+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Электрическое сопротивление — урок. Физика, 8 класс.

Электрическое сопротивление характеризует способность электрического проводника препятствовать прохождению электрического тока.

Электрическое сопротивление обозначается буквой R. Единицей сопротивления является ом (Ом).

Закон Ома

Сила тока \(I\) прямо пропорциональна напряжению \(U\). Это означает следующее: во сколько раз изменяется напряжение, во столько раз изменяется и сила тока.
Сила тока \(I\) обратно пропорциональна электрическому сопротивлению \(R\). Поэтому чем больше сопротивление, тем меньше сила тока, протекающего в проводнике.
 

 I=UR

 

Удельное сопротивление


Причиной электрического сопротивления является тепловое движение образующих материал атомов или молекул. Частицы колеблются около своих мест и мешают перемещению электронов. Это можно сравнить с длинным коридором, в котором одновременно перемещается много людей. И насколько быстро можно двигаться вперед, зависит от различных причин.


Электрическое сопротивление характерно для всех веществ и зависит от: 
 

Материала проводника тока ρДлины проводника \(l\)Площади поперечного сечения проводника \(S\)
Для каждого метериала характерно его удельное сопротивление, которое обозначают буквой ρ и которое можно найти в таблице удельных сопротивлений.
Чем длиннее проводник электричества, тем больше его электрическое сопротивление.Чем меньше площадь поперечного сечения проводника электричества, тем больше электрическое сопротивление.
Пример с коридором:
движение вперёд зависит от того, сколько людей в нём находится, как каждый из них двигается, насколько они полные или худые.
Пример с коридором:
чем длиннее коридор, тем дольше и труднее путь.
Пример с коридором:
чем уже коридор, тем труднее пробираться сквозь толпу людей.

Обрати внимание!

  R=ρ⋅lS


Удельное сопротивление металлов небольшое, а изоляторов — очень большое. В цепях, в которых электрический ток должен производить большую теплоту (например, в обогревателях), используют проводники с большим удельным сопротивлением, например, нихром. Току труднее течь, увеличивается тепловое движение частиц, в результате проводник нагревается. У алюминия низкое удельное сопротивление, поэтому его можно использовать для передачи электроэнергии.


 

Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.


Чтобы электрическая цепь обеспечивала необходимую силу тока, в неё включают резисторы.

Резистор — прибор с постоянным сопротивлением. 

Резисторы имеются во всех телевизорах, компьютерах, радиоприёмниках и т.д.

Чтобы изменить силу тока в электрической цепи, используют реостаты.

Реостат — прибор с переменным сопротивлением.

В составе реостата имеется подвижный контакт, при помощи которого изменяется длина  участка, включённого в цепь.


Реостат используется, например, в регуляторах громкости радиоприёмников.


 

РезисторыРеостаты

Электрическое сопротивление | Физика

На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной. С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества.

Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением) проводника:

R — сопротивление.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом — в 3 раза меньше и т. д.

На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм):

1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле

R = ρl/S      (12. 1)

где ρ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы (12.1) следует, что

ρ = RS/l

Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м2, а единицей длины 1 м, то единицей удельного сопротивления в СИ будет

1 Ом · м2/м, или 1 Ом · м.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм2). В этом случае более удобной единицей удельного сопротивления является Ом·мм2/м. Так как 1 мм2 = 0,000001 м2, то

1 Ом · мм2/м = 0,000001 Ом · м.

У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3.

Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм2/м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом.

Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества.

Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов.

??? 1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6. Имеются два проводника. У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой — из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7.

Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников.

Электрическое сопротивление ~ Электро мастер

Электрическое сопротивление


Любое тело, по которому протекает электрический ток, оказывает току  сопротивление – это явление называется электрическим сопротивлением.
Сопротивление обозначается латинскими буквами R, X, Z. Используются также прописные буквы r, x, z.
R – активное сопротивление (омическое)
X – реактивное сопротивление (индуктивное, емкостное)
Z – полное сопротивление (активное)
Размерность сопротивления Ом, размерность записывается так – Ом.
Сопротивление рассчитывается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать по формуле:

R=U/I

где
R – сопротивление
U – разность электрических потенциалов на концах проводника (напряжение)
I – сила тока, протекающая между концами проводника под действием разности потенциалов (напряжения).
Сопротивление различных проводников зависит от материала и называется удельным сопротивление, единица измерения удельного сопротивления Ом*м, а величина удельного сопротивления обозначается символом ρ (ро).

Удельное сопротивление

Удельное сопротивление проводника может быть рассчитано по формуле:

R= (ρ *l)/S

где
ρ – удельное сопротивление проводника
l – длинна проводника
S – площадь сечения проводника

Удельное сопротивление некоторых веществ (при t 20° C)

Вещество

Удельное сопротивление,  ρ
Ом*мм2

Алюминий

0,028

Вольфрам

0,055

Железо

0,098

Золото

0,023

Константан

0,44-0,52

Латунь

0,025-0,06

Манганин

0,42-0,48

Медь

0,0175

Молибден

0,057

Никелин

0,39-0,45

Никель

0,100

Олово

0,115

Ртуть

0,958

Свинец

0,221

Серебро

0,016

Тантал

0,155

Фехраль

1,1-1,3

Хром

0,027

Цинк

0,059





Чем больше сопротивление проводника, тем хуже он проводит электрический ток.
Удельное сопротивление обратно пропорционально электрической проводимости.
Электрическая проводимость – это способность материала пропускать через себя электрический ток.
Из выше изложенного следует – чем меньше сопротивление проводника, тем больше его электрическая проводимость, тем легче электрическому току пройти через этот проводник.

Виды электрического сопротивления:

Существует четыре вида электрического сопротивления:

1. Омическое сопротивление (активное сопротивление постоянному току)
2. Активное сопротивление (сопротивление переменному току)
3. Индуктивное сопротивление (реактивное сопротивление)
4. Емкостное сопротивление (реактивное сопротивление)

Рассмотрим каждое подробно:

Омическое сопротивление – сопротивление цепи постоянному току вызывающие безвозвратные потери энергии постоянного тока.
Величина омического сопротивления не зависит от величины  тока, это сопротивление материала (удельное сопротивление) и рассчитывается по формуле:

R=U/I

где
R – сопротивление
U – разность электрических потенциалов на концах проводника (напряжение)
I – сила тока, протекающая между концами проводника под действием разности потенциалов (напряжения).

Причиной потерь постоянного тока при омическом сопротивление является преодоление противодействия материала (его удельного сопротивления), энергия затраченная на преодоления противодействия материала превращается в тепловую.

Активное сопротивление – это сопротивление цепи переменному току вызывающие безвозвратные потери энергии переменного тока. Активное сопротивление обозначается латинской буквой Z и рассчитывается по формуле:

Z=R+jX

где
Z – импеданс
R — величина активного сопротивления
X — величина реактивного сопротивления
j — мнимая единица

Основной причиной вызывающей потери при активном сопротивление остается тоже, что и при омическом сопротивление – преодоление противодействия материала. Есть и другие причины, такие как
— поверхностный эффект
— вихревые токи
— потери за счет излучения электромагнитной энергии и др.

Абстрактно омическое и активное сопротивление можно представить как передвижение человека по узкому захламленному (препятствиями) коридору, который основную часть своей энергии будет безвозвратно тратить на преодоление этих препятствий, и чем больше удельное сопротивление проводника, тем захламленнее будет коридор.

Индуктивное сопротивление — обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующее изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности  элемента и частоты  протекающего тока. Не вызывает безвозвратных потерь энергии.
Индуктивное сопротивление рассчитывается по формуле:

XL=ωL=2πfL

где
XL — индуктивное сопротивление проводника переменному току
ω — циклическая частота переменного тока
L — индуктивность проводника (катушки)
f- частота


На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки тоже будет убывать, пересекая витки катушки и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора. Таким образом, вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, что значит не вызывающим безвозвратных потерь энергии.

Абстрактно индуктивное сопротивление можно представить как воду, текущую по трубе в которой установлена крыльчатка (водомер (счетчик воды) который установлен почти в каждой квартире), крыльчатка создает индуктивное сопротивление, чем больше ток (в нашем случае напор воды), тем больше сопротивление, при убывании напора воды крыльчатка пропустить всю оставшуюся воду, так как она крутиться в том же направлении, в которой течет вода. Из этого примера видно что такое индуктивное сопротивление и почему оно не вызывает безвозвратных потерь.

Индуктивную нагрузку (сопротивление) вызывают – индукционные печи и плиты, асинхронные двигатели (пылесосы, миксеры, фены) и т. д.
При индуктивной нагрузке в сеть генеруется реактивная мощность (ток по фазе отстает от напряжения), которая является паразитной и приводит к перегрузке электрический сетей и требует компенсации. Подробнее об этом будет написано в следующих статьях.

Емкостное сопротивление  — величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью цепи (или ее участка).
Емкостное сопротивление рассчитывается по формуле:

Xc=1/ωC=1/2πfC

где
Xc  — емкостное сопротивление проводника переменному току
C — емкости элемента

Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом, емкостное сопротивление является реактивным.

 Абстрактно емкостное сопротивление можно представить как кастрюлю объемом 5 литров, в нашем случае объем кастрюли это не что иное, как ее емкость. При ее наполнении водой до краев, она будет переворачиваться, и вода из неё выливаться, после чего кастрюля будет снова наполняться (так же как и конденсатор при полном заряде будет разряжаться в сеть, после чего вновь заряжаться).

При емкостной нагрузке (конденсаторы) в сеть генерируется активная мощность (ток по фазе опережает напряжение). Активная мощность (конденсаторные батареи) используется для компенсации реактивной мощности.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Электрическое напряжение:

  • U = R* I — Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети
частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению. ..

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Электрическое сопротивление — что это такое такое

Электрическое сопротивление — это противодействие отдельных участков цепи или всей электрической цепи прохождению электрического тока.
Величина, обратная проводимости, получила название электрического сопротивления (обозначение R или r). Таким образом,

r = 1/g
и
I = gU = U/r

Закон Ома устанавливает линейную зависимость между напряжением и током. Коэффициентом пропорциональности между напряжением на концах провода и протекающим по нему током является сопротивление провода. Величина сопротивления зависит от удельной проводимости и геометрических размеров провода.
Преобразуя формулу, найдем:
r = U/I
Выражая напряжение в вольтах (в), ток — в амперах (а), получим единицу сопротивления (в/а), которая называется ом (ом). Сопротивлением в 1 ом обладает проводник, в котором устанавливается ток в 1 а при напряжении на его зажимах в 1 в.
Электрическое сопротивление проводов, а также любого приемника (нагрузки) на схемах обозначается условно, как указано на рисунке:


Рис.1 Условное обозначение электрического сопротивления.
Единицей проводимости является величина, обратная ому,
т.е.
1/ом

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Следовательно,

отсюда удельное сопротивление

Так как сопротивление проводов измеряется в омах, сечение обычно в квадратных миллиметрах, длина в метрах, то удельное сопротивление измеряется в ом • мм2/м, а удельная проводимость, как величина, обратная удельному сопротивлению, в м/ом • мм2.
Величины удельных сопротивлений и проводимостей для некоторых материалов даны в таблице:

Наименьшим удельным сопротивлением обладают медь и алюминий.  Эти материалы применяются для изготовления проводов, по которым происходят передача и распределение электрической энергии от источников к потребителям, обмотки электрических машин и трансформаторов и др.
Для изготовления нагревательных приборов и реостатов применяются сплавы с большим удельным сопротивлением (нихром, фехраль и др.). В этом случае нужный для обмотки провод получается более коротким, и его проще разместить в нагревательном приборе.
Следует заметить, что термину «сопротивление» соответствуют два понятия:
1) как уже изложено выше, под сопротивлением понимают определенное свойство любого вещества (проводника). В этом смысле, например, говорят: лампа накаливания обладает сопротивлением 400 ом или провод обладает сопротивлением 0,5 ом;
2) сопротивлением называют устройство, обладающее упомянутым выше свойством, предназначенное для включения в электрическую цепь с целью регулирования, уменьшения или ограничения тока цепи. Таким устройством может служить, например, реостат, предназначенный для включения в электрическую цепь с целью регулирования тока путем изменения величины сопротивления.  Реостат с подвижным контактом.


Проволочные реостаты выполняются с плавной или ступенчатой регулировкой сопротивления. В первом случае реостат состоит из трубки, изготовленной из какого-либо изолирующего материала, на которую наложена проволочная спираль. К виткам этой спирали прикасается подвижный контакт. Один зажим реостата соединяется с подвижным контактом, другой зажим — с одним из концов спирали. Перемещая подвижный контакт, можно изменять длину проволоки, расположенной зажимами реостата, и тем самым изменять величину сопротивления, включенного в цепь.
Пример 1. Определить ток в лампе накаливания, если ее сопротивление 200 ом, а напряжение на зажимах 120 в:
I = U / r = 120 / 200 = 0,6a
Пример 2. Каково напряжение на зажимах обмотки возбуждения двигателя, если ее сопротивление 60 ом, а ток 1,5 a ?
U = I • r = 1,5 • 60 = 90 в.

Закон Ома, сопротивление проводников

| на главную | доп. материалы | физика как наука и предмет | электричество и электромагнетизм |

Организационные, контрольно-распорядительные и инженерно-технические услуги
в сфере жилой, коммерческой и иной недвижимости. Московский регион. Официально.

Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

                                                                    (98.1)

где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

                                                                (98.2)

где r — коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10–8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98. 2) в закон Ома (98.1), получим

                                                     (98.3)

где величина, обратная удельному сопротивлению,

называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U/l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (98.3) можно записать в виде

                                                                      (98.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде

                                                                      (98.5)

Выражение (98.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где r и r0, R и R0 соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, a температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температур­ная зависимость сопротивления может быть представлена в виде

где Т — термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147   (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.


Что такое сопротивление (R)? — Определение из Техопедии

Что означает сопротивление (R)?

Сопротивление (R) — это свойство материала, используемое для описания сопротивления, обеспечиваемого потоку тока. Чем выше сопротивление материала, тем меньше поток электронов или тока через материал. Его можно измерить, и он отличается от свойства проводимости материала или легкости прохождения электронов через вещество. Это может быть как желательное, так и нежелательное свойство вещества.Свойство сопротивления используется в самых разных приложениях и приборах, таких как транзисторные радиоприемники, телевизоры и лампы накаливания.

Техопедия объясняет сопротивление (R)

Термин «сопротивление» связан с постоянным током, тогда как в случае переменного тока противодействие протеканию тока известно как реактивное сопротивление. На сопротивление вещества влияет множество факторов, таких как длина используемого провода, площадь поперечного сечения провода, тип используемого материала и температура.Более высокое сопротивление обеспечивает более длинный провод, тогда как более широкое поперечное сечение провода помогает снизить сопротивление. Известно, что некоторые материалы, такие как металлы, являются хорошими проводниками электричества и, следовательно, обладают меньшим сопротивлением. Температура влияет на электронную структуру, и с повышением температуры большинство материалов оказывает меньшее сопротивление протеканию тока.

Единицей измерения сопротивления в системе СИ является ом, обозначаемый греческой буквой омега, а также иногда обозначаемый буквой R.Сопротивление материала составляет один Ом, когда через материал проходит ток в один ампер с напряжением в один вольт. Омметр — это инструмент, используемый для измерения сопротивления. В случае электрической цепи резисторы — это компоненты, используемые для обеспечения сопротивления току. Резисторы снабжены цветными полосами или полосами, которые обозначают значение сопротивления.

Сопротивление и резисторы | Безграничная физика

Закон Ома

Закон

Ома гласит, что ток пропорционален напряжению; цепи являются омическими, если они подчиняются соотношению V = IR.

Цели обучения

Контрастная форма вольт-амперных графиков для омических и неомических цепей

Основные выводы

Ключевые моменты
  • Напряжение управляет током, а сопротивление препятствует ему.
  • Закон
  • Ома относится к пропорциональному соотношению между напряжением и током. Это также относится к конкретному уравнению V = IR, которое действительно при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
  • Цепи или компоненты, которые подчиняются соотношению V = IR, известны как омические и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
  • Есть неомические компоненты и цепи; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
  • простая схема : Схема с одним источником напряжения и одним резистором.
  • омический : То, что подчиняется закону Ома.

Закон Ома

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток. Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V.Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.Напомним, что хотя напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].

Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для обозначения этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.

В истинно омическом устройстве одно и то же значение сопротивления будет вычислено из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток принудительно установлен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их соотношение между током и напряжением (их ВАХ) нелинейное (или неомическое). Примером может служить диод с p-n переходом.

Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.

Закон Ома : Краткий обзор закона Ома.

Температура и сверхпроводимость

Сверхпроводимость — это явление нулевого электрического сопротивления и выброс магнитных полей в некоторых материалах при температуре ниже критической.

Цели обучения

Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле

Основные выводы

Ключевые моменты
  • Сверхпроводимость — это сверхпроводимость. Сверхпроводимость — это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
  • В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
  • Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.
  • Сверхпроводники могут поддерживать ток без приложенного напряжения.
Ключевые термины
  • высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
  • критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
  • сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.

Сверхпроводимость — это явление точно нулевого электрического сопротивления и выброса магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.

Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).

Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.

В сверхпроводящих материалах характеристики сверхпроводимости проявляются, когда температура T понижается ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств — отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он претерпевает прерывистый скачок и после этого перестает быть линейным, как показано на.

Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень небольшое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера — определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.

Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.

Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения — свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на то, что в настоящее время продолжительность жизни составляет не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.

Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в правильности его классификации как «обычного» сверхпроводника.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в.

Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.

Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.

Цели обучения

Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением

Основные выводы

Ключевые моменты
  • Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
  • Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
  • Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины.
  • Резисторы расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
  • Эквивалентное сопротивление серии : Сопротивление сети резисторов, расположенных таким образом, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление — это сумма сопротивлений всех резисторов в сети.
  • параллельное эквивалентное сопротивление : такое сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), поэтому токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.

Сопротивление и удельное сопротивление

Сопротивление — это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.

Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ — это внутреннее свойство материала, независимо от его формы или размера. Напротив, сопротивление R — это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.

Типичный резистор : Типовой резистор с осевыми выводами.

Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].

В качестве особого случая сопротивление N резисторов, соединенных последовательно, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются. . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:

[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].

Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].

В качестве особого случая сопротивление N резисторов, подключенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.

Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одно из практических применений этих соотношений состоит в том, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В частном случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.

Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.

Зависимость сопротивления от температуры

Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.

Цели обучения

Сравнить температурные зависимости удельного сопротивления и сопротивления при больших и малых изменениях температуры

Основные выводы

Ключевые моменты
  • При изменении температуры на 100ºC или менее удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.
  • При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
  • Сопротивление объекта демонстрирует такую ​​же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
  • температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
  • полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.

Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или менее) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражается в следующем уравнении:

Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление совершает внезапный скачок, а затем увеличивается почти линейно. с температурой.

[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 × 10 −3 K −1 до + 6 × 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно меняется с температурой. Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Обратите также внимание на то, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, поскольку повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,

[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Термометры : Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Что такое сопротивление? | Fluke

Сопротивление — это мера сопротивления току в электрической цепи.

Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом). Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.Ему приписывают формулировку закона Ома.

Все материалы в некоторой степени сопротивляются току. Они попадают в одну из двух широких категорий:

  • Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться. Примеры: серебро, медь, золото и алюминий.
  • Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.
Золотая проволока служит отличным проводником

Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.

  • Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии. Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
  • Чем меньше сопротивление, тем выше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.

Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления.Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.

Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления. Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.

«Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.

Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выделения тепла, которое подрумянивает хлеб.Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.

Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:

E = I x R

То есть, вольт = амперы x Ом. R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, деленный на амперы).

Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.

Пример нормального сопротивления цепи Пример повышенного сопротивления цепи

В первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом). Сопротивление 60 Ом может помочь определить состояние цепи.

Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом).Увеличение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции с разомкнутой катушкой увеличивают общее сопротивление цепи, что снижает ток.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Закон Ома для начинающих и новичков

Закон Ома для начинающих и новичков
Основной закон Ома

HTML от: http://www.btinternet.com/~dtemicrosystems/beginner.htm

ЧТО ЭТО.КАК И ГДЕ ПРИМЕНЯТЬ


Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется, логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора подробности приведены выше.

ЧТО ТАКОЕ ЗАКОН ОМС? :
Используя диаграмму слева, закон Ома определяется как; «При условии, что температура остается постоянным, отношение разности потенциалов (p.d.) на концах проводника (R) к току (I), протекающему в этом проводнике, также будет постоянным «.Здесь заканчивается проповедь!

Из этого мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R), Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на Сопротивление (V = IR).
Важным фактором здесь является температура. Если расчеты по закону Ома должны давать точные результаты, это должно оставаться постоянным В «реальном» мире это почти никогда делает, и с точки зрения новичка вам не нужно беспокоиться об этом. более того, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95% все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие или холодно!

ЗАКОН ОМС ПРОСТОЙ ПУТЬ:
На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху вниз или снизу вверх — и он всегда предоставит вам расчет, который вы требовать.


Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества вы ищете, т.е. «V =», «I =» или «R =» у вас будет все возможные формулы, основанные на этом конкретном законе Ома.Это; V = IxR, I = V / R, R = V / I. Это должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R и V / R = I.

Эти объяснения могут показаться немного сложными, но их легко применить на практике. Как правило, для начинающих будет более понятен полезный пример, а не эти причудливые столы, так что здесь.

ПОЯСНЕНИЕ НА ПРИМЕРЕ:
Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED), поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла лампы накаливания, они также дешевы по сравнению с ними и выглядят высокотехнологичными!

С точки зрения принципиальной схемы расположение будет таким, как показано слева.
ОГРАНИЧИТЕЛЬ ТОКА РЕЗИСТОР:
Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света. выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах: напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже для ‘Vf’). Не забывайте, ток измеряется в амперах.

На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением. доступен в диапазоне E12. Однако в этом типе цепи сопротивление не критического, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.

НЕ ЗАБЫВАЙТЕ О ‘Vf’:
Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как ‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое используется компонентом для работы. Для стандартного светодиода это значение находится в диапазоне около 1,5 — 3 вольт, и для наших целей мы примем 2 В.

Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом. Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.

РЕЗИСТОРЫ ПОСЛЕДОВАТЕЛЬНО И ПАРАЛЛЕЛЬНО

Возможно «изготовление» стандартных и нестандартных номиналов резисторов на соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением два или более из них параллельно, последовательно или их комбинация. Однако вам нужно заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.

РЕЗИСТОРЫ СЕРИИ:
На рисунке слева показаны три последовательно включенных резистора. Это самый простой способ получить «производственные» значения. Формула прямой для расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от количества резисторов или их индивидуальных значений, окончательное значение «R» всегда будет их суммой.Расчет по ноге изображения работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в список других.

ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ:
При параллельном соединении резисторов расчеты сложнее. На рисунке слева показаны три резистора, включенных параллельно. Мы будем не заботиться о трех отдельных ценностях, а сосредоточиться на том, что окончательное значение «R» будет с использованием примеров значений.Расчет у подножия изображение работает для любого количества значений, соединенных параллельно, вы просто продолжаете добавлять их в список других в скобках. Для наших целей предположим, что R1 составляет 47K, R2 — это 150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / ( (1 / R1) + (1 / R2) + (1 / R3)).
В этой формуле есть много ненужных скобок (скобок), и вот причина; почти для всех расчетов электроники вам нужно использовать калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в порядок их ввода. С научным калькулятором вы можете использовать упрощенный формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).

Важно определить значения в скобках перед применением окончательного Функция «1 /». В противном случае формула принимает вид 1 / R1 + 1 / R2 + 1 / R3 =? если ты попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть неправильный ответ (0.02916 …), но вы этого не сделали. На самом деле у вас точно есть право ответ, ему просто не хватает последней функции «1 /».

Если в вашем калькуляторе есть «1 / X» (единица, разделенная на все, что показано в display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть 34,29К (34,290,29005 Ом), что правильно.Итак, итоговое значение всех трех параллельно включенные резисторы — 34,29К.

ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?

На рис. 2 слева показан второй по величине часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к выше, только на этот раз он используется для расчета мощности, напряжения и тока. В объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).


ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному компонент — трансформатор. Их характеристики обычно цитируются с точки зрения их выходное напряжение вторичной обмотки, вместе с мощностью — в ВА — это напряжение. Термин «VA» означает ватты и происходит от формулы «Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в треугольник закона Ома.

КАКОЙ ТРАНСФОРМАТОР ДЕЛАТЬ НУЖНО ?
Допустим, у вас есть цепь на 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты уже есть две величины от трансформатора — напряжение (В) и мощность (P или VA), и по ним вы хотите узнать, какой будет доступный ток (I).


Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77 усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности если цепь будет постоянно потреблять определенное количество тока, независимо от каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно достаточный» ток, потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье. раздел для начинающих, но будьте осторожны при выборе трансформаторов.

Что такое закон Ома? | Fluke

Закон Ома — это формула, используемая для расчета взаимосвязи между напряжением, током и сопротивлением в электрической цепи.

Для изучающих электронику закон Ома (E = IR) так же фундаментально важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.

E = I x R

В тексте это означает, что напряжение = ток x сопротивление , или вольт = ампер x ом , или В = A x Ω .

Названный в честь немецкого физика Георга Ома (1789-1854), закон Ома определяет ключевые величины, действующие в цепях:

Количество Закон Ома
символ
Единица измерения
(аббревиатура)
Роль в схемы Если вам интересно:
Напряжение E Вольт (В) Давление, которое запускает поток электронов E = электродвижущая сила (старая школа)
Ток I Ампер, ампер (A) Скорость потока электронов I = интенсивность
Сопротивление R Ом (Ом) Ингибитор потока Ом = omega

Если известны два из этих значений, технические специалисты могут перенастроить закон Ома, чтобы вычислить третье.Просто измените пирамиду следующим образом:

Если вам известны напряжение (E) и ток (I) и вы хотите узнать сопротивление (R), вытяните R в пирамиде и вычислите оставшееся уравнение (см. Первое или дальнее слева, пирамида вверху).

Примечание: Сопротивление нельзя измерить в рабочей цепи, поэтому закон Ома особенно полезен, когда его нужно вычислить. Вместо того, чтобы отключать цепь для измерения сопротивления, технический специалист может определить R, используя вышеуказанный вариант закона Ома.

Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите знать , ток (I), вытяните I и вычислите оставшиеся два символа (см. Среднюю пирамиду выше).

И если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. Третью или крайнюю правую пирамиду выше).

Попробуйте несколько примеров расчетов на основе простой последовательной схемы, которая включает только один источник напряжения (аккумулятор) и сопротивление (свет).В каждом примере известны два значения. Используйте закон Ома для вычисления третьего.

Пример 1: Напряжение (E) и сопротивление (R) известны.

Какой ток в цепи?

I = E / R = 12 В / 6 Ом = 2 А

Пример 2: Напряжение (E) и ток (I) известны.

Какое сопротивление создает лампа?

R = E / I = 24 В / 6 A = 4 Ом

Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?

Какое напряжение в цепи?

E = I x R = (5A) (8Ω) = 40 В

Когда Ом опубликовал свою формулу в 1827 году, его ключевым выводом было то, что величина электрического тока, протекающего через проводник, прямо пропорциональна приложенному напряжению. в теме.Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через один ом сопротивления.

Что проверять с помощью закона Ома

Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падений напряжения. Если, например, измерительный прибор обнаруживает более высокое значение измерения тока, чем обычно, это может означать, что сопротивление уменьшилось или что напряжение увеличилось, вызывая ситуацию высокого напряжения. Это может указывать на проблему с питанием или цепью.

В цепях постоянного тока (dc) измерение тока ниже нормального может означать, что напряжение уменьшилось или сопротивление цепи увеличилось. Возможные причины повышенного сопротивления — плохие или неплотные соединения, коррозия и / или поврежденные компоненты.

Нагрузки в цепи потребляют электрический ток. Нагрузки могут быть любыми компонентами: небольшими электрическими устройствами, компьютерами, бытовой техникой или большим двигателем. На большинстве этих компонентов (нагрузок) есть паспортная табличка или информационная наклейка.На этих паспортных табличках указаны сертификаты безопасности и несколько ссылочных номеров.

Технические специалисты обращаются к заводским табличкам на компонентах, чтобы узнать стандартные значения напряжения и тока. Во время тестирования, если технические специалисты обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и на основании этого определить, в чем может заключаться проблема.

Основы науки о схемах

Цепи, как и вся материя, состоят из атомов.Атомы состоят из субатомных частиц:

  • Протонов (с положительным электрическим зарядом)
  • Нейтронов (без заряда)
  • Электронов (отрицательно заряженных)

Атомы остаются связанными силами притяжения между ядром атома и электронами в нем. внешняя оболочка. Под воздействием напряжения атомы в цепи начинают преобразовываться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно привлеченные свободные электроны движутся к протонам, создавая поток электронов (ток).Любой материал в цепи, ограничивающий этот поток, считается сопротивлением.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Сопутствующие статьи

Сопротивление и удельное сопротивление

Электрическое сопротивление электрического проводника зависит от

  • длины проводника
  • материала проводника
  • температуры материала
  • площади поперечного сечения проводник

и может быть выражен как

R = ρ L / A (1)

где

R = сопротивление проводника (Ом, Ом)

ρ = удельное сопротивление материал проводника (омметр, Ом · м)

L = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Удельное сопротивление некоторых общих проводников

  • Алюминий: 2.65 x 10 -8 Ом м (0,0265 мкОм м)
  • Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
  • Медь: 1,724 x 10 -8 Ом м (0,0174 мкОм м)
  • Железо: 10 x 10 -8 Ом м (0,1 мкОм м)
  • Серебро: 1,6 x 10 1,6 x 10 -8 Ом м (0,0265 мкОм м)

Обратите внимание, что удельное сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o ° C .

Удельное сопротивление некоторых обычных изоляторов

  • бакелит: 1 x 10 12 Ом м
  • стекло: 1 x 10 10 1 x 10 11 Ом м
  • мрамор: 1 x 10 8 Ом м
  • слюда: 0,9 x 10 13 Ом м
  • парафиновое масло: 1 x 10 16 Ом м
  • парафиновый воск (чистый ) : 1 x 10 16 Ом м
  • оргстекло: 1 x 10 13 Ом м
  • полистирол: 1 x 10 14 Ом м
  • фарфор: 1 x 10 12 Ом м
  • прессованный янтарь: 1 x 10 16 Ом м
  • вулканит: 1 x 10 14 Ом м
  • вода, дистиллированная: 1 x 10 10 Ом м

Обратите внимание, что хороший доводчик электрические проводники имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.

Пример — сопротивление проводника

Сопротивление 10 метров калибра 17 медный провод с площадью поперечного сечения 1,04 мм 2 можно рассчитать как

R = (1,7 x 10 — 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,16 Ом

Пример — перекрестный площадь сечения и сопротивление

Медный провод, указанный выше, уменьшен до калибра 24 и площади поперечного сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать как

R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,83 Ом

Закон Ома | Клуб электроники

Закон Ома | Клуб электроники

Следующая страница: Power and Energy

См. Также: Напряжение и ток | Сопротивление

Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением

Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение.Закон Ома показывает взаимосвязь между тремя величинами: напряжением, током и сопротивлением.

Закон Ома можно записать в виде словарного уравнения :

напряжение = ток × сопротивление

Или используя символы для обозначения величин напряжения (В), тока (I) и сопротивления (R):

На самом деле это можно записать тремя способами, и вы можете выбрать версию, которая лучше всего подходит для ваших целей:

Треугольник ВИР — способ запомнить закон Ома

Вы можете использовать треугольник ВИР, чтобы помочь вам запомнить три версии закона Ома.

  • Для расчета напряжения, В : поместите палец на В, это оставляет I R, поэтому уравнение V = I × R
  • Чтобы рассчитать ток , I : положите палец на I, это оставляет V над R, поэтому уравнение I = V / R
  • Чтобы рассчитать сопротивление , R : поместите палец на R, это оставляет V над I, поэтому уравнение R = V / I



Расчет по закону Ома

Используйте этот метод для проведения расчетов:

  1. Запишите значения , при необходимости конвертируя единицы.
  2. Выберите нужное Equation (используйте треугольник VIR).
  3. Введите числа в уравнение и вычислите ответ.

Должно быть V ery E asy N ow! См. Примеры ниже:

Пример 3:

Резистор 1,2 кОм пропускает ток 0,2 А, какое напряжение на нем?

Пример 4:

9 В подается на резистор 15 кОм, какой ток?

  • В значения: V = 9V, I =?, R = 15k
  • E предложение: I = V / R
  • N umbers: Ток, I = 9 / 15 = 0.6 мА
    (использование k для сопротивления означает, что расчет дает ток в мА)

Следующая страница: Энергетика | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *