+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Работа электрического тока — Основы электроники

Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.

Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A.

Формула работы электрического тока имеет вид:

A = I*U*t

Произведение I*U есть не что иное, как мощность электрического тока.

Тогда формула работы электрического тока примет вид:

A = P*t

Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях.

Поэтому, если мы хотим узнать, какую работу про­извел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд.

Например, через реостат с сопротивлением 5 Ом протекает ток си­лой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.). Так как работа тока в одну секунду будет равна:

P=I2R = 0,52*5= 0,25*5 =1,25 Вт,

то за время t=14400 сек. она будет в 14 400 раз больше. Следователь­но, работа электрического тока А будет равна:

А = Р*t= 1,25*14 400= 18 000 вт-сек.

Ваттсекунда (джоуль) являет­ся слишком малой единицей для измерения работы тока. По­этому на практике пользуются единицей, называемой ваттчас (втч).

Один ваттчас равен 3 600 Дж, так как в часе 3 600 сек.

1втч = 3 600 Дж.

В нашем последнем примере работа тока, выраженная в ваттчасах, будет равна:

А = 1,25*4=5 втч.

В электротехнике для измерения работы тока применяют­ся еще большие единицы, называемые гектоваттчас (гвтч) и киловаттчас (квтч):

1 квтч =10 гвтч =1000 втч = 3600000 Дж,

1 гвтч =100 втч = 360 000 Дж,

1 втч = 3 600 Дж.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

В чем измеряется работа тока

Электрический ток вырабатывается для того, чтобы в дальнейшем использовать его в определенных целях, для совершения какой-либо работы. Сама работа представляет собой определенные усилия, прилагаемые для перемещения электрического заряда на установленное расстояние. Условно, такая работа в пределах участка цепи, будет равна численному значению напряжения на данном участке. Для выполнения необходимых расчетов необходимо знать, в чем измеряется работа тока. Все расчеты проводятся на основании исходных данных, полученных с помощью измерительных приборов. Чем больше величина заряда, тем больше усилий требуется для его перемещения, тем большая работа будет совершена.

Что называют работой тока

Электрический ток, как физическая величина, сам по себе не имеет практического значения. Наиболее важным фактором является действие тока, характеризующееся выполняемой им работой. Сама работа представляет собой определенные действия, в процессе которых один вид энергии превращается в другой. Например, электрическая энергия с помощью вращения вала двигателя, превращается в механическую энергию. Работа самого электрического тока заключается в движении зарядов в проводнике под действием электрического поля. Фактически вся работа по перемещению заряженных частиц выполняется электрическим полем.


С целью выполнения расчетов должна быть выведена формула работы электрического тока. Для составления формул понадобятся такие параметры, как сила тока и электрическое напряжение. Поскольку работа электрического тока и работа электрического поля – это одно и то же, она будет выражаться в виде произведения напряжения и заряда, протекающего в проводнике. То есть: A = Uq. Данная формула была выведена из соотношения, определяющего напряжение в проводнике: U = A/q. Отсюда следует, что напряжение представляет собой работу электрического поля А по переносу заряженной частицы q.

Сама заряженная частица или заряд отображается в виде произведения силы тока и времени, затраченного на движение этого заряда по проводнику: q = It. В этой формуле было использовано соотношение для силы тока в проводнике: I = q/t. То есть, сила тока является отношением заряда к промежутку времени, за которое заряд проходит через поперечное сечение проводника. В окончательном виде формула работы электрического тока будет выглядеть, как произведение известных величин: A = UIt.

В каких единицах измеряется работа электрического тока

Прежде чем непосредственно решать вопрос, в чем измеряется работа электрического тока, необходимо собрать единицы измерений всех физических величин, с помощью которых вычисляется этот параметр. Любая работа измеряется в джоулях, следовательно, единицей измерения данной величины будет 1 Джоуль (1 Дж). Напряжение измеряется в вольтах, сила тока – в амперах, а время – в секундах. Значит единица измерения будет выглядеть следующим образом: 1 Дж = 1В х 1А х 1с.

Исходя из полученных единиц измерения, работа эл тока будет определяться, как произведение силы тока на участке цепи, напряжения на концах участка и промежутка времени, за которое ток протекает по проводнику.

Измерение проводятся с помощью амперметра, вольтметра и часов. Эти приборы позволяют эффективно решить проблему, как найти точное значение данного параметра. При включении амперметра и вольтметра в цепь, необходимо следить за их показаниями в течение установленного промежутка времени. Полученные данные вставляются в формулу, после чего выводится конечный результат.

Функции всех трех приборов объединяются в электросчетчиках, учитывающих потребленную энергию, а фактически работу, совершенную электротоком. Здесь используется уже другая единица – 1 кВт х ч, что также означает, сколько работы было совершено в течение единицы времени.

Работа электрического тока

Изучая применение электрического тока, нужно уметь вычислять количество электроэнергии, которое расходуется на то или иное действие тока. Например, подъём лифта, нагревание чайника и тому подобное. Поэтому выведем формулу для подсчёта работы тока.

В предыдущем параграфе
мы узнали формулу:P = I · U
Однако из 7-го класса мы знаем
другую формулу для мощности:N = A / t

В левых частях этих равенств стоят разные символы, но они обозначают одну и ту же физическую величину – мощность. Следовательно, правые части формул можно приравнять:   I · U = A / t .   Выразим работу:

      A  =  I · U · tA – работа электрического тока, Дж
I – сила электрического тока, А
U – электрическое напряжение, В
t – время наблюдения, с

По этой формуле вычисляется работа тока или, что то же самое, израсходованная электроэнергия. Поясним, что выделенные нами термины – синонимы.

В момент замыкания цепи электрическое поле источника энергии приводит в движение заряженные частицы в проводнике (электроны и/или ионы), и их энергия возрастает. Сумма энергий всех частиц тела является внутренней энергией тела (см. § 7-д), значит, внутренняя энергия проводника в момент возникновения в нём тока возрастает. Согласно первому закону термодинамики, внутренняя энергия может расходоваться на теплопередачу или совершение работы (см. § 6-з). Но, расходуясь, она постоянно пополняется от источника энергии.

Вспомним, что прохождение тока по проводнику всегда сопровождается действиями тока (см. § 8-з). При этом обязательно происходит превращение электроэнергии в другие виды энергии. Например, внутреннюю (утюг или чайник), механическую (пылесос или вентилятор) и так далее. Поэтому под выражением «ток совершает работу» мы будем понимать превращение электроэнергии в другие виды энергии. В таком смысле работа тока и израсходованная электроэнергия – выражения-синонимы.

Для измерения потреблённой электроэнергии служат специальные измерительные приборы – счётчики электроэнергии.

Для учёта электроэнергии вместо джоуля используется более крупная единица – киловатт-час (обозначение: 1 кВт·ч). Например, счётчик на рисунке показывает значение 254,7 кВт·ч. Это может означать, что за всё время учёта потребитель мощностью 254,7 кВт работал 1 час или что потребитель мощностью 2547 Вт работал 100 часов (и так далее, соблюдая пропорцию).

     

Найдём связь киловатт-часа с более привычной нам единицей для измерения работы – джоулем.

1 кВт · ч = 1000 Вт · 60 мин =
= 1000 Дж/с · 3600 с = 3 600 000 (Дж/с)·с =

= 3 600 000 Дж = 3,6 МДж

Итак, 1 кВт·ч = 3,6 МДж.

Примечание. Формула для работы тока A = I·U·t поможет выяснить физический смысл электрического напряжения. Выразим его:

U  =AСледовательно,1 В  =  1Дж
 I·t А·с

Отсюда видно, что 1 вольт – это такое напряжение, при котором ток силой 1 ампер способен за 1 секунду производить 1 джоуль работы. Другими словами, электрическое напряжение показывает работу, которую ежесекундно совершают силы электрического поля для поддержания в цепи тока силой 1 ампер.

Кроме того, из формулы  I = q / t  (см. § 9-б)  следует:  q = I · t.  Тогда:

U  =AСледовательно,1 В  =  1Дж
 q Кл

Исходя из этой формулы, 1 вольт может рассматриваться и как такое напряжение, при котором работа сил электрического поля при перемещении заряда в 1 Кл будет равна 1 Дж. Обобщённо мы скажем: электрическое напряжение является одной из характеристик электрического поля, перемещающего заряды по проводнику.

Как найти работу тока формула

Сегодня электрический ток имеет большую область применения. Связано это с тем, что он переносит с собой энергию, которую можно превратить в любую форму.

Что такое работа тока

При хаотичном движении заряженных частиц в проводнике электрическое поле будет совершать работу, которую решили назвать работой тока. Определение работы тока следующее: это работа электрического поля по переносу зарядов внутри проводника.

Важно! Помимо электрических сил, на проводник действуют еще и магнитные, которые также могут совершать работу. Однако в обычных условиях она будет очень мала.

Мощность

Абсолютно каждый электрический прибор рассчитан на поглощение энергии за единицу времени. Поэтому на практике большее значение имеет такое понятие, как мощность. Мощность — это скалярная физическая величина, в общем виде равная скорости изменения, преобразования, передачи или потребления энергии системы.

Единицы измерения

Любая физическая величина, которая может быть превращена в энергию, будет измеряться в Джоулях (Дж). 1 Джоуль равен работе при перемещении точки, к которой приложена сила, равная 1 Ньютону, умноженному на Путь в 1 метр. Получается, что 1 Дж = 1 Н · 1 м.

Единица измерения мощности — это Ватт (Вт). Он равен работе 1 Дж, совершенной за единицу времени в 1 с. Таким образом, 1 Вт = 1 Дж : 1 с

Формула вычисления

В 1841 году английский ученый Джеймс Джоуль сформулировал закон для нахождения количественной меры теплового воздействия электрического тока. В 1842 году этот же закон был также открыт русским физиком Эмилием Ленцем. Из-за этого он получил двойное название закона Джоуля-Ленца. В общем виде закон записывается следующим образом: Q = I² • R • t.

Он имеет достаточно обобщенный характер, так как не имеет зависимости от природных сил, генерирующих ток. Сегодня этот закон активно применяется в быту. Например, для определения степени нагрева вольфрамовой нити, используемой в лампочках.

Закон Джоуля-Ленца определяет количество теплоты, выделяемое током. Но, тем не менее, это поможет узнать, по каким формулам вычисляется работа электрического поля. Всё потому, что она впоследствии проявляется в виде нагревания проводника. Это говорит о том, что работа тока равна теплоте нагревания проводника (A=Q). Работа эл тока, формула: А= I² • R • t. Это не единственная формула для нахождения работы. Если использовать закон Ома для участка цепи (I=U:R), то можно вывести еще две формулы: А=I•U•t или A=U²:R.

Общая формула для того, чтобы вычислять мощность, заключается в ее прямой пропорциональности работе и обратной зависимости от времени (P=A:t). Если говорить о мощности в электрическом поле, то исходя из предыдущих формул, можно составить целых три: Р= I² • R; Р=I•U; Р=U²:R.

Приборы для измерения тока

Электроизмерительные приборы — это особый вид устройств, которые используются для измерения многих электрических величин. К ним относятся:

  • Амперметр переменного тока;
  • Вольтметр переменного тока;
  • Омметр;
  • Мультиметр;
  • Частометр;
  • Электрические счетчики.

Амперметр

Чтобы определить силу тока в электрической цепи, необходимо применить амперметр. Данный прибор включается в цепь последовательным образом и из-за пренебрежимо малого внутреннего сопротивления не оказывает влияния на ее состояние. Шкала амперметра проградуирована в амперах.

В классическом приборе через электромагнитную катушку проходит измеряемый ток, который образует магнитное поле, заставляющее отклоняться магнитную стрелку. Угол отклонения прямо пропорционален измеряемому току.

Электродинамический амперметр имеет более сложный принцип работы. В нем находятся две катушки: одна подвижная, другая стоит на месте. Между собой они могут быть соединены последовательно или параллельно. При прохождении тока через катушки их магнитные поля начинают взаимодействовать, что в результате заставляет подвижную катушку с закрепленной на ней стрелкой отклониться на некоторый угол, пропорциональный величине измеряемого тока.

Вольтметр

Для определения величины напряжения (разности потенциалов) на участке цепи используют вольтметр. Подключаться прибор должен параллельно цепи и обладать высоким внутренним сопротивлением. Тогда лишь сотые доли силы тока попадут в прибор.

Принцип работы заключается в том, что внутри вольтметра установлена катушка и последовательно подключенный резистор с сопротивлением не менее 1кОм, на котором проградуирована шкала вольтов. Самое интересное, что на самом деле резистор регистрирует силу тока. Однако деления подобраны таким образом, что показания соответствуют значению напряжения.

Омметр

Данный прибор используют для определения электрически активного сопротивления. Принцип действия состоит в изменении измеряемого сопротивления в напрямую зависящее от него напряжение благодаря операционному усилителю. Нужный объект должен быть подключен к цепи обратной связи или к усилителю.

Если омметр электронный, то он будет работать по принципу измерения силы тока, протекающего через необходимое сопротивление при постоянной разности потенциалов. Все элементы соединяют последовательно. В этом случае сила тока будет иметь следующую зависимость: I = U/(r0 + rx), где U — ЭДС источника, r0 — сопротивление амперметра, rx — искомое сопротивление. Согласно этой зависимости и определяют сопротивление.

Мультиметр

Приведенные в пример приборы сегодня используют лишь в школах на уроках физики. Для профессиональных задач были придуманы мультиметры. Самое обычное устройство включает в себя одновременно функции амперметра, вольтметра и омметра. Прибор бывает как легко переносимым, так и огромным стационарным с большим количеством возможностей. Название «мультиметр» в первый раз было применено именно к цифровому измерителю. Аналоговые приборы чаще называют «авометр», «тестер» или просто «Цешка».

Работа тока — сложная, но очень важная тема в электродинамике. Не зная ее, не получится решить даже простейших задач. Даже электрики используют формулы по нахождению работы для проведения необходимых подсчетов.

Чтобы подсчитать работу электрического тока, вспомним определение понятия напряжения: U=А/q

Следовательно, работа электрического тока равна:

Электрический заряд можно выразить через силу тока и его время протекания q=It:

Итак, работа электрического тока равна произведению силы тока на напряжение и на время протекания тока по цепи.

Работа электрического тока выражается в джоулях (Дж) . В качестве внесистемной единицы принята работа тока силой 1 А в течение 1 ч на участке цепи с напряжением 1 В. Эту единицу работы назвали ватт-час (1 Вт-ч) : 1 Вт-ч = 3600 Дж = 3,6 кДж. На практике используют более крупные, кратные ей единицы:

1 гВт-ч= 102 Вт-ч = 3,6·105Дж,
1 кВт-ч= 103 Вт-ч = 3,6·106Дж,
1 МВт-ч = 106 Вт-ч = 3,6·109Дж.

Из курса физики VII класса вы знаете, что мощность равна отношению совершенной работы ко времени, в течение которого эта работа была совершена. Мощность в механике принято обозначать буквой N, в электротехнике — буквой Р. Следовательно, мощность равна:

Пользуясь этой формулой, найдем мощность электрического тока. Так как работа тока определяется формулой А = IUt, то мощность электрического тока равна:

За единицу мощности ватт (Вт) принята мощность тока силой 1 А на участке с напряжением 1 В. Следовательно, 1 Вт = 1 А·1 В.

Ватт сравнительно небольшая мощность, на практике используют более крупные единицы, кратные ватту: 1 гВт (гектоватт) = 102 Вт, 1 кВт (киловатт) = 103 Вт, 1 МВт (мегаватт) = 106 Вт, 1 ГВт (гигаватт) = 109 Вт.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы рассмотрим вольтметр и амперметр, узнаем, что такое работа электрического тока и как она вычисляется.

Работа электрического тока

Сам по себе электрический ток не нужен. Важным является не сам ток, а его действие.

Действие электрического тока характеризуется работой электрического тока.

Работа – это величина, которая характеризует превращение энергии из одного вида в другой.

Например, была энергия кинетическая, стала энергия потенциальная, т. е. тело находилось в состоянии движения, затем оно остановилось, поднявшись при этом на некоторую высоту.

Что касается электрического тока, то мы уже знаем о движении электрических зарядов по проводнику и что движение это происходит под действием электрического поля, т. е. работу совершает электрическое поле. И работа в данном случае показывает, как энергия одного вида, например, энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д.

Вывод формулы для нахождения работы электрического тока

Работа электрического тока связана, в первую очередь, с понятием электрического напряжения и силы тока.

Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику.

Это утверждение получено из соотношения для электрического напряжения.

Электрическое напряжение – это работа электрического поля по переносу электрического заряда q.

Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику.

Это утверждение следует из соотношения для силы тока.

Сила тока – это отношение заряда ко времени, в течение которого протекает заряд по проводнику через поперечное сечение проводника.

Подставив в формулу определения работы , получим выражение для вычисления работы электрического тока, работы электрического поля по перемещению электрического заряда.

Единицы измерения

Работа – 1 Джоуль или 1 Дж;

Напряжение – 1 Вольт или 1 В;

Сила тока – 1 Ампер или 1 А;

Время – 1 секунда или 1 с.

Определение

Работа электрического тока равна произведению силы тока на участке цепи, напряжению на концах этого участка и времени, в течение которого протекает ток по проводнику.

Приборы для измерения силы тока и электрического напряжения

Работа электрического тока связана с приборами, позволяющими определять значения указанных величин.

Напряжение определяется по прибору, который называется вольтметр. А для измерения силы тока используют амперметр (рис. 1).

Рис. 1. Изображения вольтметра и амперметра

Включив эти два прибора в электрическую цепь, наблюдая за показаниями этих приборов, определив время, в течение которого производятся измерения, определяем значение работы электрического тока. .

Заключение

Обратите внимание на то, что плата, которую мы производим за электроэнергию, – это плата именно за работу электрического тока. Действие электрического тока – это те самые действия, которые используются в технике, такой как нагревательные устройства, устройства, которые используются в быту (телевизоры, радиоприемники и т. д.).

Работа измеряется при помощи амперметра и вольтметра, но, тем не менее, есть отдельный прибор, который сразу способен измерять работу электрического тока

На следующем уроке мы познакомимся с понятием мощности.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. П. 50, вопросы 1–4, стр. 119, задание 24 (1). Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Через реостат с сопротивлением 5 Ом протекает ток си­лой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.).
  3. С помощью каких приборов можно измерить работу электрического поля?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

“>

Единицы работы электрического тока, применимые на практике

Все вы знаете, что в конце месяца нужно платить за электроэнергию, которая была использована в вашей квартире. В системе СИ время измеряется в секундах, но каждый раз переводить недели или месяцы в секунды — это неудобно, да и не нужно. Поэтому люди придумали единицу измерения, которой удобнее пользоваться на практике. Энергия, потребляемая из сети, будет зависеть от времени работы и от мощности того или иного прибора. Например, стиральная машина за час работы потребит больше энергии, чем лампочка за весь вечер. Итак, исходя из количества потребляемой энергии, единицей измерения, которую применяют на практике, является киловатт-час.

Так можно переводить любые единицы измерения.

Существует стоимость использования одного киловатт-часа энергии. Эта стоимость умножается на количество киловатт-часов, использованных за месяц, и мы, таким образом, получаем счет за электроэнергию. Например, 1 кВт∙ч стоит 3 рубля. Скажем, за месяц использовали 150 кВт∙ч электроэнергии. Тогда мы умножаем количество киловатт-часов на стоимость одного киловатт-часа и получаем сумму в рублях.

Для примера рассчитаем, сколько энергии израсходует утюг за месяц, если его мощность 1800 Вт и им пользуются по полчаса каждый второй день.

Поскольку в месяце 30 дней, утюг используется 15 раз в месяц по полчаса. Итого получается, что утюг работает 7,5 часов в месяц.

Ещё одна всем известная единица измерения — это лошадиная сила. Обычно именно в лошадиных силах измеряют мощность многих двигателей. Если речь идет о мощности электрического тока, то лошадиная сила равна 1 л. с. = 746 Вт. Например, мы можем вычислить, какую работу совершает двигатель мощностью 85 л. с. за 2 часа работы.  Как правило, двигатель не работает постоянно на полную мощность, поэтому, будем считать, что в среднем за эти 2 часа он работал на 80 % мощности.

Появление таких единиц измерения не означает, что система СИ чем-то плоха. Наоборот, подавляющее большинство вычислений следует производить в системе СИ, а уже потом переводить полученный результат в какие угодно единицы измерения. Просто для некоторых ситуаций единицы измерения системы СИ не подходят.

Скажем, в астрономии расстояния такие большие, что километры использовать неудобно: получаются огромные числа. Например, от Солнца до Земли почти 150 млн км, а до Меркурия — около 60 млн км. Поэтому, ученые решили ввести единицу расстояния, известную, как астрономическая единица (а. е.). За астрономическую единицу как раз таки взято расстояние между Солнцем и Землей. Таким образом, расстояние от Солнца до Меркурия составляет примерно 0,4 а. е. Несмотря на это, в астрономии речь идет и о таких расстояниях, которые значительно больше астрономической единицы. В этих случаях используется световой год (несмотря на слово «год» — это единица измерения расстояния). Световой год — это расстояние, которое проходит свет в вакууме за один год.

Например, расстояние от Земли до центра нашей галактики составляет примерно 26 000 световых лет.

Производя какие-либо вычисления, нужно в первую очередь убедиться, что единицы измерения всех величин соответствуют друг другу. Например, если машина едет со средней скоростью 60 км/ч, то за 2 ч она проедет 120 км. Как мы это узнали? Мы умножили километры в час на часы и получили километры, потому что часы сократились. А вот если нам дано, что скорость машины 20 м/с, то чтобы посчитать, какое расстояние она проедет за 2 ч, нужно часы перевести в секунды, а потом только умножать на скорость. Теперь уже полученное расстояние будет измеряться в метрах, потому что скорость была дана в метрах в секунду.

Работа электрического тока — Энциклопедия по машиностроению XXL

Контактная сварка. Этот процесс применяют только для сварки металлов и основным источником энергии в нем служит теплота, выделяемая электрическим током в зоне контакта соединяемых деталей, электрическое сопротивление которой выше сопротивления основного металла. Некоторое количество теплоты при контактной сварке может выделяться и в объеме свариваемых деталей вследствие работы электрического тока при прохождении через внутренний объем деталей, имеющих некоторое электрическое сопротивление.  [c.132]
Работа и мощность электрического тока. Работу сил электрического поля, создающего электрический ток, называют работой тока. Работа А сил электрического поля или работа электрического тока на участке цепи с электрическим сопротивлением R за время At равна  [c.149]

Работа электрического тока выражается в джоулях, мощность — в ваттах.  [c.149]

Если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ, то работа электрического поля приводит только к нагреванию проводника. При этом работа электрического тока  [c.149]

Электродвижущая сила. Полная работа сил электростатического поля при движении зарядов по замкнутой цепи постоянного тока равна нулю. Следовательно, вся работа электрического тока в замкнутой электрической цепи оказывается совершенной за счет действия сторонних сил, вызывающих разделение зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей силой источника (ЭДС) W  [c.150]

Закон Ома для полной цепи. Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внешнем и внутреннем участках цепи  [c.150]

Из сравнения выражения для полезной внешней работы электрического тока с fl L = — Vdp видно, что количество протекающего электричества р , взятое со знаком минус , эквивалентно р, а эдс элемента эквивалентна V. Если элемент находится в окружающей среде с постоянными давлением и температурой, то, заменив в выражении (2.35) р на р,, а V на е, получим  [c.283]

Из сравнения выражения для полезной работы электрического тока с dL = — V dp видно, что количество протекающего электричества Z эквивалентно р, а э. д. с. элемента эквивалентна V. Если элемент находится IB окружающей среде с постоянными давлением и температурой, то, заменив в уравнении (4-63) р па Z, з. V на е, получим  [c.154]


Работа электрического тока  [c.325]

Эквивалент тепловой 51 Работа электрического тока 456 Рабочий режим синхронных двигателей 490 Равновесие — Принцип смещения 66 —твердых тел в жидкости 614  [c.725]

Так как обычно полезную работу производят с помощью систем, находящихся в исходном состоянии в равновесии с окружающим воздухом в отношении температуры и давления, причем конечное состояние их по прошествии некоторого времени становится идентичным начальному, то вышеупомянутый принцип оказывает большую помощь в установлении пределов полезности такого процесса. Например, работа электрического тока, которая может быть произведена свинцовым аккумулятором при его разрядке, не может превышать уменьшения величины Z между заряженным и разряженным состояниями. Аналогично работа, которая может быть произведена на валу двигателя внутреннего сгорания смесью топлива и воздуха, не может превышать уменьшения величины Z для топливно-воздушной системы между ее первоначальным состоянием и состоянием продуктов сгорания при температуре и давлении окружающей среды.  [c.129]

Если обозначить электрическое сопротивление собственно термоэлектродов через г, а внешнее сопротивление через R, то работа электрического тока, величина которой определяется уравнением (12-8), будет расходоваться на преодоление внутреннего сопротивления (джоулевы потери внутри термоэлектрогенератора ( д,) и на преодоление внешнего сопротивления, т. е. на совершение полезной внешней работы Следовательно, можно записать, что  [c.405]

Работа электрического тока Л за время t определяется по формулам.  [c.295]

Работа электрического тока, выполненная за 1 сек, называется мощностью. Мощность измеряется ваттами (вт).  [c.122]

В практике использования электрической энергии пользуются такими терминами электродвижущая сила (э. д. с.), электрический ток, электрическое сопротивление, напряжение электрического тока, работа электрического тока, его мощность и рядом других понятий.  [c.8]

За единицу работы электрического тока, или за единицу электрической энергии, принят ватт-час (вт-ч). Это такая работа, которую совершает электрический ток в 1 а при напряжении 1 в в течение 1 часа. Таким образом работа, совершенная током (вт-ч), представляет произведение величин напряжения (в) и тока (а) на время в часах.  [c.20]

В ряде работ роль нагревателя выполнял сам термометр сопротивления. В этих случаях во время нагревания калориметрической системы приходится нагружать термометр большим током. Использование термометра сопротивления в качестве нагревателя вряд ли можно считать целесообразным по следующим причинам. Во-первых, при таком использовании термометра приходится резко изменять ток, проходящий через его чувствительный элемент во время калориметрического опыта. Это усложняет вычисление результатов измерения. Во-вторых, при использовании термометра в качестве нагревателя экспериментатор лишается возможности контролировать температуру во время нагревания, а во многих случаях это необходимо. В-третьих, применение в качестве нагревателя платиновой проволоки, сопротивление которой сильно зависит от температуры, значительно усложняет измерение работы электрического тока.  [c.203]

Работа электрического тока. Мощность. Единицы измерения мощности. Ток, напряжение и единицы измерения.  [c.589]

А — работа электрического тока в джоулях, равная произведению квадрата величины тока (/) на сопротивление (Л) и на время действия t).  [c.405]

Работа электрического тока Международная ватт-секунда. . Ватт-час. … 1,, 36. 10 Ws Wh вт-с вт-ч Международная ватт-секунда есть работа, совер шаемая электрическим током в течение 1 сек. при мощности тока в 1 в  [c.627]

Работа электрического тока в замкнутой цепи, выражаемая в ватт-секундах, равна произведению силы тока на на-  [c.124]

I. Какими единицами измеряется работа электрического тока и как эта единица обозначается  [c.6]

Работа электрического тока, выполненная за единицу времени, называется мощностью. Мощность измеряется ваттами (Вт).  [c.110]

Работа электрического тока выражается произведением напряжения на силу тока и на время. За единицу работы принят джоуль (ватт-секунда), т. е. работа, совершаемая током в 1 А при напряжении 1 В в 1 с.  [c.100]


Электрической энергией называется работа электрического тока в течение того или иного времени. Электрическая энергия выражается в киловатт-часах и представляет произведение мощности в киловаттах на время в часах. Электроинструмент с двигателем мощностью 0,8 кет за 5 час. расходует 4 квт-ч электрической энергии.  [c.10]

Электрический ток, проходя по цепи, совершает работу вра-ш ает электродвигатели станков, расплавляет металл в процессе сварки, освещает помещения и т. д. Работа электрического тока зависит от количества электричества и напряжения.  [c.6]

Мощность представляет собой работу, выполняемую в единицу времени. Работа электрического тока в одну секунду называется  [c.7]

А ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ работа электрического тока  [c.15]

Работа электрического тока, поглощаемая п проводнике  [c.492]

МОЩНОСТЬ И РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА  [c.124]

Работа электрического тока А Ватт- секунда или джоуль вт-с, дж Ws j Батт-сек.—работа, совершаемая электрическим током в течение 1 сек. при мощности 1 вт  [c.203]

ДЖОУЛЬ (международная ватт-секупда), единица работы электрического тока, обозначение J, размерность С.м. Единицы измерения.  [c.305]

За единицу работы электрического тока в практической системе единиц прини.мается 1 0ж = 10 (ватт-секунда). На практике пользуются более крупными единицами электрической работы 1 гектоватт-час (гвт-ч), 1киловатт-час (квт-ч),I мегаватт-час (лггвт-ч).  [c.492]


Единицы работы электрического тока, применяемые на практике

1. Единицы работы электрического тока, применяемые на практике

2. Электроэнергия на практике

1 неделя = 604800 с
1 месяц = 2592000 с

3. Электроэнергия на практике

Р1 2200
=
= 22
Р2
100
2200 Вт
100 Вт

4. Киловатт-час

Киловатт-час обозначается как кВт ∙ ч
1000 Дж
1 кВт = 1000 Вт =
с
1 ч = 3600 с
1000 Вт 3600 с
1 кВт ∙ ч ×
×
= 3600000 Дж
1 кВт

5. Электроэнергия на практике

150 кВт ∙ ч × 3 рΤкВт ∙ ч = 450 р

6. Сколько энергии израсходует утюг за месяц, если его мощность 1800 ватт и им пользуются по полчаса каждый второй день.

30
= 15 раз
2
1
15 × ч = 7,5 ч
2
1000 Вт = 1 кВт 1800 Вт = 1,8 кВт
1800 Вт
1,8 кВт × 7,5 ч = 13,5 кВт ∙ ч
1 кВт ∙ ч = 3,6 × 106 Дж 13,5 × 3,6 × 106 = 48,6 МДж

7. Лошадиная сила

Лошадиная сила
обозначается как л. с.
1 л. с. = 746 Вт
Какую работу совершил двигатель мощностью 85 л. с.
за 2 ч, если он работал на 80 % мощности
85 × 746 Вт
85 л. с. =
= 63,41 кВт
1000
63,41 × 0,8 = 50,73 кВт
50,73 × 2 ≅ 101,5 кВт ∙ ч

8. Почему не всегда удобно использовать единицы системы СИ

2 × 10−4 м3
Клетка
~10−6 — 10−5 м
время в пути 28800 с

9. Единицы измерения расстояния в астрономии

Расстояние от Солнца до Земли:
149 600 000 км
1 а.е.
Расстояние от Солнца до Меркурия:
57 910 000 км
0,387 а.е.

10. Единицы измерения расстояния в астрономии

1 световой год = 9,454 × 1012 км
Расстояние от Земли до центра
Млечного Пути:
26000 световых лет
Галактика Млечный Путь

11. Использование единиц измерения

60 кмΤч
60 кмΤч × 2 ч = 120 км
3600 с
2ч×
= 7200 с

20 мΤс × 7200 с = 144000 м
20 мΤс
1 км
144000 м ×
= 144 км
1000 м

12. Основные выводы

На практике применяются различные единицы измерения,
которыми удобнее пользоваться в тех или иных ситуациях.
На практике работа электрического тока измеряется в
кВт ∙ ч.
1 кВт ∙ ч = 3600000 Дж

Электрические единицы измерения — Electronics-Lab.com

Введение

В этой статье будут представлены различные физические величины, которые можно встретить в области электричества.

Прежде всего, мы представляем наиболее распространенные электрические величины в виде таблицы, в которой суммированы все различные параметры, связанные с их единицей измерения, символом и измерительным устройством. Кроме того, мы предлагаем большой набор кратных и подкратных чисел для упрощения записи.

Во втором разделе мы представляем Международную систему единиц , которая важна для понимания некоторых особенностей, относящихся к электрическим величинам. Мы фокусируемся на том, как система построена вокруг определяющих констант и базовых единиц.

В третьем разделе мы сосредоточимся на электрическом токе , который, по сути, является базовой физической величиной, используемой для описания всех других электрических величин.

Электрические параметры

Следующие В таблице 1 представлены наиболее важные электрические величины:

вкладка 1: электрические величины с соответствующими единицами измерения, символом и устройством измерения

Эти величины могут варьироваться в широком диапазоне значений, особенно ток, сопротивление и емкость.По этой причине важно связать с ними кратные и подмножественные.

В следующей таблице Таблица 2 дает большой диапазон подмножителей и кратных с подробным описанием их имен, символов и значений:

вкладка 2: Множители и субмножители, используемые в электронике

Международная система единиц

SI Определение констант

SI — это французская аббревиатура, обозначающая Международная система единиц , это современная научная метрическая система измерения.Эта система основана на определяющих константах, которые являются фундаментальными свойствами материи.

Имеется семь определяющих констант SI:

  1. Частота сверхтонкого перехода Cs
  2. Скорость света
  3. Постоянная Планка
  4. Элементарный заряд
  5. Постоянная Больцмана
  6. Постоянная Авогадро
  7. Световая отдача излучения 540 ТГц
Базовые блоки SI

Для каждой фундаментальной константы, представленной ранее, базовая единица СИ связана с:

  1. Секунды представляют время
  2. Метр (м) соответствует длине
  3. Килограмм (кг) соответствует массе
  4. Ампер (А) представляет собой электрический ток
  5. Кельвин (K) представляет температуру
  6. Моль (моль) представляет количество вещества
  7. Кандела (кд) представляет силу света
Производные единицы SI

Производные единицы СИ построены на основе базовых единиц СИ, и по этой причине существует большое количество производных единиц, но мы не будем перечислять их все.

Однако существует 22 названных производных единицы, таких как Ньютон (Н), Паскаль (Па), или единицы, представленные ранее в Таблице 1 , такие как Вольт (В) и Мощность (P).

Любые производные единицы представляют собой комбинацию базовых единиц, мы представляем эту ссылку в Таблице 3 для соответствующих производных единиц данного руководства:

вкладка 3: Производные электрические единицы с эквивалентом их базовой единицы

Приложение к электричеству

Определяющая константа: элементарный заряд

Определяющей константой, которая имеет отношение к этой статье, является элементарный заряд, числовое значение которого составляет e = 1.602176634 × 10 −19 C (или A.s) . Это значение соответствует наименьшему количеству заряда, которое может быть найдено в природе: протон имеет положительно заряженных + e , а электрон отрицательно заряженных -e .

Электрический заряд — это внутреннее свойство элементарных частиц, которое, например, массу, легко ощутить, но трудно определить должным образом. Заряды противоположного знака притягиваются друг к другу, что объясняет, почему электроны продолжают вращаться вокруг ядер, в то время как заряды одного знака отталкиваются друг от друга, как с магнитами.

Базовый блок: Ампер

Базовый блок Ампер представляет собой перенос определенного количества электрического заряда в единицу времени через определенный участок материала. Фактически, определение Ампера в системе СИ: «ток в один ампер — это один кулон заряда, проходящий через заданную точку в секунду» .

Этот перенос зарядов в точности известен как электрический ток . Отметим, что из-за малой величины элементарного заряда даже небольшой ток соответствует очень большому количеству переносимых зарядов.Например, ток 1 мА приблизительно соответствует переносу удивительного числа 6,2 × 10 15 зарядов в секунду.

Производные единицы в электроэнергии

Важно отметить, что каждая величина, представленная в Таблице 1 , за исключением частоты и периода, является производной от тока, как мы указали в Таблице 3 . Единица ампер действительно является фундаментальной единицей, полученной из определения элементарного заряда .

Вольт определяется как разность потенциалов, которая приводит к рассеиванию мощности 1 Вт на резисторе 1 Ом при электрическом токе 1 А. Из этого описания можно дать определения Ом и Вт , перефразируя предыдущее предложение.

Фарад определяется как увеличение заряда на 1 К в проводнике, когда к нему добавляются 6,241 × 10 18 электронов .Это производная единица емкости, которая представляет способность проводника накапливать заряды при воздействии разности потенциалов.

Генри — производная единица для индуктивности, она определяется как создание разности потенциалов 1 В, когда на цепь / компонент подается переменный электрический ток 1 А / с.

Заключение

В этом кратком руководстве основное внимание уделяется наиболее важным единицам измерения параметров, связанных с электричеством.Прежде всего, мы предоставили таблицу, в которой представлены наиболее распространенные и важные электрические величины с соответствующими единицами измерения, символом и устройством измерения.

Во втором разделе мы сосредоточились на Международной системе единиц , которая дает нам основу для понимания различия между единицами измерения и количествами. Мы также подчеркиваем тот факт, что ампер, , которая является единицей СИ для электрического тока, является базовой единицей и используется для обозначения любых других электрических единиц, которые называются производными единицами .

Наконец, последний раздел подробно определяет константу, определяющую элементарный заряд, базовую единицу в амперах и некоторые производные единицы для области электричества, такие как вольт, ом, ватт, фарад и генри.

Единица тока — Введение, единица СИ, стандартные электрические единицы и измерения

Что такое электрический ток?

Мы много слышим об электрических токах в повседневной жизни: в классе, а также дома.Электрический ток с точки зрения науки — это, в основном, протекание тока или заряда в электрических цепях. Иногда заряд переносится одновременно ионами и электронами.

Необходимо измерить заряд тока, протекающего по цепи. Это позволяет нам понять производительность схемы и схему, чтобы она работала должным образом. Электрический ток измеряется амперметром, его единица измерения — ампер или ампер. Однако в настоящее время существуют разные методы измерения силы тока.

SI Единица измерения электрического тока?

Единица измерения электрического тока в системе СИ обозначается ампером, который измеряет движение электрического заряда через поверхность со скоростью один кулон в секунду. Как заряд измеряется в кулонах, а время в секундах; так что единица измерения становится кулон / сек (C / s) или ампер. Формула для измерения электрического тока приведена ниже.

I = V / R

Где

[Изображение будет загружено в ближайшее время]

Одной из основных единиц СИ для электрического тока является Ампер, который в основном используется в электронной и электротехнической науке, а также в других областях науки. .На основании электромагнитного эффекта можно определить наведенный ампер.

Что такое единица измерения тока?

Чтобы определить единицу измерения тока, ампер номинирован в честь Андре-Мари Ампера, которая была одним из первых предшественников электротехники. Однако практическая реализация Ампера эквивалентна заряду кулонов в секунду, протекающему в цепи. Формальное описание ампера — это постоянный ток, который, если он протекает в двух прямых параллельных проводниках бесконечной длины и незначительного круглого сечения и помещен на расстоянии одного метра в вакууме, создает между этими проводниками силу, равную 2 × 10⁻. ⁷ ньютона на метр длины

Условия определения ампера

Французский физик и математик XIX века Андре-Мари Ампер решил, что символ I символизирует силу тока.

Единица измерения электрического тока в системе СИ, известная как ампер, является одной из семи основных единиц системы СИ.

Интересно, что один ампер примерно эквивалентен примерно 6,24 × 10¹⁸ элементарных зарядов, таких как дырки или электроны, проходящих через заданную точку или предел за одну секунду. Физики считают, что ток течет от умеренно положительных точек к несколько отрицательным; это называется стандартным током или током Франклина.

В этом определении используется электромагнетизм для определения единицы силы тока.Это начинает неявно проверять значение магнитной постоянной µ0 = 4 π 10⁻⁷ Hm-1 = 4 π 10⁻⁷ м кг с² A⁻². Следовательно, ампер базовой единицы и, следовательно, все другие электрические единицы связаны с метром, килограммом и секундами базовой единицы через эту важную константу.

В письменных языках без акцентированных букв (а именно на английском) стало нормой писать единицы как Ampere, а при конфиденциальном общении сокращать это слово до amp. Нет необходимости использовать заглавную букву «А» в начальном значении Ампера, как это подразумевают физики.Здесь Ampere (или amp) предлагает единицу измерения.

Это алгебраическая ссылка, а не определение. Ампер — жизненно важная единица в Международной системе, в то время как другие единицы получаются из нее. Здесь фундаментальные единицы определяют это исследование. В случае Ampere испытание носит электромагнитный характер.

Некоторые стандартные электрические единицы измерения

Помимо Ампера, существует множество стандартных единиц измерения, используемых для определения электрических свойств, таких как напряжение, мощность, емкость, сопротивление, индуктивность, электрическое поле, электрический заряд, частота, магнитный поток, который связан с электрическим током.

9 0226

Частота

9023 9023 Единицы измерения тока

Амперметр, обычно известный как амперметр, представляет собой электрическое устройство, используемое для измерения электрического тока в амперах.Электрический ток на нагрузке измеряется с помощью амперметра, подключенного последовательно к нагрузке. Он имеет нулевое сопротивление, поэтому расчетная схема остается неизменной.

[Изображение будет загружено в ближайшее время]

Амперметр нельзя подключить параллельно к нагрузке из-за его минимального сопротивления. Если он подключен параллельно, он становится коротким замыканием, через которое проходит весь ток, что может привести к сгоранию счетчика из-за повышенного значения тока.Абсолютный амперметр имеет нулевой импеданс, так что отключение питания в приборе равно нулю. Но эта идеальная ситуация практически недостижима.

Типы амперметра

Классификация амперметра основана на конструкции здания и типе тока, протекающего через него.

В зависимости от расположения конструкции он подразделяется на следующие категории:

В зависимости от вида тока, протекающего через него, он классифицируется следующим образом:

Амперметры постоянного тока в основном относятся к типу с подвижной катушкой постоянного тока. амперметры.Другие типы амперметров могут измерять как переменный, так и постоянный ток.

Ампер (А) Преобразование единиц электрического тока

Ампер — это единица измерения электрического тока. Используйте один из приведенных ниже калькуляторов преобразования, чтобы преобразовать в другую единицу измерения, или читайте дальше, чтобы узнать больше об амперах.

Калькулятор преобразования ампер

Выберите единицу измерения электрического тока, в которую нужно преобразовать.

Единицы СИ

Единицы измерения сантиметр – грамм – секунда

Прочие единицы

Сопутствующие калькуляторы

Определение и использование ампер

Ампер, обычно называемый «ампер», представляет собой постоянный электрический ток, равный расходу одного кулона в секунду.

Ранее ампер определялся как постоянный ток, который при прохождении через два прямых и параллельных проводника, расположенных на расстоянии одного метра друг от друга, создаст силу, равную 0,0000002 ньютона на метр длины.

В 2019 году ампер был переопределен как электрический ток, соответствующий потоку 1 / (1,602 176 634 × 10 -19 ) элементарных зарядов в секунду. [1]

Ампер — это основная единица СИ для электрического тока в метрической системе.Иногда ампер также называют усилителем. Амперы можно обозначить как A ; например 1 ампер можно записать как 1 А.

Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить ток в амперах как выражение, используя сопротивление и напряжение.

I A = V V R Ом

Ток в амперах равен разности потенциалов в вольтах, деленной на сопротивление в омах.

Предпосылки и происхождение

Ампер назван в честь французского физика Андре-Мари Ампера в честь его работ в области электромагнетизма и электродинамики. Первоначально ампер определялся как одна десятая ампера, но с тех пор его определение несколько раз менялось.

Электрическое сопротивление | Единицы измерения Wiki


Электрическое сопротивление — это мера степени, в которой объект препятствует прохождению электрического тока.

Резистор

В системе СИ единицей электрического сопротивления является ом. Его обратная величина — . Электропроводность , измеренная в сименсах.

Сопротивление — это свойство любого объекта или вещества сопротивляться или противодействовать прохождению электрического тока. Величина сопротивления в электрической цепи определяет количество тока, протекающего в цепи для любого заданного напряжения, приложенного к цепи. Соответствующая формула:

R = V / I

где

R — сопротивление объекта, обычно измеряемое в омах.
В — это разность потенциалов на объекте, обычно измеряемая в вольтах (постоянный ток).
I — ток, проходящий через объект, обычно измеряемый в амперах

Для самых разных материалов и условий электрическое сопротивление не зависит от величины протекающего тока или величины приложенного напряжения. В можно измерить непосредственно на объекте или рассчитать путем вычитания напряжений относительно контрольной точки.Первый метод проще для одного объекта и, вероятно, будет более точным. Также могут возникнуть проблемы с предыдущим методом, если напряжение питания переменного тока и два измерения от контрольной точки не совпадают по фазе друг с другом.

Когда ток I протекает через объект с сопротивлением R , электрическая энергия преобразуется в тепло со скоростью (мощностью), равной

где

P — мощность, измеренная в ваттах
I — ток, измеренный в амперах
R — сопротивление, измеренное в омах

Этот эффект полезен в некоторых приложениях, таких как лампы накаливания. освещение и электрическое отопление, но нежелательно при передаче энергии.Общие способы борьбы с резистивными потерями включают использование более толстого провода и более высоких напряжений. Сверхпроводящий провод используется в специальных приложениях.

Сопротивление постоянному току [править | править источник]

Пока плотность тока в проводнике полностью однородна, сопротивление постоянному току R проводника с регулярным поперечным сечением можно вычислить как

где

L — длина проводника, измеренная в метрах
A — площадь поперечного сечения, измеренная в квадратных метрах
ρ (греч .: rho) — удельное электрическое сопротивление ( также называют удельным электрическим сопротивлением () материала, измеряемым в Ом · метр.Удельное сопротивление — это мера способности материала противодействовать прохождению электрического тока.

По практическим соображениям почти любое подключение к реальному проводнику почти наверняка будет означать, что плотность тока не является полностью однородной. Однако эта формула по-прежнему дает хорошее приближение для длинных тонких проводников, таких как провода.

Сопротивление переменного тока [править | править источник]

Если провод проводит высокочастотный переменный ток, то эффективная площадь поперечного сечения провода, доступная для проведения тока, уменьшается.(См. Скин-эффект).

Формула Термана дает диаметр проволоки, сопротивление которой увеличится на 10%.

где

— рабочая частота, измеренная в герцах (Гц)
— диаметр провода в миллиметрах.

Эта формула применима к изолированным проводам. В проводнике в непосредственной близости от других проводников фактическое сопротивление выше из-за эффекта близости.

В металлах [править | править источник]

Металл состоит из решетки атомов, каждый из которых имеет оболочку из электронов. Внешние электроны могут диссоциировать от своих родительских атомов и путешествовать по решетке, делая металл проводником. Когда к металлу прикладывается электрический потенциал (напряжение), электроны дрейфуют от одного конца проводника к другому под действием электрического поля. В реальном материале атомная решетка никогда не бывает идеально регулярной, поэтому ее несовершенства рассеивают электроны и вызывают сопротивление.Повышение температуры заставляет атомы вибрировать сильнее, вызывая еще больше столкновений и еще больше увеличивая сопротивление.

Чем больше площадь поперечного сечения проводника, тем больше электронов доступно для переноса тока, поэтому тем ниже сопротивление. Чем длиннее проводник, тем больше случаев рассеяния происходит на пути каждого электрона через материал, поэтому тем выше сопротивление. [1]

В полупроводниках и изоляторах [редактировать | править источник]

Полупроводники обладают свойствами, которые частично отличаются от свойств металлов и изоляторов.Силиконовый бульон имеет сероватый металлический блеск, как металл, но хрупкий, как стекло. Можно управлять резистивными свойствами полупроводниковых материалов, легируя эти материалы атомарными элементами, такими как мышьяк или бор, которые создают электроны или дырки, которые могут перемещаться по решетке материала.

В ионных жидкостях / электролитах [править | править источник]

В электролитах электропроводность осуществляется не зонными электронами или дырками, а движущимися целыми частицами атомов (ионами), каждый из которых несет электрический заряд.Удельное сопротивление ионных жидкостей сильно зависит от концентрации соли — в то время как дистиллированная вода является почти изолятором, соленая вода является очень эффективным проводником электричества. В клеточных мембранах токи переносятся ионными солями. Небольшие отверстия в мембранах, называемые ионными каналами, избирательны по отношению к определенным ионам и определяют сопротивление мембраны.

Сопротивление различных материалов [править | править источник]

Теория лент [править | править источник]

Уровни энергии электронов в изоляторе.

Квантовая механика утверждает, что энергия электрона в атоме не может быть произвольной величиной. Скорее, существуют фиксированные уровни энергии, которые могут занимать электроны, и значения между этими уровнями невозможны. Уровни энергии сгруппированы в две зоны: валентная зона и зона проводимости (последняя обычно выше первой). Электроны в зоне проводимости могут свободно перемещаться по веществу в присутствии электрического поля.

В изоляторах и полупроводниках атомы вещества влияют друг на друга так, что между валентной зоной и зоной проводимости существует запрещенная зона энергетических уровней, которую электроны просто не могут занять. Для протекания тока электрону необходимо передать относительно большое количество энергии, чтобы он мог перепрыгнуть через этот запрещенный промежуток в зону проводимости. Таким образом, большие напряжения дают относительно малые токи.

Когда сопротивление может зависеть от напряжения и тока, дифференциальное сопротивление , инкрементное сопротивление или наклонное сопротивление определяется как наклон графика V-I в определенной точке, таким образом:

Эту величину иногда называют просто сопротивлением , хотя эти два определения эквивалентны только для омического компонента, такого как идеальный резистор.Если график V-I не является монотонным (т.е. имеет пик или впадину), дифференциальное сопротивление будет отрицательным для некоторых значений напряжения и тока. Это свойство часто называют отрицательным сопротивлением , , хотя правильнее его называть отрицательным дифференциальным сопротивлением , , поскольку абсолютное сопротивление В, /, все еще является положительным.

Около комнатной температуры электрическое сопротивление типичного металлического проводника увеличивается линейно с температурой:

,

где a — коэффициент термического сопротивления.

Электрическое сопротивление типичного собственного (нелегированного) полупроводника экспоненциально уменьшается с температурой:

При повышении температуры, начиная с абсолютного нуля, примесные (легированные) полупроводники сначала уменьшают сопротивление, когда носители покидают доноры или акцепторы, а затем, когда большинство доноров или акцепторов теряют свои носители, сопротивление снова начинает немного увеличиваться из-за уменьшение подвижности носителей (как в металле), а затем, наконец, начинают вести себя как собственные полупроводники, поскольку носители от доноров / акцепторов становятся незначительными по сравнению с термически генерируемыми носителями

Электрическое сопротивление электролитов и изоляторов сильно нелинейно и зависит от конкретного случая, поэтому здесь не приводятся обобщенные уравнения.

Как соотносятся напряжение, ток и сопротивление: Закон Ома

Том I — Округ Колумбия »ЗАКОН ОМА»

Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться. Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , и его часто называют «потоком», как поток жидкости через полую трубу.

Сила, побуждающая электроны «течь» в цепи, называется напряжением .Напряжение — это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальных энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на двух конкретных точек термин «напряжение» не имеет значения.

Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению.Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток. Как и напряжение, сопротивление — величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.

Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины.Для массы мы можем использовать единицы «фунт» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:

«Символ», присвоенный каждому количеству, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире.Единица аббревиатура «для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение его конкретной единицы измерения. А также, да, этот странный на вид символ «подкова» — заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед читателями-греками).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М.Ampere, вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что «я» должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила.»Из каких исследований мне удалось Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение).Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени. Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени.Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

Одна основополагающая единица электрического измерения, которой часто учат в начал курсы электроники, но впоследствии использовался нечасто, блок кулон , который является мерой электрического заряда, пропорциональной количеству электроны в несбалансированном состоянии. Один кулон заряда равен 6 250 000 000 000 000 000 электронов.Символ электрического заряда количество — заглавная буква «Q» с единицей измерения кулоны. сокращенно заглавной буквой «C». Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через данный момент в цепи за 1 секунду времени. В этих терминах ток — это скорость движения электрического заряда по проводнику.

Как указывалось ранее, напряжение — это мера потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем «потенциал энергия ». Общей единицей измерения энергии любого вида является джоулей , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения между током, напряжением и сопротивлением называется законом Ома, открытым Георгом Саймоном Омом и опубликованным в его статье 1827 года Математические исследования гальванической цепи .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:

В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:

Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Какая величина тока (I) в этой цепи?

В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Какое сопротивление (R) предлагает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Какое напряжение обеспечивает аккумулятор?

Закон Ома — очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!

  • ОБЗОР:
  • Напряжение измеряется в вольт , обозначается буквами «E» или «V».
  • Ток измеряется в ампер , обозначается буквой «I».
  • Сопротивление измеряется в Ом. обозначается буквой «R».
  • Закон Ома: E = IR; I = E / R; R = E / I

Определите стандартные электрические блоки

Электрические единицы, такие как ток и напряжение, точно определены международным стандартом.


20 мая 2019 года определение ампера изменилось — теперь оно основано на заряде электрона, а не на силе.

Предыдущее определение: «Ампер — это тот постоянный ток, который, если он поддерживается в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещен на расстоянии 1 м в вакууме, создает между этими проводниками силу, равную 2 × 10-7 ньютон на метр длины ».

Новое определение: «Ампер (символ A) — это единица измерения электрического тока в системе СИ.Он определяется путем принятия фиксированного числового значения элементарного заряда $ e $ равным 1,602176634 × 10-19 при выражении в единице C, которая равна A⋅s ».

Раньше ампер определялся силой, а кулон был производным от ампера. Теперь все наоборот. Кулон является точным кратным элементарному заряду $ e $, а ампер определяется как кулон в секунду.


Содержание

Стандартные электрические блоки определяются в определенном порядке,

  • Сначала заряд протона получает переменное имя $ e $, которое называется элементарный заряд .Электрон имеет заряд $ -e $.
  • Затем определяется кулон $ (\ text C) $, давая $ e $ точное значение в кулонах.
  • Тогда ампер $ (\ text A) $ определяется как поток в один кулон в секунду $ \ text C / \ text s $.
  • После этого выводим остальные электрические единицы — ватт, вольт, ом.

Заряд электрона

В 1897 г. Томсон из Кембриджского университета продемонстрировал существование электрона. В 1913 году, шестнадцать лет спустя, Роберт Милликен из Чикагского университета описал свой эксперимент с каплей масла, в котором он установил заряд электрона.

Протон и электрон — это элементарных частиц . Элементарный заряд — это заряд протона, обычно обозначаемый как $ e $ или $ q_e $. Заряд отдельного электрона равен $ −e $. Это обозначение со знаком может немного сбивать с толку, но обычно вы можете сказать из контекста, относится ли $ e $ к заряду протона или электрона. В любом случае мы знаем, что электрон и протон — самые маленькие частицы, несущие заряд. Эта зарядка является основой для всех остальных электрических агрегатов.{18} \, \ text {elementary сборы}

долларов США Что такое СИ?

SI — это современная форма метрической системы.

Это означает Международная система единиц на французском языке: « S ystème I nternational d’Unités».

Принимающая организация: Бюро мер и весов (Bureau de Poids et Mesures) Париж, Франция. Текущая спецификация — 9-е издание, 2019 г.
https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf

Ампер

Один ампер — почетное название для потока одного кулона заряда в секунду.{18} \, \ text {электроны} / \ text {coulomb}} = 96 {,} 485 \ text {кулоны / моль} $

Это известно как постоянная Фарадея — не путать с единицей измерения емкости, фарадом. Один моль электронов — это около 100 000 кулонов заряда.

Производные единицы

После определения элементарного заряда, кулона и ампера, мы выводим остальные электрические единицы из этих плюс других базовых единиц СИ, таких как метр, джоуль и секунда.

Ватт

Вт — почетное название единицы мощности.Власть — это ставка. Это скорость передачи или потребления энергии за определенный период времени. Или вы можете сказать, что мощность — это скорость выполнения работы. Говоря стандартным языком, $ 1 \, \ text {watt} $ — это количество энергии, которое за одну секунду дает энергию $ 1 \, \ text {joule} $.

$ 1 \, \ text {watt} = 1 \, \ text {joule} / \, \ text {second}

$

Это реальное физическое определение ватта. Когда мы говорим о мощности в электрических системах, мы выражаем ватт как произведение тока и напряжения.

$ 1 \, \ text {watt} = 1 \, \ text {ampere} \ times 1 \, \ text {volt}

$

Вольт

вольт — почетное название единицы измерения разности электрических потенциалов. $ 1 $ вольт определяется как разность потенциалов между двумя точками провода, по которому проходит ток в $ 1 $ ампер, когда мощность, рассеиваемая в проводе, составляет $ 1 $ ватт.

$ 1 \, \ text {volt} = 1 \, \ text {watt} / \ text {ampere}

$

Вольт также можно выразить через энергию и заряд как,

$ 1 \, \ text {volt} = 1 \, \ text {joule} / \ text {coulomb}

$

Вы можете найти интуитивно понятное описание напряжения во вводной статье об основных электрических величинах.Для формального определения напряжения см. Электрический потенциал и напряжение в разделе «Электростатика».

Ом

Ом — почетное название электрической единицы сопротивления. Один ом определяется как сопротивление между двумя точками проводника, когда приложено $ 1 вольт и протекает ток в $ 1 ампер.

$ 1 \, \ text {ohm} = 1 \, \ text {volt} / \ text {ampere}

$

Теперь у нас есть базовый набор любимых нами электрических блоков.

Приложение

Что такое СИ?

SI — это современная форма метрической системы.

Это означает Международная система единиц на французском языке: « S ystème I nternational d’Unités».

Принимающая организация: Бюро мер и весов (Bureau de Poids et Mesures) Париж, Франция.

Текущая спецификация SI — 9-е издание, 2019 г.

BIPM подготовил памятку о том, как измерять основные электрические единицы, Mise en pratique для определения ампера и других электрических единиц в системе СИ.

Определение ампера до 2019 года

Определение ампера до 2019 года

Прежнее определение единицы тока в системе СИ, ампер до 2019 года, предполагало проведение эксперимента, основанного на изучении магнетизма. Я сохранил это описание для исторического удовольствия.

Электрические токи в проводах вызывают магнитные поля (Закон Био – Савара, 1820 г.).

Магнитное поле от одного провода вызывает магнитную силу на соседний провод (Закон силы Ампера, 1825 г.).{-7} $ ньютонов на метр длины.

Это определение означает, что вы можете провести эксперимент в своей лаборатории, чтобы получить точный ток $ 1 \, \ text {ampere} $. Эксперимент основан на силовом законе Ампера. Если вы знаете силу тока, длину и расстояние между проводами, этот закон скажет вам, какая сила действует между проводами.

Для создания стандартного ампера в 1 доллар вы выполняете некоторую версию следующего эксперимента. Установите два провода длиной $ 1 метр параллельно, на расстоянии $ 1 $ метра друг от друга и подготовьте способ измерения силы на проводах (какой-нибудь тензодатчик).{-7} $ ньютон / метр является историческим, выведенным из еще более старого определения ампера. Когда-то ампер определялся как ток, который за одну секунду осаждает 0,001118 грамма серебра из раствора нитрата серебра, известного как серебряный ампер . Это определение ампер соответствовало старой традиции.

Дополнительные ресурсы:

Закон силы Ампера https://en.wikipedia.org/wiki/Ampère’s_force_law

Закон Био – Савара. https: // ru.wikipedia.org/wiki/Biot–Savart_law

Магнитные силы, магнитные поля и закон Фарадея. Ханская академия. https://www.khanacademy.org/science/physics/mintage-forces-and-mintage-fields

Электрический ток | Безграничная физика

Аккумулятор

Аккумулятор — это устройство, преобразующее химическую энергию непосредственно в электрическую.

Цели обучения

Опишите функции и определите основные компоненты батареи

Ключевые выводы

Ключевые моменты
  • Аккумулятор накапливает электрический потенциал от химической реакции.Когда он подключен к цепи, этот электрический потенциал преобразуется в кинетическую энергию по мере прохождения электронов по цепи.
  • Напряжение или разность потенциалов между двумя точками определяется как изменение потенциальной энергии заряда q, перемещенного из точки 1 в точку 2, деленное на заряд.
  • Напряжение батареи является синонимом ее электродвижущей силы или ЭДС. Эта сила отвечает за прохождение заряда через цепь, известную как электрический ток.
Ключевые термины
  • аккумулятор : устройство, вырабатывающее электричество в результате химической реакции между двумя веществами.
  • ток : временная скорость протекания электрического заряда.
  • напряжение : величина электростатического потенциала между двумя точками в пространстве.

Символ батареи на принципиальной схеме : Это символ батареи на принципиальной схеме. Он возник как схематический рисунок батареи самого раннего типа — гальванической батареи.Обратите внимание на положительный катод и отрицательный анод. Эта ориентация важна при рисовании принципиальных схем, чтобы изобразить правильный поток электронов.

Аккумулятор — это устройство, преобразующее химическую энергию непосредственно в электрическую. Он состоит из ряда гальванических элементов, последовательно соединенных проводящим электролитом, содержащим анионы и катионы. Одна полуячейка включает электролит и анод или отрицательный электрод; другая полуячейка включает электролит и катод или положительный электрод.В окислительно-восстановительной реакции, которая приводит в действие аккумулятор, катионы восстанавливаются (добавляются электроны) на катоде, а анионы окисляются (электроны удаляются) на аноде. Электроды не касаются друг друга, но электрически связаны электролитом. В некоторых элементах используются два полуэлемента с разными электролитами. Разделитель между полуэлементами позволяет ионам течь, но предотвращает смешивание электролитов.

Каждая полуячейка имеет электродвижущую силу (или ЭДС), определяемую ее способностью передавать электрический ток изнутри во внешнюю часть ячейки.Чистая ЭДС клетки — это разница между ЭДС ее полуэлементов или разность восстановительных потенциалов полуреакций.

Электрическая движущая сила на выводах элемента называется напряжением на выводах (разностью) и измеряется в вольтах. Когда батарея подключена к цепи, электроны от анода проходят через цепь к катоду по прямой цепи. Напряжение батареи является синонимом ее электродвижущей силы или ЭДС.Эта сила отвечает за прохождение заряда через цепь, известную как электрический ток.

Батарея накапливает электрический потенциал от химической реакции. Когда он подключен к цепи, этот электрический потенциал преобразуется в кинетическую энергию по мере прохождения электронов по цепи. Электрический потенциал определяется как потенциальная энергия на единицу заряда ( q ). Напряжение или разность потенциалов между двумя точками определяется как изменение потенциальной энергии заряда q , перемещенного из точки 1 в точку 2, деленное на заряд.В перестроенном виде это математическое соотношение можно описать как:

[латекс] \ Delta \ text {PE} = \ text {q} \ Delta \ text {V} [/ latex]

Напряжение — это не то же самое, что энергия. Напряжение — это энергия на единицу заряда. Таким образом, аккумулятор мотоцикла и автомобильный аккумулятор могут иметь одинаковое напряжение (точнее, одинаковую разность потенциалов между клеммами аккумулятора), но при этом один хранит гораздо больше энергии, чем другой. Автомобильный аккумулятор может заряжать больше, чем аккумулятор мотоцикла, хотя оба аккумулятора — 12 В.

Идеальные и настоящие батареи : Краткое введение в идеальные и настоящие батареи для студентов, изучающих электрические схемы.

Измерения тока и напряжения в цепях

Электрический ток прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению в цепи.

Цели обучения

Опишите взаимосвязь между электрическим током, напряжением и сопротивлением в цепи

Ключевые выводы

Ключевые моменты
  • Простая схема состоит из источника напряжения и резистора.
  • Закон
  • Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме: I = В / R .
  • Единицей измерения скорости электрического заряда в системе СИ является ампер, который равен заряду, протекающему через некоторую поверхность со скоростью один кулон в секунду.
Ключевые термины
  • электрический ток : движение заряда по цепи
  • Ом : в Международной системе единиц производная единица электрического сопротивления; электрическое сопротивление устройства, на котором разность потенциалов в один вольт вызывает ток в один ампер; символ: Ω
  • ампер : единица электрического тока; стандартная базовая единица в Международной системе единиц.Аббревиатура: amp. Символ: A.

Чтобы понять, как измерять ток и напряжение в цепи, вы также должны иметь общее представление о том, как работает схема и как связаны ее электрические измерения.

Что такое напряжение? : Это видео помогает получить концептуальное представление о напряжении.

Электрическая цепь — это тип сети с замкнутым контуром, который обеспечивает обратный путь для тока. Простая схема состоит из источника напряжения и резистора и схематично может быть представлена ​​как на рис.

Простая схема : Простая электрическая цепь, состоящая из источника напряжения и резистора

Согласно закону Ома, электрический ток I , или движение заряда, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R . Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток.Сопротивление обратно пропорционально току. Следовательно, закон Ома можно записать следующим образом:

[латекс] \ text {I} = \ text {V} / \ text {R} [/ latex]

, где I — ток через проводник в амперах, В, — разность потенциалов, измеренная на проводнике в вольтах, а R — сопротивление проводника в омах (Ом). В частности, закон Ома гласит, что R в этом отношении является постоянным, не зависящим от тока.Используя это уравнение, мы можем рассчитать ток, напряжение или сопротивление в данной цепи.

Например, если у нас есть батарея на 1,5 В, которая была подключена по замкнутой цепи к лампочке с сопротивлением 5 Ом, какой ток течет по цепи? Чтобы решить эту проблему, мы просто подставим указанные значения в закон Ома: I = 1,5 В / 5 Ом; I = 0,3 ампера. Зная ток и сопротивление, мы можем изменить уравнение закона Ома и найти напряжение В :

[латекс] \ text {V} = \ text {IR} [/ латекс]

Вид под микроскопом: скорость дрейфа

Скорость дрейфа — это средняя скорость, которую достигает частица под действием электрического поля.

Цели обучения

Свяжите скорость дрейфа со скоростью свободных зарядов в проводниках

Ключевые выводы

Ключевые моменты
  • В проводниках существует электрическое поле, которое заставляет электроны дрейфовать в направлении, противоположном полю. Скорость дрейфа — это средняя скорость этих свободных зарядов.
  • Выражение для связи между током и скоростью дрейфа можно получить, рассматривая количество свободных зарядов в отрезке провода.
  • I = qnAv связывает скорость дрейфа с током, где I — ток через провод с площадью поперечного сечения A , сделанный из материала с плотностью свободного заряда n . Каждый из носителей тока имеет заряд q и движется со скоростью дрейфа величиной v .
Ключевые термины
  • скорость дрейфа : средняя скорость свободных зарядов в проводнике.

Скорость дрейфа

Известно, что электрические сигналы движутся очень быстро.Телефонные разговоры по проводам проходят на большие расстояния без заметных задержек. Свет загорается при нажатии переключателя. Большинство электрических сигналов, переносимых токами, передаются со скоростью порядка 10 8 м / с, что составляет значительную часть скорости света. Интересно, что отдельные заряды, составляющие ток, в среднем движутся намного медленнее, обычно дрейфуя со скоростью порядка 10 -4 м / с.

Высокая скорость электрических сигналов является результатом того факта, что сила между зарядами быстро действует на расстоянии.Таким образом, когда бесплатный заряд вводится в провод, входящий заряд выталкивает другие заряды впереди себя, которые, в свою очередь, проталкивают заряды дальше по линии. Возникающая в результате электрическая ударная волна движется по системе почти со скоростью света. Если быть точным, этот быстро движущийся сигнал или ударная волна представляет собой быстро распространяющееся изменение электрического поля.

Электроны, движущиеся через проводник : Когда заряженные частицы вытесняются в этот объем проводника, такое же количество быстро вынуждено покинуть его.Отталкивание между одноименными зарядами затрудняет увеличение количества зарядов в объеме. Таким образом, как только один заряд входит, другой почти сразу уходит, быстро передавая сигнал вперед.

Скорость дрейфа

Хорошие проводники имеют большое количество бесплатных зарядов. В металлах свободными зарядами являются свободные электроны. Расстояние, на которое может перемещаться отдельный электрон между столкновениями с атомами или другими электронами, довольно мало. Таким образом, пути электронов кажутся почти случайными, как движение атомов в газе.Однако в проводнике есть электрическое поле, которое заставляет электроны дрейфовать в указанном направлении (противоположном полю, поскольку они отрицательны). Скорость дрейфа v d — это средняя скорость свободных зарядов после приложения поля. Скорость дрейфа довольно мала, так как свободных зарядов очень много. Имея оценку плотности свободных электронов в проводнике (количество электронов в единице объема), можно вычислить скорость дрейфа для заданного тока.Чем больше плотность, тем ниже скорость, необходимая для данного тока.

Скорость дрейфа : Свободные электроны, движущиеся в проводнике, совершают множество столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных зарядов называется дрейфовой скоростью и направлена ​​в направлении, противоположном электрическому полю электронов. Столкновения обычно передают энергию проводнику, требуя постоянного подвода энергии для поддержания постоянного тока.

Можно получить выражение для связи между током и скоростью дрейфа, учитывая количество свободных зарядов в отрезке провода. Количество бесплатных зарядов на единицу объема обозначается символом n и зависит от материала. Ax — это объем сегмента, поэтому количество свободных зарядов в нем составляет nAx . Таким образом, заряд ΔQ в этом сегменте равен qnAx , где q — это количество заряда на каждом носителе.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Электрический параметр

Измерительный блок

Символ

Напряжение

9022 Вольт

Ом

R или Ω

Емкость

Фарад

C

Индуктивность

Генри

L или H

Мощность

Ватт

Вт

Гц

Гц

Электропроводность

Siemen

G или ℧

9070