+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Источники питания — Принципиальные схемы и документация на QRZ.RU

  • 5 схем преобразователей напряжения с импульсным возбуждением 16.11.2016
  • 7 схем импульсных стабилизаторов напряжения 16.11.2016
  • Alinco EDC-64 Ni-Cd battery charger Дешин Виталий RA9YON
  • Cхема простого и надежного стабилизатора напряжения из 8-15В в 5В (L7805) 16.11.2016
  • DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Автомат защиты от перенапряжения дял сети 220В 16.11.2016
  • Автомат защиты сети от перенапряжения Владимир Козьмин UN7TAE
  • Автомат защиты сети от экстремальных отклонений напряжения 16. 11.2016
  • Автоматическая защита сетевой радиоаппаратуры 16.11.2016
  • Автоматическая приставка к зарядному устройству для авто аккумулятора 16.11.2016
  • Автоматический ограничитель переменного тока 16.11.2016
  • Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 16.11.2016
  • Автоматическое зарядное и восстанавливающее устройство (0-10А) 16.11.2016
  • Автоматическое зарядное устройство 16.11.2016
  • Автоматическое зарядное устройство + режим десульфатации для аккумулятора 16. 11.2016
  • Автоматическое зарядное устройство для кислотных аккумуляторов 16.11.2016
  • Автоматическое зарядное устройство на микросхеме К561ЛЕ5 16.11.2016
  • Автоматическое зарядное устройство с бестрансформаторным питанием 16.11.2016
  • Автоматическое импульсное зарядное устройство для аккумуляторов 12В 16.11.2016
  • Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов Сергей Чернов, Самара
  • Адаптер питания для систем стандарта PoE. Геннадий Бандура
  • Активная система охлаждения силовых приборов
    А. Анкудинов (ua3vvm)
  • Бездроссельный преобразователь напряжения12В в 15-27В 3А 16.11.2016
  • Бестрансформаторное зарядное устройство для аккумулятора 16.11.2016
  • Бестрансформаторный блок питания большой мощности для любительского передатчика 16.11.2016
  • Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 16.11.2016
  • Бестрансформаторный блок питания с регулируемым выходным напряжением 16.
    11.2016
  • Бестрансформаторный преобразователь напряжения (5-10В) 16.11.2016
  • Бестрансформаторный преобразователь напряжения 10В 250мА 16.11.2016
  • Бестрансформаторный стабилизированный источник питания на КР142ЕН8 16.11.2016
  • Блок защиты радиоаппаратуры с питанием от 12В 16.11.2016
  • Блок защиты электронных схем по питанию 16.11.2016
  • Блок отключения нагрузки БОН-04 Маврычев Александр
  • Блок питания 13,8В 25А Igor Ilchenko, 27. 01.2015
  • Блок питания 0-12В/300мА 16.11.2016
  • Блок питания 1,2-30В 0-7А G. Shilke
  • Блок питания 1-29В/2А (КТ908) 16.11.2016
  • Блок питания 12В 6А (КТ827) 16.11.2016
  • Блок питания 3-30В с током нагрузки до 40-50А G. Shilke
  • Блок питания 60В 100мА 16.11.2016
  • Блок питания автомобильной радиостанции (13.8В, ЗА ) 16.11.2016
  • Блок питания для аналоговых и цифровых микросхем 16. 11.2016
  • Блок питания для двух малогабаритных низковольтных паяльников с различными напряжениями питания Сергей Чернов
  • Блок питания для ионизатора (Люстра Чижевского) 16.11.2016
  • Блок питания для персонального компьютера «РАДИО 86 РК» 16.11.2016
  • Блок питания для телевизора 250В 16.11.2016
  • Блок питания для трансивера Alex RK9UC
  • Блок питания для трансивера Николай Шадрин, RZ4HX
  • Блок питания для трансивера 13. 8В. 22А.
    Давид Девдариани 4L1DA
  • Блок питания на ТВК-110 ЛМ 5-25В/1А 16.11.2016
  • Блок питания с автоматическим зарядным устройством на компараторе 16.11.2016
  • Блок питания с гасящим конденсатором 16.11.2016
  • Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 16.11.2016
  • Блок питания Ступенька 5 — 9 — 12В на ток 1A 16.11.2016
  • Блок питания усилителя ЗЧ (18В, 12В)
    16.11.2016
  • БП для трансивера из компьютерного источника питания AT/ATX Давид Девдариани 4L1DA
  • Быстродействующая защита от помех в радиоаппаратуре 16. 11.2016
  • Быстродействующий стабилизатор с pnp-транзистором 16.11.2016
  • Быстродействующий электронный предохранитель 16.11.2016
  • Вариант источника питания для импортного трансивера из компьютерного БП AT/ATX
    Николай RZ4HX
  • Варианты исполнения схем стабилизации Сергей Чернов
  • Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 16.11.2016
  • Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 16. 11.2016
  • Выпрямитель с малым уровнем пульсаций 16.11.2016
  • Высоковольтные генераторы напряжения с емкостными накопителями энергии
    16.11.2016
  • Высоковольтные источники питания Alexandr Lyalyuk, 03.09.2013
  • Высоковольтный преобраззователь 220В- 10кВ 16.11.2016
  • Высоковольтный преобразователь 8-16кВ 16.11.2016
  • Высоковольтный преобразователь напряжения с регулировкой 16.11.2016
  • Высококачественный блок питания на транзисторах (0-12В) 16.
    11.2016
  • Высокоэффективное зарядное устройство для аккумуляторов 16.11.2016
  • Высокоэффективное зарядное устройство для батарей DeadMazay
  • Высокоэффективный импульсный преобразователь напряжения 5в/4в 16.11.2016
  • Гаражный выпрямитель для постоянной подзарядки аккумулятора alex kiverin
  • Генераторы высокого напряжения с использованием катушек индуктивности 16.11.2016
  • Два бестрансформаторных блока питания 16.11.2016
  • Два напряжения от одной обмотки трансформатора 16. 11.2016
  • Два разнополярных напряжения от одного источника 12В 16.11.2016
  • Двуполярное напряжение из однополярного 27В в  2х12В 16.11.2016
  • Двуполярное напряжение от одной обмотки трансформатора 16.11.2016
  • Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 16.11.2016
  • Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 16.11.2016
  • Двуполярный стабилизатор на основе однополярной микросхемы 15В (142ЕН8, К140УД7) 16. 11.2016
  • Двуполярный стабилизатор напряжения (1-5В, 2А) 16.11.2016
  • Двухканальный источник питания мощностью 20W для высокотемпературных применений. Геннадий Бандура
  • Двухканальный неизолированный промышленный источник питания на микросхеме TNY266P. Геннадий Бандура
  • Двухполярные стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Двухтактный преобразователь напряжения на полевых транзисторах 16.11.2016
  • Зарядно-питающее устройство для портативной аудио / mp3 аппаратуры. Геннадий Бандура
  • Зарядно-пусковое устройство Старт УПЗУ-У3 Валерий , 11.03.2017
  • Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 16.11.2016
  • Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 16.11.2016
  • Зарядное устройство для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство 2W на базе микросхемы серии LinkSwitch-LP. Геннадий Бандура
  • Зарядное устройство \»Рассвет-2\» Павел
  • Зарядное устройство для автомобильного аккумулятора KT315
  • Зарядное устройство для автомобильного аккумулятора 16. 11.2016
  • Зарядное устройство для автомобильного аккумулятора без соблюдения полярности Черепанов Андрей Николаевич
  • Зарядное устройство для аккумулятором с током заряда 300 мА 16.11.2016
  • Зарядное устройство для мобильного телефона на микросхеме LNK520P. Геннадий Бандура
  • Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 16.11.2016
  • Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов Андрей Шарый
  • Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 16. 11.2016
  • Зарядное устройство с таймером для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство с температурной компенсацией 16.11.2016
  • Защита блока питания от короткого замыкания 16.11.2016
  • Защита для устройств, питающихся от сети 220 В 16.11.2016
  • Защита низковольтных цепей постоянного тока 16.11.2016
  • Защита питания микроконтроллера от помех 16.11.2016
  • Защита радиоаппаратуры от повышения напряжения в сети 220V 16. 11.2016
  • Звуковой индикатор разряда 12V аккумулятора Сергей Чернов
  • Звуковой сигнализатор перегрузки блока питания 16.11.2016
  • Звуковой сигнализатор пропадания сетевого напряжения 16.11.2016
  • Измеритель заряда для автомобильного аккумулятора 16.11.2016
  • Импульсные источники питания на микросхемах и транзисторах 16.11.2016
  • Импульсные источники питания, теория и простые схемы 16.11.2016
  • Импульсные стабилизаторы напряжения на микросхемах и транзисторах 16. 11.2016
  • Импульсный блок питания 5В 0,2А 16.11.2016
  • Импульсный блок питания из сгоревшей энергосберегающей лампочки Wlad , 30.07.2015
  • Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 16.11.2016
  • Импульсный блок питания с регулятором напряжения 1….32 V мощностью 200ватт Евгений
  • Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 16.11.2016
  • Импульсный блок питания УНЧ 4х30В 200Вт 16.11. 2016
  • Импульсный источник питания (5В 6А) 16.11.2016
  • Импульсный источник питания 12W на микросхеме TNY278P (TinySwitch-III). Геннадий Бандура
  • Импульсный источник питания 20 Bт Сергей Чернов
  • Импульсный источник питания 5V 5A Сергей Чернов
  • Импульсный источник питания ATX Сергей Чернов
  • Импульсный источник питания мощностью 32W/81W(пиковая) на микросхеме PKS606 от Power Integrations. Геннадий Бандура
  • Импульсный источник питания на 40 Вт 16. 11.2016
  • Импульсный источник питания на микросхеме LNK562P мощностью 1.6 W с напряжением пробоя 10 kV. Геннадий Бандура
  • Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 16.11.2016
  • Импульсный источник питания персональных компьютеров ATX на базе SG6105 Сергей Чернов
  • Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 16.11.2016
  • Импульсный источник питания УМЗЧ Сергей Чернов
  • Импульсный источник питания УМЗЧ (60В) 16.11.2016
  • Импульсный маломощный источник питания 5V 0.5A Сергей Чернов
  • Импульсный понижающий стабилизатор 5-30В 4А 16.11.2016
  • Импульсный понижающий стабилизатор на ИМС LT1074 16.11.2016
  • Импульсный преобразователь напряжения с 12В на 220В 50Гц 16.11.2016
  • Импульсный сетевой блок питания 9В 3А (КТ839) 16.11.2016
  • Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 16.11.2016
  • Импульсный стабилизатор 12В 4,5А 16.11.2016
  • Импульсный стабилизатор напряжения (вход 8-60В. выход 5В) 16.11.2016
  • Импульсный стабилизатор напряжения 0-25В (КР1006Ви1) 16.11.2016
  • Импульсный стабилизатор напряжения 12В/4А (142ЕН8, КТ819) 16.11.2016
  • Импульсный стабилизатор напряжения 5В 2А 16.11.2016
  • Импульсный стабилизатор напряжения на КТ825 16.11.2016
  • Импульсный стабилизатор напряжения с высоким КПД 5В 2А (142ЕП2, КТ907) 16.11.2016
  • Инвертор полярности напряжения 12В 16.11.2016
  • Инверторы полярности напряжения (- + / + -) 16.11.2016
  • Индикатор ёмкости батарей 16.11.2016
  • Индикатор перегорания предохранителя 16.11.2016
  • Интегральные стабилизаторы для микроконтроллеров 16.11.2016
  • Использование блоков питания старых ПК для питания трансиверов Кандауров Виктор
  • Источник для автомобильного трансивера Сергей UA9OTY
  • Источник питания 1,2в для активных нагрузок GTL-логики 16.11.2016
  • Источник питания 1,5-30В, 4,5 A Сергей Петров RA4FLS
  • Источник питания для автомобильного трансивера 13В 20А 16.11.2016
  • Источник питания для гибридного (лампы, транзисторы) трансивера 16.11.2016
  • Источник питания для детских электрофицированных игрушек 12В 16.11.2016
  • Источник питания для измерительного прибора на микросхемах 16.11.2016
  • Источник питания для измерительных приборов 16.11.2016
  • Источник питания для компьютера 16.11.2016
  • Источник питания для логических микросхем (5В) 16.11.2016
  • Источник питания для прибора Ф4320 Валерий , 06.12.2020
  • Источник питания для трехвольтовых аудиоплейеров 16.11.2016
  • Источник питания для УНЧ на TOPSwitch Геннадий Бандура
  • Источник питания для часов на БИС 16.11.2016
  • Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 16.11.2016
  • Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 16.11.2016
  • Источник питания повышенной мощности 14 В, 100 Ватт 16.11.2016
  • Источник питания с плавной инверсией выходного напряжения +/-5В 16.11.2016
  • Источник питания с плавным изменением полярности +/- 12В 16.11.2016
  • Источник питания со стабилизацией на UL7523 (3В) 16.11.2016
  • Источник питания электронного звонка от сети Сергей Чернов
  • Источник повышенного напряжения 12В в 2х30В 16.11.2016
  • Источник резервного питания для АОН 16.11.2016
  • Источники питания для варикапа 16.11.2016
  • Источники питания конструктива ATX для компьютеров Юрий Гончаров, Анатолий Орехов
  • Источники питания стандарта ATX (250-450 Вт) Сергей
  • Как защиить домашнюю радиоаппаратуру от помех 16.11.2016
  • Как работают импульсные преобразователи напряжения (27 схем) 16.11.2016
  • Квазирезонансные преобразователи с высоким КПД 16.11.2016
  • Комбинированный блок питания 0-215В/0-12В/0,5А 16.11.2016
  • Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 16.11.2016
  • Компьютерный блок питания в качестве источника напряжения для современных импортных трансиверов Роман Таршиш RU3UJ
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Конденсаторно-стабилитронный выпрямитель 16.11.2016
  • Конденсаторынй преобразователь напряжения 16.11.2016
  • Критерии надежности источника питания на микросхемах Power Integrations. Геннадий Бандура
  • Лабораторный блок питания для рабочего места (3-18В 4А) 16.11.2016
  • Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 16.11.2016
  • Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 16.11.2016
  • Линейные стабилизаторы напряжения на транзисторах и ОУ 16.11.2016
  • Линейные стабилизаторы напряжения с высоким КПД 16.11.2016
  • Малогабаритное универсальное зарядное устройство для аккумуляторов 16.11.2016
  • Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем) 16.11.2016
  • Маломощный источник питания (9В, 70мА) 16.11.2016
  • Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 16.11.2016
  • Маломощный регулируемый двуполярный источник питания (LM317, LM337) 16.11.2016
  • Маломощный сетевой блок питания (9В) 16.11.2016
  • Маломощный сетевой источник питания — выпрямитель на 9В 16.11.2016
  • Микромощный инвертирующий преобразователь на на микросхеме LTC1144 16.11.2016
  • Микромощный повышающий преобразователь 16.11.2016
  • Миниатюрный импульсный блок питания 5…12 В 16.11.2016
  • Миниатюрный импульсный сетевой блок питания 5В 0,5А 16.11.2016
  • Миниатюрный сетевой блок питания (5В, 200мА) 16.11.2016
  • Мощные повышающие инверторы напряжения 16.11.2016
  • Мощный DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Мощный бестрансформаторный преобразователь напряжения 30В 2А 16.11.2016
  • Мощный блок питания для усилителя НЧ (27В/3А) 16.11.2016
  • Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 16.11.2016
  • Мощный импульсный блок питания для УНЧ (2х50В, 12В) 16.11.2016
  • Мощный импульсный стабилизатор с высоким КПД 8-16В 10А 16.11.2016
  • Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 16.11.2016
  • Мощный лабораторный источник питания 0-25В, 7А 16.11.2016
  • Мощный малогабаритный преобразователь напряжения (12В в 30-50В) 16.11.2016
  • Мощный преобразователь 12В — 350В на микросхеме 1114ЕУ4 16.11.2016
  • Мощный преобразователь напряжения 12 В 16.11.2016
  • Мощный преобразователь напряжения 12 вольт в 220 вольт, 180 Вт Синицкий В.К
  • Мощный регулятор сетевого напряжения 220В 16.11.2016
  • Мощный стабилизатор напряжения (5..30V / 5A) 16.11.2016
  • Мощный стабилизатор напряжения -5В 4А (L7905) 16.11.2016
  • Мощный стабилизатор напряжения 5-30В 5А (140УД7, КТ818) 16.11.2016
  • Мощный стабилизатор с защитой по току 50В 5А (140УД20, КТ827) 16.11.2016
  • Мощный стабилизированный инвертор напряжения на 90Вт 16.11.2016
  • Мощный тиристорный преобразователь 12В в 220В (500Вт) 16.11.2016
  • Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 16.11.2016
  • Мультиклассовый Power-over-Ethernet источник питания 6.6W на микросхеме DPA423G (отладочный набор DA Геннадий Бандура
  • Мультиплексорные преобразователи напряжения на микросхемах и конденсаторах 16.11.2016
  • Недорогой вариант импульсного источника питания для электросчетчика. Геннадий Бандура
  • Неизолированные повышающие преобразователи мощностью 20W и 30W с постоянным выходным током на микрос Геннадий Бандура
  • Неизолированный BUCK-BOOST преобразователь 0,5Вт на микросхеме LNK302P Геннадий Бандура
  • Несложные конструкции регуляторов мощности Сергей Чернов
  • Несложный преобразователь 12В — 220В на транзисторах 16.11.2016
  • Низковольтные преобразователи напряжения для светодиодов 16.11.2016
  • Низковольтный преобразователь напряжения 2В в 5В 16.11.2016
  • Низковольтный стабилизатор напряжения 3-5В/0,4А (КР142ЕН19,КТ814) 16.11.2016
  • Обзор схем восстановления заряда у батареек 16.11.2016
  • Обратимый преобразователь напряжения (3,6В в 10В) 16.11.2016
  • Ограничитель напряжения 115-180V Виктор Онищук
  • Ограничитель пускового тока при включении радиоаппаратуры 16.11.2016
  • Ограничитель сетевого напряжения Александр Фролов
  • Однополярный источник питания УНЧ (40В) 16.11.2016
  • Оповещение о пропадании сети 220В 16.11.2016
  • Параллельное включение стабилизаторов 142ЕН5 16.11.2016
  • Параметрические стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Переделка блока питания для ПК POWER MAN IW-P350 в блок питания для трансивера 13,8V 22А Дергаев Э.Ю. UA4NX
  • Переделка источника питания ATX в AT Евгений Лисовой
  • Переключаемые конденсаторы в преобразователе полярности напряжения 16.11.2016
  • Питание будильника 1,5В от сети 220В 16.11.2016
  • Питание микроконтролерных устройств от сети 220В 16.11.2016
  • Питание микроконтроллеров от сети 220В через трансформатор 16.11.2016
  • Питание микроконтроллеров от телефонной линии 16.11.2016
  • Питание низковольтной радиоаппаратуры от сети 16.11.2016
  • Питание часов-будильника 1,5В от автомобильной бортовой сети 16.11.2016
  • Повышающий преобразователь с накачкой заряда (5В, 20мА) 16.11.2016
  • Повышающий преобразователь с накачкой заряда на 20В 16.11.2016
  • Повышающий стабилизатор Исаев Александр
  • Поддержание аккумуляторов в рабочем состоянии Григоров Игорь Николаевич
  • Подключение таймера к зарядному устройству аварийного аккумулятора 16.11.2016
  • Полупроводниковые аналоги стабилитронов 16.11.2016
  • Последовательный стабилизатор с ограничением тока 16.11.2016
  • Преборазователи 12 в 18В, 12 в 30В (LM555) 16.11.2016
  • Преобразователи напряжения (4В в 15В) 16.11.2016
  • Преобразователи напряжения на коммутируемых и модулируемых конденсаторах (13 схем) 16.11.2016
  • Преобразователи напряжения с повышающим трансформатором (К176ЛА7) 16.11.2016
  • Преобразователи постоянного напряжения в переменное 16.11.2016
  • Преобразователь (инвертор) напряжения 12В в 220В 16.11.2016
  • Преобразователь 12 В в 220 В Николай Яковлев
  • Преобразователь 12В в 220В на микросхеме и транзисторах 16.11.2016
  • Преобразователь для маломощной люминесцентной лампы (LM555) 16.11.2016
  • Преобразователь для ПДУ 1,5В в 9В 5мА 16.11.2016
  • Преобразователь для энергосберегающей лампы (2 транзистора) 16.11.2016
  • Преобразователь на 5в с питанием от 4 элементов 16.11.2016
  • Преобразователь на 5в с питанием от двух батарей 16.11.2016
  • Преобразователь напряжения (5В в 8.5В) 16.11.2016
  • Преобразователь напряжения 12 — 30В на микросхеме 1006ВИ1 16.11.2016
  • Преобразователь напряжения 12В — 22В 16.11.2016
  • Преобразователь напряжения 12В в 220В для походов 16.11.2016
  • Преобразователь напряжения 12В в 220В на 561ИЕ8, КП723 16.11.2016
  • Преобразователь напряжения 12В-220В (100Вт) 16.11.2016
  • Преобразователь напряжения 3,3В в 12В с частотой 500 кГц 16.11.2016
  • Преобразователь напряжения 40В в 5В с током нагрузки 10А 16.11.2016
  • Преобразователь напряжения 5В — 9В для питания мультиметра от USB 16.11.2016
  • Преобразователь напряжения 5В в 3,3В с кпд 95% 16.11.2016
  • Преобразователь напряжения 6-25В в 5В на ток 1,25А 16.11.2016
  • Преобразователь напряжения 70В / 5В с током нагрузки 700мА 16.11.2016
  • Преобразователь напряжения 9 В в 400 В 16.11.2016
  • Преобразователь напряжения DC/DC +400В для счетчика Гейгера (MC34063) 16.11.2016
  • Преобразователь напряжения для авометра Ц20 16.11.2016
  • Преобразователь напряжения для автомобиля (35,40,127,115,220В) 16.11.2016
  • Преобразователь напряжения для питания варикапов 16.11.2016
  • Преобразователь напряжения для питания газоразрядных индикаторов 16.11.2016
  • Преобразователь напряжения для радиоуправляемой модели 16.11.2016
  • Преобразователь напряжения для электробритвы 12В — 220В 16.11.2016
  • Преобразователь напряжения на ИМС K155ЛA13 (200В) 16.11.2016
  • Преобразователь напряжения на микросхеме и транзисторах (9В в 16В) 16.11.2016
  • Преобразователь напряжения на одном транзисторе (250В, 1Вт) 16.11.2016
  • Преобразователь напряжения на полевых транзисторах 12В / 220В DeadMazay
  • Преобразователь напряжения с малым уровнем помех 16.11.2016
  • Преобразователь напряжения с ШИ модуляцией (3-12В в 9В) 16.11.2016
  • Преобразователь однофазного напряжения 220В в трехфазное 16.11.2016
  • Преобразователь полярности напряжения (+ -) на К176ЛА7 16.11.2016
  • Прецизионное зарядное устройство для аккумуляторов 16.11.2016
  • Приставка-контроллер к зарядному устройству аккумулятора 12В 16.11.2016
  • Приставка-регулятор к зарядному устройству аккумулятора 16.11.2016
  • Простейшие пусковые устройства 12В для авто на основе ЛАТРа 16.11.2016
  • Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 16.11.2016
  • Простое зарядное устройство для аккумуляторов (до 55Ач) 16.11.2016
  • Простое зарядное устройство для аккумуляторов и батарей 16.11.2016
  • Простое зарядное устройство для сотового телефона. Геннадий Бандура
  • Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов Сергей Чернов
  • Простой автоматический выключатель нагрузки от сети 220В 16.11.2016
  • Простой блок питания 5В/0,5А (КТ807) 16.11.2016
  • Простой двуполярный источник питания (14-20В, 2А) 16.11.2016
  • Простой и высокоэффективный промышленный источник питания на микросхеме LNK520P. Геннадий Бандура
  • Простой и мощный инвертор напряжения 12В — 220В (CD4060, 2SK2956, 2SJ471) 16.11.2016
  • Простой импульсный блок питания мощностью 15Вт 16.11.2016
  • Простой импульсный блок питания на ИМС 16.11.2016
  • Простой импульсный источник питания 5В 4А 16.11.2016
  • Простой импульсный преобразователь напряжения из 6В в 12В (BC547, BD679) 16.11.2016
  • Простой импульсный стабилизатор напряжения 5В/0,7А (КТ805Б) 16.11.2016
  • Простой источник двуполярного напряжения для ОУ 16.11.2016
  • Простой источник резервного питания на основе транзисторе КТ825 16.11.2016
  • Простой ключевой стабилизатор напряжения 15-25В 4А 16.11.2016
  • Простой преобразователь 12 — 220В Андрей Шарый
  • Простой преобразователь напряжения 12В-220В для бритвы (К561ТМ2, КТ805) 16.11.2016
  • Простой преобразователь напряжения 5в/3,3в 16.11.2016
  • Простой регулятор мощности Константин Романов
  • Простой регулятор мощности 3,5 кВт Шашарин Сергей Анатольевич г. Ульяновск , 01.01.2012
  • Простой самодельный инвертор напряжения 12-220В на двух транзисторах 16.11.2016
  • Простой стабилизатор 14V / 20A Юрко Стрелков-Серга UT5NC
  • Простой стабилизатор напряжения на 142ЕН1Г+КТ903 (9В/0,5А) 16.11.2016
  • Простой стабилизатор напряжения с защитой от КЗ 15-38В/3А 16.11.2016
  • Простые автогенераторные преобразователи напряжения на транзисторах 16.11.2016
  • Пьезоэлектрические трансформаторы в схемах преобразователей напряжения 16.11.2016
  • Пятивольтовый блок питания с ШИ стабилизатором 16.11.2016
  • Регулировка скорости электродвигателей переменного тока 16.11.2016
  • Регулируемый биполярный блок питания с микроконтроллером Якименко Сергей, UT2HI
  • Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 16.11.2016
  • Регулируемый двуполярный источник питания 12В(2х6В)/2А 16.11.2016
  • Регулируемый двуполярный источник питания из однополярного 16.11.2016
  • Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 16.11.2016
  • Регулируемый источник питания на LM317T (1-37В 1,5А) 16.11.2016
  • Регулируемый источник питания на ток до 1 А (К142ЕН12А) 16.11.2016
  • Регулируемый преобразователь напряжения 2-15В 1А 16.11.2016
  • Регулируемый стабилизатор напряжения 18-32В 3А (LM317, 2N3792) 16.11.2016
  • Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 16.11.2016
  • Регулируемый электронный предохранитель 16.11.2016
  • Регулятор к двуполярному источнику питания (6В) 16.11.2016
  • Регулятор мощности не создающий помех (176ЛЕ5, КУ202) 16.11.2016
  • Регулятор напряжения с ограничителем тока 16.11.2016
  • Регуляторы заряда аккумуляторов от солнечных батарей 16.11.2016
  • Резервное электропитание для дома 16.11.2016
  • Резервный источник питания 21W на микросхеме TNY280P (TinySwitch-III). Геннадий Бандура
  • Резервный источник питания 220В 16.11.2016
  • Релейный стабилизатор напряжения 16.11.2016
  • Самовосстанавливающийся предохранитель 16.11.2016
  • Самодельное пусковое устройство Валерий , 25.06.2017
  • Самодельный лабораторный источник питания с регулировкой 0-20В 16.11.2016
  • Сверхэкономичный стабилизатор напряжения 9В/50мА 16.11.2016
  • Свинцово-кислотный аккумулятор и схема зарядного устройства Валерий , 01.06.2017
  • Сетевая «Крона» 9В/25мА 16.11.2016
  • Сетевой адаптер с выходной мощностью 2 Вт на микросхеме LNK362P. Геннадий Бандура
  • Сетевой фильтр — простая схема Валерий , 31.03.2017
  • Сигнализатор перегорания предохранителя (176ЛА7) 16.11.2016
  • Сигнализаторы отсутствия напряжения 16.11.2016
  • Симметричный динистор в бестрансформаторном блоке питания 16.11.2016
  • Система переключения питания низковольтных устройств 16.11.2016
  • Система питания с детектором разряда аккумулятора 16.11.2016
  • Система управления резервным питанием на микросхеме MAX933 16.11.2016
  • Способ намотки тороидальных трансформаторов UA3VFS
  • Стабилизатор для БП трансивера 13.8V / 30A RZ9AE — Виктор
  • Стабилизатор напряжения (15-38В) с защитой от короткого замыкания 16.11.2016
  • Стабилизатор напряжения 10В/1А с полевым транзистором 16.11.2016
  • Стабилизатор напряжения 12В (К142ЕН2) 16.11.2016
  • Стабилизатор напряжения 12В/1А (КТ817) 16.11.2016
  • Стабилизатор напряжения 20В 7А (BC558, BUZ11) 16.11.2016
  • Стабилизатор напряжения 9В/0,5А (КП903) 16.11.2016
  • Стабилизатор напряжения велофары 16.11.2016
  • Стабилизатор напряжения для автомобильного аккумулятора 9В/300мА 16.11.2016
  • Стабилизатор напряжения для питания УМЗЧ 16.11.2016
  • Стабилизатор напряжения для УНЧ 12-15В/0,7А 16.11.2016
  • Стабилизатор напряжения для устройств с питанием от сети до 200Вт 16.11.2016
  • Стабилизатор напряжения на компараторе (5В, 2А) 16.11.2016
  • Стабилизатор напряжения на компараторе 5В 2А (554СА3, КТ908) 16.11.2016
  • Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905) 16.11.2016
  • Стабилизатор напряжения на ОУ 25В/0,5А (К140УД1А,П702) 16.11.2016
  • Стабилизатор напряжения переменного тока 16.11.2016
  • Стабилизатор напряжения с внешними регулирующими транзисторами 5-12В/1-3А 16.11.2016
  • Стабилизатор напряжения с высоким коэффициентом стабилизации 5В/0,5А 16.11.2016
  • Стабилизатор напряжения с выходным напряжением повышенной стабильности 16.11.2016
  • Стабилизатор напряжения с защитой 14-20В/0,5А (КТ825) 16.11.2016
  • Стабилизатор напряжения с защитой от КЗ (2-12В/0,3А) 16.11.2016
  • Стабилизатор напряжения с защитой от короткого замыкания 9В (П217) 16.11.2016
  • Стабилизатор напряжения с логическими элементами 5В 16.11.2016
  • Стабилизатор напряжения со ступенчатым включением 12В (142ЕН5А) 16.11.2016
  • Стабилизатор напряжения, защищенный от повреждения разрядным током конденсаторов 16.11.2016
  • Стабилизатор с высоким коэффициентом стабилизации (142ЕН5А, К140УД7) 16.11.2016
  • Стабилизатор с полевым транзистором 9В/150мА (КП903,551УД1) 16.11.2016
  • Стабилизатор с регулируемым выходным напряжением (142ЕН5, К140УД7) 16.11.2016
  • Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 16.11.2016
  • Стабилизаторы напряжения с малым током потребления (КР1014КТ1) 16.11.2016
  • Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 16.11.2016
  • Стабилизированный блок питания на 60 вольт. Синицкий В.К., Первомайский УЭС
  • Стабилизированный источник питания 40В/1,2А (КТ803) 16.11.2016
  • Стабилизированный источник питания с автоматической защитой от коротких замыканий 16.11.2016
  • Стабилизированный лабораторный источник питания (0-27В, 500мА) 16.11.2016
  • Стабилизированный сетевой преобразователь напряжения 16.11.2016
  • Схема автоматического зарядного устройства (на LM555) 16.11.2016
  • Схема автоматического зарядного устройства для аккумуляторов 12В 16.11.2016
  • Схема автоматического зарядного устройства для сотовых телефонов 16.11.2016
  • Схема блока питания AT Виктор Онищук
  • Схема блока питания и зарядного устройства для iPod Сергей Милюшин UR3ID, 22.03.2012
  • Схема блока питания и согласующего устройства для ICOM 718 Сергей UR3ID
  • Схема блока питания с напряжением 12В и током 6А 16.11.2016
  • Схема высоковольтного преобразователя (вход 12В, вых — 700В) 16.11.2016
  • Схема двухполярного стабилизатора из одной обмотки трансформатора (КТ827, КТ825) 16.11.2016
  • Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 16.11.2016
  • Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 16.11.2016
  • Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 16.11.2016
  • Схема зарядного устройства для батарей 16.11.2016
  • Схема зарядного устройства с повышающим преобразователем 16.11.2016
  • Схема защиты источника питания от перегрузок (КР544УД2, КУ101) 16.11.2016
  • Схема защиты радиоаппаратуры от повышенного напряжения питания 16.11.2016
  • Схема и конструкция простого сетевого фильтра для радиоаппаратуры 16.11.2016
  • Схема измерителя выходного сопротивления батарей 16.11.2016
  • Схема импульсного стабилизатора для зарядки телефона 16.11.2016
  • Схема инвертора напряжения 12В — 220 В 16.11.2016
  • Схема инвертора напряжения на тринисторах КУ201 (12В — 220В) 16.11.2016
  • Схема источника питания 12В, с током в нагрузке до 10 А 16.11.2016
  • Схема ключевого стабилизатора напряжения (5В, 2 А) 16.11.2016
  • Схема контроллера заряда батарей 16.11.2016
  • Схема маломощного широкодиапазонного стабилизатора напряжения 16.11.2016
  • Схема мощного стабилизатора тока на 100 — 200А (КР140УД20, КТ827) 16.11.2016
  • Схема непрерывного подзаряда батарей 16.11.2016
  • Схема преобразователя напряжения из 3В в 9В 16.11.2016
  • Схема преобразователя напряжения 9В в двуполярное 5В 16.11.2016
  • Схема простого зарядного устройства на диодах 16.11.2016
  • Схема пятивольтовогго блока питания с ШИ стабилизатором 16.11.2016
  • Схема релейного стабилизатора напряжения на транзисторах 16.11.2016
  • Схема сверхэкономичного стабилизатора напряжения (9В) 16.11.2016
  • Схема стабилизатора напряжения 12В 1А 16.11.2016
  • Схема стабилизатора напряжения с регулировкой от 0 до 10 Вольт 16.11.2016
  • Схема стабилизатора с высоким коэффициентом стабилизации 16.11.2016
  • Схема стабилизированного источника питания 40В, 1.2А 16.11.2016
  • Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 16.11.2016
  • Схема универсального лабораторного источника питания 16.11.2016
  • Схема устройства для подзаряда батарей 16.11.2016
  • Схема электронного предохранителя на двух транзисторах 16.11.2016
  • Схема электронного предохранителя на оптроне с высоким быстродействием (до 10А) 16.11.2016
  • Схемы автоматической защиты трехфазного двигателя при пропадании фазы 16.11.2016
  • Схемы бесперебойного питания для устройств на микроконтроллерах 16.11.2016
  • Схемы бестрансформаторного сетевого питания микроконтроллеров 16.11.2016
  • Схемы бестрансформаторных зарядных устройств 16.11.2016
  • Схемы защиты микроконтроллеров от смены полярности питания 16.11.2016
  • Схемы защиты устройств от всплесков тока и напряжения 16.11.2016
  • Схемы маломощных стабилизаторов напряжения (5В, до 1А) 16.11.2016
  • Схемы нетрадиционных источников питания для микроконтроллеров 16.11.2016
  • Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 16.11.2016
  • Схемы питания микроконтроллеров от солнечных элементов 16.11.2016
  • Схемы подзарядки маломощных аккумуляторных батарей для питания МК 16.11.2016
  • Схемы простых выпрямителей для зарядки аккумуляторов 16.11.2016
  • Схемы светодиодных индикаторов перегрузки по току 16.11.2016
  • Таймер-индикатор разрядки батареи 16.11.2016
  • Тестер для оперативной проверки гальванических элементов Андрей Шарый
  • Тестовый блок нагрузок БП АТХ Шашарин Сергей Анатольевич г. Ульяновск, 22.03.2012
  • Тиристорное зарядное устройство на КУ202Е 16.11.2016
  • Транзисторный стабилизатор с защитой от КЗ 15-27В/3А 16.11.2016
  • Транзисторный фильтр для телевизора 16.11.2016
  • Трансформаторный преобразователь 220 В/220 В 16.11.2016
  • Трехканальный источник питания 10.5 W для телевизионной приставки. Геннадий Бандура
  • Трехфазный инвертор 16.11.2016
  • Узел аварийной защиты низковольтной радиоаппаратуры 16.11.2016
  • Узел защиты электрооборудования при авариях в электросети 16.11.2016
  • Универсальное зарядное устройство для маломощных аккумуляторов 16.11.2016
  • Универсальный блок питания с несколькими напряжениями 16.11.2016
  • Универсальный преобразователь напряжения 16.11.2016
  • Универсальный сетевой фильтр с защитой от перенапряжений 16.11.2016
  • Устройства для аварийной защиты от превышения сетевого напряжения 16.11.2016
  • Устройства для защиты стабилизаторов напряжения (24В, 0-27В) 16.11.2016
  • Устройство автоматической подзарядки аккумулятора Исаев Александр
  • Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 16.11.2016
  • Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 16.11.2016
  • Устройство для поддержания заряда батареи 6СТ-9 16.11.2016
  • Устройство для хранения никель-кадмиевых аккумуляторов 16.11.2016
  • Устройство защиты аппаратуры от перепадов напряжения в сети 220В 16.11.2016
  • Устройство защиты батарей видеокамер 16.11.2016
  • Устройство защиты галогенных ламп 16.11.2016
  • Устройство защиты нагрузки от высокого напряжения 16.11.2016
  • Устройство контроля заряда и разряда аккумулятора 12В 16.11.2016
  • Формирователь двуполярного напряжения 16.11.2016
  • Экономичный импульсный блок питания 2×25В 3,5А 16.11.2016
  • Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 16.11.2016
  • Экономичный преобразователь напряжения для питания варикапов 16.11.2016
  • Экономичный стабилизатор напряжения 16.11.2016
  • Экономичный стабилизатор напряжения 5-12В/100мА (КТ608,КП305) 16.11.2016
  • Экономичный стабилизатор напряжения с полевыми транзисторами 16.11.2016
  • Экономичный стабилизатор напряжения сети (500Вт) 16.11.2016
  • Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах Игорь Григоров RK3ZK
  • Электронный предохранитель на транзисторах 16.11.2016
  • Электронный сетевой (220В) предохранитель 16.11.2016
  • Электронный стабилизатор тока для зарядки аккумуляторных батарей 16.11.2016
  • Эффективный преобразователь напряжения 5В/3,3В 16.11.2016

симисторный и тиристорный, системы индикации и схемы

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Схемы регуляторов мощности (диммеров) на симисторах

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3…5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

 

Регулятор мощности своими руками — 90 фото постройки устройств разных типов

Стремление управлять электроприборами, влиять на их производительность привело к появлению диммеров. Наиболее популярный высоко востребованный – симисторный регулятор мощности, который при владении паяльником легко можно собрать своими руками.

Имея в своей конструкции катод и анод, регулятор мощности наиболее эффективно управляет направлением и силой тока, что напрямую отражается на управлении таких важных устройств как паяльник, сети освещения, динамики стереопроигрывателя, работа вентилятора.

Радиолюбители по достоинству оценили возможность разнообразного применения диммеров на основе симисторов. Некоторые вместо них используют реле, пускатели, контакторы, что в принципе, можно делать. Но преимущества в долговечности, прочности, в отсутствии искрения отодвигают все вышеназванные устройства на второй план.

Проанализировав схемы, в которых используется такая разновидность тиристоров, было выявлено, что их использование гораздо дешевле обходится, чем транзисторный сборки и микросхемы.


Краткое содержимое статьи:

Варианты монтажа

Схемы сборки регулятора мощности могут быть как простыми, так и сложными.

Понадобится:

  • Коробка под диммер;
  • Печатная плата;
  • Радиодетали для сборки схемы;
  • Паяльник;
  • Припой;
  • Флюс;
  • Пинцет.

Корпус можно изготовить из пластика, вырезав заготовки и склеив коробку или подобрать по размеру платы, используя старое зарядное устройство, тройник, одинарную или двойную внешнюю розетку и прочее.

Важно, чтобы вся микросхема поместилась в нем и прибором было удобно работать. Подбор корпуса зависит как от мощности, так и задач регулятора напряжения.

Если диммер изготавливается под паяльник, то можно его вмонтировать в заранее приобретенную подставку для паяльника. Когда нужно регулировать мощность лампы накаливания или скорость вращения вентилятора, то его нужно разместить так, чтобы им было удобно пользоваться. Лучше установить в корпус устройства, когда внутри его есть место, или жестко прикрепить к нему.

Простой вариант монтажа регулятора мощности своими руками

Существуют различные варианты сборки диммеров. Отличия – в полупроводниках (тиристорах и симмисторах), регулирующих интенсивность подачи силы тока.

Когда в схеме присутствует микроконтроллер управление диммером – намного точнее. Таким образом, можно собрать простой регулятор мощности на тиристоре или симисторе своими руками.


Между этими полупроводниками есть отличия.

  • Тиристор – позволяет течь току однонаправленно. При реверсе или отсутствии подачи напряжения он просто закрывается, работает как простой микровыключатель, точнее – пускатель. Только в отличие от последнего, не искрит и имеет более стабильные характеристики.
  • Симистор – одна из его разновидностей. Проводит ток в любом направлении. Это 2 тиристора, спаянных вместе в одном корпусе.

Наиболее популярная схема, которую часто можно увидеть на фотографиях – сборка регулятора мощности для паяльника своими руками.

Инструкция как сделать регулятор мощности

Первоначально нам нужно изготовить и подготовить для монтажа печатную плату. Нет необходимости использовать специальные компьютерные программы для этого и распечатывать ее лазерным принтером на специальной бумаге. Схема не так уж сложна, чтобы использовать дорогостоящее оборудование для ее изготовления.

Самый простой путь – самостоятельно сделать печатную плату из куска текстолита в такой последовательности:


Отрезаем нужный размер, обезжириваем и зашкуриваем поверхность. Карандашом создаем контуры схемы, потом обводим их маркером. Производим травление хлористым железом для удаления остатков меди с поверхности платы.

Просверливаем нужные отверстия под концы радиодеталей. Протираем изготовленную плату жидким флюсом (растворенным в спирте канифолем). С помощью тонкого слоя припоя создаем токоведущие дорожки и площадки.

Когда плата готова, впаиваем в нее следующие радиодетали:

  • Микроконтроллер;
  • Симистор bta16;
  • Динистор db3;
  • Резистор, на 2 кОм;
  • Конденсатор, на 100 нФ;
  • Пластина со штырьками.

Также нам понадобится штепсельная вилка, шнур и розетка. И коробка, куда будет помещаться плата с микросхемой.

Монтаж диммера выполняем в такой последовательности:


Откусываем и впаиваем штырьки (4 шт.). Размещаем все детали кроме микроконтроллера. Тщательно пропаиваем. Тщательно зачищаем промежутки между токоведущими дорожками с помощью иглы и щеточки;

В алюминиевом радиаторе просверливаем отверстие. Закрепляем на нем симистор. Наносим термопасту КПТ-8 на поверхность радиатора. Подключаем переменный резистор.

Куском провода замыкаем средний и крайний выводы. К крайним выводам припаиваем провода. Противоположные подсоединяем к плате в соответствующем месте.

Берем розетку с подключенными к ней двумя проводами. Один конец жилы припаиваем к плате. Другой – к сетевому шнуру. Оставшуюся жилу (от вилки) припаиваем к плате. Помещаем всю собранную «начинку» в коробку.

Когда диммер собран, берем в руки мультиомметр и прозваниваем схему. Когда все в порядке, подключаем настольную лампу и вращением ручки на корпусе устройства изменяем ее интенсивность свечения. Ее яркость будет расти и падать в зависимости от направления вращения.

Если лампа ведет себя так, как описано, то регулятор мощности сделан правильно, и его можно использовать по-назначению.

Фото регулятора мощности своими руками

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6.68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

Регулятор мощности на симисторе | Радиобездна

Всем привет. Настала очередь очередной электронной самоделки. Сегодняшняя статья будет посвящена симисторному регулятору мощности.

На страницах своего сайта я неоднократно публиковал разные тиристорные регуляторы мощности, например такой или такой. Тиристорные и симисторные регуляторы мощности имеют большую популярность, так как в изготовлении они очень просты и не требуют большого количества радиодеталей. Хоть и эти два полупроводниковых прибора имеют сходное назначение, регулировать мощность нагрузки, имеют разное устройство. Так тиристор способен пропускать ток через себя только в одном направлении, в тоже время симистор может работать в цепях переменного тока. Поэтому чтобы собрать регулятор мощности на тиристоре, в схему нужно будет добавить диодный мост, благодаря которому ток через тиристор будет двигаться в одном направлении. Главное достоинство симисторного регулятора мощности в том, что он может пропускать ток в обоих направлениях, поэтому его можно применять бес мощных силовых диодах.

Ну, давайте же перейдём к самому устройству, рассмотрим принципиальную схему регулятора мощности на симисторе.

Схема регулятора мощности на симисторе

Схема симисторного регулятора очень проста, содержит менее десяти распространённых радиодеталей. Готовое устройство практически не нуждается в настройке и после правильного монтажа начинает работать сразу:

Основным регулирующим элементом схемы является симистор BTA16. Этот симистор способен  регулировать ток активной нагрузки мощностью до 3 кВт. Если требуется больше, нужно воспользоваться симистором большей мощности, например BTA25 с соответствующим радиатором охлаждения. Также в схеме используются корректирующие радиодетали: два резистора, один подстроечный резистор, один переменный, два конденсатора, один динистор.

Давайте более подробно рассмотрим устройство симисторного регулятора мощности.

Диммер своими руками, регулятор мощности на симисторе

Регулятор мощности не имеет дефицитных радиодеталей. Большинство из них можно выковырять из неисправного старого телевизора или любой другой бытовой техники. Например, динистор VD1 можно извлечь из неисправной энергосберегающей лампы. 

Детали устройства:

  • Симистор BTA16 или подобный
  • Резистор 100 Ом 1 Ватт
  • Резистор 4,7 килоом
  • Подстроечный резистор 2 мегаом
  • Переменный резистор 500 килоом
  • Конденсатор 0,1 микрофарад 300 Вольт 2 штуки
  • Динистор DB3

Чтобы упростить изготовление диммера своими руками, можно воспользоваться навесным монтажом. Что вполне приемлемо, так как количество деталей небольшое. Но гораздо проще приобрести симисторный регулятор мощности на известном китайском интернет-магазине, так как стоимость данного устройства невелика.

Все компоненты устройства расположены на печатной плате, выполненной из стеклотекстолита:

Симистор расположен хоть и не на большом, но достаточно эффективном радиаторе охлаждения, выполненном из алюминия:

Большинство элементов находятся в центре печатной платы и располагаются достаточно компактно:

Подстроечный резистор R4 расположен с краю печатной платы:

Напротив расположены две клеммные колодки для подключения в цепь. Чтобы не перепутать правильность подключения устройства, имеются соответствующие надписи:

Основной орган регулировки резистор R3 расположен на металлическом кронштейне, который обеспечивает необходимую надёжность готового изделия:

Готовое устройство получилось достаточно компактным, благодаря чему его можно использовать для регулировки практически любой активной нагрузки: лампы накаливания, нагревательные элементы, тэны:

Настройка симисторного регулятора мощности заключается в регулировке подстроечного резистора R4. При помощи него производится некоторая настройка устройства. Заключается она в следующем. Нужно движок переменного резистора R3 переместить в крайние положение, тем самым убавив регулятор на минимум, и подстраивая подстроечный резистор R4 добиться минимальной мощности отдаваемой в нагрузку. Основная настройка будет завершена. Если устройство собрано правильно, симисторный регулятор сразу начнёт работать.

При настройки устройства не забываем о безопасности.

Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали  могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.

Как я уже говорил, рассматриваемая самоделка подходит для регулировки мощности устройств,  имеющих активное сопротивление. Для регулировки бытовых приборов имеющих реактивное сопротивление, например, таких как пылесос, я рекомендую использовать регулятор мощности на тиристоре, который я использую уже не один год, для регулировки оборотов пылесоса.

На этом я буду завершать своё повествование. Надеюсь, данная статья поможет вам в самостоятельном изготовлении симисторного регулятора мощности. До новых встреч. Всем пока.

схемы. Фазовый регулятор мощности на симисторе

Многие приборы в доме человек имеет возможность настраивать. Осуществляется этот процесс при помощи специального регулятора. На сегодняшний день в отдельную категорию выделен симисторный подтип, однако многие про данный элемент знают мало. На самом деле особенность указанной детали заключается в двухстороннем действии. Возможно это благодаря аноду, а также катоду. В результате их передвижения в устройстве происходит изменение направления тока.

Некоторые считают, что симисторы вполне могут быть заменены контакторами, реле и пускателями. Однако это мнение является ошибочным. В первую очередь следует отметить долговечность данных регуляторов. По частоте коммутации они практические не ограничены и это хорошая новость. Износ деталей при этом минимален. Дополнительно следует отметить полное отсутствие искрообразования в приборах такого типа. В моменты нулевого сетевого тока осуществлять коммутации регуляторы способны. Благодаря этому помехи в цепи значительно снижаются.

Схема простого регулятора

Схема регулятора мощности на симисторе включает в себя одну микросхему, а также набор тиристоров. Располагаться в цепи они могут после конденсатора или сразу у платы. Переменный резистор, как правило, в устройстве имеется один. Он в регуляторе отвечает за помехи. Напряжение резистор способен выдерживать самое разнообразное. В данном случае многое зависит от вольности прибора. Резистор, который располагается за конденсатором, предельное сопротивление обязан выдерживать на уровне 3 Ом. В свою очередь элемент на выходе устанавливается чуть слабее. Также схема регулятора мощности на симисторе включает в себя предохранитель.

Регуляторы на симисторе «КУ208г»

Данный симистор отличается тем, что способен работать с коммутируемым переменным током. При этом напряжение в системе выдерживается до 5 А. Регулятор мощности на симисторе «КУ208г», как правило, является компактным и использоваться может в различном оборудовании. Как пример можно привести паяльник.

Регуляторы мощности для паяльника

Регулятор мощности паяльника на симисторе в микросхеме не нуждается. Транзисторов в стандартной цепи имеется два. Устанавливаются они в некоторых случаях биполярного типа. Первый из них должен находиться непосредственно возле источника питания. В это время второй биполярный транзистор располагается за симистором.

Отличительной особенностью таких регуляторов принято считать наличие слабовольных стабилитронов. Наиболее часто данные элементы на рынке можно встретить с маркировкой «КД2». Это говорит о том, что стабилитрон предельное напряжение выдерживает 2 В. В свою очередь переменный ток в системе максимум может составлять 5 А. Конденсатор в цепи всегда устанавливается только один. Припаивают его в некоторых случаях сразу за биполярным транзистором.

Данный элемент в устройстве отвечает за преобразование тока. Резисторы регулятор мощности на симисторе имеет разного типа. Аналоговые элементы на входе сопротивление максимум выдерживают 2 Ом. В свою очередь за стабилитроном резисторы устанавливаются переменного типа с повышенной частотностью. Работать они способны в обоих направлениях.

Схемы моделей для пылесосов

Регулятор мощности на симисторе пылесоса состоит из набора диодов, а также резисторов с одним конденсатором. Для хорошей проводимости симистор в некоторых случаях снабжается ребристым теплоотводом. Это дополнительно помогает в стабилизации напряжения. Конденсаторы в системе справляются с импульсами. Транзисторы в основном используют кремниевые.

Пропускать они через себя способны только постоянный ток. Сопротивление на выходе в системе не должно превышать 4 Ом. В противном случае на симистор подается большое напряжение. Многое в данной ситуации также зависит от коэффициента передачи тока. Влияет на него коллектор вместе с установленным эммитером.

Отличие фазовых регуляторов

Микросхемы в таких регуляторах применяются низкочастотные. Это необходимо для быстрого процесса преобразования. Стабилитроны используются довольно редко. Смена фазы в системе происходит за счет переключение конденсатора в верхнее положение. Для стабилизации напряжения фазовый регулятор мощности на симисторе имеет два тиристора, а работают они в цепи попарно. За счет высокой частоты на катоде, диоды припаиваются очень редко.

Схема безпомехового регулятора

Простой беспомеховый регулятор мощности на симисторе, как правило, применяется на устройствах с напряжением свыше 200 В. В данном случае микросхемы используются двухканальные. Система диодов устанавливается рядом с конденсаторами. Переменные транзисторы в цепи не используются. Максимальное сопротивление конденсатор обязан выдерживать до 3 Ом. Непосредственно регулирование мощности устройства осуществляется при помощи приемника.

Уровень коэффициента заполнения импульсов при этом изменяется. Конденсаторы в системе пропускают через себя только постоянный ток. Частота тактового транзистора зависит от коэффициента деления счетчика. Микроконтроллеры в системе используются для подавления помех. Частота импульсов на входе зависит исключительно от предельного регистра.

Регуляторы с симисторами «ТС80»

Простой регулятор мощности на симисторе «ТС80» способен похвастаться хорошей теплопроводимостью. Непосредственно процесс преобразования осуществляется в трансформаторе. Предельная частота при этом зависит только от напряжения в сети. В целом регуляторы с симисторами такого типа отличаются повышенной надежностью, и проработать они способны долгое время. Однако недостатки у них также имеются.

В первую очередь следует отметить малый уровень стабилизации. Связано это с большой нагрузкой, которая оказывается на тиристор. Чтобы справиться со стабильностью тока, в некоторых случаях применяют специальные фильтры. Однако для бытового оборудования это не помогает. Таким образом, использовать регуляторы такого типа лучше всего на приемниках и прочих низкочастотных устройствах.

Модели с симисторами «ТС 125»

Регулятор мощности на симисторе «ТС 125» используется для мощных блоков питания. Сопротивление он способен максимум выдержать до 4 Ом. В таком случае проводимость тепла находится на высокой отметке. Дополнительно следует учитывать, что симисторы данного типа оборудуются индикаторами. Данные устройства предназначены для борьбы с электромагнитными помехами.

В некоторых случаях система индикации устанавливается активная. Это предполагает использование низкочастотного контроллера. Данный элемент в системе работает на пару с ограничителями. Пропускают оно через себя только переменный ток. В случае отрицательной полярности, в работу включаются конденсаторы. Для перехода на сетевое напряжение имеется ряд транзисторов.

Дистанционные устройства для регулирования

Дистанционный регулятор мощности на симисторе в обязательном порядке оснащается контроллером. Диоды в системе устанавливаются только аналогового типа. Микросхема для нормальной работы конденсаторов требуется трехканальная. Резисторов, как правило, необходимо только три. Один из них нужен для передачи и стабилизации сигнала от трансформатора. Остальные два резистора устанавливаются напротив конденсаторов. В этом случае амплитуда помех значительно снижается и это следует учитывать.

Дополнительно в регуляторах имеются преобразователи. Номинальную нагрузку указанные элементы выдерживают на уровне 5 А. Переменные резисторы в цепи применяются довольно редко. Связано это с тем, что источники питания имеются высоковольтные. Системы фильтрации устанавливаются исключительно перед трансформатором. В данном случае коэффициент точности будет максимальным.

Регуляторы с плавным пуском

Для плавного пуска в регулятор мощности на симисторе вставляют специальный блок. Его основной задачей является двойное интегрирование. Происходит это по определению предельного значения полярности. Система индикации в регуляторах присутствует довольно редко. Использоваться такие устройства могут при температурах от -20 до +30 градусов. Источником питания системы может быть блок мощностью до 10 В. Чувствительность устройства зависит исключительно от типов резисторов. Если в системе применять аналоговые элементы, то преобразование тока происходит значительно быстрее.

Синфазное напряжение регулятором способно поддерживаться на уровне 5 В. Конденсаторы в устройстве устанавливаются с предельным сопротивлением 6 Ом. В данном случае их емкость минимум должна составлять 2 пФ. Все это позволит значительно стабилизировать напряжение на выходе. Диоды в регуляторе припаиваются малой мощности. Нагрузку максимум они должны быть готовы выдерживать на уровне 5 А.

Схемы регуляторов для электроплитки

Для таких приборов как электроплитка, резисторы требуются токоограничительные. Стабилитрон в системе используется только один. Транзисторов в приборе может находиться до трех единиц. В данном случае многое зависит от типа блока питания. Если предельное напряжение составляет менее 30 В, то в начале цепи требуется только один транзистор. Сопротивление он должен быть способным выдерживать на уровне 5 Ом. Симистор в системе устанавливается между двумя конденсаторами. На первичную обмотку ток подается только после того, как пройдет через трансформатор.

Схема простого регулятора вентилятора с использованием TRIAC и DIAC

В этом проекте мы разработали схему простого регулятора вентилятора, которая может использоваться для регулирования скорости вентилятора. Эта простая схема регулятора вентилятора реализована с использованием очень простых компонентов.

Вы когда-нибудь сталкивались с использованием обычного регулятора напряжения вентилятора для управления скоростью? Такой тип регулятора называется регулятором сопротивления, который работает по принципу реостата или устройства резистивного делителя потенциала.

По мере того, как шаги (ручки на коробке регулятора) уменьшаются, это означает, что вы фактически увеличиваете сопротивление цепи, и, следовательно, на вентилятор подается меньшая мощность, поэтому он становится медленнее.

Очевидно, что при такой схеме потребление энергии вентилятором будет меньше на более низких скоростях, но это не метод экономии энергии. Падение напряжения на сопротивлении преобразуется в тепловые потери (I 2 R), поэтому энергия рассеивается в виде тепла.

Эта потеря энергии больше в условиях высокого сопротивления или низкой скорости. Следовательно, обычные регуляторы напряжения вентилятора имеют больше потерь энергии.

Чтобы узнать больше о TRIAC, прочтите этот пост: TRIAC — Основы, работа и применение

Обычный регулятор напряжения

Простой электронный регулятор напряжения

В связи с развитием силовой электронной техники, альтернативная конструкция регулятора вентилятора ( регулятор напряжения) может быть легко реализован для уменьшения потерь энергии, вызываемых обычными регуляторами напряжения.

Этот тип регулятора напряжения представляет собой энергосберегающее устройство, в котором используются TRIAC, DIAC и потенциометрическое сопротивление. Этот метод обеспечивает бесступенчатое управление скоростью вентилятора за счет получения требуемого количества энергии от основного источника в данный момент.

Следовательно, мощность сохраняется, а не расходуется без надобности. Кратко остановимся на этой схеме регулятора напряжения и ее работе.

Электронный регулятор напряжения

Теперь мы собираемся построить простую схему регулятора вентилятора, которая обычно используется для управления скоростью вентилятора в наших домах или офисах.Как мы знаем, изменяя угол включения TRIAC, можно управлять мощностью, подаваемой через нагрузку, что является не чем иным, как концепцией управления мощностью с использованием TRIAC.

Тот же принцип применяется к схеме регулятора напряжения, которую мы собираемся обсудить.

Необходимые компоненты для цепи регулятора напряжения

  • Резистор R1 — 10 кОм
  • Переменное сопротивление или потенциометр R2 — 100 кОм
  • Полиэфирный конденсатор C1 — 0,1 мкФ (для рабочего диапазона до 400 В)
  • DIAC, D1 — DB3
  • TRIAC, T1 — BT136
  • Однофазный потолочный вентилятор или двигатель переменного тока — 220 В, 50 Гц (диапазон ниже 200 Вт)

Подключение цепи регулятора напряжения

  • Определите положительные клеммы всех компонентов и отрицательные клеммы.Выберите потолочный вентилятор или любой двигатель переменного тока при условии, что он должен иметь мощность ниже 200 Вт (в соответствии со значениями выбранных компонентов).
  • Возьмите плату нуля или печатную плату (PCB) и подключите схему, как показано ниже. диаграмма.
  • Цепь запуска состоит из резистора R1, потенциометра R2, конденсатора C1 и DIAC. Подключите одну клемму DIAC к комбинации резисторов и конденсатора делителя напряжения, как показано на рисунке.
  • Для распознавания клемм TRIAC и получения другой подробной информации рассмотрите технический паспорт TRIAC BT 136.Подключите терминал MT1 к нейтрали, а MT2 — к одному концу двигателя переменного тока или нагрузки. И подключите терминал ворот к другому концу DIAC.
  • Подключите нагрузку или потолочный вентилятор между клеммой фазы или линии источника питания переменного тока и клеммой MT2 TRIAC.

ПРИМЕЧАНИЕ : В целях демонстрации мы подключили лампочку к простой цепи регулятора вентилятора вместе с мультиметром, чтобы показать напряжение.

Для получения дополнительной информации о DIAC: DIAC — Введение, работа и применение

Принципиальная схема регулятора напряжения с использованием TRIAC

Работа цепи электронного регулятора напряжения

  • Перед тем, как подавать питание на В этой простой схеме регулятора вентилятора удерживайте переменный резистор или потенциометр в положении максимального сопротивления, чтобы триггер не запускался и, следовательно, триак находился в режиме отсечки.
  • Включите питание цепи и посмотрите, находится ли вентилятор в состоянии покоя или нет. Медленно изменяйте положение потенциометра, чтобы конденсатор начал заряжаться с постоянной времени, определяемой значениями R1 и R2.
  • Когда напряжение на конденсаторе превышает напряжение отключения DIAC, DIAC начинает проводить. Таким образом, конденсатор начинает разряжаться к выводу затвора TRIAC через DIAC.
  • Следовательно, TRIAC начинает проводить, и, следовательно, основной ток начинает течь в вентилятор по замкнутому пути, образованному TRIAC.
  • Изменяя потенциометр R2, изменяется скорость, с которой будет заряжаться конденсатор, это означает, что если сопротивление меньше, конденсатор будет заряжаться с большей скоростью, поэтому чем раньше будет проводимость TRIAC.
  • По мере постепенного увеличения сопротивления потенциометра угол проводимости TRIAC будет уменьшаться. Следовательно, средняя мощность нагрузки будет изменяться.
  • Благодаря возможности двунаправленного управления как TRIAC, так и DIAC, можно управлять углом включения TRIAC как в положительных, так и в отрицательных пиках входного сигнала.
Примечание
  • В качестве меры безопасности проверьте исправное рабочее состояние этой цепи, подав низкое напряжение, например, 24 В переменного тока или 12 В переменного тока, с небольшой нагрузкой, например, лампочкой малой мощности, перед подключением к сети.
  • Если нагрузка превышает 200 Вт, выберите TRIAC большей мощности вместо BT 136 TRIAC.

Преимущества простой схемы регулятора вентилятора

  • Возможно непрерывное и бесступенчатое регулирование скорости вентилятора
  • Энергосбережение достигается на всех скоростях за счет минимизации потерь энергии
  • Простая схема, требующая меньшего количества компонентов
  • Эффективен по сравнению с резистивным типом за счет более низкого энергопотребления
  • Экономичный

Простая схема регулятора яркости лампы / вентилятора с использованием симистора

Схема регулятора освещенности или схема регулятора вентилятора (оба случая, схема и конструкция одинаковы, единственная разница заключается в изменении выходной нагрузки, то есть вентилятора или освещения) используется для управления яркостью света или скорость вентилятора по нашему желанию.Целью схемы является изменение интенсивности, яркости лампочки или скорости вращения вентилятора с помощью фиксированного источника. Для этого нет необходимости заменять лампочку на лампу с большей мощностью. Простой симистор может сделать эту работу за вас. Симисторы используются в этой схеме в качестве диммера, поскольку они просты в проектировании и управлении, а также очень экономичны из-за их высокой эффективности и низких затрат на покупку.

T Это принципиальная схема простейшего регулятора яркости лампы или вентилятора.Схема основана на принципе управления мощностью с помощью симистора. Схема работает за счет изменения угла включения симистора. С этим связаны резисторы R1, R2 и конденсатор C2. Угол открытия можно изменять, изменяя значение любого из этих компонентов. Здесь R1 выбран как переменный элемент. Изменяя значение R1, изменяется угол открытия симистора (простыми словами, сколько времени должен проводить симистор). Это напрямую изменяет мощность нагрузки, так как нагрузка приводится в действие симистором.Импульсы запуска подаются на затвор симистора T1 с помощью Diac D1.

Симистор

Вы получите лучшее представление о схеме светорегулятора, узнав больше о симисторе.

Банкноты

Соберите схему на печатной плате хорошего качества или на обычной плате. Нагрузка, будь то лампа, вентилятор или что-либо еще, должна быть менее 200 Вт. Для подключения более высоких нагрузок замените Triac BT 136 на Triac большей мощности. Все части цепи активны, что может привести к поражению электрическим током.Так что будь осторожен.

Я советую проверить схему с источником низкого напряжения (например, 12 В или 24 В переменного тока) и небольшой нагрузкой (такая же лампочка вольт) перед подключением цепи к сети.

Список деталей

R1 1o K Резистор 1 Вт

R2 1o0 K Потенциометр (переменное сопротивление)

C1 0,1 мкФ (500 В или выше) Полиэфирный конденсатор

T1 BT 136 симистор

D1 DB2 Diac

Принципиальная схема регулятора вентилятора

BT 136Triac Необходимые данные. BT 136 Технические характеристики

Схема регулятора освещенности, описанная выше, была изменена с добавлением демпфирующей схемы для улучшения характеристик симистора.

Учебное пособие по схемам для проектов

Basic Triac-SCR

by Lewis Loflin

На этой странице обсуждаются базовые симисторы и тиристоры. Симистор — это двунаправленный трехконтактный двойной тиристорный (SCR) переключатель. Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.

Симистор изготовлен путем объединения двух тиристоров в обратном параллельном соединении. Он используется в приложениях переменного тока, таких как регулирование яркости света, управление скоростью двигателя и т. Д. Симисторы также могут использоваться в микроконтроллере управления мощностью со схемой фазовой синхронизации.

Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:


Включение / выключение диода

На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер.Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость. Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку. После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.

Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение.Выключатель OFF, называемый «нормально закрытым» (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.

В цепи над нагрузкой есть лампа постоянного тока. Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.

В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF.Это связано с тем, что входное напряжение переменного тока возвращается к нулю вольт на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.

В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора. (Это было также известно как ручка регулировки громкости старого стиля.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.


Это иллюстрирует процесс с полноволновым нефильтрованным D.C.

В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора. Также см. Основы выпрямления и фильтрации переменного тока

.

Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR. (PDF файл)

Выше представлена ​​практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом.Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно. (Полностью или частично закорочено.)

Эта схема также хороша для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была неисправная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания, чем остальные пять. Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.


Знакомство с симисторами

Симистор — это твердотельный переключатель переменного тока. Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть две конфигурации типа SCR, можно переключать оба полупериода.

Примечание: я видел бумажные примеры использования двух тиристоров, расположенных один за другим, в качестве симистора, но это может не работать так же! Остерегайтесь этого.

В приведенном выше примере замыкание переключателя приведет к включению симистора. Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления устройствами большой мощности, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют небольшое реле, которое некоторые микроволновые печи делают именно так.

Выше представлена ​​практическая схема тестирования TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость.Это позволяет тестировать обе стороны SCR по отдельности. Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Когда ни один переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.


Схема симистора с наилучшим откликом и диак.

Ключ к успешному срабатыванию симистора — убедиться, что затвор получает свое пусковое напряжение со стороны главной клеммы 2 схемы (основной клеммы на противоположной стороне символа симистора от клеммы затвора).Идентификация клемм Mt1 и Mt2 должна выполняться по номеру детали TRIAC со ссылкой на технический паспорт или книгу.

DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было мгновенно превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.

Это обеспечивает быстрое и чистое резание TRIAC.DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания. Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериодов.

Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение в некоторой степени похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.

ЦИАП

не имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом «затвора» TRIAC для этой цели. ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификаций не заботятся о маркировке A1 / A2 или Mt1 / Mt2.

Также см. Как проверить DIAC


Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 — диак.

Диак обеспечивает более чистое переключение симистора. Диоды — это специализированные диоды Шокли, соединенные спина к спине.


Демпферы

Между МТ1 и МТ2 часто используется демпферная цепь (обычно RC-типа). Демпферные цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели.Кроме того, резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и MT1 для дальнейшего предотвращения ложного срабатывания. Это может увеличить требуемый ток запуска и, возможно, задержку выключения при разрядке конденсатора.

В этой схеме выше «горячая» сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфирования симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.

Для получения дополнительной информации о вышеуказанном оптопаре см. Оптоизолятор серии moc30xx (файл в формате pdf)




Принципы и схемы симистора

— Часть 1


Симистор — это управляемый полупроводниковый переключатель мощности переменного тока средней и большой мощности с фиксатором. В этой статье, состоящей из двух частей, объясняется его основная работа и показаны различные способы ее использования. Большинство практических схем показывают два набора значений компонентов для использования с обычными бытовыми / коммерческими источниками переменного напряжения 50 Гц или 60 Гц с номинальными значениями либо 240 В (как используется в большинстве стран Европы), либо (в скобках) 120 В (как используется в большинстве стран). США).В каждой конструкции пользователь должен использовать симистор с номинальными характеристиками, соответствующими его или ее конкретному применению.

Основы симистора

РИСУНОК 1. Символы симистора.
РИСУНОК 2. Простой выключатель питания переменного тока с резистивной (ламповой) нагрузкой.

Симистор — это трехконтактный (MT1, затвор и MT2) твердотельный тиристор, который использует альтернативные символы на рис. 1 и действует как пара SCR, соединенных инверсной параллелью и управляемых через один затвор Терминал.Он может проводить ток в любом направлении между своими выводами MT1 и MT2 и, таким образом, может использоваться для непосредственного управления мощностью переменного тока. Он может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2, и, таким образом, он имеет четыре возможных режима запуска или «квадрантов», обозначенных следующим образом:

I + Mode = ток MT2 + ve, ток затвора + ve
I- Mode = ток MT2 + ve, ток затвора -ve
III + Mode = ток MT2 -ve, ток затвора + ve
III + Mode = ток MT2 -ve, затвор текущий -ve

Чувствительность по току триггера является максимальной, когда токи MT2 и затвор имеют одинаковую полярность (либо положительную, либо отрицательную), и обычно примерно вдвое меньше, когда они имеют противоположную полярность.

На фиг. 2 показан симистор, используемый в качестве простого переключателя питания переменного тока, управляющего резистивной ламповой нагрузкой; Предположим, что SW2 закрыт. Когда SW1 разомкнут, симистор действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, симистор включается через резистор R1 и автоматически фиксируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на ламповую нагрузку. Симистор автоматически отключается в конце каждого полупериода переменного тока, когда мгновенное напряжение питания (и, следовательно, ток нагрузки) на короткое время падает до нуля.

В рис. 2 задачей R1 является ограничение пикового мгновенного тока затвора включения симистора до безопасного значения; его сопротивление (в сочетании с сопротивлением нагрузки) должно быть больше, чем пиковое напряжение питания (примерно 350 В в цепи 240 В переменного тока, 175 В в цепи 120 В), деленное на пиковое значение тока затвора симистора (которое обычно указывается в документации производителя симистора). расширенные листы данных).

Примечание в Рисунок 2 (и в большинстве других схем симистора, показанных в этой мини-серии), что — по соображениям безопасности — нагрузка подключена последовательно с нейтралью (N) источника переменного тока и главным выключателем. SW2 может изолировать всю цепь от линии под напряжением (L).

Влияние скорости симистора

РИСУНОК 3. Простой выключатель питания переменного тока с индуктивной нагрузкой и демпфирующей цепью C1-R2 для подавления скоростного эффекта.

Большинство симисторов, таких как тиристоры, подвержены проблемам «скоростного эффекта». Между основными выводами и затвором симистора неизбежно существуют внутренние емкости, и если на любом из основных выводов появляется резко возрастающее напряжение, это может — если его скорость нарастания превышает номинальное значение dV / dt симистора — вызвать достаточный прорыв в цепи. вентиль для срабатывания симистора.Это нежелательное включение «эффекта скорости» может быть вызвано переходными процессами в линии питания; проблема, однако, особенно серьезна при управлении индуктивными нагрузками, такими как электродвигатели, в которых токи и напряжения нагрузки не совпадают по фазе, что приводит к внезапному появлению большого напряжения на основных клеммах каждый раз, когда симистор расцепляется, когда падает его основной ток. почти до нуля в каждом рабочем полупериоде.

Проблемы с эффектом скорости обычно можно преодолеть, подключив RC ‘демпферную’ сеть между MT1 и MT2, чтобы ограничить скорость нарастания напряжения до безопасного значения, как показано (например) в схеме переключателя мощности симистора в Рисунок 3 , где R2-C1 образуют снабберную сеть.Некоторые современные симисторы имеют повышенные значения dV / dt (обычно 750 В / мСм) и практически невосприимчивы к проблемам, связанным с изменением скорости; эти симисторы известны как «демпферные» типы.

Подавление радиопомех

РИСУНОК 4. Базовый диммер лампы переменного тока с подавлением радиопомех через C1-L1.

Симистор может использоваться для обеспечения переменного управления мощностью переменного тока с использованием техники «переключения с фазовой задержкой», при которой симистор запускается частично в течение каждого полупериода.Каждый раз, когда симистор запускается, его ток нагрузки резко (за несколько микросекунд) переключается с нуля на значение, установленное его сопротивлением нагрузки и мгновенными значениями напряжения питания. В резистивно нагруженных схемах, таких как диммеры ламп, это действие переключения неизбежно генерирует импульс RFI, который является наименьшим, когда симистор срабатывает близко к точкам пересечения нуля 0 ° и 180 ° формы сигнала линии питания (в которых переключатель -включенные токи минимальны) и максимальны, когда устройство срабатывает под углом 90 ° после начала каждого полупериода (когда токи включения максимальны).

Импульсы радиопомех возникают с частотой, вдвое превышающей частоту питающей сети, и могут очень раздражать. В диммерах лампы радиопомехи обычно можно устранить, оснастив диммер простой сетью фильтров L-C, как показано на , рис. 4 . Фильтр устанавливается рядом с симистором и значительно снижает скорость нарастания токов в сети переменного тока.

РИСУНОК 5. Символ диак.

Диаки и квадраки

Диак — двунаправленное триггерное устройство с двумя выводами; он может использоваться с напряжениями любой полярности и обычно используется вместе с симистором; Рисунок 5 показывает его схемное обозначение.Основное действие диака таково, что при подключении к источнику напряжения через токоограничивающий нагрузочный резистор он действует как высокий импеданс, пока приложенное напряжение не возрастет примерно до 35 В, после чего он срабатывает и действует как низкоомный 30 В. стабилитрон, и 30 В вырабатывается через диак, а оставшиеся 5 В появляются на нагрузочном резисторе. Диак остается в этом состоянии до тех пор, пока его прямой ток не упадет ниже минимального удерживаемого значения (это происходит, когда напряжение питания упадет ниже значения стабилитрона 30 В), после чего диак снова выключится.

РИСУНОК 6. Базовая схема диммера лампы диакритического типа с регулируемой фазовой задержкой. Рисунок 7. Символ квадрака.

Диак наиболее часто используется в качестве триггерного устройства в приложениях с регулируемой мощностью симистора с синхронизацией по фазе, как в базовой схеме диммера лампы Рис. 6 . Здесь, в каждом полупериоде линии электропередачи, сеть R1-RV1-C1 применяет версию полупериода с переменной фазовой задержкой к затвору симистора через диак, и когда напряжение C1 повышается до 35 В, диак срабатывает и подает триггерный импульс 5 В (от C1) на затвор симистора, тем самым включая симистор и одновременно подавая питание на ламповую нагрузку и отключая привод от RC-сети.Таким образом, средняя мощность нагрузки (интегрированная за полный период полупериода) полностью изменяется от почти нуля до максимума через RV1.

На заре разработки симистора некоторые специальные устройства производились со встроенным диаком, последовательно соединенным с затвором симистора; такие устройства были известны как квадраки и использовали обозначение цепи , рис. 7, . Квадраки не имели коммерческого успеха и теперь устарели.

Варианты выключателя питания переменного тока

Самым простым типом переключателя питания симистора является переключатель , рис. 2 , в котором симистор включается через R1, когда SW1 замкнут; только 1 В или около того генерируется на симисторе, когда он включен, поэтому R1 и SW1 потребляют очень мало средней мощности; На рис. 3 показана та же схема, снабженная «демпфирующей» сетью.Есть много полезных вариаций этих основных схем. Рисунок 8 , например, показывает версию, которая может запускаться через источник постоянного тока переменного тока. C1 заряжается (через R1-D1) до + 10 В на каждом положительном полупериоде линии питания переменного тока, и этот заряд запускает симистор, когда SW1 замкнут. Обратите внимание, что R1 постоянно находится под почти полным напряжением сети переменного тока и, следовательно, требует довольно высокой номинальной мощности, и что все части этой цепи находятся под напряжением, что затрудняет взаимодействие с внешней схемой управления.

РИСУНОК 8. Выключатель питания переменного тока с запуском по переменному току постоянного тока. РИСУНОК 9. Выключатель переменного тока с изолированным входом (оптопара), срабатывает постоянный ток.


На рисунке 9 показана приведенная выше схема, модифицированная для обеспечения «изолированного» взаимодействия с внешней схемой управления. SW1 просто заменяется транзистором Q2, который управляется со стороны фототранзистора оптопары.Светодиод соединителя питается от внешнего источника постоянного тока через R1, а симистор включается только тогда, когда SW1 замкнут; При желании SW1 можно заменить электронной схемой переключения.

РИСУНОК 10. Выключатель переменного тока с изолированным входом, срабатывающий по переменному току. РИСУНОК 11. Выключатель переменного тока с транзисторным запуском по постоянному току.


Рисунок 10 показывает вариант, в котором симистор запускается переменным током в каждом полупериоде через импеданс переменного тока C1-R1 и через встречные стабилитроны ZD1-ZD2, а C1 рассеивает почти до нуля. мощность.Мостовой выпрямитель D1-D4 подключен к сети ZD1-ZD2-R2 и нагружен Q2. Когда Q2 выключен, мост эффективно открыт, и симистор включается в каждом полупериоде, но когда Q2 включен, на ZD1-ZD2-R2 появляется короткое замыкание, и симистор выключен. Q2 управляется через оптопару от изолированной внешней цепи, и симистор включен, когда SW1 открыт, и выключен, когда SW1 закрыт.

РИСУНОК 12. Выключатель переменного тока с изолированным входом и запуском по постоянному току.

На рисунках 11, и , 12, показаны варианты, в которых симистор запускается через трансформаторный источник постоянного тока и транзисторный переключатель. В , рис. 11, , Q2 и симистор оба включены, когда SW1 закрыт, и выключены, когда SW1 открыт. На практике SW1 можно заменить электронной схемой, позволяющей активировать симистор с помощью тепла, света, звука, времени и т. Д. Обратите внимание, однако, что вся эта схема находится под напряжением.’ На рисунке 12 показана схема, модифицированная для работы оптопары, что позволяет активировать ее через полностью изолированную внешнюю схему.

Срабатывание UJT

Другой способ получить полностью изолированное переключение симистора — использовать схемы UJT на рисунках , рисунки 13, и , 14, , в которых UJT представляет собой старый тип 2N2646 или его современный почти эквивалент. В этих схемах запускающее действие обеспечивается генератором UJT Q2, который работает на частоте нескольких кГц и подает выходные импульсы на затвор симистора через импульсный трансформатор T1, который обеспечивает желаемую «изоляцию».«Из-за своей довольно высокой частоты колебаний UJT запускает симистор в пределах нескольких градусов от начала каждого полупериода линии переменного тока, когда генератор активен.

РИСУНОК 13. Выключатель переменного тока с изолированным входом (с трансформаторной связью). РИСУНОК 14. Выключатель питания переменного тока с изолированным входом.


На рис. 13 , Q3 включен последовательно с главным синхронизирующим резистором UJT, поэтому UJT и симистор включаются только при замкнутом SW1.В рис. 14 Q3 подключен параллельно с главным конденсатором синхронизации UJT, поэтому UJT и симистор включаются только при разомкнутом SW1.

РИСУНОК 15. Типичная схема симистора с оптопарой и рабочие характеристики.
Рис. 16. Управление лампой малой мощности через симистор с оптопарой.

Симисторы с оптопарой

Затворные переходы «голого» симистора по своей природе светочувствительны, и, таким образом, симистор с оптопарой может быть изготовлен путем установки «голого» симистора и светодиода близко друг к другу в одном корпусе. Рисунок 15 показывает схему и перечисляет характеристики типичной шестиконтактной версии DIL такого устройства, в которой светодиод имеет максимальный номинальный ток 50 мА, симистор имеет максимальные номинальные значения 400 В и 100 мА (среднеквадратичное значение) (и скачок напряжения). номинальный ток 1,2 А для 10 мс), и весь пакет имеет номинальное напряжение развязки 1,5 кВ и типичную чувствительность срабатывания триггера по входному току 5 мА.

Симисторы с оптопарой

просты в использовании и обеспечивают отличную гальваническую развязку между входом и выходом.Вход используется как обычный светодиод, а выход как маломощный симистор. На рисунке 16 показано устройство, используемое для активации лампы накаливания с питанием от сети переменного тока, которая должна иметь номинальное значение RMS ниже 100 мА и пиковое значение пускового тока ниже 1,2 А.

РИСУНОК 17. Управление высокой мощностью через ведомый симистор. РИСУНОК 18. Возбуждение индуктивной нагрузки.


На рисунке 17 показан симистор с оптопарой, используемый для активации ведомого симистора, тем самым управляя нагрузкой любой желаемой номинальной мощности.Эта схема подходит для использования только с неиндуктивными нагрузками, такими как лампы и нагревательные элементы. Его можно модифицировать для использования с индуктивными нагрузками, такими как электродвигатели, с помощью соединений в Рисунок 18 . Здесь сеть R2-C1-R3 обеспечивает некоторый фазовый сдвиг в сети симисторного затвора-привода, чтобы гарантировать правильное срабатывание симистора, а R4-C2 образуют демпферную сеть для подавления эффектов скорости.

Синхронное переключение мощности без напряжения

Синхронный переключатель мощности с нулевым напряжением (или интегральным циклом) — это переключатель, в котором симистор неизменно включается сразу после начала каждого полупериода мощности (т.е.е., около точки нулевого напряжения формы сигнала), а затем снова автоматически отключается в конце, создавая минимальные радиопомехи. В большинстве схем переключения мощности, показанных до сих пор в этой статье, симистор включается в произвольной точке своего начального полупериода включения, таким образом создавая потенциально высокий начальный всплеск радиопомех, но затем дает синхронное действие переключения при нулевом напряжении. на всех последующих полупериодах.

Истинно синхронная цепь нулевого напряжения использует систему переключения, показанную на рис. 19 , в которой симистор может быть включен только около начальной точки или точки «нулевого напряжения» каждого полупериода, и, таким образом, создает минимальные радиопомехи.Эта система широко используется для включения / выключения сильноточных нагрузок, таких как электрические нагреватели и т. Д.

РИСУНОК 19. Система синхронного переключения питания переменного тока при нулевом напряжении. РИСУНОК 20. Выключатель синхронного переменного тока.


На рисунке 20 показан практический синхронный выключатель питания переменного тока с нулевым напряжением; 10 В постоянного тока вырабатывается переменным током через R7-D1-ZD1 и C2 и переключается на затвор симистора через Q2, который управляется через SW1 и детектор нулевого напряжения Q3-Q4-Q5 и может обеспечивать ток затвора только при включенном SW1. закрыт, а Q3 выключен.

РИСУНОК. 21 Альтернативный вариант синхронного выключателя питания переменного тока.

В детекторе нулевого напряжения Q4 или Q5 включаются всякий раз, когда напряжение сети переменного тока больше или меньше нескольких вольт (заданных RV1) выше или ниже нуля, тем самым активируя Q3 через R5 и блокируя Q2. Таким образом, ток затвора может подаваться на симистор только тогда, когда SW1 замкнут, а мгновенное линейное напряжение переменного тока находится в пределах нескольких вольт от нуля; Таким образом, эта схема генерирует минимальные радиопомехи при переключении.

Рисунок 21 показывает схему, модифицированную таким образом, что симистор может включаться только при разомкнутом SW1. Обратите внимание, что в обоих случаях на симистор подается только узкий импульс тока затвора, и поэтому средний ток затвора составляет всего 1 мА или около того. SW1 при желании может быть заменен электронным переключателем или оптопарой, что позволяет активировать нагрузку по свету или температуре, по времени и т. Д.

На практике, самый простой способ создания действительно эффективной синхронной схемы управления симистором «нулевого напряжения» — это использование специальной ИС, которая функционирует как маломощный синхронный симистор «нулевого напряжения» с оптопарой, который может легко использоваться в качестве ведомого устройства для синхронного управления обычным высокомощным симистором.

В следующем и заключительном эпизоде ​​будут представлены практические детали таких схем, а также другие схемы и информация, относящиеся к симисторам. NV

Цепь простого регулятора вентилятора

для управления скоростью вентилятора переменного тока

Типовая схема регулятора вентилятора переменного тока в основном используется для изменения скорости вентилятора. В этом проекте мы построим собственный регулятор вентилятора с минимальным количеством компонентов и с большей эффективностью. Как правило, вентилятор издает гудящий шум при использовании с различными схемами регулятора вентилятора, наша схема использует DIAC и TRIAC и издает минимальный гудящий шум или вообще не производит его и работает как шарм! Мы также разработали несколько схем управления скоростью вращения вентиляторов, а также внедрили методы IoT для управления ими, давайте взглянем на эти удивительные схемы для справки, если вам интересно.

Компоненты, необходимые для создания регулятора вентилятора переменного тока

Компоненты, необходимые для сборки цепи регулятора вентилятора TRIAC , перечислены ниже:

  1. Потенциометр 500 кОм
  2. BT 136 TRIAC
  3. DB3 DIAC
  4. 0,1 мкФ / 400 В конденсатор
  5. резистор 10 кОм
  6. 2-контактная клеммная колодка

Принципиальная схема регулятора вентилятора переменного тока

Принципиальная схема регулятора вентилятора переменного тока приведена ниже.Напряжение сети 220 В переменного тока подается на вход одной клеммы вентилятора (нагрузки), а другая клемма вентилятора подключается к одной ножке резистора 10 кОм. Резистор 10 кОм будет подключен к одному выводу потенциометра 500 кОм, а выходной вывод будет закорочен и подключен к одному выводу DIAC и к конденсатору 0,1 мкФ. (DIAC не имеет полярности, поэтому его можно подключать с любого конца). Другой конечный вывод DIAC подключен к клемме затвора TRIAC, которая в основном управляет состоянием включения и выключения TRIAC.Резистор 10 кОм подключен к выводу MT2 TRIAC. Подключение довольно простое и может быть выполнено поверх монтажной платы. Мы также можем спроектировать нашу собственную печатную плату, чтобы легко разместить все компоненты.

Наконечник:

  1. Используйте радиатор с TRIAC, так как он может нагреваться через некоторое время работы или с приборами высокой мощности.
  2. Грузоподъемность <200 Вт. Если вы хотите использовать нагрузку более высокой мощности, используйте другие варианты BTA TRIAC.

Я построил эту схему на нулевой печатной плате для ее тестирования, и моя плата после пайки всех компонентов выглядит так, как показано на изображении ниже. Как видите, проект выглядит простым и легким, поэтому я также рекомендую вам получить Veroboard и начать с ним работать.

Краткое введение для TRIAC и DIAC

Два основных компонента, используемых в схеме, — это TRIAC и DIAC, что позволяет нам быстро понять основы их работы.Вы также можете ознакомиться с подробной статьей о работе TRIAC и работе DIAC, если хотите узнать больше.

TRIAC: TRIAC — это компоненты, используемые для управления сигналами переменного тока. Они используются во многих приложениях, где требуется переключение высокой мощности для сигналов переменного тока. TRIAC обычно используются в схемах диммера переменного тока и очень удобны при попытке управлять скоростью вентилятора или в качестве диммера светодиодной лампы.

DIAC: DIAC означает «Диоды для переменного тока».Это двунаправленный компонент с двумя электродами. Это еще один компонент семейства тиристоров . Он работает только тогда, когда он превышает свое напряжение переключения (VBO) и обычно используется для запуска симисторов. На графике ниже изображена работа DIAC.

Форма волны, представленная выше, отображает график зависимости тока от напряжения DIAC. Поскольку мы знаем, что в нашем проекте DIAC — это компонент, который управляет проводящей фазой TRIAC через его вывод затвора, нам необходимо знать, как напряжение переключения (VBO) работает в DIAC.DIAC попадает в свою проводящую стадию только после того, как он пересекает напряжение барьера (VBO), которое составляет примерно 30 В, но отличается в зависимости от модели компонентов. Первоначально DIAC — это устройство с более высоким сопротивлением, но после постоянного увеличения уровня напряжения и в точке VBO сопротивление резко уменьшается, и оно начинает проводить, что приводит к увеличению тока. DIAC остается в проводящем состоянии до тех пор, пока потребляемый из него ток не снизится до уровня, называемого «ток удержания».Как только потребляемый ток падает ниже тока удержания, DIAC снова становится непроводящим.

Как показано на приведенном выше графике, напряжение (ось x) постепенно увеличивается до тех пор, пока не достигнет напряжения отключения (VBO), которое составляет 30-40 В, после чего наблюдается резкое снижение и достигается постоянный выходной ток (10 мА), который составляет удерживающий ток.

Разница между TRIAC и DIAC

Несмотря на то, что два устройства различаются по количеству контактов и конфигурации, как DIAC, так и TRIAC принадлежат к семейству тиристоров.TRIAC — это высокомощное устройство, тогда как DIAC считается маломощным. Напряжение пробоя (VBO) DIAC не может быть изменено, тогда как VBO TRIAC может быть изменено с помощью клеммы затвора. DIAC — это устройство, используемое для управления точкой срабатывания TRIAC. Типичный символ распиновки для TRIAC и DIAC показан ниже.

Работа цепи регулятора вентилятора переменного тока

Схема работает в основном путем управления выводом затвора TRIAC и другим выводом DIAC, помимо изменения времени разряда конденсатора.Во время положительной половины цикла обкладки конденсатора заряжаются в соответствии с полярностью, и ток также течет к клемме T1 TRIAC, но DIAC по-прежнему не запускается, поскольку мы не пересекли напряжение отключения (VBO) DIAC ( обычно около 30 В. Для DB3 изменяется сопротивление и конденсатор разряжается до напряжения, превышающего напряжение переключения DIAC, DIAC начинает проводить , и выходной сигнал подается на клемму затвора TRIAC, который затем срабатывает, и цепь замкнута, и вентилятор вращается.

Аналогично, в течение отрицательной половины цикла конденсатор заряжается, но с измененной полярностью, и как только достигается напряжение отключения (VBO), ЦИАП проводит и запускает СИСТЕМЫ, следовательно, цепь замыкается. На приведенном выше графике показаны точки срабатывания, точки проводимости и точки срабатывания, а также удерживающий ток (Ih) TRIAC во время двухполупериодного сигнала переменного тока.

Завершив весь процесс пайки и приобретения вентилятора, я подключил модуль к сети переменного тока 220 В и к вентилятору, скорость которого нужно регулировать.Когда я включил питание и начал вращать потенциометр, я заметил, что вентилятор вращается в зависимости от того, насколько повернут потенциометр. Переменное сопротивление потенциометра помогало регулировать скорость вращения вентилятора с помощью наших TRIAC и DIAC.

Надеюсь, вы узнали что-то новое и получили удовольствие от создания собственного регулятора вентилятора переменного тока. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом по электронике.

Для объяснения и для просмотра правильной работы этого проекта, пожалуйста, посмотрите видео, приведенное ниже.

Что такое симистор — переключатель симистора »Электроника

Симисторы

— это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут переключать обе половины переменного цикла.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Симисторы — это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности.

В частности, симисторные схемы используются в регуляторах освещенности для домашнего освещения, а также во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, оставляя тиристоры для использования в приложениях переключения мощности переменного тока с очень высокими температурами.

Среднетоковый симистор

Основы симистора

Симистор является развитием тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин сигнала переменного тока.

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.

Форма сигнала переключения симистора

Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока может использоваться полный цикл.Для базовых тиристорных схем используется только половина формы волны, а это означает, что в базовых схемах, использующих тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако симистору требуется только одно устройство для управления обеими половинами формы волны переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет собственный символ схемы, который используется на принципиальных схемах, и это указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.

Обозначение схемы симистора

Симистор, как и тиристор, имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие выводы подключены к тому, что фактически является катодом одного тиристора и анодом другого в пределах всего устройства.

Есть вентиль, который действует как спусковой крючок для включения устройства. В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или главный терминал 1 и главный терминал 2 (MT1 и MT2).При использовании симисторов МТ1 и МТ2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем смотреть, как работает симистор, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.

Что касается работы симистора, то из обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному.Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне гораздо сложнее.

Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.

Базовая структура симистора

Симистор может вести себя разными способами — больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2.Он также может срабатывать как положительным, так и отрицательным током затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:

  • Режим I + Ток MT2 равен + ve, ток затвора + ve
  • I- Mode Ток MT2 равен + ve, ток затвора равен -ve
  • III + Mode: Ток MT2 -ve, ток затвора + ve
  • III- Режим: Ток MT2 -ve, ток затвора -ve

Обнаружено, что чувствительность триггерного триггера по току максимальна, когда токи MT2 и затвора имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичную ВАХ симистора можно увидеть на диаграмме ниже с обозначенными четырьмя различными квадрантами.

IV характеристика симистора

Применение симистора

Симисторы используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где требуется переключение больших уровней мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.

Тем не менее, симисторы широко используются во многих приложениях:

  • Управление освещением — особенно бытовые диммеры.
  • Управление вентиляторами и небольшими двигателями.
  • Электронные переключатели для общего переключения и управления переменным током

Естественно, существует много других применений симисторов, но это одни из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов следует обратить внимание на ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.

Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень создаваемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и в результате симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.

Чтобы помочь в преодолении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это является следствием того факта, что характеристика переключения диака намного лучше, чем у симистора. Поскольку диак предотвращает протекание тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Внутренняя схема симисторного регулятора освещенности

Примеры схем симистора

Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми приборами.

  • Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель — он может активировать пусковой импульс переключателя малой мощности для включения симистора для управления гораздо более высокими уровнями мощности, которые могут быть возможны с простой переключатель. Схема простого симисторного переключателя
  • Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
    Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Можно использовать гораздо больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.

Примечание по схемам и конструкции симистора:
Цепи симистора

могут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и конструкция

Характеристики симистора

Симисторы

имеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.

Однако, поскольку их работа очень похожа, они также являются базовыми типами спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., необходимы при проектировании схемы симистора, обеспечивая достаточный запас для надежной работы схемы.

Симисторы

— идеальные устройства для использования во многих приложениях переменного тока малой мощности. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и просто реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Регулятор в цепи индуктивной нагрузки симистора. Принцип работы симисторных регуляторов мощности

В электротехнике довольно часто приходится сталкиваться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его выводах; для контроля температуры внутри сушильной камеры необходимо регулировать мощность, выделяемую в нагревательных элементах, добиться плавного безударного пуска асинхронного двигателя — ограничивать его пусковой ток.Распространенным решением является устройство, называемое тиристорным регулятором.

Устройство и принцип работы однофазного тиристорного регулятора напряжения

Тиристорные регуляторы бывают однофазными и трехфазными соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор — в других статьях. Итак, на рисунке 1 ниже показан однофазный тиристорный регулятор напряжения:

Рис.1 Простой однофазный тиристорный регулятор с резистивной нагрузкой

Сам тиристорный регулятор обведен синими линиями и включает тиристоры VS1-VS2 и систему управления фазой импульса (далее SPPC). Тиристоры VS1-VS2 представляют собой полупроводниковые устройства, которые имеют свойство быть закрытыми для протекания тока в нормальном состоянии и открытыми для тока одной полярности, когда на его управляющий электрод подается управляющее напряжение. Поэтому для работы в сетях переменного тока требуются два тиристора, соединенные в разные стороны — один для протекания положительной полуволны тока, второй — для отрицательной полуволны.Такое соединение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с резистивной нагрузкой

Тиристорный регулятор работает так. В начальный момент времени приложено напряжение L-N (в нашем примере фаза и ноль), при этом импульсы управляющего напряжения на тиристоры не поступают, тиристоры замкнуты, ток в нагрузке Rн отсутствует. После получения команды на запуск SPPU начинает формировать управляющие импульсы по определенному алгоритму (см.рис.2).



Рис.2 График напряжения и тока в резистивной нагрузке

Во-первых, система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом пересечения нуля (в зарубежной литературе — Zero Cross). Затем отсчитывается определенное время T1 с момента перехода через нуль и на тиристор VS1 подается управляющий импульс. В этом случае тиристор VS1 открывается и ток течет через нагрузку по пути L-VS1-Rn-N.При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. SPFU снова отсчитывает время T1 относительно уже нового момента, когда напряжение пересекает ноль, и генерирует второй управляющий импульс для тиристора VS2, который открывается, и ток течет через нагрузку по пути N-Rn-VS2-L. Этот метод регулирования напряжения называется фазово-импульсным .

Время T1 называется временем задержки срабатывания тиристора, время T2 — временем проводимости тиристора. Изменяя время задержки разблокировки T1, можно регулировать значение выходного напряжения от нуля (импульсы не поступают, тиристоры замкнуты) до полного сетевого напряжения, если импульсы подаются сразу в момент перехода через ноль. Время задержки разблокировки T1 варьируется в пределах 0..10 мс (10 мс — это продолжительность одного полупериода стандартного напряжения сети 50 Гц). Они также иногда говорят о временах T1 и T2, но они работают не со временем, а с электрическими степенями.Один полупериод — 180 эл.

Какое выходное напряжение у тиристорного регулятора? Как видно из рисунка 2, это похоже на «отсечение» синусоиды. Причем, чем больше время T1, тем меньше этот «разрез» напоминает синусоиду. Из этого следует важный практический вывод — при фазоимпульсном регулировании выходное напряжение несинусоидальное. Это приводит к ограничению области применения — тиристорный регулятор нельзя использовать для нагрузок, не допускающих подачи питания с несинусоидальными напряжением и током.Также на рисунке 2 диаграмма тока в нагрузке показана красным цветом. Поскольку нагрузка чисто активна, форма волны тока повторяет форму волны напряжения в соответствии с законом Ома I = U / R.

Вариант активной нагрузки является наиболее распространенным. Одно из наиболее распространенных применений тиристорного регулятора — регулирование напряжения в нагревательных элементах. Регулируя напряжение, ток и мощность, выделяемая в нагрузке, изменяются. Поэтому иногда такой регулятор еще называют тиристорным регулятором мощности … Это правда, но все же более правильное название — тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность — это уже производные.

Регулировка напряжения и тока в активно-индуктивной нагрузке

Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если в нагрузке помимо активной будет индуктивная составляющая? Например, активное сопротивление подключается через понижающий трансформатор (рис.3). Кстати, это очень частый случай.


Рис. 3 Тиристорный регулятор работает от нагрузки RL

Рассмотрим подробнее рисунок 2 для случая чисто активной нагрузки. Видно, что сразу после включения тиристора ток в нагрузке практически мгновенно увеличивается от нуля до своего предельного значения, за счет текущего значения напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому резкому увеличению тока, поэтому диаграмма напряжения и тока будет иметь несколько иной характер:


Рис.4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке постепенно увеличивается, за счет чего кривая тока сглаживается. Чем больше индуктивность, тем плавнее кривая тока. Что это дает на практике?

— Наличие достаточной индуктивности дает возможность приблизить форму тока к синусоидальной, то есть индуктивность действует как синусоидальный фильтр. В этом случае наличие индуктивности связано со свойствами трансформатора, но часто индуктивность намеренно вводится в виде дросселя.

— Наличие индуктивности снижает количество шума, распространяемого тиристорным регулятором по проводам в радиоэфир. Резкое, почти мгновенное (в течение нескольких микросекунд) повышение тока вызывает помехи, которые могут мешать нормальной работе другого оборудования. А если питающая сеть «слабая», то возникает довольно любопытство — тиристорный регулятор может «заклинивать» себя собственными помехами.

— Тиристоры имеют важный параметр — значение критической скорости нарастания тока di / dt.Например, для тиристорного модуля СККТ162 это значение составляет 200 А / мкс. Превышение этого значения опасно, так как может привести к выходу из строя тиристора. Таким образом, наличие индуктивности позволяет тиристору оставаться в зоне безопасной работы, гарантированно не превышая максимального значения di / dt. Если это условие не выполняется, то может наблюдаться интересное явление — выход из строя тиристоров, при этом ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выйти из строя при токе 100 А, хотя нормально может работать до 200 А.Причиной будет превышение скорости нарастания тока di / dt.

Кстати, надо заметить, что индуктивность в сети есть всегда, даже если нагрузка чисто активная. Его наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во-вторых, собственной индуктивностью проводов и кабелей и, в-третьих, индуктивностью контура, образованного питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает для того, чтобы di / dt не превышал критического значения, поэтому производители обычно не ставят тиристорные регуляторы, предлагая их в качестве опции тем, кого беспокоит «чистота» сети и электромагнитная совместимость подключенных к нему устройств.

Также обратим внимание на диаграмму напряжений на рисунке 4. Она также показывает, что после пересечения нуля на нагрузке появляется небольшой скачок напряжения обратной полярности. Причина его возникновения — задержка падения тока в нагрузке по индуктивности, из-за которой тиристор продолжает оставаться открытым даже при отрицательной полуволне напряжения. Тиристор отключается при падении тока до нуля с некоторой задержкой относительно момента перехода через нуль.

Пример индуктивной нагрузки

Что произойдет, если индуктивная составляющая намного больше, чем активная составляющая? Тогда мы можем говорить о случае чисто индуктивной нагрузки.Например, такой случай можно получить, отключив нагрузку от выхода трансформатора из предыдущего примера:


Рисунок 5 Тиристорный регулятор с индуктивной нагрузкой

Холостой трансформатор — это почти идеальная индуктивная нагрузка. При этом из-за большой индуктивности момент выключения тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:



Рисунок 6 Диаграммы тока и напряжения для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому напряжению, хотя время задержки разблокировки составляет лишь половину полупериода (90 электрических градусов), то есть при высокой индуктивности можно говорить о сдвиг в управляющей характеристике.При активной нагрузке максимальное выходное напряжение будет при угле задержки разблокировки 0 электрических градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимальное напряжение может быть получено при угле задержки разблокировки 90 электрических градусов, то есть когда тиристор разблокирован в момент максимального сетевого напряжения. Соответственно, в случае активно-индуктивной нагрузки максимальное выходное напряжение соответствует углу задержки разблокировки в промежуточном диапазоне 0..90 электрических градусов.

В статье рассказывается, как работает тиристорный регулятор мощности, схема которого будет представлена ​​ниже

В быту очень часто возникает необходимость регулирования мощности бытовой техники, например, электроплиты, паяльника и т. Д. котлов и ТЭНов, в транспорте — оборотов двигателя и др. На помощь приходит простейшая радиолюбительская конструкция — регулятор мощности на тиристоре. Собрать такой прибор несложно, он может стать самым первым самодельным устройством, которое будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя.Стоит отметить, что готовые паяльные станции с контролем температуры и другими приятными функциями намного дороже простого паяльника. Минимальный набор деталей позволяет собрать простой настенный тиристорный регулятор мощности.

К сведению, поверхностный монтаж — это способ сборки электронных компонентов без использования печатной платы, и при хорошем мастерстве он позволяет быстро собрать электронные устройства средней сложности.

Также можно заказать тиристорный регулятор, а для тех, кто хочет разобраться самостоятельно, ниже будет представлена ​​схема и объяснен принцип работы.

Кстати, это однофазный тиристорный регулятор мощности. Такое устройство можно использовать для управления мощностью или скоростью. Однако для начала нужно разобраться, ведь это позволит понять, для какой нагрузки лучше использовать такой регулятор.

Как работает тиристор?

Тиристор — это управляемое полупроводниковое устройство, способное проводить ток в одном направлении. Слово «управляемый» употреблено не зря, потому что с его помощью, в отличие от диода, который также проводит ток только на один полюс, можно выбрать момент, когда тиристор начинает проводить ток.Тиристор имеет три выхода:

  • Анод.
  • Катод.
  • Электрод контрольный.

Для того, чтобы ток начал протекать через тиристор, должны быть выполнены следующие условия: деталь должна быть в цепи под напряжением, на управляющий электрод должен подаваться короткий импульс. В отличие от транзистора, тиристорное управление не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно замкнуть, только прервав ток в цепи, либо сформировав обратное анод-катодное напряжение.Это означает, что использование тиристора в цепях постоянного тока очень специфично и часто нецелесообразно, но в цепях переменного тока, например, в таком устройстве, как тиристорный регулятор мощности, схема построена таким образом, что условие включения при условии. Каждая из полуволн закроет соответствующий тиристор.

Вы, скорее всего, не все понимаете? Не отчаивайтесь — процесс создания готового устройства подробно будет описан ниже.

Сфера применения тиристорных регуляторов

В каких схемах эффективно использовать тиристорный регулятор мощности? Схема позволяет идеально регулировать мощность нагревательных приборов, то есть влиять на активную нагрузку.При работе с высокоиндуктивной нагрузкой тиристоры могут просто не замыкаться, что может привести к выходу регулятора из строя.

У вас есть мотор?

Я думаю, что многие читатели видели или использовали дрели, угловые шлифовальные машины, которые в народе называют «шлифовальными машинами», и другие электроинструменты. Вы могли заметить, что количество оборотов зависит от глубины нажатия на спусковой крючок устройства. Именно в этом элементе построен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого изменяется количество оборотов.

Примечание! Тиристорный регулятор не может изменять скорость асинхронных двигателей. Таким образом, напряжение регулируется на щеточных двигателях, оснащенных щеточным узлом.

Одно- и двухтиристорная схема

Типовая схема сборки тиристорного регулятора мощности своими руками представлена ​​на рисунке ниже.

Выходное напряжение этой схемы от 15 до 215 вольт, в случае использования этих тиристоров, установленных на радиаторах, мощность около 1 кВт.Кстати, переключатель с диммером выполнен по аналогичной схеме.

Если вам не требуется полное регулирование напряжения и вы просто получаете на выходе 110–220 вольт, воспользуйтесь этой схемой, на которой показан полуволновой регулятор мощности на тиристоре.

Как это работает?

Информация, описанная ниже, действительна для большинства схем. Буквенные обозначения примем по первой схеме тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, также изменяет мощность.Этот принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, которое изменяется по синусоидальному закону. Выше при описании принципа работы тиристора было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной по синусоиде. Что это значит?

Если с помощью тиристора нагрузка периодически подключается в строго определенный момент, значение действующего напряжения будет меньше, так как часть напряжения (действующее значение, которое «попадает» в нагрузку) будет меньше сетевого напряжения.Это явление проиллюстрировано на графике.

Заштрихованная область — это область напряжения, которая находится под нагрузкой. Буква «а» на горизонтальной оси указывает момент открытия тиристора. Когда положительная полуволна заканчивается и начинается период с отрицательной полуволной, один из тиристоров закрывается, и в этот же момент открывается второй тиристор.

Разберемся, как конкретно работает наш тиристорный регулятор мощности

Схема первая

Заранее оговорим, что вместо слов «положительный» и «отрицательный» будут использоваться «первый» и «второй» (полуторный). волна).

Итак, когда на нашу цепь начинает действовать первая полуволна, емкости С1 и С2 начинают заряжаться. Скорость их заряда ограничена потенциометром R5. этот элемент является переменным, и с его помощью задается выходное напряжение. При появлении на конденсаторе С1 напряжения, необходимого для открытия динистора VS3, динистор открывается, по нему протекает ток, с помощью которого откроется тиристор VS1. Момент выхода из строя динистора обозначен точкой «а» на графике, представленном в предыдущем разделе статьи.Когда значение напряжения проходит через ноль и цепь находится ниже второй полуволны, тиристор VS1 закрывается, и процесс повторяется снова, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 используются для управления, а R1 и R2 — для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но контролирует только одну из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или отремонтировать тиристорный регулятор мощности своими руками.

Применение регулятора в быту и безопасности

Следует отметить, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что нельзя прикасаться руками к элементам регулятора. Необходимо использовать изолированный корпус. Дизайн вашего устройства следует спроектировать так, чтобы по возможности можно было спрятать его в регулируемом устройстве, найти свободное место в корпусе. Если регулируемое устройство стационарное, то вообще имеет смысл подключить его через выключатель с диммером.Такое решение частично защитит от поражения электрическим током, избавит от необходимости искать подходящий чехол, имеет привлекательный внешний вид и изготавливается промышленным способом.

Тиристорный зарядный блок Красимира Рильчева предназначен для зарядки аккумуляторных батарей грузовых автомобилей и тракторов. Он обеспечивает плавно регулируемый (резистор RP1) зарядный ток до 30 А. Принцип регулирования — тиристор на основе фазовых импульсов, который обеспечивает максимальный КПД, минимальное рассеивание мощности и не требует мощных выпрямительных диодов.Сетевой трансформатор выполнен на магнитопроводе сечением 40 см2, первичная обмотка содержит 280 витков ПЭЛ-1,6, вторичная 2х28 витков ПЭЛ-3,0. Тиристоры устанавливаются на радиаторы размером 120х120 мм. …

Для «ПРОСТОГО РЕГУЛЯТОРА ТЕМПЕРАТУРЫ ПАЙКИ»

Бытовая электроника ПАЯЛЬНЫЕ УСТАНОВКИ ПРОСТОЙ ТЕМПЕРАТУРЫ ГРИЩЕНКО 394000, г. Воронеж, ул. Мало-Смольнская, 6 — 3. Эта схема не является моей разработкой. Впервые я увидел ее в журнале «Радио».Думаю, он заинтересует многих радиолюбителей своей простотой. Устройство позволяет регулировать мощность паяльника от половины до максимальной. С элементами, указанными на схеме, мощность нагрузки не должна превышать 50 Вт, но в течение часа схема может без особых последствий передать нагрузку 100 Вт. Схема регулятора представлена ​​на рисунке. Если тиристор VD2 заменить на КУ201, а диод VD1 — на КД203В, подключаемая мощность может быть значительно увеличена.Выходная мощность минимальна в крайнем левом (согласно схеме) положении двигателя R2. В моем варианте монтируется в настольную лампу методом поверхностного монтажа. Это экономит одну розетку, которой, как известно, всегда не хватает. Этот работает у меня 14 лет без нареканий. Литература 1. Радио, 1975, N6, C.53 ….

Для схемы «РЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮ»

К схеме «ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ПН-32»

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ПН-32 (С) РИНТЕЛСай Олег, (RA3XBJ).Преобразователь предназначен для питания оборудования номинальным напряжением 12 В (радиостанции СВ, магнитолы, телевизоры и т. Д.) От бортовой сети автомобилей напряжением 24 В. Максимальный ток нагрузки преобразователя вверх на 3А на короткое время и на 2-2,5 А на длительное (определяется площадью радиатора выходного транзистора). КПД 75-90% в зависимости от тока нагрузки. Схема преобразователя не содержит дефицитных деталей. Дроссель намотан на ферритовом кольце диаметром 32 мм и имеет 50 витков ПЭТВ-0.63 провод. Габариты преобразователя 65х90х40 мм. Вопросы по дизайну можно задать автору [email защищен]

Источник питания «МЯГКАЯ» НАГРУЗКА НА СЕТЬ При подключении и отключении нагрузки Помехи в электрической сети часто могут нарушить нормальную работу чувствительных электронных устройств и электрических систем. Устройство, схема которого приведена на рис. 1, осуществляет «мягкое» включение и отключение нагрузки. = МЯГКАЯ НАГРУЗКА В ЭЛЕКТРОСЕТИ Puc.1 Когда контакты переключателя SA1 замыкаются во время зарядки конденсатора С1 (через резистор R1), транзистор VT1 постепенно открывается и ток коллектора постепенно увеличивается до значения, определяемого соотношением сопротивлений резисторов R1 и R2. . Соответственно, ток в нагрузке плавно увеличивается. В выключенном состоянии конденсатор разряжается через резистор R2 и переход база-эмиттер транзистора. Ток постепенно уменьшается до нуля. При указанных на схеме значениях элементов и мощности 200 Вт длительность включенного процесса равна 0.1 с, а выкл — 0,5 с. Схема регулятора тока Т160 Потери напряжения в этом устройстве относительно небольшие, они определяются суммой прямого падения на двух диодах и участке коллектор-эмиттер работающего транзистора, что примерно равно: Uce (B) = 0,7 + R1 * In / h31e В зависимости от тока нагрузки и коэффициента передачи тока базы транзистора резистор R) следует выбирать так, чтобы падение напряжения на транзисторе и рассеиваемая мощность на нем сохранялись в по состоянию на приемлемом уровне.= МЯГКАЯ НАГРУЗКА В ЭЛЕКТРОСЕТИ Puc. 2 В варианте устройства, показанном на рис. 2, предусмотрена броня от перегрузок и коротких замыканий. Когда ток превышает установленное значение, падение …

Для схемы «Индикатор подключения нагрузки»

Искать выключатель света или розетку в темноте — занятие не из приятных. В продаже появились выключатели бытового освещения, оснащенные индикаторами, указывающими на их расположение. Немного улучшив схему, такой индикатор можно превратить в индикатор подключения нагрузки. нагрузка (PPI) — устройство, встроенное в розетку и показывающее наличие контакта между вставленной сетевой вилкой от любого бытового прибора и розеткой. Индикатор особенно удобен, если подключенные устройства не имеют собственного индикатора сети. PSI также пригодится для радиоэлектронных изделий, в которых индикаторы включения находятся во вторичной цепи питания, поскольку позволяет проверить их входные цепи. PSI состоит из: — датчика тока нагрузки на диодах VD2… VD6; — Г-образный фильтр R1-C1; — ключ на полевом транзисторе VT1; — блок индикации на элементах VD9, VD10, R2, HL1. Если нагрузка не подключена к разъему XS1, то через диоды VD1 … VD6 ток не течет, накопительный конденсатор C1 разряжается, а полевой транзистор VT1 закрывается. Регулятор мощности на ц122 25 Ток стока VT1 равен нулю, индикатор HL1 не горит. нагрузка на розетку XS1 ток нагрузки протекает через встречно-параллельно включенный диод VD1 и цепочку диодов VD2… VD6. Отрицательные полуволны сетевого напряжения проходят через VD1. а положительные — через VD2 .. .VD6. Падение напряжения на диодах VD2 … VD6 через резистор R1 попадает в накопительный конденсатор C1 и заряжает его до значения, превышающего напряжение отсечки полевого транзистора VT1. Транзистор VT1 открывается, и ток течет через его канал исток-сток, резистор R2, светодиод HL1 и диод VD9. Светодиод HL1 ослепительно светится, указывая на то, что нагрузка подключена. Резистор R2 является токоограничивающим диодом, диод VD9 запрещает протекание тока через нагрузку во время обратных полупериодов сетевого напряжения.Диод VD10 защищает HL1 от обратного напряжения ….

Для схемы «Простой регулятор мощности»

Индуктивная нагрузка в цепи регулятора мощности предъявляет жесткие требования к схемам управления симистором — синхронизация системы управления должна осуществляться непосредственно от сети, сигнал должен иметь длительность, равную интервалу проводимости симистора. На рисунке показана схема регулятора, отвечающего этим требованиям, в котором используется комбинация динистора и симистора.Постоянная времени (R4 + R5) C3 определяет угол запаздывания срабатывания динистора VS1 и, следовательно, симистора VS2. Перемещая ползунок переменного резистора R5, мощность, потребляемая нагрузкой, регулируется. Конденсатор C2 и резистор R2 используются для синхронизации и обеспечения длительности управляющего сигнала. Конденсатор C3 перезаряжается от C2 после переключения, так как в конце каждого полупериода он имеет напряжение обратной полярности. Для защиты от помех, создаваемых регулятором, два фильтра R1C1 введены в цепь питания и R7C4 — в цепь нагрузки.Для настройки прибора необходимо установить резистор R5 в положение максимального сопротивления и резистор R3 установить минимальную мощность на нагрузке. Конденсаторы С1 и С4 типа К40П-2Б для конденсаторов С2 и СЗ 400 В Тип К73-17 на 250 В Диодный мост VD1 можно заменить диодами КД105Б Переключатель SA1 рассчитан на ток не менее 5 AVF. Яковлев, Шостка, Сумская обл. …

Для схемы «Держатель телефона»

ТелефонияУстройство удержания телефонной линии Предлагаемое устройство выполняет функцию удержания телефонной линии («HOLD»), что позволяет в течение часа разговора положить трубку на трубку и перейти к параллельному телефонному аппарату.Устройство не перегружает телефонную линию (ЛЛ) и не создает в ней помех. В час срабатывания вызывающий абонент слышит музыкальную заставку. Схема устройства удержания телефонной линии представлена ​​на рисунке. Выпрямительный мост на основе диодов VD1-VD4 обеспечивает правильную полярность питания устройства независимо от полярности его подключения к ЛЭП. Переключатель SF1 подключается к трубке телефонного аппарата (ТА) и замыкается при поднятии трубки (то есть блокирует кнопку SB1 при положенной трубке).Если вам нужно переключиться на параллельный ТА в течение часа разговора, кратковременно нажмите кнопку SB1. В этом случае срабатывает реле К1 (контакты К1.1 замыкаются, а контакты К1.2 размыкаются), эквивалент подключается к нагрузке ТЛ (цепь R1R2K1) и отключается ТА, с которого велся разговор. Схема регулятора тока Т160 Теперь можно надеть трубку на рычаг и перейти к параллельному ТА. Падение напряжения на эквиваленте составляет 17 В. Когда трубка поднимается на параллельном TA, напряжение в TL падает до 10 В, реле K1 отключается, и эквивалент отключается от TL.Транзистор VT1 должен иметь коэффициент передачи не менее 100, при этом амплитуда переменного напряжения звуковой частоты, выдаваемого в ЛЭП, достигает 40 мВ. В качестве музыкального синтезатора (DD1) используется микросхема UMC8, в которой «защищены» две мелодии и будильник. Таким образом, контакт 6 («выбор мелодии») соединен с контактом 5. В этом случае первая мелодия проигрывается один раз, а вторая бесконечно. Как SF1 м …

Для схемы «ГЕНЕРАТОР СТАБИЛЬНОГО ТОКА»

ГЕНЕРАТОР СТАБИЛЬНОГО ТОКА Генераторы стабильного тока обычно называют приборами.выходной ток которого практически не зависит от сопротивления нагрузки. Может найти применение, например в омметрах с линейной шкалой. На рис. 1 представлена ​​принципиальная схема генератора стабильного тока на двух кремниевых транзисторах. Величина коллекторного тока транзистора V2 определяется соотношением Ik = 0,66 / R2.Puc.1 Например, когда R2 составляет 2,2 кОм. коллекторный ток транзистора V2 будет равен 0,3 мА и останется практически постоянным при изменении сопротивления резистора Rx от 0 до 30 кОм.При необходимости значение постоянного тока можно увеличить до 3 мА, для этого сопротивление резистора R2 необходимо уменьшить до 180 Ом. Дальнейшее повышение тока при сохранении высокой стабильности его значения как при изменении нагрузки, так и при повышении температуры возможно только при использовании трехтранзисторного генератора, показанного на рис. 2. В этом случае транзисторы V2 и V3 должны быть средней мощности, а напряжение второго блока питания должно быть в 2 … 3 раза выше напряжения питания транзисторов V1, V2.Сопротивление резистора R3 рассчитывается по приведенной выше формуле, но дополнительно корректируется с учетом разброса характеристик транзисторов. Рис. 2 «Электротехникар» (СФРЮ), 1976, N 7-8 От редакции. Транзисторы ВС 108 можно заменить на КТ315Г. VS107 -KT312B, BD137 — KT602B или KT605B, 2N3055 — KT803A ….

Для схемы «ТРАНЗИСТОРНЫЙ УМЗЧ НА ПУТИ К СОВЕРШЕНСТВОВАНИЮ»

АУДИОТЕХНИКА ТРАНЗИСТОРНЫЙ УМЗЧ НА ПУТИ К СОВЕРШЕНСТВОВАНИЮ Петров, Могилев Обычно, учитывая работу УМЗЧ, предполагается, что его нагрузка чисто активная.Однако громкоговоритель, тем более со сглаживающими фильтрами, представляет собой сложную комплексную нагрузку. При работе со сложной нагрузкой результирующий сдвиг фаз между напряжением и током на выходе усилителя приводит к тому, что при синусоидальных входных сигналах линия нагрузки превращается в эллипс. Положения рабочих точек (кривая нагрузки) для реактивной нагрузки , выходные характеристики триода и транзистора с усилением гармонического сигнала показаны на рисунках 1 и 2 соответственно.Как видно из рис.1, выходные характеристики триода практически идеальны для сложной нагрузки, которой является переменный ток. Благоприятный спектр гармоник (не выше пятой) и высокая линейность во многом определяют «мягкость» звучания ламповых усилителей. Схемы радиолюбительских преобразователей При этом несимметричный транзисторный усилитель совершенно непригоден для работы на громкоговорителе, т.к. с одной стороны линия входит в область предельно допустимой мощности рассеяния на коллекторе (заштрихованная область, над гиперболой ), с другой — в нелинейные области при малых Уке.Поперечный размер эллипса кривой нагрузки зависит от индуктивной, составляющей нагрузки, а продольный — от активной. При усилении импульсных сигналов, например, типа «меандр», линия нагрузки представляет собой параллелограмм, что еще больше усугубляет ситуацию. Амплитуда скачка напряжения в момент переключения (за счет ЭДС самоиндукции) зависит от отношения постоянной времени сигнала К к постоянной времени нагрузки Т = L / R…

Контроллеры мощности

Triac работают с фазовым управлением. Их можно использовать для изменения мощности различных электрических устройств, работающих от переменного напряжения.

Приборы включают электрические лампы накаливания, нагреватели, двигатели переменного тока, сварочные аппараты для трансформаторов и многие другие. Они имеют широкий диапазон регулировки, что дает им широкий спектр применения, в том числе и в повседневной жизни.


Описание и принцип работы

Работа устройства основана на регулировании задержки включения симистора при переходе сетевого напряжения через ноль.Симистор в начале полупериода находится в закрытом положении. После повышения напряжения положительной полуволны конденсатор заряжается со сдвигом фаз от сетевого напряжения.

Этот сдвиг определяет значения сопротивления резисторов P1, R1, R2 и емкости конденсатора С1. При достижении порогового значения на конденсаторе симистор включается. Он становится проводящим, пропуская напряжения, тем самым шунтируя цепь с резисторами и конденсаторами.Когда полупериод проходит через 0, симистор выключается.

Затем, когда конденсатор заряжается, он снова открывается с волной отрицательного напряжения. Такая работа симистора возможна из-за его конструкции. Он имеет пять полупроводниковых слоев с электродом затвора. Это дает ему возможность поменять анод на катод. Проще говоря, его можно представить в виде двух тиристоров с встречно-параллельным включением.


Область применения

Контроллеры мощности

Triac нашли свое применение не только в повседневной жизни, но и во многих отраслях промышленности.В частности, они успешно заменяют громоздкие релейные схемы управления. Они помогают устанавливать оптимальные токи в автоматических сварочных линиях и во многих других отраслях промышленности.

Что касается использования этих устройств в повседневной жизни, то их применение очень разнообразно. От регулирования напряжения до ламп накаливания до регулирования скорости вращения вентилятора. Словом, ассортимент настолько разнообразен, что описать его сложно.

Типы симисторных регуляторов мощности

Говоря об этих устройствах, следует отметить, что все они работают по одному принципу.Их главное отличие — мощность, на которую они рассчитаны. Вторым отличием будет схема управления. Для некоторых типов симисторов может потребоваться более точная настройка управляющих сигналов. Управление может быть самым разнообразным, от конденсатора и пары резисторов до современного микроконтроллера.

Схема

В контроллерах мощности можно использовать множество различных конструкций. Самая простая схема — это использование переменного резистора, а самая сложная современная микроконтроллер. Если использовать его дома, то можно остановиться на самом простом.

Этого хватит на большинство нужд. Помимо диммирования, регулятор часто используется для. Тем, кто любит заниматься электротехникой в ​​домашних условиях, необходимо регулировать температуру паяльника.

Делать это с помощью переменных резисторов неудобно, плюс большие потери электричества. Лучшим решением будет использование симисторного регулятора.

Как собрать регулятор

Возьмем простейшую принципиальную схему для сборки. В этой схеме используется симистор VD2 — VTB 12-600V (600-800 В, 12 А), резисторы: R1 — 680 кОм, R2 — 47 кОм, R3 — 1.5 кОм, R4 — 47 кОм. Конденсаторы: С1 — 0,01 мФ, С2 — 0,039 мФ.

Чтобы собрать такую ​​схему своими руками, вам потребуется проделать определенные действия в правильном порядке:

  1. Вы должны приобрести все детали из списка выше.
  2. Вторым шагом будет разработка печатной платы. При разработке следует учитывать, что часть деталей будет осуществляться поверхностным монтажом. А часть деталей будет установлена ​​прямо в плату.
  3. Создание платы начинается с рисования чертежа с расположением деталей и путями контакта между деталями. Затем рисунок переносится на заготовку доски. Когда рисунок переносится на доску, то все идет по известному методу. Травление платы, сверление отверстий под детали, лужение дорожек на плате. Многие люди используют современные компьютерные программы, такие как Sprint Layout, чтобы получить изображение доски, но если они у вас есть, не о чем беспокоиться.В данном случае у нас есть небольшая диаграмма. Это можно сделать вручную.
  4. Когда плата готова, вставляем необходимые радиодетали в подготовленные отверстия, укорачиваем плоскогубцами длину контактов до необходимой и приступаем к пайке. Для этого прогрейте паяльником точку контакта на плате, поднесите к ней припой, когда припой растечется по поверхности в точке контакта, снимите паяльник, дайте припою остыть. В этом случае все детали должны оставаться на месте, а не двигаться.При пайке необходимо соблюдать меры безопасности. В первую очередь нужно остерегаться ожогов, они могут быть вызваны контактом с паяльником, брызгами горячего припоя или флюса. У вас должна быть одежда, которая максимально защищает все части тела. А чтобы защитить глаза, необходимо носить защитные очки. Место пайки должно находиться в проветриваемом помещении, так как при работе могут появиться едкие газы.
  5. Завершающим этапом сборки будет размещение полученной платы в коробке. Какой ящик выбрать, будет напрямую зависеть от типа вашего регулятора. В случае нашей схемы будет достаточно коробки размером с пластиковую розетку. Небольшое количество деталей, самая большая из которых представляет собой переменный резистор, занимают мало места и умещаются в небольшом пространстве.
  6. Последний шаг — проверка и настройка устройства. Для этого понадобится измерительный прибор для контроля напряжения и прибор для нагрузки, в нашем случае паяльник. Поворачивая ручку регулятора, необходимо исследовать, насколько плавно изменяется напряжение на выходе.При необходимости можно сделать отметки возле регулировочного резистора.


Цена

Рынок изобилует большим количеством предложений разного ценового уровня. На цену симисторных регуляторов мощности в первую очередь влияют несколько параметров:

  1. Мощность продукта, чем мощнее мощность, тем дороже будет ваше устройство.
  2. Сложность схемы управления, в простейших схемах основная стоимость приходится на симисторы.В сложных схемах управления, где используются микроконтроллеры, цена может вырасти из-за них. Они предоставляют дополнительные возможности, соответственно, по более высокой цене. Так стабилизатор на резисторе напряжением 220 В мощностью 2500 Вт стоит 1200 рублей, а на микроконтроллере с такими же параметрами 2450 рублей.
  3. Марка производителя. Иногда за продвигаемый бренд можно заплатить на 50% больше.

Теперь вы можете найти регуляторы мощности, собранные по разным схемам.У каждого из них будут свои достоинства и недостатки. Современные регуляторы делятся на два типа: микропроцессорные и аналоговые. Аналоговые контроллеры можно отнести к системам эконом-класса. Они известны еще со времен СССР, просты в исполнении и дешевы. Их главный недостаток — постоянный контроль со стороны владельца или оператора.

Приведем простой пример, у вас на выходе должно быть напряжение 170 В. Когда вы устанавливали это напряжение, напряжение питания составляло 225 В, а теперь давайте представим, что входное напряжение изменилось на 10 В, и соответственно изменится выходное напряжение.

Если величина выходного напряжения влияет на процесс, могут возникнуть проблемы. Помимо падения напряжения питания, на выход могут влиять параметры самого регулятора. Поскольку емкость конденсатора со временем изменяется, влажность окружающей среды может влиять на переменный резистор, добиться стабильной работы невозможно.

Регуляторы на базе микропроцессоров не имеют этой проблемы. У них есть обратная связь, позволяющая быстро настроить управляющий сигнал.

Одним из важных моментов при длительной эксплуатации станет ремонт и сервисное обслуживание. Микропроцессорные контроллеры — это сложное изделие, и для их ремонта потребуются специализированные сервисные центры. Аналоговые регуляторы легче ремонтировать. Сделать это может любой радиолюбитель в домашних условиях.

Окончательный выбор в отношении симисторного регулятора мощности можно сделать после изучения условий его эксплуатации. Когда вам не нужна высокая точность вывода, имеет смысл выбрать аналоговый прибор, сэкономив при этом деньги.Когда нужна точность на выходе, не экономьте, купите микропроцессорное устройство.


Небольшой полупроводниковый прибор «симистор», или симметричный тринистор (тиристор), скрывает за своим сложным названием довольно простой принцип действия, сравнимый с работой двери в метро. Обычные тиристоры можно сравнить с простой дверцей: если закрыть ее, прохода не будет. И такая дверь работает в одну сторону. Симисторы работают в обоих направлениях. Отсюда и сравнение с дверью в метро: куда бы ее не толкнули, она отрывается и пропускает поток пассажиров в любом направлении.

Двустороннее действие симистора обусловлено его особой конструкцией. Его катод и анод в некотором смысле могут меняться местами и выполнять функции друг друга, пропуская ток в противоположном направлении. Это возможно благодаря тому, что симистор имеет 5 полупроводниковых слоев и электрод затвора.

Для простоты понимания физических процессов, происходящих в симисторе, его можно представить в виде двух встречно соединенных тиристоров.

Симисторы используются в различных схемах в качестве бесконтактных ключей и имеют ряд преимуществ перед контакторами, реле, пускателями и аналогичными электромеханическими элементами:

  • симисторы прочные, практически нерушимые;
  • там, где есть электромеханика, есть ограничения по частоте переключения, износу и соответствующие риски и проблемы, а с полупроводниками такие нюансы не возникают;
  • полное отсутствие искрообразования и связанных с этим рисков;
  • возможность осуществлять переключение в моменты нулевого сетевого тока, что снижает помехи и влияние на точность цепей.

Схема простого регулятора мощности на симисторе

Чаще всего симисторы используются в цепях управления мощностью. Один из самых простых и распространенных стабилизаторов мощности на симисторе КУ208Г показан ниже.

Как видно на рисунке, силовая цепь схемы оснащена симистором КУ208, а его схема управления включает только один элемент — транзистор П416А. Регулировка работы устройства сводится к подбору номинала резистора R1 и происходит в следующей последовательности:

  • установить ползунок резистора R4 в нижнее положение;
  • вместо резистора R1 установить переменный резистор сопротивлением 150 Ом;
  • установите переменный резистор в максимальное положение;
  • подключить вольтметр переменного тока к нагрузке;
  • подключаем устройство к сети.

Для правильного подключения оно должно соответствовать предварительно выбранному месту установки и количеству подключаемых устройств. При этом очень важно проверить правильность работы осветительных приборов и настроить соответствующие параметры датчика.

Это оборудование, благодаря своим технологическим качествам, приобретает все большую популярность при обустройстве дома освещения. Прочитав, вы сможете понять принцип работы различных датчиков движения, которые помогут в дальнейшем выборе подходящего устройства для вашего дома.

Далее нужно провернуть мотор резистора R1 и следить за напряжением на нагрузке: необходимо следить за тем, чтобы оно перестало расти. В найденном положении необходимо измерить сопротивление переменного резистора, и соответственно будет выставлено сопротивление резистора R1. Именно с таким номиналом необходимо будет установить в цепи постоянный резистор R1 вместо переменного образца.

Обратная связь в цепях управления симистором

Для контроля мощности (температуры) нагревательных элементов различных устройств, скорости вращения двигателей и т. Д.в последнее время, несмотря на более высокую стоимость, чем электромеханика, стал применяться симисторный регулятор мощности. Необходимость использования дополнительного радиатора для такой схемы — небольшая плата в обмен на отсутствие риска искрообразования, длительный период безотказной работы и стабильность выходных параметров.

Такая схема управления распространена в таких устройствах, как паяльники, электродрели и т. Д.

Ниже приведен пример другой схемы управления мощностью симистора. Это схема для регулирования скорости двигателя промышленной швейной машины.


Схема собрана на симисторе VS1, вентилях выпрямителя VD1 и VD2, и переменном резисторе R3 в цепи управления. Особенность и ключевое отличие такой схемы — обратная связь. Симистор, пропускающий ток в обоих направлениях, — лучшее решение для цепей управления, где требуется эта обратная связь.

При выборе типа защитных устройств в первую очередь учитываются их технические возможности установки в совокупности индивидуальных предпочтений.Это решающий фактор в решении вопроса 😕 Только изучив особенности их работы, можно добиться безопасного функционирования бытовой электросети.

Применяя устройство защитного отключения в домашних условиях, вам необходимо знать особенности его различных типов — чтобы быть правильным, а также изучить схемы установки — чтобы быть правильным.

По сравнению с устаревшими коммутационными технологиями можно выделить еще одно явное преимущество схем управления мощностью на симисторах — это возможность обеспечивать качественную обратную связь и, соответственно, регулировать работу обратной связи.

Особенности и преимущества схемы:

  1. В данном случае реализована обратной связи по нагрузке , что позволяет увеличить частоту вращения двигателя и обеспечить плавную бесперебойную работу машины в случае увеличения нагрузочных сил. В этом случае все операции выполняются схемой автоматически. Не возникает дуги или перегрева. Как видно из рисунка, здесь нет радиатора.
  2. Эта схема представляет собой регулирование активной мощности устройств … Использование таких схем в системах регулирования силы света не рекомендуется. По ряду причин огни будут сильно мигать.

  3. Переключение симистора в этой схеме происходит строго в моменты перехода через «0» сетевого напряжения, поэтому можно констатировать полное отсутствие помех со стороны регулятора.
  4. Срабатывает, то есть , симистор включается от положительного импульса, поступающего на управляющий электрод при положительном напряжении на аноде, или от отрицательного импульса в отрицательном положении на катоде.Катод и анод, учитывая особенности двунаправленной работы симистора, здесь условны. в зависимости от работы в разных направлениях они будут менять функции.
  5. В качестве источника импульсов для управления симистором может быть использован двунаправленный динистор … Или, из соображений удешевления схемы, можно подключить пару обычных динисторов в антипараллельном направлении. Для обеспечения более широкого диапазона регулирования низких напряжений лучшим выбором будут динисторы типа КНР102А.Еще один вариант ключевого элемента — лавинный транзистор.
  6. Регулирование активной и реактивной мощности имеет некоторые отличительные особенности. Для управления индуктивными нагрузками требуется RC-цепь (параллельная симистору). Это сохранит скорость увеличения напряжения на аноде симистора.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *