+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как сделать простейший блок питания и выпрямитель

Как сделать простейший блок питания и выпрямитель

В этой статье ЭлектроВести расскажут вам как сделать простейший блок питания и выпрямитель.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение.

Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов

.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить.

Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1. 5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что Служба безопасности Украины обнаружила в режимных помещениях Южно-Украинской атомной электростанции компьютерную технику, которая использовалась для майнинга криптовалют. По данным следствия, из-за несанкционированного размещения компьютерной техники произошло разглашение сведений о физической защите атомной электростанции, что является государственной тайной. К майнингу криптовалют, возможно, были причастны служащие части Национальной гвардии Украины, охраняющие АЭС.

По материалам: electrik.info.

для начинающих, сборка своими руками

Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.

Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.

Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.

Принципиальная схема БП

Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .

Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если  на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить  12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Диодный мост

Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.

Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный  через токоограничивающий резистор R1.

С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.

Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.

Фильтрующий конденсатор

Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«

Ниже на рисунке показана схема, и уровень пульсаций в каждой точке

В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.

Стабилизатор

Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.

В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для  устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.

Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.

Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.

Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.

Стабилизированный блок питания на LM7805

На рисунке ниже представлена схема простого блока питания со стабилизатором.

 

На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.

На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим  резистором. Светодиод служит индикатором напряжения.

Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.

Вам тоже будет интересно почитать

Простой регулируемый стабилизированный блок питания

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:
  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.

Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания


Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания


Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Видео испытаний блока питания прилагается


Блок питания своими руками ⋆ diodov.net

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Еще статьи по данной теме

как сделать своими руками пошагово

Занимаясь проектированием и конструированием различных электронных схем, не обойтись без надежного блока питания с регулируемым напряжением. Сегодня предлагаются различные конструкции: как сложные, так и простые. Узнайте, как сделать блок питания от 0 до 30 В на 10 ампер своими руками по пошаговым инструкциям со схемами и фото-примерами процесса сборки.

Варианты БП для самостоятельного монтажа

Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Читайте также: УНЧ на транзисторах своими руками

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементов схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлены на фото.

Читайте также: Мощный отпугиватель собак своими руками

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.


Лабораторный блок питания с регулировкой напряжения и тока

Если вы ищете схему простого, мощного, надежного и доступного лабораторного блока питания, то эта статья именно для вас. Я настоятельно рекомендую данную схему для повторения, только

просьба собирать её по печатной плате, которую я для вас сделал, чтобы избежать всевозможных ошибок при монтаже.

Основа схемы была взята из зарубежного журнала, только я увеличил немного мощности, более детально протестировал её, в итоге от себя добавил дополнительный силовой транзистор, ну и сама плата естественно была модернизирована. Получился отличный блок питания с хорошей нагрузочной способностью, а стабилизация осталась на достаточно высоком уровне.

Основной недостаток линейных схем заключается в их малом КПД, а при конструировании таких источников питания возникают проблемы с охлаждением силовых транзисторов, поэтому очень желательно использовать трансформатор с несколькими обмотками и систему коммутации.

Наиболее простейший вариант показан на фото.

Стоит указать то, что сейчас многие отдают предпочтение импульсным лабораторным источником питания у которых кпд может доходить до 90 и более процентов, но больше ценится именно линейные источники питания. Профессиональные линейные блоки питания всегда дополняют узлом коммутации обмоток.

Блок питания может обеспечить на выходе стабильное напряжение от 0 до 35-38 вольт, а выходной ток может доходить до 5-6 ампер.

Кстати ток также стабилизирован, то есть выставленное значение тока будет сохраняться при изменениях входного и выходного напряжения, и не зависит от выходной нагрузки.

Выставили ток в 1 ампер и даже при коротком замыкании у вас он будет ограничен одним амперам.

А вот собственно и модернизированная схема.

Я снизил сопротивление датчика тока до 0,1 оМа,

добавил второй силовой транзистор параллельно первому,

но в эмиттерных цепях каждого транзистора стоит токо-выравнивающий или балластный резистор.

Силовые транзисторы можно любые соответствующей мощности, ток коллектора транзистора желательно 10 ампер и выше, при этом мощность рассеивания должна быть 100 и более ватт.

Так как данная схема — линейная, я очень советую использовать транзисторы в металлических корпусах, на крайняк транзисторы в корпусе ТО247, чтобы не возникли проблемы с теплоотдачей.

В схеме имеем три мощных резистора, балластные советую взять на 5 ватт, а вот датчик тока и на 10 ватт не помешает.

Балластные резисторы советую взять сопротивлением 0,22 Ома у меня они к сожалению закончились, поэтому поставил на 0,1 Ом, но если транзисторы имеют максимально идентичные параметры, то такое решение даже лучше.

В моём случае, в качестве силовых транзисторов изначально использовал ключи 2SD209 по сути это аналог ключей MJE13009, оба варианта очень часто применяются в компьютерных блоках питания.

Каждый такой транзистор может рассеивать 100-130 ватт мощности, но лишь в том случае, если имеется хорошее охлаждение и вы уверены в подлинности транзисторов, но их основная проблема слишком низкий коэффициент усиления по току, всего около 20.

Аналогичное ключи ставить я крайне не рекомендую по нескольким причинам. Во-первых регулировка будет нелинейной из за малого усиления ключей, по этой же причине управлять такими транзисторами тяжело, поэтому драйверный ключик будет жестко нагреваться и ему будет нужен небольшой радиатор.

Очень советую транзисторы в металлических корпусах, наподобие 2N3055, для таких схем они идеально подходят. Металлический корпус, приличная мощность и ток коллектора, а коэффициент усиления по току около 200, как раз то, что нужно.

Я в итоге поставил ключи 2SD1047, они обладают приличным усилением, применяются как в источниках питания, так и в выходных каскадах усилителей мощности низкой частоты.

Радиатор для ключей удобно использовать общий, притом изолировать ключи прокладками не нужно, так как подложки или коллекторы в нашей схеме общие.

После подачи питания на схему стабилизатора нужно путём вращения данного, подстроечного резистора выставить максимальный выходной ток,

допустим 5 ампер, далее выставляем максимальное напряжение на выходе, тут всё зависит от того, какой у вас источник питания, какой у него ток и напряжение на выходе, то есть данный стабилизатор без проблем можно скорректировать под любой источник питания.

Введите электронную почту и получайте письма с новыми поделками.

Теперь подаем питание на вход стабилизатора и проверяем минимальное, выходное напряжение — оно как видим 0 вольт, что и требовалось доказать, регулировка очень плавная во всём диапазоне.

Теперь проверим ток, минимальный выходной ток можно скинуть вплоть до 0, а максимальных 5 ампер схема выдают без проблем.

Один из самых важных тестов — насколько просядет выходное напряжение при определенных токах, ну давайте посмотрим, но перед этим важно указать, что на проводах, измерительном шунте амперметра и на самом стабилизаторе, а также на токо-выравнивающих резисторах будут падения напряжения, то есть на указанных участках будут просадки, это в случае любого источника питания.

Ток 1 ампер, просадка около 0,1 вольта,

ток 3 ампера просадка всего 0,4 вольта

и наконец максимальный ток 5 ампер, просадка 0,65 вольт, без измерительного оборудования эти цифры были бы гораздо меньше.

Проверим стабильность выходного напряжения при резких изменениях входного, ну например перепады в сети.

Как видим стабилизатор держится молодцом, при изменении входного напряжения на 10 вольт выходное изменяется лишь на 50-70 милливольт.

А теперь пульсации на выходе, при итоге в 1 ампер пульсации не более 20 милливольт, при токе в 3 ампера — около 25-30 милливольт,

а при максимальном токе в 5 ампер, пульсации на выходе около 50-60 милливольт, согласитесь это неплохой показатель для блока питания такого уровня.

Архив к статье; скачать.

Автор; Ака Касьян.

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Создайте простой блок питания постоянного тока

В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный.Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц).Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

Простой график, показывающий мощность переменного тока. Вин Маршалл
Исправление

Первая ступень этого блока питания — выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя. Теперь наш сигнал выглядит так:

График мощности переменного тока после отключения выпрямителя. Vin Marshall
Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении.С помощью конденсатора кривая напряжения выглядит так:

График мощности переменного тока при сглаживании конденсатором. Вин Маршалл
Регламент

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня. При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, значительно превышающим регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения. Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

На этом графике мощности постоянного тока нет провалов. Vin Marshall

Что вам понадобится

Для создания этого конкретного блока питания вам потребуется следующее:

  • Шнур питания. Где-то должен лежать один…
  • Тумблер SPST 120V
  • Монтаж на панели неоновая лампа 120V
  • 3 зажимных штыря
  • Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум.Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • 6800 мкФ Конденсатор
  • 2x 100 нФ (точное значение не имеет значения) конденсатора
  • 2x 1 мкФ (точное значение не имеет значения) конденсатора
  • 7805 Регулятор напряжения 5 В
  • 7812 Регулятор напряжения 12 В

Инструкции

Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате.Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.

Полная схема блока питания. Vin Marshall

Готовый продукт выглядит так:

Внутри блока питания. Vin Marshall

Принадлежности для скамейки

Принадлежности для скамейки
Elliott Sound Products Настольные источники питания

Настольные блоки питания — купить или построить?
Авторские права © Ноябрь 2019 г., Род Эллиотт Вершина
Указатель статей
Основной указатель

Содержание
Введение

Стендовый комплект — одно из самых полезных испытательных устройств, которое у вас когда-либо будет.Одно дело создать один, предназначенный для тестирования предусилителей и другого низковольтного, слаботочного оборудования, а другое дело — сделать такой, который подходит для тестирования усилителей мощности. На самом деле это настолько сложно сделать правильно, что такие, как покойный Боб Пиз, рекомендовали своим коллегам-инженерам и другим людям даже не пытаться. Его совет заключался в том, чтобы купить его у поставщика с хорошей репутацией и не подвергать себя горю, тратя много часов на его создание, только для того, чтобы он взорвал многие дорогие детали, использованные при его создании. [1] .

Во многих отношениях трудно не согласиться, и вдвойне, если вы хотите получить напряжение более 20 В на пару ампер. В наши дни проблема усугубляется, потому что, чтобы быть действительно полезным, источник питания должен иметь двойное отслеживание, как с положительным, так и с отрицательным выходом, с выходным напряжением, которое может изменяться от нуля до 25 В или около того. В идеале он должен быть способен выдавать не менее 3 А и иметь ограничение по току, чтобы вы не отключили питание в первый раз, когда выходные выводы закорочены вместе (и это будет !).

По сути, на самом деле нет такой большой разницы между источником питания и усилителем мощности , за исключением того, что усилитель мощности должен обеспечивать и потреблять ток, в то время как источник питания должен только подавать ток на нагрузку. Однако там, где усилитель мощности будет время от времени подвергаться довольно сильному рассеянию, источник питания должен обеспечивать выход, возможно, 3-5 А при коротком замыкании, и не выходить из строя. Это намного сложнее, чем кажется.

Рассмотрим источник питания, который может обеспечить 40 В при 5 А, но настроен на выходное напряжение, возможно, 1-2 В и ток 5 А.Внутреннее напряжение будет около 50 В, поэтому на транзисторах регулятора почти 50 В, ток 5 А, что приведет к рассеиванию 250 Вт. Это может продолжаться часами или всего несколько минут, но это не значит, что вам нужно выделить только несколько минут, потому что однажды вам понадобится 1-2V при 5A в течение часа или более.

Никто не знает точно, что они будут делать с приличным блоком питания, пока он у них не будет, и в конечном итоге он будет использоваться для питания усилителей во время тестирования, зарядки аккумуляторов, измерения очень низких сопротивлений или любого количества других возможностей. Я знаю это, потому что так поступаю со своим (который я построил много-много лет назад, но он обеспечивает только ± 25 В при токе до 2,5 А). Я потерял счет, сколько раз цепь тепловой перегрузки отключала мою нагрузку, даже с вентилятором для принудительного воздушного охлаждения.

Принято считать, что настольные поставки должны регулироваться, и в этом проблема. Регулирование усложняет ситуацию и может создать проблемы со стабильностью, которые варьируются от просто неприятных до неразрешимых. Никому не нужен источник питания, который колеблется, и никому не нужен источник питания, который убивает тестируемое устройство (или заряжаемое, измеряемое и т. Д.)). В действительности регулирование (или, по крайней мере, «идеальное» регулирование) не является существенным. В большинстве усилителей мощности не используются стабилизированные источники питания, как и во многих других сильноточных нагрузках. У вас должна быть возможность регулировать напряжение, и оно должно быть достаточно стабильным, но для большинства приложений не требуется обеспечение того, чтобы выходное напряжение изменялось только на несколько милливольт под нагрузкой. Возможно, вы почувствуете себя лучше, если у источника питания будет идеальная регулировка, но ваши схемы в основном не заботятся.

Ограничение тока — другое дело.В идеале, при первом включении ваш последний проект должен быть защищен на случай неисправности. Как и регулирование напряжения, функция ограничения тока должна быть регулируемой, но в этом редко требуется чрезвычайно точное регулирование тока . Если мы согласимся с тем, что очень точное регулирование напряжения или тока не является существенным, это упростит конструкцию и значительно упростит сборку и работу с минимумом суеты.

Мало кто захочет вечно бездельничать, пытаясь усовершенствовать регулятор, который хочет колебаться, и этот будет подходящим вариантом, если «совершенство» является целью.Если это то, что вам действительно нужно, то я должен полностью согласиться с Бобом Пизом — покупайте коммерческие принадлежности у известного производителя. Однако вы, вероятно, получите серьезные деньги, если вам понадобится двойное отслеживание, высокое напряжение (более 30 В) и большой ток (5 А или более).

Обычно полезный источник питания будет иметь два выхода, от 0 до 25 В или около того, с регулируемым ограничением тока. В идеале это позволит вам использовать два выхода последовательно, что позволяет использовать одну переменную питания от 0 до 50 В.Выход 5А полезен, но не важен. Если вы используете его для тестирования аудиооборудования DIY (предусилители, активные кроссоверы, усилители мощности и т. Д.), Вы можете убедиться, что тестируемое устройство (тестируемое устройство) работает должным образом, не имеет коротких замыканий или других серьезных неисправностей, после чего оно может быть уверенно подключенным к предполагаемому источнику питания. Редко бывает, что любая грамотная конструкция выходит из строя с «настоящим» источником питания, если он был протестирован при более низком напряжении, с использованием источника с ограничением тока, который защищает от повреждений в случае возникновения проблемы.

Расширение «базового» источника питания называется SMU (источник-измеритель). Обычно это высокоточные источники питания с микропроцессорным управлением, которые могут подавать ток стока и любой полярности. Большинство подает на нагрузку только ток источника, но SMU также можно использовать в качестве «активной нагрузки», как правило, для источников питания или другого тестируемого оборудования. Их также называют «4-квадрантными» источниками питания, что означает, что они предназначены для подачи или отвода тока любой полярности.К счастью, это не является требованием для базового тестирования и упоминается только в интересах полноты. Я не собираюсь описывать эти материалы в этой статье.

Обратите внимание, что это , а не строительный товар. Хотя на нем показаны схемы, они предназначены в первую очередь для демонстрационных целей, и нет никакой гарантии, что они будут работать должным образом, как показано на рисунке. Хотя они были смоделированы, это только указывает на то, что лежащие в их основе принципы верны, но не означает, что что схема будет работать так, как ожидалось в «реальной жизни». Хотя описанные схемы выглядят так, как будто они будут работать нормально, это не было подтверждено сборкой и тестированием. их!

Не случайно проектов настольных блоков питания своими руками не так уж и много. Большинство людей довольно быстро осознают, что это очень дорогое мероприятие и что получение полностью работающего и надежного источника питания, который сделает именно то, что вам нужно, — нетривиальная задача. Схемы, показанные здесь, предназначены для вдохновения и предназначены в основном для того, чтобы дать вам представление о задействованных сложностях — даже для кажущихся простыми схем.


1 Регулировка напряжения

В первых регулируемых источниках питания использовались клапаны (вакуумные лампы) с газоразрядным регулятором в качестве опорного напряжения. Как и ожидалось, они были не очень хороши из-за ограниченного доступного усиления. Ниже приведены несколько основных примеров, при этом версия операционного усилителя является довольно хорошим аналогом современных микросхем 3-контактных стабилизаторов. Все они страдают от проблемы, которая делает их (как правило) непригодными для настольного питания — они не могут снизить выходное напряжение до нуля вольт.

При тестировании того, что только что было построено, важно иметь возможность начинать с очень низкого (предпочтительно нулевого) напряжения и контролировать ток по мере увеличения напряжения. Если вы видите, что ток быстро нарастает при напряжении питания всего в вольт или около того, вы, , знаете, что есть проблема. Включение ограничения тока (рассмотрено немного позже) означает, что ток короткого замыкания можно поддерживать на уровне, при котором он вряд ли вызовет повреждение.


Рисунок 1.1 — Базовая топология стабилизатора напряжения

Устройство последовательного прохода — V1 / Q1, а управляющий элемент — V2, Q2 или U1 (клапан, транзистор и операционный усилитель соответственно).Опорным напряжением для схемы клапана является газоразрядная трубка, и она обычно имеет напряжение около 90 вольт (в зависимости от устройства доступны напряжения от 70 до 150 В [5] ). В схеме транзистора используется стабилитрон, а схема операционного усилителя показана с внешним опорным сигналом. В каждом случае используется обратная связь, а VR1 позволяет установить желаемое значение напряжения. В каждом случае это базовые версии регулятора, и на практике существует множество вариаций.

Обратная связь устроена так, что если выходное напряжение падает (например, из-за подключенной нагрузки), управляющее устройство гарантирует, что элемент последовательного прохода может пропускать дополнительный ток, необходимый для подачи на нагрузку желаемого напряжения. Способность любой из цепей поддерживать желаемое напряжение называется «регулировкой» и выражается в процентах. Например, если при подключении нагрузки напряжение падает на 1%, это является спецификацией для регулятора. Более высокий коэффициент усиления в устройствах управления и последовательного прохода означает лучшее регулирование.

В версии с операционным усилителем есть дополнительный транзистор и резистор. «Rs» — это резистор считывания тока, а Q2 — транзистор регулятора тока . Если ток таков, что напряжение на Rs больше 0,6 В, Q2 включается и «крадет» базовый ток у Q1 (обеспечивается через R1). Это самая основная форма текущего регулирования, и она удивительно хорошо работает на практике. Если Rs составляет 1 Ом, выходной ток ограничивается до 650 мА, если выход закорочен (или если нагрузка пытается потреблять более 600 мА).Хотя эта схема является базовой, она использовалась в бесчисленных конструкциях дискретных регуляторов на протяжении многих лет.

Как и ожидалось, версия операционного усилителя будет иметь гораздо лучшее регулирование, чем две другие, потому что она имеет чрезвычайно высокое усиление. Большинство современных 3-контактных ИС регуляторов используют аналогичную (но оптимизированную) топологию, а опорное напряжение, как правило, представляет собой схему «запрещенная зона» с очень высокой стабильностью. Для регулирования предусмотрены два значения — «линия» и «нагрузка». Регулировка линии — это мера того, насколько изменяется выход при изменении входного напряжения, а регулирование нагрузки — это мера изменения выходного напряжения при изменении тока нагрузки.Если вы посмотрите на лист данных любого 3-контактного регулятора, эта информация предоставляется, но не всегда в процентах — иногда она отображается как ΔV (изменение напряжения), обычно в милливольтах. Большинство из них лучше 1% (линия и нагрузка).

В любой схеме регулятора напряжения необходимо учитывать множество факторов. Одна из самых сложных задач — это стабильность, чтобы гарантировать, что схема имеет быстрое время реакции, но без колебаний. Использование операционного усилителя, управляющего усилителем тока (обычно эмиттерным повторителем), обычно будет стабильным, но если в контуре обратной связи используются какие-либо дополнительные схемы усиления, он почти наверняка будет колебаться.Это означает, что необходимо добавить дополнительные компоненты (обычно конденсаторы малой емкости), и их оптимальное расположение обычно не сразу видно. Примеры можно увидеть на Рисунке 6.1 (одинарный источник питания, операционный усилитель с выходом эмиттерного повторителя) и Рисунке 7.1 (двойное питание), где за операционным усилителем следует каскад усиления. Учитывая, что большинство «обычных» операционных усилителей ограничено напряжением питания менее 36 В, это ограничивает доступное выходное напряжение, когда каскад усиления не включен.

В некоторых отношениях источник питания мало чем отличается от звукового усилителя мощности.Единственное реальное отличие состоит в том, что усилители могут генерировать и поглощать (поглощать) ток, тогда как блок питания должен только подавать ток на нагрузку. Действительно, схема стабилизатора с отличными характеристиками может быть построена с использованием обычных строительных блоков усилителя мощности. Однако не ожидается, что усилители мощности будут управлять емкостными нагрузками, а регуляторы напряжения должны быть способны управлять любой нагрузкой, будь то емкостная, резистивная или индуктивная. Конечно, блок питания также должен защищать себя от повреждений (закороченные выходы или нагрузки с очень низким импедансом), и он должен иметь возможность передавать свой номинальный ток на на любую нагрузку при при любом напряжении .Рассеивание на последовательном транзисторе может быть чрезмерным, но питание должно продолжаться. По сравнению с блоками питания усилители мощности просты!


2 подхода для стендовых принадлежностей

Один из способов сделать очень надежный источник питания — использовать источник питания на основе мощного трансформатора и регулировать напряжение с помощью вариатора (см. Рисунок 4.1). Это не регулируется, но это самый простой способ создать источник высокой мощности, который можно использовать практически с любым усилителем (или другими проектами, включая , включая источники питания ).Нет защиты от перегрузки по току (кроме предохранителей), но у меня есть пара источников питания, которые используют именно эту конфигурацию. Когда мне нужно много напряжения и тока, эти источники неоценимы. Однако сначала необходимо убедиться, что тестируемый блок не имеет врожденных неисправностей. В идеале это требует ограничения тока. Хотя «предохранительные» резисторы можно использовать последовательно с положительными и отрицательными источниками питания для начальных испытаний, это доставляет неудобства.

Большинство (почти все) из моих первоначальных тестов проводились с использованием источника питания с двойным отслеживанием от нуля до ± 25 В, 2 А, который я спроектировал и построил около 35 лет назад (на момент написания, и он все еще работает).Он имеет ограничение по току примерно до 100 мА и вентилятор для радиатора, а также функцию отключения при перегреве. Они необходимы, потому что действительно используется для «странных» приложений, и да, выход (ы) были закорочены много раз — обычно случайно, но иногда из-за неисправности в тестируемом элементе. Такая простая вещь, как небольшой припойный мостик, может обернуться гибелью для источника питания, который не может защитить себя.

Проблема рассеяния кратко обсуждалась выше, и это ахиллесова пята (так сказать) всех сильноточных линейных источников питания.Ответ (конечно) — использовать дизайн с переключаемым режимом, но это так далеко выходит за рамки обычного DIY, что не заслуживает рассмотрения. Каждая проблема, с которой сталкивается линейный регулятор, сводится к мощности «n th » для импульсного источника питания. Те, которые вы можете купить, претерпели значительные изменения, и в них используются специализированные детали, которые не подходят для самостоятельной работы. Если вы не умеете проектировать и строить трансформаторы с переключаемым режимом, то об этом вообще не может быть и речи.

Если у вас есть линейный источник питания, который может обеспечить (скажем) 50 В при 5 А, в лучшем случае рассеивание при полном токе с закороченным (или низким напряжением) выходом составляет 250 Вт, но на самом деле это может быть намного больше.Если вы думаете, что это довольно просто (в конце концов, существуют транзисторы с мощностью рассеивания 250 Вт), подумайте еще раз. SOA (безопасная рабочая зона) и тепловые ограничения вступают в игру очень быстро, и транзистор с (например) 56 В через него может работать только на 3 А или около того, исходя из температуры корпуса 25 ° C. В конечном итоге вам нужно будет предоставить достаточно транзисторов, чтобы иметь возможность обрабатывать , по крайней мере, на , вдвое превышающую рассеиваемую мощность, а желательно больше. Я предлагаю использовать как минимум 5 или более 125 Вт транзисторов, и хотя это звучит как излишество, в большинстве случаев будет достаточно — есть некоторый запас, но не очень! Более низкое напряжение снижает напряжение, и из многолетнего опыта я знаю, что для большинства испытаний обычно достаточно ± 25 В.

При более высоких напряжениях, если вы использовали 5-кратный TIP35C (NPN, 125 Вт при 25 ° C), каждый из них может пропускать 1 А с 50 В через транзистор (50 Вт), , но только при 25 ° C. При повышенных температурах он снижается, снижаясь на 2 Вт / ° C выше 25 °. При температуре корпуса 75 ° C полное рассеивание ограничивается всего 25 Вт на каждый транзистор. Это исключает их из конкуренции с помощью простой схемы, потому что рассеивание будет превышать максимально допустимое, когда радиатор нагревается. Конечно, вы можете использовать гораздо более прочные транзисторы, но они будут соразмерно дороже.TIP35C (125 Вт) стоит около 3,00 австралийских долларов по сравнению с более чем 5,00 австралийских долларов для MJL3281 (200 Вт) и более 6,00 австралийских долларов для MJL21194 (200 Вт).

Все доступные устройства имеют одни и те же ограничения — SOA и температура всегда означают, что вы можете получить гораздо меньше энергии от любого транзистора, чем вы ожидаете. Принудительное воздушное охлаждение является обязательным, если у вас нет доступа к бесконечному радиатору, что, по моему опыту, трудно найти. Даже использование изолирующих шайб может стать непрактичным, потому что дополнительное тепловое сопротивление означает, что транзисторы придется еще больше снизить. Это, в свою очередь, означает «живой» радиатор, находящийся на полном питающем напряжении. Если он соприкоснется с заземленным корпусом, результатом будет очень громкий взрыв! Как вы теперь должны знать, есть так много вещей, которые могут пойти не так, что совет покупать коммерческие расходные материалы действительно начинает выглядеть очень разумно.

Тогда (конечно) есть трансформатор. После этого идет сильноточный мостовой выпрямитель, за которым следуют конденсаторы фильтра. Все они должны быть очень прочными, с трансформатором на 500 ВА, мостом на 35 А и емкостью не менее 10 000 мкФ.Одно только оборудование (трансформатор, мостовые выпрямители, крышки фильтров, радиаторы и силовые транзисторы), вероятно, будет стоить не менее 200 австралийских долларов или больше. У вас по-прежнему нет корпуса / корпуса, кастрюль, ручек и вспомогательных деталей, включая разъемы питания и постоянного тока, измерители и т. Д. Помните, что для двойного источника питания (единственного, который действительно полезен), все удвоено . Вы получите по крайней мере за 400 австралийских долларов только за базовые вещи и ближе к 600 австралийским долларам к тому времени, когда все будет включено. Если это не убедило вас в том, что коммерческая поставка стоит того, тогда ничего не будет.

Если вы посмотрите на крупного поставщика (такого как RS Components, Element14 и т. Д.), Вы найдете двойные источники питания, которые могут работать от 0 до ± 30 В при 5 А или от 0 до 60 В, если два выхода соединены последовательно. Они могут не принадлежать к той же лиге, что и Tektronix, Keysight или другие производители «лабораторного» оборудования, но их стоимость будет меньше, чем стоимость основных деталей, если бы вы попытались создать свое собственное. Хотя максимальное напряжение ниже идеального, я знаю по многолетнему опыту, что до ± 30 В вполне достаточно для базового тестирования, и все усилители мощности, показанные в разделе проектов, были протестированы с моим источником ± 25 В перед подключением к моему монстру. Источник переменного тока с регулируемым напряжением (который может обеспечивать напряжение до ± 70 В при напряжении около 10 А или более).


Настольные расходные материалы 2.1 ‘Digital’

Многие настоящие лабораторные расходные материалы используют цифровой (с клавиатуры) ввод основных параметров. Для общего пользования это абсолютная боль в заднице! В большинстве случаев лучше использовать обычные ручки и кастрюли, потому что эффект мгновенный. В лабораторных расходных материалах часто используется поворотный энкодер для управления током или напряжением, но вы должны сначала выбрать функцию, и может потребоваться несколько полных оборотов, чтобы охватить весь диапазон.

Если в вашей тестовой цепи что-то начинает нагреваться, последнее, что вам нужно, это нажать несколько кнопок или десять раз повернуть ручку, чтобы уменьшить напряжение. При использовании стандартного потенциометра один поворот против часовой стрелки, и напряжение возвращается к нулю. Вы никогда не узнаете, насколько неприятен ввод с клавиатуры, пока вам не понадобится что-то быстро изменить. В идеале была бы кнопка «ZERO» для выключения выхода, но я не видел цифрового источника питания, в котором она была бы. Быстрое считывание тока на цифровом дисплее просто невозможно, если он не имеет функции усреднения (которая будет скрыта на три уровня ниже в меню — где-то).

Всю свою жизнь я использовал настольные расходные материалы, поэтому могу с уверенностью сказать, что «обычные» горшки более чем подходят для обычных целей тестирования. Чрезвычайная точность редко бывает необходимой для большинства испытаний, и если по какой-то причине вам понадобится очень точное напряжение или ток, достаточно легко построить отдельный регулятор. В большинстве случаев он вам не понадобится, и если напряжение питания составляет вольт или около того, этого почти всегда достаточно. Очевидно, вам нужно быть осторожным, если вам нужно 3.3 В или 5 В для логических схем, но они часто имеют свой собственный регулятор и вполне нормально работают с 7-12 В.

Цифровые дисплеи и элементы управления также могут давать ложное ощущение безопасности, потому что мы склонны верить счетчикам, потому что они отображают напряжение и ток с точностью до пары десятичных знаков. Однако, если они не откалиброваны должным образом (с помощью известного и откалиброванного точного измерителя), они могут легко сказать вам, что напряжение составляет 5 В, когда на самом деле оно 5,5 или 4,5 В. Поскольку все цифровые системы в конечном итоге полагаются на ЦАП и АЦП (цифро-аналоговые и аналого-цифровые преобразователи), им требуется точное опорное напряжение.Если по какой-то причине это пойдет не так, все показания бессмысленны.

По этой причине я не рассматриваю здесь цифровые системы управления. Управление напряжением и током остается в аналоговой области — это аналоговые функции, и нет необходимости в дополнительном усложнении. Совершенно очевидно, что по крайней мере некоторые из представленных идей могут быть адаптированы для цифрового управления, но я не показываю никаких примеров.


3 Измерение тока

Здесь все становится труднее.Есть два варианта: определение «высокой стороны» и «нижней стороны». «Сторона высокого напряжения» означает мониторинг тока на положительном и отрицательном выходах и усложняется тем фактом, что это напряжение не только переменное, но и при напряжении, которое обычно несовместимо с операционными усилителями. Вы не можете ожидать, что операционный усилитель будет иметь входное напряжение 30 В или более, поскольку это обычно максимальное рабочее напряжение. Это нетривиальная проблема, и обычно лучше контролировать ток до транзистора (ов) последовательного прохода, чтобы напряжение не сильно менялось.Однако это усугубляет проблему напряжения, потому что нерегулируемое питание обычно составляет около 35 В или более — что значительно превышает диапазон для любого недорогого операционного усилителя.

На рис. 1.1 показан простой ограничитель тока «высокого напряжения» (версия «Opamp»), но он не так прост, как кажется. Трудно сделать его переменным, не используя нереально большой чувствительный резистор и допуская, что вы потеряете значительное выходное напряжение на резисторе, который также будет очень горячим. Переключаемая схема показана на рисунке 7.1, и хотя это, безусловно, работает, оно не очень точное и не самое практичное.

Датчик

«Низкая сторона» решает эту проблему, но его можно использовать только для одного источника питания. Совместное использование цепи датчика низкого уровня между положительным и отрицательным источниками питания не сработает, потому что большая часть тока питания проходит между выходами + ve и -ve, часто с небольшим потоком в общем соединении. Это можно сделать и , но это далеко не идеально, особенно если для установки напряжения будет использоваться один горшок (источник питания с двойным отслеживанием).Схема на рис. 6.1 использует измерение на стороне низкого напряжения, и она по-прежнему будет работать на обеих полярностях двойного источника питания, потому что выходы имеют общую точку после всего регулирования.

Существуют специализированные ИС, позволяющие обойти проблему определения тока на стороне высокого напряжения. Ниже показаны три «демонстрационных» схемы измерения тока на стороне высокого напряжения. Однако все они показаны только с положительным запасом. Первые два могут использоваться в отрицательном источнике питания (при условии дополнительной конструкции, такой как рисунок 7. 1), а вот версия IC — нет. Похоже, что для этой конкретной проблемы нет решения.


Рисунок 3.1 — Цепь измерения тока на стороне высокого давления

Токовое зеркало (Q1 и Q2) используется для измерения тока через измерительный резистор (R1, 100 мОм), а выходной сигнал смещается по уровню цепью резисторов. Выход контролируется операционным усилителем U1, который настроен как дифференциальный усилитель. VR1 включен, чтобы можно было установить нулевую точку (т. Е. Нулевое выходное напряжение с нулевым током через R1).Операционный усилитель намеренно настроен на немного большее усиление, чем необходимо, а выход масштабируется с помощью VR2. Как показано, схема обеспечивает выходное напряжение 1 В / А, поэтому при токе 2 А на выходе будет 2 В. Показанная схема подходит для тока до 5 А, а для более высоких токов необходимо увеличить значение R2 и R3.

Хотя эта схема обладает высокой точностью, она также очень чувствительна к колебаниям температуры между Q1 и Q2. В идеале это была бы «суперсоответствующая пара» в одном корпусе, но их бывает трудно найти, и, хотя они и недорогие, большинство из них сейчас доступно только в SMD-корпусе.Естественно, что аналогичное устройство можно использовать и без зеркала , но при этом снижается чувствительность и максимально допустимое напряжение. Токовое зеркало легко справляется с входным напряжением 50 В, но простая дифференциальная схема операционного усилителя ограничена примерно 40 В. Более высокое напряжение возможно за счет увеличения значений R2 и R3, но это еще больше снижает чувствительность.

Если вы использовали схему дифференциального усилителя, выходное напряжение варьировалось от нуля до 250 мВ для тока от нуля до 2.5А. Измерение тока ниже 100 мА (выход 10 мВ) затруднено. Конечно, вы можете увеличить номинал резистора считывания, но за счет рассеиваемой мощности. При 2,5 А резистор 100 мОм рассеивает 625 мВт, но чтобы получить такую ​​же чувствительность от дифференциального усилителя, вам понадобится резистор 1 Ом, который упадет на 2,5 В и рассеивает 6,25 Вт. Это явно довольно серьезный компромисс. Также существует постоянная проблема смещения постоянного тока операционного усилителя, которую также необходимо решить, если вам нужно установить низкий ток (все, что ниже 100 мА, является проблемой).

Если вам интересно, как использовать источник питания -1,2 В для операционных усилителей, это гарантирует, что они могут достичь нуля вольт на выходе. LM358 может (якобы) добиться почти нулевой мощности, но на самом деле этого не происходит. Небольшое отрицательное напряжение позволяет легко достичь нуля. Большинство других операционных усилителей не допускают такое маленькое отрицательное напряжение, и для правильной работы потребуется около -5 В. При использовании источника питания 30 В, как показано на рисунке, для этого потребуется намного больше рекомендованного рабочего напряжения.

Во всех случаях обязательно, чтобы входное напряжение оставалось в пределах указанного диапазона для любого операционного усилителя, используемого в этой роли. При питании 30 В входы всегда должны быть на минимум на 4 В выше минимального напряжения питания и на 4 В ниже максимального. По возможности входное напряжение должно быть близко к 15 В (при условии, что напряжение питания 30 В).

Простое решение, которое может быть применено к простому (один операционный усилитель) датчику верхнего плеча, состоит в использовании переключаемых резисторов вместо одного фиксированного значения.Например, 100 мОм подходит для более высоких токов, и вы можете переключиться на резистор 1 Ом, чтобы обеспечить точную настройку для более низких токов (например, менее 1 А). Это добавляет еще один переключатель, но также упрощает конструкцию, и смещение постоянного тока операционного усилителя представляет собой гораздо меньшую проблему, когда вам нужен низкий предел тока.

Существует несколько специализированных ИС для измерения тока на стороне высокого напряжения, одна из которых показана на рис. 3.1. К ним относятся LT6100, INA282 и несколько других, но они доступны только в SMD-корпусах, что делает их довольно неудобными для приложений DIY, где нет печатной платы.Они очень точны и позволяют напряжению линии питания, контролируемой по току, быть намного выше, чем напряжение питания ИС. Как и большинство микросхем SMD, они часто доступны только в упаковках по пять или более штук, и они не совсем недорогие. Если вам нужен двойной источник питания (например, ± 25 В), не существует отрицательной версии этих шунтирующих усилителей тока, и это создает дополнительную сложность. INA282 может (по-видимому) обнаруживать отрицательное напряжение, но оно не может превышать -14 В. Коэффициент усиления составляет 50 В / В, поэтому можно использовать шунтирующий резистор гораздо меньшего размера (0.Показано 02Ω). Это означает, что выходное напряжение изменяется на 1 В / А, поэтому для выхода 2,5 А выходное напряжение будет 2,5 В. Поскольку это активная цепь, она вносит фазовый сдвиг, который может сделать регулятор тока нестабильным. Это не было проверено.

В технических описаниях микросхем считывания тока также содержится полезная информация о правильном подключении к резистору считывания тока. Вы должны убедиться, что в цепь датчика включена эффективная ноль печатная плата, Veroboard или проводка.Измерительные провода должны выходить непосредственно из токового шунта, избегая любой другой проводки. Это известно как «соединение Кельвина», которое гарантирует, что сопротивление дорожки или проводки не включено последовательно с резистором считывания тока.


Рисунок 3.2 — Цепь измерения тока на стороне низкого давления

Измерение нижней стороны — гораздо более простой вариант, но в некоторых обстоятельствах его нельзя использовать. Например, вы не можете использовать измерение на стороне низкого напряжения в схеме, показанной на Рисунке 7.1, потому что общим является , буквально , общее как для положительного, так и для отрицательного источника питания.В симметричной схеме или если вы потребляете ток только между двумя выходами, ничего не будет регистрироваться независимо от потребляемого тока. Этот метод используется в схеме на рис. 6.1, и здесь это не проблема, потому что каждый источник питания является отдельным объектом до тех пор, пока они не будут соединены последовательным / параллельным переключением.

Я не показал ни одного из вариантов, которые можно использовать. Например, если вы используете чувствительный резистор с очень низким сопротивлением, небольшое напряжение на нем можно усилить с помощью операционного усилителя, чтобы получить большее напряжение.100 мВ / А, как показано, подходит для нагрузок до 5 А или около того, но при большем токе потери становятся слишком высокими. Например, даже при 5 А резистор 0,1 Ом рассеивает 2,5 Вт, и вы теряете 0,5 В. При более высоких токах это быстро выходит из-под контроля. При токе 7 А резистор рассеивает почти 5 Вт, и нагревается до разогрева. Эти предостережения, конечно же, относятся и к высокочастотному зондированию, поскольку физика идентична.

Резистор считывания тока (высокого или низкого уровня) должен быть внутри контура обратной связи регулятора напряжения, иначе он не сможет компенсировать падение напряжения на резисторе считывания.На самом деле это обычно не имеет значения, потому что очень немногие схемы, которые вы будете тестировать, позаботятся о том, чтобы напряжение немного проседало под нагрузкой. Для усилителя, который использует обычный источник питания (нерегулируемый), фактическое напряжение будет изменяться намного больше, чем в случае настольного источника питания, даже если резистор измерения тока находится вне контура обратной связи.


4 Альтернативный стенд

Если у вас есть детали, необходимые для создания надежного источника питания усилителя мощности, то с добавлением Variac (см. «Трансформаторы — Variac», если вы не знаете, что это такое) вы можете создать «чудовищный» источник питания, который будет подходят для тестирования высокой мощности практически с любой нагрузкой.Вы не получаете ни регулирования, ни ограничения тока (даже защиты от короткого замыкания), но с правильными деталями это грозный образец испытательного оборудования.

У меня есть пара, одна из которых действительно считается монстром. Схема показана ниже, и это буквально то, что я использую для тестов высокой мощности. Любое подключенное к нему оборудование уже проверено на работоспособность, и это важно, потому что оно может уничтожить практически все, что угодно, если представится такая возможность. Это чрезвычайно полезный комплект, и все проектные усилители, опубликованные на сайте ESP, прошли финальные испытания именно с этим комплектом.


Рисунок 4.1 — Блок питания на базе вариатора

Источник питания — всего лишь трансформатор на 1 кВА, два мостовых выпрямителя (по 35 А каждый) и батарея конденсаторов, извлеченных из очень древнего жесткого диска много лет назад (диски размером с стиральную машину!). желаемое напряжение с Variac, которое у меня, конечно же, есть на моем рабочем столе. Источник питания не регулируется, но может обеспечить ток, достаточный для любого усилителя, который я когда-либо тестировал с ним. Давным-давно Variac был очень дорогим комплектом , но теперь китайские автомобильные трансформаторы с регулируемой мощностью стали на удивление доступными.

Это также означает, что приложенный постоянный ток очень похож на тот, который обычно обеспечивается линейным источником питания, но с лучшим регулированием из-за увеличенного размера трансформатора и конденсаторов фильтра. Очевидно, что это , а не , дешевый вариант, но он мне почти ничего не стоил, потому что все необходимое было у меня в «ящике для мусора». Показанные ограничения на 10 000 мкФ следует рассматривать как минимум — в шахте используется около 20 000 мкФ на каждый источник питания. Если они у вас есть в наличии или вы можете себе их позволить, используйте как можно больше емкости! Обратите внимание на наличие «спускных» резисторов — без них напряжение может оставаться на опасном уровне в течение многих часов.Обычно я их не использую, потому что усилитель разряжает конденсаторы, но это не всегда верно для тестового оборудования.

Непрерывный выходной ток составляет около 7 А, но с нагрузкой усилителя он может легко справиться с пиковыми значениями 25 А (и более). Вам нужно что-то подобное? Только вы можете ответить на этот вопрос, но он не должен быть таким большим, как тот, который я использую. Конечно, здесь нет ограничения по току, поэтому вы должны быть уверены, что схема работает , прежде чем использовать «монстр» источник питания! Выходные предохранители защищают от короткого замыкания выходов, но , а не спасут ваш проект от повреждения, если он неисправен.Такой источник питания применим для заключительных испытаний, но не для начальных испытаний или поиска неисправностей. Ограничения по току нет, поэтому неисправность может привести к значительному повреждению (предохранители защищают только источник питания, но не нагрузку!). Короткое замыкание на выходе, очевидно, является поводом для беспокойства, поэтому требуется осторожность.


Переключение 5 ответвлений / предварительное регулирование

Один из подходов, который использовался во многих источниках питания, — это простая схема «переключения ответвлений» трансформатора. Если вам нужно только (скажем) 15 В или меньше, выход трансформатора переключается с помощью реле, поэтому выход переменного тока составляет только 15 В переменного тока, а не полные 30 В переменного тока, необходимые для получения чистого выхода 30 В постоянного тока.Если выход работает при низком напряжении, но при высоком токе, рассеивание уменьшается, потому что на регуляторе меньше напряжения. Когда выбрано напряжение 16 В постоянного тока или более, реле переключается на полный выход (30 В переменного тока). Конечно, это можно расширить, добавив больше ответвлений, но для этого потребуется специальный трансформатор, что значительно повысит стоимость.

Источники переключения ответвлений существуют почти столько, сколько я себя помню. Самым впечатляющим из тех, что я видел, было использование моторизованного Variac для поддержания входного переменного тока на уровне, достаточном для предотвращения появления пульсаций на стороне постоянного тока.Они были очень большими, очень сильными по току и стоили бы целое состояние, когда их сделали (где-то в середине 1970-х). Это не то, что я предлагаю кому-либо попытаться построить, поскольку стоимость и сложность его настройки будут намного выше бюджета даже состоятельного фанатика DIY.

В источниках с простым переключением ответвлений используются два напряжения переменного тока, поэтому для двойного источника питания вам понадобятся две обмотки с ответвлениями, а также вспомогательная обмотка для обеспечения нормального напряжения ± 12 В или около того для цепей управления. Найти подходящий трансформатор будет практически невозможно, поэтому вам нужно будет сделать трансформатор на заказ.Это не проблема для производителей, потому что они будут производить много расходных материалов, и их стоимость может быть амортизирована в течение всего производственного цикла. У любителей нет такой роскоши.

Использование переключения ответвлений снижает требования к транзисторам последовательного прохода. Для двойного питания вам понадобятся как минимум два силовых трансформатора (и реально вам также понадобится третий трансформатор для обеспечения напряжения питания цепи управления). Это увеличит и без того значительную стоимость создания двойного источника питания.Также есть дополнительные компоненты, необходимые для измерения выходного напряжения и автоматического переключения с низкого на высокое напряжение (и наоборот) с помощью реле. В то время как создание любого источника питания является проблемой, добавление переключения ответвлений просто добавляет еще один уровень сложности. Я не собираюсь вдаваться в подробности, так как это делает и без того сложную и трудную работу намного сложнее и дороже.

Конечно, есть и некоторая экономия, особенно на количестве необходимых транзисторов с последовательным проходом и количестве радиаторов.Однако этого недостаточно, чтобы компенсировать стоимость трансформаторов, и силовые транзисторы все еще могут подвергаться краткосрочным условиям, которые выталкивают их за пределы их безопасной рабочей зоны. Такие отклонения могут быть краткими, но транзистор может выйти из строя за миллисекунду, если SOA превышен, особенно если он уже находится при повышенной температуре. Я вспоминаю друга, который много лет назад построил довольно простой блок питания с переключением ответвлений из комплекта, и у него не было ничего, кроме проблем. Это был полукоммерческий продукт, в комплекте с чемоданом и всем необходимым для его сборки.Это так много раз терпело неудачу, что он в конце концов с отвращением сдавался. Никто не хочет через это проходить!

Есть еще один метод, который стоит немного больше, чем упоминание вскользь, хотя у него есть серьезные проблемы. Используя схему «среза фазы» (аналогичную той, что используется в диммерах ламп), можно изменять входное напряжение перед регулировкой, просто применяя довольно простое переключение низкой частоты. Тем не менее, это также вызывает гораздо большие, чем обычно, нагрузки на трансформатор и крышку фильтра, но это не является непреодолимой проблемой.

Переключающим элементом может быть MOSFET, IGBT (биполярный транзистор с изолированным затвором) или SCR (кремниевый выпрямитель) с переключением, синхронизированным с сетью с помощью простого детектора перехода через ноль. Идея состоит в том, чтобы ввести задержку, начиная с перехода через ноль (ноль времени). Обычно проще (и добавляет меньше дополнительных проблем) дождаться, пока входное напряжение упадет до желаемого значения , поэтому используется конфигурация «переднего фронта». Когда входное напряжение падает чуть ниже порогового значения, переключатель включается, заряжая основной конденсатор фильтра.Упрощенная блок-схема показана ниже.


Рисунок 5.1 — Блок-схема предварительного регулятора с отсечкой фазы

Проблемы, упомянутые ранее, включают чрезвычайно высокие пиковые токи , особенно при низком выходном напряжении при высоком токе. Их можно смягчить, добавив катушку индуктивности и обратный диод (обозначенные как «Необязательно»), при этом самая большая проблема заключается в том, что катушка индуктивности должна нести большую составляющую постоянного тока без насыщения. Это означает, что необходимо использовать сердечник с низкой магнитной проницаемостью, поэтому для данной индуктивности необходимо больше витков.Это увеличивает сопротивление и увеличивает потери (а это означает, что вырабатывается больше тепла). Однако включение катушки индуктивности даст лучшие результаты, чем вы получите в противном случае, и снизит сильноточные напряжения, которые в противном случае налагаются на трансформатор, мостовой выпрямитель и конденсатор фильтра. Диод (D1) должен быть быстродействующим, рассчитанным на максимальный выходной ток.

Этот метод использовался в нескольких коммерческих продуктах, и хотя он делает именно то, что задумано, он плохо использует номинальную мощность трансформатора, если не используются индуктор и диод.Без них вы можете ожидать, что выходной ток трансформатора будет в четыре раза больше постоянного тока. Это означает, что для выхода 3 А постоянного тока (и с использованием трансформатора 25 В) трансформатор должен быть 300 ВА, тогда как обычно достаточно трансформатора на 150 ВА. Что еще хуже, индуктор должен быть довольно большим — требуется около 10 мГн, большой и дорогой компонент.

Схема работает, сравнивая входное управляющее напряжение с пилообразным сигналом, создаваемым генератором пилообразного изменения и синхронизируемым с частотой сети с помощью детектора перехода через ноль.Когда напряжение переменного тока достигает необходимой амплитуды, переключатель выключается, предотвращая дальнейшую зарядку конденсатора. Показана «идеализированная» форма волны (при условии отсутствия катушки индуктивности или накопительного / фильтрующего конденсатора), и очевидно, что напряжение и ток, подаваемые на выход, уменьшаются в зависимости от фазового угла. Этот процесс и формы сигналов можно увидеть более подробно в статье проекта Project 157 — 3-Wire Trailing-Edge Dimmer. Это другое приложение, но сам процесс практически идентичен.

На самом деле у меня есть блок питания, который использует эту схему, но его вход 120 В переменного тока делает его бесполезным, если я не запитываю его от Variac. На холостом ходу напряжение возрастает, затем медленно падает, пока не станет ниже порогового значения, когда оно снова подскакивает, и процесс повторяется (в некоторой степени случайным образом). Под нагрузкой это неплохо, но я бы не рекомендовал эту технику. Помимо того, что тот, который у меня есть, рассчитан на 150 В при 5 А, он также весит около 40 кг и имеет один большой главный трансформатор очень , вспомогательный трансформатор меньшего размера для питания электроники и большой дроссель фильтра (индуктор ).Это очень «старая школа» с точки зрения планировки и конструкции, и никогда не находит применения. Даже не помню, как я стал им владеть! Если мне нужно такое напряжение и ток, я использую свой «монстр» источник питания Variac.

Еще один подход состоит в использовании понижающего (понижающего) преобразователя импульсного режима в качестве предварительного регулятора слежения. Вы можете думать об этом как о «высокотехнологичной» версии предварительного регулятора с отсечкой фазы, описанной выше, которая дает преимущества, но меньше недостатков (по крайней мере, с точки зрения использования трансформатора).Некоторые достаточно мощные модули доступны по удивительно низкой цене, и идея состоит в том, чтобы обеспечить напряжение, подаваемое на транзисторы с последовательным проходом, всего на пару вольт больше, чем выходное напряжение. Это может повысить эффективность, так что вы можете обойтись гораздо меньшими радиаторами, а управление температурным режимом не является такой проблемой. Должен быть предусмотрен подходящий механизм обратной связи, который управляет выходным сигналом импульсного преобразователя, так чтобы он всегда был достаточно большим для обеспечения регулирования.

Предварительный регулятор снижает рассеиваемую мощность при последовательном проходе до нескольких ватт даже при полном токе. Само собой разумеется, что этот подход требует серьезной доработки, и, хотя это, вероятно, лучшее универсальное решение, его гораздо сложнее получить правильно, чем любой из других рассмотренных вариантов. Это электронный эквивалент использования моторизованного Variac (как упоминалось выше), но он дешевле в изготовлении и проще в управлении. Проблемы проектирования могут быть очень серьезными, если вы попытаетесь создать свой собственный, и также может быть затруднительно убрать шум из конечного продукта.Если вам нужен очень низкий уровень шума (например, для выполнения измерений шума или искажений), шум переключения почти всегда будет мешать измерениям. Этот вариант здесь не рассматривается.


6 Однополярное питание

Одинарная поставка может быть привлекательной для некоторых людей, и это, безусловно, проще, чем версия с двойным отслеживанием. Конечно, если у вас есть только одна полярность, которая ограничивает ваши возможности в отношении того, что вы можете тестировать, но они обычно доступны у любого количества поставщиков.Схема, показанная ниже, адаптирована из схемы, показанной на нескольких различных веб-сайтах [2, 3, 4] . Таким образом, трудно определить, какой из них был «первым», и за эти годы в него было внесено много улучшений (или, по крайней мере, изменений, которые не всегда одно и то же!). Основы не сильно изменились, и тот, который показан ниже, обходится без одного регулятора напряжения в пользу простого диодно-регулируемого отрицательного источника питания. Поскольку я использовал операционные усилители LM358, отрицательное напряжение питания должно быть около -1.2В при довольно низком токе.

Когда источник питания находится в режиме ограничения тока, загорается светодиод, указывая на работу «постоянного тока». Обычно он выключен, поэтому вы можете сразу определить, потребляет ли нагрузка заданный ток с пониженным выходным напряжением. Работа с постоянным током особенно полезна для тестирования светодиодов высокой мощности или светодиодных матриц, поскольку именно так они и предназначены. Вам также понадобится переключатель «вкл / выкл», который снижает выходное напряжение до нуля в положении «выключено».Это важная функция (IMO), поскольку она позволяет вносить изменения без отключения питания. Лучше всего обеспечить переключение на выходе источника питания, так как это позволяет вам устанавливать напряжение при отключенном постоянном токе. Рассмотрите возможность использования реле (или двух) для переключения, в противном случае вам понадобится сверхмощный переключатель. Хотя напряжение можно снизить до (почти) нуля, подключив неинвертирующий вход U1B к земле, при первой подаче питания переменного тока могут возникнуть «помехи». Этого можно избежать, переключив выход.

Источник питания, показанный ниже, является довольно простым, и вам нужно будет добавить как минимум измерители напряжения и тока, а также управления температурным режимом (вентилятор и отключение при перегреве). Можно внести бесчисленное множество улучшений, но они сделают схему более сложной, более дорогой и предоставят более «захватывающие» способы сделать, казалось бы, незначительную ошибку и вызвать взрыв питания при первом включении.


Рисунок 6.1 — Схема однополярного питания

U1 — это регулятор 7815, но с стабилитроном 15 В на выводе «земли» для повышения напряжения до 30 В.Дополнительный ток стабилитрона обеспечивает R3 для обеспечения стабильного выхода. U2A — текущий регулятор. Когда напряжение на инвертирующем входе (U2A, вывод 2) больше, чем на неинвертирующем входе (вывод 3), выход становится низким, понижая опорное напряжение, подаваемое на U2B (регулятор напряжения). Напряжение снижается ровно на величину, необходимую для обеспечения подачи заданного тока на нагрузку.

Предел тока изменяется от (теоретически) нуля до 2,5 А.VR4 позволяет регулировать так, чтобы опорное напряжение для U2A (TP2) было как можно ближе к 825 мВ (825 мВ на R18 (0,33 Ом) соответствует выходному току 2,5 А). Возможно, удастся увеличить выходной ток до 3 А (опорное напряжение 990 мВ), но вам потребуется добавить еще один транзистор с последовательным проходом, чтобы транзисторы находились в пределах их SOA при минимальном напряжении и максимальном токе. Некоторый прорыв пульсаций на максимальном выходе (напряжение и ток) вероятен, если вы не добавите больше емкости (C1).

В режиме напряжения U2B сравнивает опорное напряжение от VR2 с напряжением на выходе, уменьшенным на R16, R11 и VR3 (предварительно заданное напряжение).Если выходная мощность падает из-за нагрузки, U2B увеличивает мощность до комбинации выходного последовательного прохода (Q3, Q4 и Q5), чтобы поддерживать желаемое напряжение. Верхний предел выходного напряжения налагается операционным усилителем (U2), который не может форсировать свой выходной сигнал намного выше 25 В при типичном выходном токе около 2 мА (это зависит от коэффициента усиления выходной секции Q3, Q4 и Q5). . Обратите внимание, что опорное напряжение само относится к отрицательной выходной клемме — это гарантирует, что регулятор исправит любое падение напряжения на R18.Если бы было иначе, регулирование сильно пострадало бы, особенно при максимальном токе.

Обратите внимание, что тяжелые гусеницы имеют решающее значение, и любое значительное сопротивление на этих участках нарушит определение тока. Также имейте в виду, что точки, обозначенные символом «земля», помечены как «Com» (общий). Они , а не , подключенные к шасси или какому-либо другому заземлению. Обозначение «Com» означает только то, что все отмеченные таким образом точки соединены вместе. Также обратите внимание на диоды со звездочкой (*), которые должны быть 1N5404 (3A непрерывно) или лучше.Все остальные диоды — 1N4004 или аналогичные (кроме мостового выпрямителя на 25 А, конечно). Настольные источники питания часто подключаются к «враждебным» нагрузкам, а сильноточные диоды (D8 и D9) служат для защиты источника питания.

В источнике питания используется измерение тока на стороне низкого напряжения, поэтому для его использования в качестве источника двойного слежения с положительным и отрицательным выходами требуются некоторые хитрости. Токочувствительный резистор (R18) — это компромисс между падением напряжения и рассеиванием. При максимальном токе (2,5 А) R18 рассеивает чуть более 2 Вт, что легко контролировать с помощью резистора с проволочной обмоткой 5 Вт.Регулировка как напряжения, так и тока очень хорошая (по крайней мере, согласно симулятору), и нет никаких признаков нестабильности. Теоретически (всегда замечательно) ток можно отрегулировать до пары миллиампер, но на самом деле он не станет настолько низким. Ожидайте около 50 мА или около того, но может быть немного ниже (в зависимости от собственного смещения постоянного тока операционного усилителя). Еще один подстроечный резистор может быть добавлен для корректировки смещения постоянного тока операционного усилителя, но в этом нет необходимости (и добавляет что-то еще, что требует настройки).

Во всех альтернативных версиях для выхода указан один 2N3055, но с закороченным выходом и максимальным током рассеиваемая мощность составит около 80 Вт, и поддержание последовательного транзистора (транзисторов) при температуре 25 ° C будет невозможно. Устройства TIP35 имеют более высокую номинальную мощность (125 Вт) и хорошую SOA (безопасную рабочую зону), но все же необходимо использовать три вместо двух, показанных на рисунке. BD139 также нужен радиатор, но обычно достаточно простого «флажкового» типа.Как и любой транзистор, который рассеивает значительную мощность, необходимо отличное тепловое соединение с радиатором, и вам потребуется использовать вентилятор. Он может управляться термостатически и может использовать ШИМ (широтно-импульсную модуляцию) для управления скоростью, или он может просто включаться и выключаться. На рис. 8.1 показана подходящая схема как для работы вентилятора, так и для отключения источника питания, если он становится слишком горячим (что в данном контексте составляет температуру радиатора не более 50 ° C).


6.1 Двойное одинарное питание

Если вы действительно хотите использовать рисунок 6.1 для двойного питания, трансформатору нужны две отдельные обмотки. Второй источник питания (# 2) — это , идентичный показанному выше, а положительный выход подключен к GND (или, точнее, «общему») соединению источника # 1. В большинстве случаев источники питания используются с плавающими выходами без подключения к защитному заземлению сети. Это позволяет использовать источник питания как нормальный положительный и отрицательный источник питания, или выходы могут использоваться последовательно, что даст выход 50 В при максимальном напряжении 2.5А. Таким образом, вы можете заземлить любой терминал, который хотите получить нужную вам конфигурацию питания.

Чтобы построить его как двойной источник питания, потенциометры «Набор напряжения» и «Набор тока» будут двухконтурными линейными электролизерами, с одной секцией каждого для отдельных источников питания. Отслеживание не будет идеальным, но двухканальные линейные горшки обычно неплохо в этом отношении. Использование двух источников питания также позволяет подключать их последовательно или параллельно. Последнее удобно, если у вас есть нагрузка с одним источником питания, которая потребляет больше тока, чем может обеспечить один источник питания.Многие коммерческие двойные источники питания используют эту схему, и она может быть очень полезной. В то время как «правильное» двойное отслеживание будет использовать только один блок питания с электронной связью для обеспечения идентичности напряжений, это делает схему более сложной.


Рисунок 6.2 — Подключение питания «двойной одиночный»

Когда переключатель или реле (двухполюсный, двухпозиционный или DPDT) находится в последовательном положении, отрицательный полюс верхнего источника питания соединяется с плюсом нижнего источника питания, и оба соединяются с общей клеммой.Вы можете иметь выход от 0 до 50 В, и обычно это центральный отвод для ± 25 В. В параллельной конфигурации два положительных вывода соединяются вместе с двумя отрицательными (общий вывод отключен). Это позволяет подавать 0-25 В при выходном токе до 5 А. Обратите внимание, что отрицательный вывод — это отрицательный вывод нижнего регулятора. Поскольку выходы являются плавающими, положительный или отрицательный вывод может стать заземлением системы, если это необходимо.

Одним из преимуществ использования «двойных одиночных» источников питания является то, что они могут использоваться независимо (с различными настройками напряжения и тока), подключаться последовательно (обычно с отслеживанием) или параллельно для увеличения выходного тока.К сожалению, если вы хотите использовать два расходных материала по отдельности, вы не можете использовать кастрюли с двойным бандажом, и каждый расход должен быть настроен индивидуально. Это серьезная неприятность, и, к счастью, это не обычное требование.

Показанная схема позволяет подключать источники питания последовательно (от 0 до ± 25 В или 50 В при 2,5 А) или параллельно (от 0 до 25 В при 5 А). «Общий» вывод обычно не должен быть заземлен, поэтому источники питания находятся на плаву. Это позволяет вам управлять источником питания без создания контуров заземления.При параллельном подключении один источник питания обычно будет иметь немного отличающееся напряжение от другого, но ограничитель тока гарантирует, что ток от каждого источника не может быть выше предела (2,5 А). Возможно небольшое изменение напряжения при изменении тока, но это не должно создавать никаких проблем при нормальном использовании.

Эта конструкция означает отсутствие общей схемы — оба регулятора полностью независимы и никакие части не являются общими — кроме двухконтактных потенциометров, используемых для установки напряжения и тока.Это увеличивает общую стоимость, но обеспечивает большую гибкость. Схема выше не позволяет использовать независимые источники питания, но вряд ли это будет ограничением. В хорошо оборудованной мастерской будет как минимум два источника питания (например, у меня также есть отдельный независимый источник питания ± 12 В плюс независимый источник питания 5 В). Ни у одного из этих источников нет общей основы — все они полностью плавающие.

Переключение «вкл / выкл» находится на конечном выходе (непосредственно перед выходными клеммами). Это позволяет вам установить напряжение без выхода (счетчики будут подключены перед выходным переключателем ).Реле (или пара реле) позволяет использовать мини-тумблер, а не тумблер для тяжелых условий эксплуатации, и рекомендуется для максимальной производительности. Реле (а) можно установить на передней панели рядом с выходами.


7 Простое питание от 0 до ± 25 В

Теперь мы можем рассмотреть еще один «разумный» вариант. Опять же, это означает выходное напряжение около ± 25 В постоянного тока при максимальном токе не более 3 А или около того. Вы не поверите, но это все равно дешевле купить! Я знаю, что это не способ «сделай сам», но он более практичен, чем строить самому.За эти годы я просмотрел бесчисленное количество различных дизайнов, но немногие из них стоят тех деталей, которые потребуются для их создания. Остаются проблемы со стабильностью (то есть отсутствие колебаний на при любом выходном напряжении или токе или при «нечетных» нагрузках). Это может показаться не проблемой, но взаимодействие между регуляторами напряжения и тока может заставить источник с хорошим поведением внезапно подумать, что это генератор. Само собой разумеется, что это нежелательно (мягко говоря).

Project 44 существует довольно давно (с 2000 года), и, хотя максимальный выход составляет всего ± 25 В, это довольно хороший вариант для запуска начальных тестов.У него нет регулируемого ограничения тока, поэтому выходной ток устанавливается регуляторами LM317 / 337 на уровне около 1,5 А. Его полезность никогда не уменьшалась с момента публикации, но вы должны использовать «предохранительные» резисторы последовательно с выходами, чтобы ничего не повредить, если есть ошибка в проводке DUT. Стоимость любого конкретного проекта ESP обычно указывается в статье проекта или примечаниях к конструкции (доступно при покупке одной или нескольких печатных плат).

Одна из вещей, которые ожидали от , — это то, что настольная поставка нуждается в очень хорошем регулировании.На самом деле это не так. Усилители мощности обычно не имеют регулируемых источников питания, а предусилители (и аналогичные слаботочные проекты) потребляют довольно постоянный ток, поэтому регулировка в допустимом диапазоне проста. Если напряжение источника питания упадет (скажем) на 0,5 В при большой нагрузке, это действительно не имеет значения, потому что это намного меньше, чем он должен будет справиться при подключении к «нормальному» источнику питания. То, что является критическим для , — это ограничение тока, и хотя это может показаться достаточно простым, на самом деле сложно заставить его работать надежно.Схема ограничения тока привносит в схему дополнительное усиление, и поддержание стабильности может быть в лучшем случае утомительным, а в худшем — почти невозможным.

Часто критическим аспектом любого источника питания с ограничением тока является переход между регулированием напряжения и тока, где взаимодействуют две различные формы регулирования. В начале ограничения тока у вас есть регулятор напряжения, пытающийся поддерживать заданное напряжение, и в то же время регулятор тока пытается снизить напряжение для поддержания заданного тока.Для тех, кто действительно хочет создать источник питания, Джон Линсли-Худ представил его конструкцию еще в 1975 году. Обновленная версия показана ниже, но оригинальные транзисторы были заменены современными, и включены два последовательных транзистора. Добавление третьего последовательного транзистора к каждому источнику питания упрощает охлаждение и снижает нагрузку на транзисторы. В исходной схеме использовались операционные усилители µA741, но если они у вас есть, то лучше выбрать 1458 (по сути, двойной 741).В этой схеме также можно использовать LM358.


Рисунок 7.1 — Стендовый источник питания (после JLH, 1975) [6]

Вышеупомянутое адаптировано из оригинала, в котором использовался один силовой транзистор 2N3055 и MJ2955 TO-3 (по одному для каждой шины). Мало того, что они были подвержены чрезмерному рассеянию в оригинале (до 93 Вт при максимальном токе на закороченном выходе), но и устройства TO-3 сегодня довольно дороги. Их также сложно монтировать, поскольку плоские устройства в этом отношении намного проще.Указанные устройства TIP35 / 36 имеют более высокую номинальную мощность (125 Вт против 115 Вт каждое) и более высокий ток коллектора, но я модифицировал схему так, чтобы она обеспечивала максимум ± 25 В и использовала трансформатор более низкого напряжения. Это поддерживает последовательные транзисторы на управляемом уровне мощности, не более 40 Вт каждый. Не стесняйтесь добавлять еще один последовательный транзистор для каждой полярности, еще больше снижая тепловую нагрузку. Q3 (a и b) должен иметь достаточно хороший радиатор , поскольку рассеиваемая мощность намного выше, чем она может появиться при полном выходном токе (и на при любом выходном напряжении ).

Концевой выключатель тока далеко не идеален, поскольку контакты переключателя должны выдерживать максимальный выходной ток (около 2,4 А), и он менее удобен, чем потенциометр, позволяющий непрерывно ограничивать переменный ток. Резисторы 0,27 Ом должны быть рассчитаны не менее чем на 3 Вт, а на резисторы 1,5 Ом — 1 Вт. Остальные токоограничивающие резисторы — 0,5 Вт. Хотя переключатель не такой универсальный, как горшок, ограничивающие пороги предназначены для защиты вашей схемы. При первом тестировании вы обычно используете слабый ток, чтобы гарантировать, что ничего не потребляет больше, чем нужно.Значение 5 мА слишком мало для большинства схем, но может быть полезно. Его можно не указывать, если вы не думаете, что он вам понадобится.

Для выхода нужен либо сверхмощный тумблер, либо реле для включения и выключения постоянного тока, и это полностью отключает питание, когда вам не нужен какой-либо выход (например, повторная пайка пропущенного соединения и т. Д.). Измерение не показано — подробнее о том, как добавить вольтметр и, при необходимости, амперметр, см. Ниже. Два подстроечных резистора 20 кОм позволяют установить максимальное напряжение (номинально ± 25 В).Они должны быть примерно отцентрированы для получения правильного напряжения. Хотя это не показано на схеме, вам может потребоваться добавить резисторы последовательно с C4a / b, если источник питания колеблется в режиме ограничения тока. Их не было в оригинале, но смоделированная схема колеблется, если их там нет. Значение около 100 Ом должно быть достаточным.

Схема далека от «идеальной» (как и оригинал), но она должна хорошо работать на практике. В идеале потенциометры установки напряжения должны быть двухконтактными, поэтому оба источника питания могут быть изменены одновременно.Точно так же переключатель (Sw1a / b) будет 2-полюсным 5-позиционным переключателем. Обратите внимание, что я не создавал и не тестировал эту схему , но она была смоделирована и работает так, как ожидалось. Преимущество показанной простой схемы состоит в том, что ее, скорее всего, можно построить за меньшую цену, чем коммерческая поставка.

Последовательные транзисторы (Q1a / b и Q2a / b) нуждаются в очень хорошем радиаторе и оптимальной тепловой связи. При использовании при низком выходном напряжении и большом токе понадобится вентилятор, чтобы транзисторы оставались достаточно холодными, чтобы гарантировать, что они не выйдут из строя из-за перегрева.Для транзисторов драйвера (Q3a / b) также потребуются небольшие радиаторы. Схема симметрична, поэтому, хотя она может показаться сложной, в основном это повторение. Я не могу гарантировать, что он будет полностью стабильным в режиме ограничения тока — симулятор говорит мне, что это так, но это может быть просто сам симулятор — реальность часто сильно отличается от симуляции.

Хотя существует ожидание , что источник питания никогда не должен колебаться, на самом деле требуется серьезная инженерия для поддержания стабильности наряду с хорошей переходной характеристикой.В основном, небольшая величина колебаний обычно не причинит никакого вреда, а ограничение тока существует, чтобы гарантировать, что ваше последнее творение не самоуничтожится в случае неисправности проводки. Он также может быть удобен для зарядки аккумулятора (помимо прочего), а основная цель ограничителя — защитить вашу схему и источника питания от «неудач». Многие источники питания будут демонстрировать признаки нестабильности высоких частот, редко в режиме «постоянного напряжения» и чаще всего в режиме постоянного тока.

Если вы начали думать, что создание собственного источника питания не выглядит слишком сложным, есть и другие необходимые вещи. Температура транзистора имеет решающее значение, поэтому важно включить механизм теплового отключения. Это может быть простой термовыключатель, отключающий сеть, если радиатор становится слишком горячим — простой, но не очень сложный. Обычно лучше включать индикатор «перегрева» и тепловой вентилятор, который включается, если температура радиатора превышает заданную температуру.Приобретенные в магазине расходные материалы могут иметь вентилятор с регулируемой скоростью с окончательным отключением, если радиатор не остывает. Это может произойти, если в коротком замыкании присутствует постоянный высокий ток, заблокирован фильтр вентилятора или если установка на рабочем столе ограничивает воздушный поток.


8 Тепловое зондирование

Это важная часть любого источника питания. В идеале при достижении теплового предела питание должно отключиться, но с некоторыми схемами это проще, чем с другими. Например, рисунок 6.Схема 1 проста, поскольку это просто вопрос обнуления опорного напряжения (по существу, параллельно с переключателем «вкл / выкл»). Это можно сделать с помощью транзистора, контактов реле или даже сделать «пропорциональным», чтобы максимальный выходной ток уменьшался по мере нагрева радиаторов. В схеме на Рисунке 7.1 ограничение температуры немного сложнее, поскольку потенциометры «заданного напряжения» привязаны не к земле, а к выходным шинам питания. Из-за необходимости полной изоляции реле является лучшим выбором, поскольку оно просто закорачивает установленные потенциометры.Вам нужно двухполюсное реле, потому что два электролизера отделены друг от друга (электрически).

Следующее — решить, как лучше всего определять температуру радиатора. Очевидным выбором является термистор с отрицательным температурным коэффициентом (NTC), и они легко доступны в диапазоне различных значений (значение обычно указывается при 25 ° C). К сожалению, термисторы неудобно устанавливать на радиатор, если вы не можете получить его со встроенным монтажным узлом. Вы можете сделать его самостоятельно, используя миниатюрный терморезистор и прикрепив его к проволочному наконечнику с помощью эпоксидной смолы.Естественно, вы должны быть осторожны, чтобы убедиться, что нет электрического соединения термистора с его креплением. Вы также можете использовать диоды или транзисторы для измерения температуры, но они менее чувствительны, чем термисторы (всего -2 мВ / ° C), и более утомительны в настройке. Транзистор может быть настроен для обеспечения большей чувствительности (поскольку он имеет усиление), и вы можете легко получить до -100 мВ / ° C. Однако для транзистора требуется подстроечный резистор (желательно как можно ближе, чтобы минимизировать наводку шума), а датчику требуется три провода вместо двух.Их также сложно правильно установить. Более или менее типичный термистор NTC 10 кОм (при 25 ° C) покажет изменение примерно на -250 Ом / ° C.

Поскольку термисторы сильно различаются по своему значению, изменяющемуся с температурой, важно, чтобы был предусмотрен метод регулировки. В идеале вам понадобится точный термометр с термопарой для измерения температуры радиатора, как можно ближе к одному из выходных транзисторов с последовательным проходом. Вам понадобится термопаста, чтобы получить точные показания.Обычно сопротивление термистора падает примерно до 30-40% от значения 25 ° C при 50 ° C, но это зависит от используемого материала. Технические характеристики термистора, который вы покупаете, обычно содержат точные данные. Убедитесь, что термистор (и) не установлен слишком близко к вентилятору. Если это так, вентилятор легко охладит термисторы, но не сможет поддерживать безопасную температуру радиатора. Это может вызвать сбой.

Дешевый операционный усилитель — это самый простой способ надежного обнаружения «события» перегрева. Можно использовать несколько термисторов, причем самый горячий запускает охлаждающий вентилятор (ы) или отключает источник питания.Вы можете использовать двухступенчатую систему, как показано ниже, где при небольшом перегреве вентиляторы запускаются, но если температура продолжает расти, то питание полностью отключается от нагрузки. Два подстроечных элемента используются для обеспечения того, чтобы начальное напряжение на каждом термисторе составляло около 5,8 В при 25 ° C, что означает примерно 65% от общего сопротивления или VR1 и VR2. Если напряжение на любом из термисторов упадет примерно до 5,4 В, вентилятор включится. Вентилятор снова выключится, когда напряжение вернется к отметке 5.Порог 4 В. Если подача прекращается из-за того, что температура продолжает расти, вентилятор продолжит работу.


Рисунок 8.1 — Датчик температуры, вентилятор и выключатель реле

U1A — это буфер, обеспечивающий, чтобы гистерезисный резистор на U2B не мешал работе первого компаратора. При низких температурах выходной сигнал компаратора U1B низкий, а U2A высокий, поэтому вентилятор не работает и контакты реле замкнуты (при условии, что переключатель постоянного тока замкнут). При повышении температуры сопротивление одного или обоих термисторов упадет до более низкого уровня.Когда напряжение на термисторе упадет до ~ 5,2 В, вентилятор запустится, а если температура продолжит расти, выходное реле питания будет отключено при дальнейшем падении напряжения на термисторе. Такое расположение гарантирует, что температура никогда не должна достигать опасного уровня. Необходимо будет отрегулировать подстроечные регуляторы, чтобы предварительно установить начальное напряжение термистора на соответствующий уровень, чтобы обеспечить включение вентилятора, когда температура радиатора достигнет примерно 35 ° C. Светодиод нужен, чтобы вы знали, почему все внезапно перестало работать (выходные транзисторы слишком горячие!).Последний подстроечный резистор (VR3) должен быть настроен на температуру отключения около 45 ° C. Оба компаратора имеют гистерезис, поэтому вентилятор не будет быстро включаться и выключаться, как и реле отключения. (Обратите внимание, что U2B не используется.)

Термисторы

не являются прецизионными устройствами, поэтому вам нужно будет провести свои собственные тесты с теми, которые вы можете получить. Возможно, потребуется поэкспериментировать с номиналами резисторов, чтобы получить разумные (и безопасные) пороговые значения температуры. Вы можете спросить, почему я предлагаю такую ​​низкую температуру радиатора (45 ° C).Имейте в виду, что тепловое сопротивление от корпуса транзистора до радиатора может составлять около 0,5 ° C / Вт, поэтому, если транзисторы работают при 35 Вт, температура корпуса будет на 17,5 ° C на выше, чем на радиаторе. Это означает, что температура корпуса превышает 60 ° C. Если ваши методы монтажа недостаточно хороши, разница может быть больше, что приведет к риску отказа. Если вы не можете положить палец на транзистор и удерживать его там , то, вероятно, он слишком горячий.

Поддержание безопасной рабочей температуры и отключение источника питания (или отключение нагрузки), если силовые транзисторы становятся слишком горячими, является важной частью любого источника питания.Природа любого предложения переменных заключается в том, что вы никогда не знаете, для чего вы в конечном итоге будете использовать его, когда он впервые будет создан, и все возможные случаи необходимо учитывать. Лучше преждевременно отключиться от источника питания, чем позволить транзисторам нагреться до такой степени, что они выйдут из строя. Транзисторы выходят из строя вследствие короткого замыкания (по крайней мере, на начальном этапе), в результате чего на тестируемое устройство подается полное нерегулируемое напряжение питания. Ущерб, который может нанести, может быть катастрофическим.


9 Измерение

Для всех блоков питания нужны счетчики.Обычно они включаются для напряжения и тока, и наиболее распространены в настоящее время цифровые. Однако «традиционные» аналоговые измерители с подвижной катушкой не только рентабельны (вы можете получить их на удивление дешево), но и легко читаются с первого взгляда. Многие цифровые счетчики не обеспечивают разумных подключений к источнику питания и измерениям (например, некоторым требуется плавающее питание). Это усложняет схему, а точность, которую обеспечивают цифровые измерители, часто является иллюзией. В аналоговых измерителях «FSD» означает отклонение на полную шкалу.

Я всегда отдавал предпочтение аналоговым счетчикам. Если вы можете получить измеритель с циферблатом, который откалиброван от 0 до 30 В (например), один можно использовать для измерения напряжения, а другой — для тока (0-3,0 А). Требуемые шунты и множители могут быть определены достаточно легко — все подробности см. В статье «Счетчики, множители и шунты». Возможно, можно использовать резистор измерения тока в качестве шунта измерителя, в зависимости от номинала резистора считывания, а также чувствительности и внутреннего сопротивления измерителя.В большинстве случаев перемещение измерителя 1 мА является хорошим компромиссом, и это позволит вам использовать резистор измерения тока, показанный на рисунке 6.1. Да, подключение измерителя и внешнего резистора немного повлияет на шунт, но погрешность будет очень маленькой (вплоть до бесконечно малой).


Рисунок 9.1 — Измерение тока и напряжения

Основные схемы измерения показаны выше. Измеритель тока — это боль, потому что полярность должна быть изменена в зависимости от того, контролирует ли он положительный или отрицательный шунт.Он выглядит запутанным, но при подключении, как показано на рисунке, он будет работать именно так, как задумано. Общее сопротивление измерителя предполагает использование измерительного механизма 1 мА, откалиброванного на 30 В (вольтметр) или 3 А (амперметр), и при условии, что внутреннее сопротивление катушки составляет 200 Ом. Если используемый измеритель более чувствителен (или его сопротивление другое), необходимо будет рассчитать сопротивления. Практически всегда проще использовать подстроечные резисторы для установки диапазона, чем постоянные резисторы, и показаны подходящие значения. Для вольтметра (откалиброван на 30 В FSD)…

R м = (V / FSD) — R внутренний
R м = (30/1 м) — 200 = 28,8 тыс.

Если шунтирующие резисторы для амперметра отличаются от показанных значений, калибровка будет другой. Показанное «общее сопротивление» включает внутреннее сопротивление измерителя (обычно около 200 Ом для движения 1 мА). Обратите внимание, что если вы используете движение 1 мА, шунтирующий резистор должен быть не менее 0,1 Ом. Требуется шунт 67 мОм, но это предполагает, что сопротивление измерителя составляет ровно 200 Ом, и нет никакой возможности для регулировки, если показания неправильные.Возможность использования одного и того же шунта для измерения тока и амперметра зависит от окончательной топологии конструкции. Это не всегда практично, но немного снижает потери напряжения.

Обратите внимание, что при использовании схемы, показанной на Рисунке 6.1, два шунта имеют одинаковую полярность напряжения, поэтому показанное выше реверсирование не требуется. Чтобы посмотреть положительный или отрицательный выходной ток, измеритель просто переключают с одного шунта на другой, а полярность не меняется. Это устраняет перекрестную проводку, показанную на отрицательном шунте на приведенном выше рисунке.

Пока показан переключаемый амперметр (а это то, что использует мой старый источник питания), лучше использовать отдельный амперметр для каждого выхода. При условии, что у вас достаточно места на передней панели, это избавляет от утомительного переключения счетчика и означает, что если вы забудете (и что будет ), вы можете контролировать отрицательное питание, но используя положительное питание. Излишне говорить, что это означает, что вы не видите ток, и ИУ может быть повреждено до того, как вы поймете свою ошибку. Использование ограничения тока может смягчить это, конечно, при условии, что оно установлено на неразрушающий (низкий) ток, когда вы начинаете тестирование.

Вольтметр можно переключить для измерения положительного или отрицательного напряжения, или его можно просто подключить к двойным источникам питания (50 В для схем, показанных здесь) и откалибровать для отображения 30 В FSD («Измеритель напряжения (альтернативный)). Подразумевается, что напряжение будет составлять ± 25 В или другое более низкое напряжение по выбору. Может возникнуть небольшая ошибка, если источники питания не отслеживают идеально, но обычно это не является серьезной проблемой, если вы по какой-то причине не ожидаете точного напряжения. Если это так, лучше использовать внешний измеритель — те, которые находятся на источнике питания, относятся к « коммунальным » счетчикам — они показывают значение напряжения и тока, но ожидать точности лучше, чем около 5%, нереально.


9.1 Цифровые счетчики

Цифровые измерители — это либо лучшая вещь после нарезанного хлеба, либо вред для ландшафта, в зависимости от вашей точки зрения. Лично я предпочитаю аналоговые (механические) счетчики, но они обычно довольно большие и громоздкие, занимая больше места на панели, чем цифровые устройства считывания. Самым большим преимуществом аналоговых измерителей является то, что вы можете наблюдать за перемещением указателя, поэтому нарастающий (возможно, убегающий) ток будет быстро замечен, а изменяющиеся токи могут быть легко усреднены на глаз.Цифровые измерители особенно бесполезны, если ток меняется быстро, потому что на дисплее просто расплываются цифры, и вы не можете усреднить цифровые показания на глаз.

Однако сейчас цифровые измерители обычно дешевле аналоговых, и большинство из них довольно точны. Поскольку они занимают меньше места на панели, они являются хорошим вариантом при соблюдении нескольких простых мер предосторожности. В частности, и особенно для измерителя тока, вам необходимо включить схему усреднения, которая предотвращает отображение на дисплее набора, казалось бы, случайных цифр, когда ток питания быстро изменяется.Это может быть просто резистор (1 кОм всегда является хорошей отправной точкой) и конденсатор для усреднения показаний. С резистором 1 кОм конденсатор 100 мкФ означает, что у вас есть точка низкой частоты 1,59 Гц -3 дБ, поэтому самые быстрые изменения будут сглажены, чтобы вы могли прочитать ток. Если этого не сделать, вы не сможете расшифровать показания. Этого достаточно, чтобы убедиться, что тренд хорошо виден.

Никаких подробностей для цифровых счетчиков здесь не показано, потому что они зависят от самого счетчика.Некоторые из них имеют автоматический выбор диапазона, другие используют переключаемые диапазоны, а более простые просто дают показания от «000» до «199» с возможностью выбора десятичной точки в желаемой позиции (часто с помощью перемычки или ссылки на измерителе). Печатная плата). Для измерения тока часто бывает необходимо использовать операционный усилитель для повышения небольшого напряжения на токовом шунте. Например, если у вас есть шунт на 0,33 Ом, вам необходимо усилить или ослабить напряжение на нем в соответствии с диапазоном. Для полной шкалы 2,5 А это означает, что вы получите только 825 мВ при токе 2.5A, и его необходимо усилить, чтобы измеритель показал «2,50» (2,5 В в измерителе). Величина усиления или ослабления зависит от чувствительности измерителя. Например, для счетчика на 200 мВ потребуется уменьшить шунтирующее напряжение в 33 раза с помощью делителя напряжения. Он будет показывать 2,5 (25 мВ) с десятичной точкой, выбранной любыми имеющимися средствами. Разрешение составляет всего 100 мВ (± 2%, ± последняя цифра «фактора неопределенности» измерителя, которая может составлять до двух «отсчетов»). Этого (ИМО) недостаточно.

В идеале, если вы решите использовать цифровой замер, используйте счетчик, который предлагает три полных цифр (до «999», а не «199»), и, если возможно, с автоматическим выбором диапазона. Есть много вариантов, поэтому вам решать, сколько вы хотите потратить и какая точность вам нужна. Опять же, Meters, Multipliers & Shunts дает несколько рабочих примеров, которые могут быть вам полезны.


10 Строительство

Вот где все может стать некрасивым. Передняя панель является наиболее важной частью источника питания, потому что на ней есть регуляторы напряжения и тока, переключатели включения / выключения (сеть и постоянный ток), возможно, последовательно-параллельный переключатель, счетчики и, конечно же, выходные разъемы (обычно комбинированные банановые розетки / переплет постов).Конечно, вы также добавите светодиоды для включения, ограничения тока и тепловой перегрузки. Все на передней панели должно быть доступно для строительства или обслуживания, а это неизменно означает лабиринт проводки. На передней панели есть провода для сети переменного тока, выходы постоянного тока, все светодиоды и потенциометры, и все это складывается (на удивление быстро). Поддержание общего источника питания для всех светодиодов (например, от анода к положительному вспомогательному источнику питания) означает, что многие светодиоды могут совместно использовать одно и то же анодное напряжение, что может сэкономить проводку.Однако это не относится к , а не к светодиодам ограничения тока в двойной версии схемы на Рисунке 6.1, потому что два источника питания должны оставаться полностью независимыми до последовательно-параллельного переключения.

Внутренние компоненты должны содержать силовые трансформаторы, выпрямители и крышки фильтров, а также основной радиатор (и) для выходных транзисторов. Последний будет иметь входную, выходную и управляющую проводку, а также соединения для термисторов и вентилятора (ов). По крайней мере, каждый модуль вывода (при условии двойного питания) будет иметь не менее шести проводов.Тогда есть плата (и) управления регуляторами. У вас будет по одному на каждый источник питания (при условии, что схема с двумя источниками питания показана на рис. 7.1), а также плата терморегулятора для контроля температуры радиатора.

Слишком легко сделать неправильную проводку, и вам нужен очень дисциплинированный подход, чтобы не допустить ошибок при подключении. Не поддавайтесь соблазну установить все платы управления на лицевую панель. Это может уменьшить количество необходимых проводов, но делает обслуживание кошмаром, если различные части источника питания не могут быть доступны и протестированы без отключения проводов от плат.Какой бы размер корпуса вы ни планировали использовать, если в нем мало свободного места, значит, он слишком мал.

Убедитесь, что все соединения доступны без необходимости снимать платы, чтобы добраться до нижней стороны. Используйте булавки, проволочные петли или любую другую подходящую технику, чтобы все провода можно было отсоединить от верхней (или видимой) стороны плат. Избегайте вилок и розеток — все соединения (особенно действительно важные) должны быть припаяны, а проводка должна быть устроена так, чтобы, если вам когда-либо понадобится снять плату, чтобы что-то заменить, проводка была связана с помощью кабельных стяжек, чтобы каждый провод совпадал с соответствующую точку подключения.Аналогичным образом, если это вообще возможно, при сборке плат (чаще всего на Veroboard) сохраняйте соединения вдоль одного края платы. Это будет означать добавление перемычек на Veroboard, но это намного лучше, чем прокладывать провода по всей плате. Это не только упрощает электромонтаж, но и снижает вероятность ошибок.

Подстроечные резисторы

— это реальность для любого источника питания. Необходимо установить напряжения и токи, а измерители откалибровать. Датчик температуры также должен быть откалиброван, поэтому почти все источники питания будут иметь множество подстроечных резисторов — вы просто не можете полагаться на резисторы с фиксированным номиналом, чтобы обеспечить надлежащие условия для чего-либо.Если бы вы построили схему на рис. 6.1 как двойной источник питания, с тепловой защитой и счетчиком, у вас будет как минимум девять подстроечных резисторов, чтобы все правильно настроить. Это нормально для блоков питания, но у некоторых может быть больше!

Убедитесь, что важные части источника питания легко отделены от остальных (и шасси). Например, радиатор в сборе должен быть изготовлен таким образом, чтобы его можно было снять, и получить доступ ко всем транзисторам без необходимости демонтажа всего модуля.Одна конструкция, которую я видел, имеет крышки основного фильтра непосредственно перед выходными транзисторами, поэтому их нельзя снять, не сняв крышки фильтра (или транзисторы) с печатной платы. Расположение крышек таково, что вы просто не сможете получить доступ к крепежным винтам транзистора после завершения сборки. Настоятельно рекомендую избегать подобных ошибок. Необходимость извлекать (и / или демонтировать) компоненты или платы, чтобы получить доступ к любой части блока питания, превращает дальнейшую работу в кошмар.Учтите, что он может проработать 20 или более лет, прежде чем потребуется обслуживание, и к тому времени вы, вероятно, забудете многие «тонкости» схемы. По прошествии этого времени у вас может даже не оказаться схемы, поэтому убедитесь, что вы поместили ее в корпус!

Хотя основы источника питания не слишком сложны, всегда будет гораздо больше проводки, чем в любом типичном аудиопроекте. Это неизбежно, если вы не увеличите общую стоимость еще больше, сделав свои собственные печатные платы.Хотя это означает более профессиональный продукт, нет никакой гарантии, что вы получите правильный дизайн с первого раза, а внесение изменений может занять очень много времени. Если ошибка была сделана в компоновке печатной платы, может быть сложно диагностировать и найти ошибку, чтобы ее можно было исправить. В целом, вероятно, будет намного проще подключить окончательную выходную секцию. Из-за задействованных высоких токов (которые могут присутствовать в течение нескольких часов) обычная печатная плата не обеспечивает достаточно низкого сопротивления или достаточно высокой емкости по току, если вы не используете очень широкие дорожки (я бы предложил минимум 5-миллиметровых дорожек для 5A, но даже это является предельным значением для непрерывного режима).

Хотя это может показаться незначительной придиркой, я настоятельно рекомендую вам использовать розетку IEC для сети. По моему многолетнему опыту работы с испытательным оборудованием и другим оборудованием, нет ничего более раздражающего, чем фиксированный сетевой шнур. Вместо того, чтобы просто отсоединять вилку IEC с задней стороны, если ее нужно переместить, вам, возможно, придется проследить фиксированный провод до его сетевой розетки, а затем отсоединить его от других проводов для остальной части оборудования вашего испытательного стенда. В зависимости от того, сколько у вас оборудования, это может быть более сложной задачей (и болью в спине), о которой вы думаете, когда оно впервые устанавливается и подключается.Незначительный момент, но о нем стоит помнить. Очень немногие измерительные приборы, которые я построил, имеют фиксированные сетевые провода, и у меня есть хороший набор сетевых проводов IEC!

Осталась одна проблема. Чтобы проверить различные части вашего блока питания, прежде чем он будет полностью подключен, вам понадобится … блок питания. Шансы на то, что все будет правильно с первого раза, невелики, поэтому, если у вас нет источника питания, вам придется разработать способ проверки правильности работы различных секций без риска дыма, если что-то не так. .Вы можете использовать « предохранительные » резисторы последовательно с основным источником питания, чтобы ограничить повреждение, если есть ошибка проводки, или (если он у вас есть) использовать Variac и текущий монитор (см. Project 139 или Project 139A, чтобы вы могли проверить на чрезмерный ток при повышении напряжения. Многие части блока питания не будут работать должным образом при пониженном напряжении, поэтому всегда есть риск. Тестирование и калибровка блоков питания — нетривиальная задача, поэтому вам придется многое сделать, чтобы завершить его.


11 Полезное дополнение

Хотя здесь я описал только базовый источник питания, многие коммерческие источники питания включают выход 5 В (обычно рассчитанный на ток около 3 А), а некоторые также включают источник питания ± 12 В.Поскольку вы никогда не знаете, как источник питания будет настроен в будущем, они оба будут полностью изолированы. Как только вы соедините вместе заземляющие (или общие) соединения внутри, это ограничит ваши действия с источниками питания. Как уже отмечалось, вы никогда не можете предугадать, для чего вы будете использовать источник, когда он впервые будет построен, и было бы неразумно предполагать что-либо заранее.

Это означает по крайней мере один, но, возможно, два дополнительных трансформатора, а также выпрямители, фильтры и регуляторы.Вам также потребуется больше места на передней панели для подключений. Большинство коммерческих расходных материалов не обеспечивают измерения для каких-либо вспомогательных источников питания, и в схемах не требуется ничего особенного. Можно использовать пару плат P05-Mini, одну для одного выхода + 5 В, а другую для ± 12 В.

По сравнению со стоимостью остальной части поставки, они могут быть добавлены за (почти) арахис, за возможным исключением трансформаторов. В качестве альтернативы они могут быть построены как отдельная единица, что имеет ряд явных преимуществ.Как и ожидалось, у меня есть один из них, а также те, что есть на моем рабочем месте, и хотя он мало используется, он бесценен, когда мне нужен дополнительный источник питания, изолированный от всех остальных. Он также достаточно мал, чтобы я мог взять его из мастерской в ​​свой офис, где я также выполняю некоторые работы по тестированию и разработке. Действительно, вот где это сейчас.


12 Меры предосторожности

Существуют меры предосторожности, которых следует придерживаться при использовании любого источника переменного тока .Если нет переключателя, который отключает постоянный ток (или снижает выходную мощность до нуля), питание никогда не должно включаться при подключенной нагрузке. Большинство схем должны пройти фазы «запуска» (зарядка конденсаторов, стабилизация напряжения стабилитрона и т. Д.), Прежде чем выход станет стабильным. Если ваша нагрузка подключена, она может быть подвержена опасному напряжению, а ограничения тока может быть недостаточно для предотвращения повреждений. В самом деле, до тех пор, пока все внутренние схемы не будут иметь требуемых рабочих напряжений, может даже не быть никакого ограничения тока!

С рисунком 7.1, когда источник питания включен и работает, снижение напряжения до нуля с помощью переключателя будет работать. Однако во время «запуска» (после подачи питания от сети) этот может быть не так! Ничего не должно быть подключено к выходу, когда сетевой выключатель включен, потому что выход может быть непредсказуемым. Это было подтверждено моделированием — даже при выключенном переключателе выходная мощность мгновенно повышается до более 4 В при подаче питания. Схема на рис. 6.1 должна быть лучше в этом отношении, но все же лучше не подключать нагрузку при включении сети.

Необходимо включить питание, уменьшить напряжение до нуля, пока вы выполняете соединения, а затем напряжение можно установить на желаемый уровень. При тестировании чего-либо в первый раз используйте низкий порог ограничения тока, чтобы минимизировать повреждение в случае неисправности в ИУ. Если вам нужен источник с ограничением по току, напряжение следует установить так, чтобы было достигнуто ограничение по току, но не превышающее его. Например, если вы хотите обеспечить ток в 1 А через нагрузку 10 Ом, необходимо установить напряжение только для напряжения холостого хода около 12 В.Установка более высокого напряжения только увеличивает риск для вашей нагрузки, если что-то пойдет не так.

Установка низкого напряжения (как раз достаточного для выполнения задачи) , а не не снижает рассеивание в транзисторах последовательного прохода. Единственная причина — убедиться, что выходной конденсатор (-ы) не может заряжаться до 25 В, а затем разряжаться через нагрузку. Это почти наверняка гарантирует, что мгновенный ток будет намного выше установленного порога. Это не только совет для схем, показанных здесь — он относится ко всем источникам питания , если в инструкциях по эксплуатации не указано иное.Большинство советует не подключать что-либо до тех пор, пока не будут установлены напряжение и максимальный ток перед подключением нагрузки.

Существует несколько конструкций источников питания, в которых для управления функциями используется микроконтроллер, но будьте очень осторожны со всем (домашним или коммерческим), которые требуют от вас «программирования» напряжения или тока с помощью клавиатуры. Использование обычных кастрюль с низкими технологиями означает, что вы можете увеличить напряжение (или ток) поворотом ручки и быстро снизить напряжение, если обнаружены какие-либо аномалии.Попытка сделать это с помощью кнопок обычно невозможна, и большой ущерб может быть нанесен просто потому, что вы не смогли достаточно быстро снизить напряжение при первых признаках неисправности. «Высокотехнологичный» внешний вид программируемого источника питания может быть привлекательным, но он непрактичен для чего-либо, кроме лабораторных испытаний, когда оборудование, на которое подается питание, является известной величиной с самого начала.


Выводы

Если все вышеперечисленное не отпугнуло вас от идеи создания собственного источника питания, я настоятельно рекомендую вам начать с чего-нибудь довольно простого (например, Project 44).Я знаю, что «сделай сам» — это то, что нужно делать самому, но это должно быть верным только тогда, когда это имеет смысл. Как обсуждалось ранее, я построил источник питания от ± 0 до 25 В, 2 А с полностью регулируемым ограничением тока, термовыключателем и двухскоростным вентилятором. Он довольно часто использовался около 30 лет (на момент написания) и никогда меня не подводил. Однако это сложная схема и не совсем подходит для любительского строительства. К сожалению, принципиальную схему невозможно найти, и ее непросто «перепроектировать».С семнадцатью транзисторами, пятью операционными усилителями, двумя микросхемами стабилизатора 12 В, пятью подстроечными резисторами, а также ожидаемой связкой резисторов, диодов, крышек фильтров, переключателей, измерителей и потенциометров и потенциометров установки напряжения / тока, я бы не рекомендовал это — даже если бы я сделал У есть полная схема для него. Стоимость будет считаться неприемлемой для большинства строителей, которым в любом случае это может не понадобиться так часто.

Простая схема, показанная выше (рисунок 7.1), неплоха. Он не так хорош, как тот, который я построил, но, безусловно, приемлем для нормальной работы на тестовом стенде.У него есть то преимущество, что он может ограничивать более низкий ток, чем мой (~ 50 мА — мой минимум), и это полезно для чувствительных схем. Что еще более важно, его достаточно просто построить даже на Veroboard, со схемами ограничения тока, подключенными напрямую к переключателю и потенциометрам установки напряжения. Остается только базовая схема на Veroboard, которая должна быть довольно простой. В целом схема, показанная на рис. 6.1, лучше, но переключение для последовательной параллельной работы должно выполняться с большой осторожностью.

Возможно, что удивительно (а может, и нет), определение тока в целом намного сложнее, чем кажется на первый взгляд. Это довольно просто, если вы используете простую схему переключаемого резистора, но настроить ее не так-то просто. Существуют специализированные ИС, которые предназначены именно для этого приложения, но большинство из них предназначены только для SMD, и они недешевы, особенно если они доступны только в упаковке из пяти штук. Это очень часто встречается с деталями SMD. Конечно, это всего лишь чувствительная часть — все еще необходимо получить действующее правило .Как уже отмечалось, в точке перехода (от регулирования напряжения к регулированию тока) есть два отдельных регулятора, каждый из которых пытается наложить свою волю на выход. Без значительных затрат времени на разработку в результате часто возникают колебания (переходные или непрерывные).

Основная идея этой статьи — показать вам некоторые из доступных опций. В идеале, большинство строителей своими руками хотят что-то, что выполняет свою работу, является надежным и не требует больших затрат на строительство. Это даже лучше, если он может использовать детали, которые у вас уже есть в наличии.Если вам все-таки нужно покупать детали, вы должны быть разумно уверены, что выбранная вами схема соответствует поставленной задаче. Как уже отмечалось, схемы, которые я показал, пришлось адаптировать для обеспечения надежности (особенно при низком выходном напряжении и большом токе). Несоблюдение защитных мер (ограничение тока, отключение вентилятора и перегрева) приведет к цепи, которая не только подведет вас, но и может взорвать цепь, которую вы тестируете.

Когда вы посмотрите на стоимость необходимых компонентов, вы очень быстро обнаружите, что они составляют довольно пугающую цифру.Просто трансформатор (-ы) будет дорогим, и хотя многие детали достаточно дешевы, это не относится к конденсаторам фильтра или радиаторам. Вы также должны предоставить корпус и другое оборудование, и это потребует значительной механической обработки для размещения счетчиков, вентиляторов, разъемов и т. Д. Очень сомнительно, что вы потратите меньше эквивалента 400 австралийских долларов в выбранной вами валюте, даже если у вас есть много мелких деталей на складе. Я видел двойной источник питания 0–30 В, 3 А всего за 325 австралийских долларов в сети, и очень сомнительно, что вы сможете построить его за меньшую плату, если у вас нет почти всего необходимого в своем «ящике для мусора».

, а не ни при каких обстоятельствах не следует рассматривать как конструктивное изделие! Он предназначен только для демонстрации того, что создание даже небольшого запаса скамейки — нетривиальное занятие, и что есть соображения, о которых вы, возможно, не задумывались. Некоторые из конструкций, которые вы найдете в других местах в сети, не очень хорошо спроектированы и не обеспечивают достаточного запаса прочности для транзистора с последовательным проходом (в частности), и в большинстве нет предупреждений о SOA транзистора, тепловом отказе или любых других вещах. это может пойти наперекосяк.Как показано в этой статье, есть много вещей, которые могут пойти не так, особенно если какая-либо часть поставки недооценена из-за неправильного использования, которое получит при нормальном использовании.


Список литературы
  1. Что такое вообще вся эта штука с дизайном блока питания (электронная конструкция)
  2. Регулируемый лабораторный источник питания — два варианта
  3. Стабилизированный источник питания 0-30 В постоянного тока с контролем тока
  4. Zdroj G400 (на чешском языке)
  5. Трубка регулятора напряжения (Википедия)
  6. Стабилизированный источник питания с двумя напряжениями, John Linsley-Hood (Wireless World, январь 1975 г.)
  7. Термисторы NTC (www.resistorguide.com)


Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2019. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки.Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница опубликована и © ноябрь 2019 г.


Как запустить проект

Добавлено в избранное Любимый 64

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов. В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать.Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, не будет находиться рядом с розеткой.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов.Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы, возможно, захотите проверить перед чтением этого:

Способы реализации проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • Питание от USB
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (например, компьютер или ноутбук)
  • Аккумуляторы

Четыре распространенных способа подачи питания на ваш проект

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

Питание от USB

Если вы начинаете с SparkFun Inventor’s Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno — это пример, для которого требуется только кабель USB A — B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB от A до B — 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2.0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, из тех, что обычно…

1

Кабель USB micro-B — 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный микро-USB.Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

13
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, питание стенда отключится, надеюсь, что предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Особый источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Для более актуальных проектов, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Батареи

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи — это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные батареи, аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор — 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac. Даже не думайте пытаться перезарядить их.Используйте их с…

1

Никель-металлгидридный аккумулятор 2500 мАч — AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с батареи и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

LiPower — повышающий преобразователь

В наличии PRT-10255

Плата LiPower основана на невероятно универсальном повышающем преобразователе TPS61200.Плата сконфигурирована для использования с Li…

5

Рекомендации по напряжению / току

Сколько напряжения мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа. Однако большинство микропроцессорных плат для разработки, таких как Arduino Uno, имеют на борту регулятор напряжения.Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и микросхемы на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 до 12 В.

Питание поступает от источника питания и затем регулируется регулятором напряжения, так что каждая микросхема получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время. Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в режиме 3.Диапазон от 3 до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним. Если ваш источник питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным и непредсказуемым образом.Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется проверить таблицы данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей.В противном случае падение мощности может привести к сбросу микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Браун-ауты со светодиодными лентами, соединенными ромбовидной цепью

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, будет легче оценить количество тока, которое требуется вашему проекту.Тем не менее, распространенные способы выяснить это экспериментально — либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения силы тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели с крючками от банана к микросхеме

В наличии CAB-00506

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

7

Кабели из банана в банан

В наличии CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Кабель от банана к аллигатору

В наличии CAB-00509

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом. Существует множество способов питания вашей макетной платы, многие из них используют те же разъемы, которые упоминаются здесь.

Как только проект проходит стадию прототипирования, он обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта.Если вы планируете создавать схему более нескольких раз, вы можете подумать о разработке схемы с помощью программного обеспечения САПР (например, Eagle), чтобы сэкономить время при подключении проекта или если вы планируете уменьшить размер всей схемы.

Комплект SparkFun ProtoShield

В наличии DEV-13820

SparkFun ProtoShield Kit позволяет вам настроить свой собственный щит Arduino, используя любую схему, которую вы можете придумать, а затем …

3

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой электронике, так и в электронике для хобби, является цилиндрический разъем, также известный как цилиндрический разъем.Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта. В зависимости от вашего дизайна вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом каждый вывод на соединении размыкается…

5

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или цилиндрического разъема.Некоторые батареи, такие как литий-полимерные ионные батареи, часто используют разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что отлично подходит в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъеме

18 января 2013 г.

Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных вариантов, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, непростым. Эта статья поможет вам окунуться в мир разъемов.

Дистанционное / мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора — это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-часов, (Ач) или миллиампер-час (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженный аккумулятор за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то похожем на небольшой квадрокоптер.Вы можете получить приблизительное представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах аккумуляторов в нашем руководстве по аккумуляторным технологиям.

Батареи, подключенные последовательно и параллельно

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батареи помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, так как многие зарядные устройства рассчитаны только на одноэлементную зарядку.

При подключении двух или более батарей в параллельно емкости увеличиваются. Например, четыре батареи AA, подключенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша схема.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и посчитаем, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять примерно на 10 мА больше тока. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас составляет:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий разрыв на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и регулировать напряжение в соответствии с требованиями вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, питаемой параллельно от 3 АА и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в этой параллельной конфигурации.Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время автономной работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы увидеть еще один пример расчета того, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали источник питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте, нет ли задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с аккумулятором. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и дальнейшее развитие

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и то, как определить, какой из них лучше всего подходит для вас, в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать лучшее суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Руководство по подключению зарядного устройства USB LiPo

Как заряжать LiPo аккумуляторы с помощью зарядного устройства USB LiPo. Плюс как доработать зарядное устройство, чтобы выставить ток заряда.

Или посмотрите несколько идей в блогах:

Линейные источники питания

— Основы схемотехники

Линейный источник питания — это блок питания (БП), не содержащий никаких коммутационных или цифровых компонентов.Он обладает некоторыми выдающимися характеристиками по сравнению с импульсными блоками питания, такими как очень низкий уровень шума и пульсаций, невосприимчивость к помехам от сети, простота, надежность, простота конструкции и ремонта. Они также могут генерировать очень высокие напряжения (тысячи вольт) и очень низкие напряжения (менее 1 В). Они могут легко генерировать несколько выходных напряжений. С другой стороны, они большие по размеру, тяжелые и требуют большего теплоотвода. Линейные источники питания существуют уже несколько десятилетий, задолго до появления полупроводников.

Линейные блоки питания

могут быть фиксированными, например, в качестве источника питания 5 В, который может потребоваться для логической схемы, или нескольких фиксированных источников питания, необходимых для ПК (+5, +12 или -12 В). На настольном лабораторном блоке питания вы можете использовать переменный блок питания. В дополнение к одиночным источникам вы также можете получить двойные источники питания, скажем, для схем операционного усилителя ± 15 В, и даже источники двойного слежения, которые синхронизированы по напряжению друг с другом в источниках питания, дрейф которых не является незначительным.

Некоторые примеры:

  • Логические и микропроцессорные схемы +5 В
  • Светодиодное освещение + 12 В, общая электроника
  • Цепи ОУ ± 15 В
  • Блок питания для стендовых испытаний 0-30 В
  • +14.Зарядное устройство на 5 В

В этой статье мы рассмотрим отдельные компоненты блока питания, а затем с нуля спроектируем небольшой блок питания 12 В и регулируемый двойной блок питания 1–30 В.

Разбор линейного блока питания

  • Секция ввода сети содержит соединения с сетью, обычно выключатель, предохранитель и своего рода контрольную лампу. Используйте хорошее заземление и изолируйте все силовые части внутренней проводки изоляцией для защиты от случайного контакта.
  • Трансформатор выбирается в соответствии с требуемым выходным напряжением и эффективно изолирует все другие цепи от подключения к сети.Трансформатор может иметь несколько отводов первичной обмотки для обеспечения различных входных напряжений сети и несколько отводов вторичной обмотки, соответствующих требуемому выходному напряжению. Кроме того, между отводом первичной и вторичной обмоток имеется экран из медной фольги, который помогает уменьшить емкостную связь с высокочастотным сетевым шумом.
  • Выпрямитель может быть таким простым, как одинарный диод (не подходит), двухполупериодный мост с центральным отводом или двухполупериодный мост. Следует указать используемые диоды (выпрямители).Они дешевые и маленькие, и в них используются более крупные, чем предполагалось. По моему опыту ремонта многих неисправных блоков питания, проблемы обычно вызваны выходом из строя диода либо из-за слишком большого тока, либо из-за скачков напряжения в сети. Учитывая это, выберите диод с высоким PIV (пиковое обратное напряжение). Когда вы устанавливаете диоды, держите выводы на длинной стороне, так как именно здесь рассеивается большая часть их тепла. В высоковольтных источниках питания часто встречаются небольшие конденсаторы, подключенные параллельно диодам, чтобы помочь им быстрее восстанавливаться.
  • Конденсатор — очень трудолюбивый компонент, который должен заряжаться до пика вторичного напряжения (Vsec * 1,414), а затем быстро разряжаться в нагрузку. Конденсаторы из алюминиевой фольги представляют собой рулон туалетной бумаги и алюминия, заполненный маслом, и они имеют репутацию высыхающих и, как следствие, потери емкости. Если возможно, разместите их подальше от источников тепла в вашей планировке. Танталовые конденсаторы имеют гораздо более низкое последовательное сопротивление (эквивалентное последовательное сопротивление), поэтому лучше справляются с пульсациями.Вы можете использовать их в цепи регулятора. При разводке старайтесь свести все заземления в одну точку. Конденсатор — хорошее место для использования. На приведенном ниже рисунке показан резистор, который является отличной технологией для удаления воздуха из этого колпачка при выключенном блоке питания. Регулятор также должен иметь небольшой выходной ток, когда он не находится под нагрузкой; 1к будет достаточно.

На рисунке ниже зеленая кривая представляет собой то, как форма волны выглядела бы без конденсатора, а красная форма волны — это «пополнение» конденсатора на каждом полупериоде, а затем разряд из-за тока нагрузки.Результирующая форма волны — это пульсирующее напряжение.

  • Регулятор бывает разных типов: последовательный, шунтирующий, простой и сложный. Будет отдельная статья о регуляторах, но в этом руководстве мы сосредоточимся на разработке двух простых регуляторов на основе IC с фиксированным регулятором 7812 и регулируемым регулятором LM317.

Проектирование линейного источника питания

Разработка блока питания похожа на чтение на иврите: вы начинаете с конца и продвигаетесь к началу.Ключевая спецификация — это напряжение, которое мы хотим на выходе, и сколько тока мы можем получить от него без падения напряжения. Для этого проекта давайте нацелимся на 12 В при 1 А и 3 В на регуляторе. У любого регулятора должна быть определенная необходимая разница между входным и выходным напряжениями для правильной работы. Если не указано иное, предположите, что это минимум 3 В. Некоторые из используемых здесь регуляторов рассчитаны только на 2 В.

Если на выходе нужно 12В, то на конденсаторе нужно 12 + 3 = 15В.Теперь, когда этот конденсатор заряжается и разряжается, должна присутствовать переменная составляющая, и это пульсирующее напряжение (пульсации V , ). Чем больше ток, потребляемый конденсатором, тем хуже пульсации, и это тоже нужно указать. При выборе 10%, т.е. 1,2 В (размах), ограничение рассчитывается следующим образом:

, где f — 50 или 60 в зависимости от частоты вашей сети. Следовательно, нам нужно:

Это возвращает нас к диодам. Поскольку диоды обеспечивают не только ток нагрузки, но и ток заряда конденсатора, они будут использовать больший ток.

В двухполупериодном мосту ток 1,8 * I нагрузка . В центрально-резьбовом 1,2 * I нагрузка . Учитывая это, мы должны использовать диоды не менее 2 А.

Это возвращает нас к вторичной обмотке трансформатора и ее удельному напряжению. В любой надежной системе мы должны смотреть на допуски. Если мы будем следовать только минимальным требованиям к конструкции, вход регулятора может упасть ниже уровня выпадения напряжения, что в значительной степени повлияет на сеть. В коммерческих проектах обычно указывается ± 10%, поэтому, если у нас напряжение 230 В, это означает, что оно может упасть до 207 В.

Таким образом, необходимое напряжение на вторичной обмотке будет следующим:

, где 0,92 — КПД трансформатора, а 0,707 — 1 / √2

V reg — падение напряжения регулятора, V rect — падение напряжения на 2 диодах, которое составляет 2 * 0,7 для цепи центрального отвода и 4 * 0,7 для полного моста. Пульсация V была указана как 10% от 12 В или 1,2 В, поэтому

В сек = 15,03 В

Это означает, что готового трансформатора на 15 В должно хватить.Иногда вам не удается найти подходящий трансформатор, и вам нужно выбрать другой с более высоким напряжением. Обратной стороной этого является то, что на регуляторе будет более высокое напряжение, и, как следствие, большая мощность рассеивается в его радиаторе.

Последнее, что нужно сейчас указать, — это размер трансформатора в ВА. Это простая и распространенная ошибка — думать, что ВА будет V сек * I нагрузка , т.е. 15 * 1 = 15ВА. Но мы не должны забывать, что трансформатор также заряжает конденсатор, поэтому, в зависимости от конфигурации, 1.2 или 1,8 * I нагрузка означает большую разницу, т.е. 1,8 * 1 * 15 = 27ВА.

На этом мы завершаем дизайн. А как насчет предохранителя? Это целая наука, но для этого простого блока питания я бы оценил его в 2 раза больше первичного входного тока. Таким образом, в данном случае ВА равно 27, а напряжение сети — 230 В, а I = 2 * 27/230 = 250 мА.

Теперь мы можем добавить к регулятору последние несколько компонентов:

Для C1 мы разработали 4200 мкФ. Но поскольку регулятор удалит большую часть пульсации, она может быть меньше или вдвое меньше той, что составляет 2200 мкФ.Назначение C2 и C3 — обеспечение стабильности и помехоустойчивости регулятора. National Linear обычно составляет C2 10 мкФ и C1 1 мкФ. В идеале это должны быть танталовые типы, но если вы вынуждены использовать алюминий, вам следует удвоить ценность.

D3 часто пренебрегают, но он важен. Если произойдет короткое замыкание на входе регулятора, любая накопленная емкость в нагрузке Vcc, включая C3, разрядится на заднюю часть регулятора и, возможно, погаснет его. Но D3 обходит это стороной.

Теперь давайте заменим фиксированный регулятор на регулируемый на основе популярного и простого в использовании LM317 и добавим дополнительную отрицательную версию LM337, чтобы сформировать двойной регулируемый блок питания.Обратите внимание, что мы использовали трансформатор с центральным отводом, а также полный мостовой выпрямитель. Следующие примечания в равной степени относятся к отрицательной половине блока питания. Единственное, что осталось разработать, — это R6 и R7.

Если вы сделаете R6 = 220, то для любого напряжения между V max и V min , R7 = (176 * V из ) — 220. Итак, если вы хотите 9 В, R7 будет 176 * 9 — 220 = 1к4. Вы можете использовать двойной горшок от 5 до 10k (линейный) для одновременной регулировки обеих сторон. Трансформатор с вторичной обмоткой 25/0/25 подойдет.C8 и C9 обеспечивают помехоустойчивость и могут составлять 10 мкФ. C10 и C11 — 1 мкФ, а C4 и C7 — 1000 мкФ. Минимальное выходное напряжение составляет около 1,25 В.

Некоторые примеры небольших линейных блоков питания своими руками


Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологиях, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой своими руками, то этот комплект для сборки блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Трансформатор входной

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная цепь

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Регулятор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты цепи, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания 5 В постоянного тока

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

Спецификация 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — сопротивление нагрузки. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило для выбора номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить к микросхеме регулятора радиатор.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как разработать источник питания постоянного тока на 5 В.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

Блок питания

Eurorack — решение для самостоятельного изготовления биполярных модульных синтезаторов

Это простой в сборке биполярный блок питания Eurorack, который выдает чистый линейный источник биполярного напряжения +/- 12 В для синтезаторов Eurorack. Обратите внимание, что эта схема не обеспечивает 5В. Максимальный выход составляет 1 ампер, разделенный между положительной и отрицательной нагрузками.Обратите внимание, что максимальные нагрузки для всех блоков питания являются «теоретическими», поэтому не пытайтесь максимально использовать какой-либо блок питания. Можно добавить дополнительные радиаторы, чтобы приблизиться к теоретической максимальной мощности.

Эта схема / комплект имеет место на печатной плате для входного разъема постоянного тока для настенной бородавки, поэтому вам не нужно соединять настенную бородавку, а также евростойку, Molex (MOTM) и проводные выходы на печатной плате, чтобы обеспечить питание чтобы работать не только как блок питания Eurorack, питающий несколько модулей, но и как стендовый блок для тестирования сборок MOTM и Eurorack DIY.

В комплект входит все, кроме настенной бородавки переменного тока (ее можно легко купить на Amazon или на месте) и дополнительного выходного разъема (евро или MOTM). Чаще всего пользователь подключает выход (после тестирования!) К плате шины для питания нескольких модулей Eurorack через выходные контактные площадки, но при этом имеются места для 4-контактного усилителя (MOTM) и разъема Eurorack, если вы хотите использовать его в качестве настольного источника питания или если вы используете 4-контактный разъем для подачи питания на шинные платы.

Обратите внимание, что хотя в комплект входят регуляторы LM78 и LM79, выбранные для систем +/- 12 В, использование другой настенной бородавки и других регуляторов напряжения LM позволит использовать системы с напряжением +/- 9 или 15 В.

Вы должны поставить свою собственную настенную бородавку, которая выдает от 12 до 15 В переменного тока при токе от 500 до 1000 мА. Выход настенной бородавки ДОЛЖЕН быть AC. Эта стенная бородавка — хороший тому пример.

Это не должен быть первый комплект для сборки, поскольку он содержит в основном поляризованные детали, и неправильная установка может привести к возгоранию и / или разрушению других модулей Eurorack. Несмотря на то, что комплект несложен в сборке и имеет небольшое количество деталей, необходимо внимательно следить за процессом сборки, чтобы не допустить ошибок.

Схема очень проста: поступает биполярный сигнал питания переменного тока, который выпрямляется диодами на положительную и отрицательную мощность, а затем регулируется до 12 В с каждой стороны.Резисторы 2,4 кОм обеспечивают нагрузку, гарантирующую, что схема работает даже без модулей, потребляющих ток, а большие конденсаторы предназначены для очистки сигналов питания. Меньшие колпачки и дополнительные диоды нужны только для безопасности.

Я не несу ответственности за любой ущерб, причиненный в результате сборки, установки или использования этого источника питания. Создавайте и пользуйтесь на свой страх и риск!

Coda Effects — Сделайте свой собственный блок питания DIY: да или нет?

Давайте будем честными: покупка блока питания — это не самое смешное.

Это довольно дорого (и я должен признать, что я бы предпочел добавить еще один пух, который мне не нужен — хорошая педаль к моему педалборду, чем блок питания! 😁) и различия в между несколькими моделями на рынке не очень очевидно …


Поэтому я спросил себя: можно ли сделать блок питания своими руками?
В этом сообщении в блоге я объясню, как работает блок питания, каковы хорошие критерии для его выбора с точки зрения электроники и стоит ли сделать его самостоятельно.Пойдем!

Как работает блок питания?

Источник питания играет простую роль: преобразует 220 В от вашей розетки в множество выходов 9 В постоянного тока для ваших педалей.

Легко? Не совсем! Давайте углубимся в предмет, заглянув внутрь моего блока питания, Carl Martin Pro Power:


Как видите, внутри довольно многолюдно!

Основным элементом является трансформатор.

Не этот, конечно 😁 (бадум тсс!)


А вот большой квадратный синий компонент посередине блока питания.

Как следует из названия, может преобразовывать переменный ток 220 В из розетки в меньшее напряжение. Это трансформатор R10, который обеспечивает выходное напряжение 15 В.

Но нашим педалям нужен постоянный ток (DC)! Для перехода от переменного тока к постоянному обычно используется диодный мост. Остающийся ток стабилизируется конденсаторами, которые генерируют постоянный ток, который имеет много оставшихся пульсаций.

Чтобы сделать его более плавным, у есть два регулятора напряжения, которые вы можете увидеть здесь :


Возможно, вы уже использовали регуляторы в гитарных эффектах.Если да, то вы что-то заметили: они обнимаются!

Действительно, они обеспечивают высокий ток 1,5А каждый ! Это LM317, и они используются для обеспечения тока, достаточного для всех выходов источника питания. Carl Martin Pro Power имеет два выхода по 500 мА и шесть выходов по 100 мА, что в сумме составляет 1600 мА, что ниже макс. может обеспечить.

Видно, что у них огромные радиаторы, которые касаются корпуса, когда он закрыт.Они очень важны, потому что регуляторы рассеивают МНОГО тепла ! Рассеиваемая мощность 1,5 Вт может выделять тепло до 100 ° C. Таким образом, важно иметь хорошую систему отвода тепла, чтобы избежать возгорания!

Также можно увидеть много электролитических конденсаторов:


Все эти конденсаторы служат для одной цели: фильтровать источник питания! Они устранят последние колебания переменного тока, которые все еще могут присутствовать, чтобы избежать шума 50 Гц в ваших педалях. Вы можете видеть, что на каждом выходе есть как минимум один.

Слишком долго, не читал: такое бывает в блоке питания: 220 переменный ток от вашей розетки преобразовал в 15 В переменного тока трансформатором, затем в постоянный ток мостовым выпрямителем. Остающийся постоянный ток стабилизируется регуляторами. Затем 9 В постоянного тока фильтруется множеством электролитических конденсаторов.

Тааааааааааааааааааааааааач … Что такое ХОРОШИЙ блок питания?

Конечно, есть хорошие и плохие блоки питания.

Конечно, важно следить за количеством выходов и их силой тока, но с точки зрения электроники следует учитывать два основных момента.

1. Качество фильтрации
Электролитические конденсаторы, которые используются для фильтрации, и тип схемы фильтрации, в которой они используются, будут определять общий выходной шум источника питания.

Фильтрация не одинакова в каждом источнике питания и может создавать различия с точки зрения шума. Однако производители не всегда включают выходной шум, и без сложных приборов его довольно сложно измерить …

Как всегда, было бы здорово, если бы производители могли немного повысить прозрачность!

2.Тип трансформатора
Трансформаторы могут излучать электромагнитные волны. Ваши кабели подобны антеннам, которые улавливают его, что создает шум … В зависимости от типа трансформатора, будет больше или меньше шума.

Обычно в источниках питания гитарных педалей используется трансформатор с сердечником и R , который имеет низкое электромагнитное излучение по сравнению с другими трансформаторами, такими как тороидальные трансформаторы. Например, Carl Martin Pro Power имеет трансформатор с сердечником R.

В лаборатории Voodoo используется «нестандартный тороидальный трансформатор», который снижает уровень шума, но, на мой взгляд, не является оптимальным.

Strymon пошла по другому пути, использовав импульсный источник питания в своих источниках питания Ojaj и Zuma, который генерирует гораздо меньше электромагнитных излучений.

И работает! Посмотрите это видео:

Блок питания своими руками: возможно ли?

Короче говоря, ответ: да, но не стоит.

Сделать работоспособный блок питания довольно просто. Сделать эффективный, безопасный и бесшумный источник питания намного сложнее!

Действительно; ВЫ ДОЛЖНЫ быть очень осторожны с перегревом.Регуляторы выделяют много тепла и могут легко вызвать пожар в вашей системе или, что еще хуже, в вашем доме!

Существует также риск электробезопасности. Вы должны включить все элементы безопасности, которые обеспечивают вашу безопасность при использовании источника питания: предохранители, заземление, автоматический выключатель …

Поэтому все источники питания сертифицированы CE, что гарантирует электрическую и пожарную безопасность:


Еще одна проблема — корпус. К сожалению, это не стандартные корпуса.

Наконец, есть большая вероятность, что характеристики вашего блока питания будут довольно низкими по сравнению с коммерческими.

Вот почему я бы посоветовал вам просто купить сертифицированный CE блок питания с изолированными выходами.

Я думаю, что мой Carl Martin Pro Power действительно хорош и не слишком дорог. Если вам нужны блоки питания высшего качества, Strymon Zuma или Strymon Ojaj просто лучшие в своем классе.

Если вам понравилась эта статья, поблагодарите меня за то, что понравилась страница Coda Effects в Facebook! Вы также можете следить за Coda Effects в Instagram.

Чтобы пойти дальше:

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *