различные методы

В большинстве промышленных предприятий используются трехфазные асинхронные двигатели по сравнению с двигателями любого другого типа. Для запуска трехфазного асинхронного двигателя используются разные методы. Прежде чем познакомиться с различными типами пускателей, давайте сначала обсудим методы, используемые для пускателей асинхронных двигателей.

Метод полного напряжения

Этот метод часто называют прямым пуском от сети (DOL) и является наиболее распространенным способом пуска трехфазного асинхронного двигателя.В этом методе на двигатель подается полное напряжение (или номинальное напряжение), поскольку это самозапускающийся двигатель, которому для его запуска требуется полное напряжение.

Этот метод применяется только для двигателей мощностью менее 5 л.с., как описано выше. Пускатели двигателей, использующие этот метод, называются пускателями прямого включения.

Метод пониженного напряжения: этот метод используется для больших двигателей мощностью от 100 л.с. и выше (или для двигателей, требующих очень высоких пусковых токов).Как обсуждалось ранее, эти двигатели с высоким номиналом потребляют очень высокие пусковые токи, а также могут вызвать падение напряжения в сети.

В таких случаях используется метод пониженного напряжения, когда напряжение на двигателе сначала снижается на несколько секунд, пока двигатель не вращается, а затем приложенное напряжение повышается до номинального напряжения питания, в результате чего двигатель вращается до своей номинальной скорости.

Пускатели двигателей, использующие метод понижения напряжения, называются пускателями пониженного напряжения. Обычно используемые пускатели пониженного напряжения включают пускатель сопротивления статора, пускатель автотрансформатора и пускатель треугольником.

Двунаправленный пускатель

В некоторых процессах необходимо управлять двигателем как в прямом, так и в обратном направлении. Как правило, направление трехфазного двигателя можно изменить, изменив любые два провода (т. Е. Изменив последовательность RYB) трехфазного источника питания.

В этом методе используются два контактора с подходящим механизмом соединения и блокировки между ними для достижения двунаправленной работы.

Multispeed Technique

В этом методе пускатели двигателей предназначены для подачи на двигатель разных напряжений для работы двигателя на разных скоростях.

Обычно эти пускатели предназначены для работы двигателя на двух или трех разных скоростях с использованием двух или более контакторов. Большинство этих пускателей выпускаются в версиях с полным и пониженным напряжением.

На основе описанных выше методов ниже перечислены наиболее распространенные типы пускателей.

  1. Пускатель сопротивления статора
  2. Пускатель автотрансформатора
  3. Пускатель звезда-треугольник
  4. Пускатель прямого включения
  5. Устройство плавного пуска

Эти пускатели двигателя подробно рассматриваются в следующем разделе.

Типы
Пускатель сопротивления статора

В этом методе пониженное напряжение подается на асинхронный двигатель путем последовательного подключения внешних сопротивлений к каждой фазе обмотки статора.

Во время пуска двигателя эти сопротивления поддерживаются в максимальном положении, так что на двигатель подается пониженное напряжение из-за большого падения напряжения на сопротивлениях. Принципиальная схема этого типа пускателя показана на рисунке ниже.

Когда двигатель набирает скорость, сопротивление, подключенное к каждой фазе, постепенно уменьшается в цепи статора.Когда эти сопротивления удаляются из цепи, на двигатель подается номинальное напряжение (полное напряжение), и, следовательно, он работает с номинальной скоростью.

В этом методе важно поддерживать пусковой момент двигателя, минимизируя пусковой ток. Это связано с тем, что ток изменяется пропорционально напряжению, тогда как крутящий момент изменяется пропорционально приложенному напряжению.

Предположим, что если приложенное напряжение уменьшится на 50 процентов, ток будет уменьшен до 50 процентов, а крутящий момент уменьшится на 25 процентов.

Конструкция этого стартера проста и является наиболее экономичным методом, чем все методы. Кроме того, этот пускатель можно использовать для двигателей, подключенных по схеме звезды или треугольника. Однако из-за высокого рассеяния мощности на резисторах в двигателе происходят большие потери мощности.

Кроме того, пониженное напряжение вызывает уменьшение крутящего момента при запуске двигателя. Из-за этих ограничений метод сопротивления ограничен для некоторых приложений.

Автоматический пускатель трансформатора

В этом методе трехфазный автотрансформатор подключается последовательно к двигателю.Этот трансформатор снижает приложенное к двигателю напряжение и, следовательно, ток. Принципиальная схема этого типа пускателя показана на рисунке ниже.

Этот пускатель состоит из переключающего переключателя, который переключает двигатель между пониженным и полным напряжением. Когда этот переключатель находится в начальном положении, на двигатель подается пониженное напряжение.

Это напряжение зависит от процентной доли лент и регулируется путем изменения положения ползунка автотрансформатора.

Когда двигатель достигает 80 процентов своей номинальной скорости, переключающий переключатель автоматически переводится в положение РАБОТА с помощью реле. В связи с этим на двигатель подается номинальное напряжение. Эти трансформаторы также снабжены цепями перегрузки, холостого хода и выдержки времени.

В этом методе напряжение на клеммах двигателя выше для заданного пускового тока на стороне сети по сравнению с другими методами пониженного напряжения. Следовательно, этот метод дает самый высокий пусковой момент на линейный ток в амперах.

Этот статор может быть подключен к трехфазным двигателям, подключенным как звездой, так и треугольником. Однако эти пускатели более дорогие, чем пускатели сопротивления статора.

Стартер со звездой-треугольником

Это наиболее часто используемый пускатель пониженного напряжения, так как он является самым дешевым пускателем среди всех. В этом методе асинхронный двигатель подключается звездой во время пуска и треугольником при работе с номинальной скоростью.

Эти пускатели предназначены для работы на статоре асинхронного двигателя, соединенном треугольником.Принципиальная схема этого пускателя представлена ​​на рисунке ниже.

В этом пускателе используется переключатель TPDT (трехполюсный двухпозиционный), который соединяет обмотку статора звездой во время запуска. Благодаря такому соединению звездой подаваемое на двигатель напряжение уменьшается в 1 / √3 раз. Это пониженное напряжение приводит к уменьшению тока через двигатель.

Когда двигатель набирает скорость, переключатель TPST автоматически переключается на другую сторону с помощью реле, так что обмотка теперь соединена треугольником через источник питания.Таким образом, на двигатель подается нормальное напряжение (поскольку напряжение при соединении треугольником такое же, VL = VP), и, следовательно, двигатель работает с нормальной скоростью.

Этот метод дешев и не требует обслуживания по сравнению с другими методами. Однако это подходит только для двигателей, подключенных по схеме треугольника, а также коэффициент, на который снижается пусковое напряжение, т. Е. 1 / √3, не может быть изменен.

Устройство прямого пуска от сети

Как уже говорилось ранее, двигатели малой мощности (менее 5 л.с.) не имеют очень высоких пусковых токов.И без использования стартера такие двигатели выдерживают пусковые токи.

Нет необходимости снижать напряжение на двигателе при запуске, и, следовательно, двигатель можно подключить непосредственно к линиям питания. Этот тип устройства, применяемый в пускателе, называется пускателем прямого включения или просто пускателем прямого тока.

Хотя этот пускатель не снижает пусковое напряжение, он обеспечивает защиту двигателя от перегрузки, однофазности и низкого напряжения. Принципиальная схема прямого онлайн-пускателя показана на рисунке ниже.

Во время условия запуска нормально открытый контакт (NO) нажат на долю секунды, и это приводит к возбуждению катушки намагничивания. Этот магнитный поток, создаваемый катушкой, притягивает контактор, так что теперь двигатель подключен к источнику питания.

Контактор сохраняет это положение, пока катушка получает питание от дополнительного переключателя. При нажатии нормально замкнутого (NC) переключателя катушка обесточивается, и контактор разъединяется с помощью пружины, при этом питание двигателя прекращается.

При любой перегрузке двигатель потребляет большой ток, вызывающий перегрев. Этот чрезмерный нагрев приводит в действие тепловые реле, использующие датчики перегрузки. Затем срабатывают контакты перегрузки, чтобы отключить питание двигателя.

Это самый простой, дешевый и надежный метод, поэтому он широко используется. Основным недостатком прямого пускателя является то, что двигатель потребляет очень высокий ток во время пуска в течение короткого периода времени.

Чтение: Устройство прямого пуска в режиме онлайн

Устройство плавного пуска

В этом методе используются полупроводниковые переключатели мощности для снижения пускового тока асинхронного двигателя.Это еще один тип пускателя пониженного напряжения, который подключается последовательно с сетевым напряжением, подаваемым на двигатель. Принципиальная схема устройства плавного пуска представлена ​​на рисунке ниже.

Этот пускатель состоит из встречных тиристоров или симисторов в каждой фазе обмотки статора. Регулируя угол включения этих тиристоров, напряжение, подаваемое на двигатель, будет плавно снижаться. Этот тип снижения напряжения обеспечивает более плавную работу по сравнению с другими методами, описанными выше.

Это приводит к отсутствию пульсаций крутящего момента и, следовательно, к отсутствию рывков при запуске двигателя. Как только двигатель набирает нормальную скорость, к тиристорам прикладывается такой угол зажигания, который позволяет подавать на двигатель полное напряжение.

Для более мощных двигателей используются частотно-регулируемые приводы с функцией плавного пуска. Такие приводы регулируют пусковой ток, а также скорость двигателя до желаемого значения.

Эти пускатели также снабжены дополнительной защитой, такой как перегрузка, низкое напряжение и однофазность.

Авторы изображений:

1) img.directindustry

2) knoware-online.com

3) image.made-in-china.com

4) pimg.tradeindia.com

5) www.neweysonline .co.uk

WEG Управление электродвигателем с однофазным магнитным пускателем мощностью 3 л.с. NEMA 1 2 — источник-компрессор

WEG ESWS-25V24E-RM33 Однофазный магнитный пускатель мощностью 3 л.Это стартер отличного качества со встроенной перегрузкой, регулируемой в диапазоне 15-23 ампер, и оснащен кнопкой ручного сброса.

Магнитные пускатели PESW идеальны для защиты двигателей и обеспечения надежной работы из года в год. Собран вместе в корпусе NEMA 1 с кнопкой RESET на крышке для быстрой и простой работы.

Корпус NEMA 1 разработан в первую очередь для использования внутри помещений и обеспечивает защиту от контакта с закрытым оборудованием, объектами и персоналом, от поражения электрическим током, ограниченного количества падающей грязи и случайного контакта с токоведущими частями.

РЕКОМЕНДУЕТСЯ ПРОФЕССИОНАЛЬНАЯ УСТАНОВКА

Технические характеристики

• HP при 208–240 В: 3-5 (в зависимости от силы тока и напряжения)
• Мин. Диапазон перегрузки (амперы): 15
• Максимальный диапазон перегрузки (амперы): 23
• Напряжение катушки : 208–240 Вольт
• Фаза: одиночная
• Частота: 60 ​​Гц
• Класс защиты: NEMA 1
• Материал корпуса: сталь
• Функция кнопки: сброс
• Вес: 5.1
• Приблизительные размеры (Ш x В x Г): 5-7 / 16 дюймов x 9-7 / 16 дюймов x 4,75 дюйма

Стандартные характеристики

• Высокая мощность в лошадиных силах
• Быстрое ускорение и высокий начальный крутящий момент
• Биметаллические реле перегрузки — класс 10
• Регулируемый ток срабатывания
• Температурная компенсация от -4 ° F до 140 ° F
• Защита от обрыва фазы
• Выбор ручного или автоматического сброса
• Электрически изолированные вспомогательные контакты NO-NC
• Сертификат

UL, IEC и CSA

Если вы используете этот стартер на воздушном компрессоре, вам также понадобится реле давления для управления стартером.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *