+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Частотный преобразователь

Дмитрий Левкин

Частотный преобразователь, или преобразователь частоты — электротехническое устройство (система управления), используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя.

Согласно ГОСТ 23414-84 полупроводниковый преобразователь частоты — полупроводниковый преобразователь переменного тока, осуществляющий преобразование переменного тока одной частоты в переменный ток другой частоты

Частотный преобразователь — это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Обычно частотный преобразователь способен управлять скоростью и моментом асинхронных и/или синхронных двигателей.

Частотный преобразователь небольшой мощности

Высоковольтный преобразователь

Преобразователи частоты находят все более широкое применение в различных приложениях промышленности и транспорта. Благодаря развитию силовых полупроводниковых элементов, инверторы напряжения и инверторы тока с ШИМ управлением получают все более широкое распространение. Устройства, которые преобразуют постоянный сигнал в переменный, с желаемым напряжением и частотой, называются

инверторами. Такое преобразование может быть осуществлено с помощью электронных ключей (BJT, MOSFET, IGBT, MCT, SIT, GTO) и тиристоров в зависимости от задачи.

На данный момент основная часть всей производимой электрической энергии в мире используется для работы электрических двигателей. Преобразование электрической мощности в механическую мощность осуществляется с помощью электродвигателей мощностью от меньше ватта до нескольких десятков мегаватт.

    Современные электроприводы должны отвечать различным требованиям таким как:
  • максимальный КПД;
  • широкий диапазон плавной установки скорости вращения, момента, ускорения, угла и линейного положения;
  • быстрое удаление ошибок при изменении управляющих сигналов и/или помех;
  • максимальное использование мощности двигателя во время сниженного напряжения или тока;
  • надежность, интуитивное управление.

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Функциональная схема частотного преобразователя

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Характеристики основных способов управления электродвигателями используемых в частотных преобразователях [3]

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая схема силового преобразователя и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

    Методы модуляции можно разделить на четыре основные группы:
  • ШИМ — широтно-импульсная модуляция
  • ПВМ — пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Корни силовой электроники уходят к 1901 году, когда П.К. Хьюитт изобрел ртутный вентиль. Однако современная эра полупроводниковой силовой электроники началась с коммерческого представления управляемого кремниевого выпрямителя (тиристора) компанией General Electric в 1958 году. Затем развитие продолжалось в области новых полупроводниковых структур, материалов и в производстве, давая рынку много новых устройств с более высокой мощностью и улучшенными характеристиками. Сегодня силовая электроника строится на металл-оксид-полупроводниковых полевых транзисторах (MOSFET — metal-oxide-semiconductor field-effect transistor) и биполярных транзисторах с изолированным затвором (IGBT — Insulated-gate bipolar transistors), а для диапазона очень высоких мощностей — на тиристорах с интегрированным управлением (IGCT – Integrated gate-commutated thyristor). Также сейчас доступны интегрированные силовые модули. Новая эра высоковольтных, высокочастотных и высокотемпературных технологий открывается многообещающими полупроводниковыми устройствами, основанными на широкой запрещенной зоне карбида кремния (SiC). Новые силовые полупроводниковые устройства всегда инициируют развитие новых топологий преобразователей [3].

Инвертор напряжения

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Схема двухуровневого инвертора напряжения

Фазное напряжение двухуровневого инвертора напряжения

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

Схема трехуровневого преобразователя с фиксированной нейтральной точкой

    Недостатками данных преобразователей являются:
  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.
    • Фазное напряжение трехуровневого преобразователя с фиксированной нейтральной точкой

      Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

      Многоуровневые преобразователи

      Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge — CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

      Каскадный Н-мостовой преобразователь

      Каскадный преобразователь — высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

      Схема каскадного преобразователя

      Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

      Фазное напряжение каскадного преобразователя

      Преобразователь с плавающими конденсаторами

      Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

      Схема преобразователя с плавающими конденсаторами

      Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

      Фазное напряжение преобразователя с плавающими конденсаторами

      Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

      Инвертор тока

      Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

      Схема инвертора тока с выпрямителем

      Прямые преобразователи

      Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

      Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

      Схема циклоконвертера

      Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) — возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей — меньшие габариты, что важно для автомобильных и авиационных приложений.

      Схема прямого матричного преобразователя

      Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

      Схема непрямого матричного преобразователя

      Схема разреженного матричного преобразователя

        Библиографический список
      • ГОСТ Р 50369-92 Электроприводы. Термины и определения.
      • Rahul Dixit, Bindeshwar Singh, Nupur Mittal. Adjustable speeds drives: Review on different inverter topologies.- Sultanpur, India.:International Journal of Reviews in Computing, 2012.
      • Marian P. Kazmierkowski, Leopoldo G. Franquelo, Jose Rodriguez, Marcelo A. Perez, Jose I. Leon, «High-Performance Motor Drives», IEEE Industrial Electronicsd, vol. 5, no. 3, pp. 6-26, Sep.2011.

Частотные преобразователи — структура, принцип работы

Внимание! Приведенная ниже информация носит теоретический характер. Если Вам необходимо решить конкретную задачу или разобраться как и какое оборудование следует применить в Вашем случае, воспользуйтесь бесплатной консультацией связавшись с нами одним из указанных вверху данной страницы или на странице «Контакты» способов, либо заполните опросный лист. Инженер службы технической поддержки направит Вам рекомендации на указанный Вами адрес электронной почты. 

 

Частотные преобразователи – это устройства, предназначенные для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

 

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

 

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

 

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

    1. С явно выраженным промежуточным звеном постоянного тока.
    2. С с непосредственной связью (без промежуточного звена постоянного тока).
      • Практически самый высокий КПД относительно других преобразователей (98,5% и выше).
      • Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах, относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

 

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

 

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети.

 

 

 

 

  

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе выигрывают у тиристорных действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

 

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

 

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

 

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

 

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

 

Наиболее широкое применение в современных частотно регулируемых приводах находят частотники с явно выраженным звеном постоянного тока (рис. 6.)

 

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

 

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

 

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

 

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

 

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

 

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

 

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

 

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

 

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая не энергоемкая система управления, самая высокая рабочая частота.

 

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

 

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

 

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

 

Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

 

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

 

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

 

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

 

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

 

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

 

Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

 

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

 

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

 

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

 

 

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

 

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

 

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

 

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

 

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

 


Сделать заказ на частотный преобразователь

Преобразователь частоты — что это такое и зачем он нужен?

Преобразователь частоты используется исключительно для того, чтобы управлять скоростью и частотой вращения двигателей асинхронного типа. Этот вид двигателей используют на промышленных предприятиях, потому как они имеют ряд преимуществ перед электродвигателями постоянного тока.  Асинхронные двигатели отличаются простотой конструкции, функциональностью, удобством в использовании.


Помимо частотного преобразователя регулировать скорость вращения можно с помощью гидравлической муфты, механического вариатора и других. Но они имеют недостатки:

  • они неэкономичны, что важно для применения их в промышленной отрасли
  • диапазон регулирования узкий, а это доставляет неудобства при эксплуатации
  • такие устройства выходят со строя.

Отсюда делаем вывод, что названные устройства доставляют массу хлопот в плане эксплуатации, обслуживания, применения. Поэтому статический преобразователь частоты – универсальное устройство, которое поможет избежать всех вышеперечисленных неудобств и предотвратить возникновение аварийных ситуаций.

Условно преобразователи разделяют на два условных типа: двухступенчатые и непосредственные. Специалисты чаще выбирают первый тип, потому как такое устройство производит двойное преобразование.

Преобразователи можно разделить на два подвида по принципу управления электродвигателем. Устройства с векторным управлением предоставляют возможность управлять двигателем продуктивно, но настройка такого устройства потребует много времени и познаний. Преобразователи со скалярным типом управления гораздо проще в настройке, но менее функциональны.

Частотные преобразователи – полезные устройства. С их помощью предприятия экономят электроэнергию, снижают затраты на ремонт. Они продлят работу оборудования и обезопасят предприятие от аварийных ситуаций.

Преобразователи частоты для ваших приводов

Являясь одним из ведущих изготовителей приводной техники, к нашим механическим компонентам мы, конечно же, предлагаем и подходящую преобразовательную технику. Мы разрабатываем и производим приводные преобразователи и преобразователи частоты для управления и регулирования приводов в машинах и установках. И это не только для централизованного монтажа в электрошкафу или для настенного монтажа, но и для децентрализованного монтажа.

Что такое преобразователь частоты?

Преобразователи частоты – это электронные устройства, которые позволяют регулировать частоту вращения асинхронного двигателя. Обоснование: Если электрические машины или асинхронные двигатели работают непосредственно от сети переменного напряжения, у них есть только одна фиксированная частота вращения – в зависимости от числа полюсов и частоты местной электросети. Однако если приводной системе или производственному процессу требуется изменяемое переменное напряжение, т. е. регулируемая скорость, то применяются преобразователи частоты. Из фиксированного переменного напряжения они могут вырабатывать переменное напряжение с изменяемой амплитудой (величиной выходного напряжения) и частотой.

Как работает преобразователь частоты?

>Преобразователь частоты подключается перед двигателем, чтобы создавать соответствующее потребностям, изменяемое переменное напряжение. Таким образом, уже не электросеть создает частоту и величину напряжения, с которыми работает двигатель, а преобразователь частоты берет на себя эту задачу и регулирует выходную частоту и выходное напряжение.

Большое преимущество преобразователя частоты? С его помощью вы плавно изменяете частоту вращения двигателя почти от нуля до нужного номинального уровня и заметно расширяете ее диапазон. При этом вращающий момент двигателя остается неизменным. Таким образом пользователи оборудования всегда могут адаптировать свою приводную технику к текущим условиям. Кроме того, преобразователь частоты позволяет быстро менять направление вращения. Чтобы изменить порядок следования фаз, достаточно простого управляющего сигнала. После этого подключенный асинхронный двигатель будет работать в противоположном направлении.

Какие типы преобразователей существуют?

Бывают преобразователи с управлением по току и с управлением по напряжению. В работе они различаются следующим образом:

  • Преобразователи частоты с управлением по току поддерживают отношение тока к частоте (I/f) всегда постоянным и применяются в верхнем мегаваттном диапазоне.
  • А в нижнем мегаваттном и в киловаттном диапазонах последним словом техники являются преобразователи частоты с управлением по напряжению. Они поддерживают на постоянном уровне отношение напряжения к частоте: То есть если двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, должен работать с частотой 25 Гц, то и напряжение уменьшается вдвое до 115 В.

Проще говоря, в преобразователе частоты с управлением по напряжению происходит следующее: На входе имеется выпрямитель, который преобразует переменное напряжение электросети в постоянное напряжение. Затем это постоянное напряжение сглаживается и стабилизируется звеном постоянного тока. Далее действующий со стороны двигателя инвертор генерирует переменное напряжение с выходной частотой, необходимой для приводной системы. Получаемое при этом отношение „напряжение/частота“ определяет необходимую частоту вращения двигателя. Задание или расчет необходимой частоты вращения выполняет встроенный блок управления, который соединяет друг с другом все компоненты.

Где применяются преобразователи?

Преобразователи частоты используются в самых разных отраслях и задачах промышленности. Будь то приводы насосов и вентиляторов, обрабатывающих станков, конвейеров и сборочных линий, кранов или роботизированных систем: представить себе промышленное производство без преобразователей частоты уже невозможно. Ведь там адаптированная или непрерывно регулируемая частота вращения обеспечивает оптимизированные технологические процессы – с тем дополнительным преимуществом, что приводы с регулированием частоты вращения способствуют экономии энергии при работе

Преобразователи для любых установок и машин

В зависимости от спроса и требований наши преобразователи частоты доступны в различных исполнениях и с множеством дополнительных функций. К тому же очень важно, где нужно разместить преобразователь частоты – на стене, в центральном и защищенном месте в электрошкафу или прямо в цеху, то есть децентрализованно. И в зависимости от того, насколько проста или сложна та или иная приводная система, применяются либо простые преобразователи частоты, либо так называемые специальные преобразователи с большим объемом функций или многоосевые сервоусилители

SEW-EURODRIVE был первой компанией, которая разработала децентрализованную технику и вывела на рынок соответствующие преобразователи частоты и мехатронные приводы. С их помощью пользователи оборудования значительно сокращают затраты на монтаж и создают себе много возможностей для модульного построения своих систем, независимых от электрошкафа. Кроме того, в нашем ассортименте в области преобразовательной техники есть устройства рекуперации энергии в сеть, которые комбинируются с одним или несколькими преобразователями частоты и приводными преобразователями. Также мы предлагаем простые пускатели двигателя для встраивания в

Преобразователи частоты для монтажа в электрошкафу

От простого преобразователя до стандартного или специального преобразователя и далее до модульного сервопреобразователя – мы предлагаем вам широкий ассортимент приводной электроники для централизованного размещения в электрошкафу или распределительном щите:

Преобразователи частоты для настенного монтажа

Еще одна и при этом менее затратная возможность централизованного размещения преобразователей частоты – это настенный монтаж. Он всегда используется в тех случаях, когда приобретать дорогой электрошкаф нерационально. Наши преобразователи частоты, которые подходят для такого способа монтажа, имеют соответствующую степень защиты от IP 54 до IP 66 (для пыльных и влажных условий окружающей среды).

Пускатели двигателя для децентрализованного монтажа

Достаточно ли для вашей приводной системы функции именно преобразователя? Или вам нужно простое включение/выключение двигателя или переключение направления вращения двигателя с левого на правое? Подходящие продукты в ассортименте SEW-EURODRIVE найдутся и для этого случая:

Преобразователи частоты для децентрализованного монтажа

Для размещения вашей приводной электроники рядом с двигателем или мотор-редуктором мы предлагаем широкий выбор преобразователей частоты: от простого преобразователя с настройкой темпа для надежного применения в простых системах до стандартного преобразователя с расширенными функциями регулирования и далее до свободно программируемого специального преобразователя для систем сложной архитектуры. А если вам нужно децентрализованным образом реализовать многоосевые перемещения, а также системы с цепочкой рабочих модулей, то лучшим выбором будут многоосевые сервоусилители. Децентрализованные преобразователи в нашем ассортименте:

Частотный преобразователь

27.05.2019

Частотный преобразователь напряжения — это электрический прибор, служащий для преобразования напряжения и частоты переменного тока в напряжение с заданной амплитудой и частотой. Он также способен преобразовывать постоянное напряжение в переменное с заданными характеристиками.

Частотные преобразователь Toshiba

Для чего нужен частотный преобразователь?

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Насос водяной Канальный вентилятор

Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.

На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.

Асинхронный электрический двигатель

Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее.  Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.


Скорость вращения электродвигателя или число оборотов в минуту

Скорость вращения вала как асинхронных, так и синхронных электродвигателей определяется частотой вращения магнитного поля статора. Магнитное поле вращается соответственно подаваемому на обмотки статора переменному току по трем фазам. Именно это «вращение» электрического тока в статоре приводит к вращающемуся магнитному полю и определяется по формуле:

n = (60 • f / p) • (1 — s)

где n – номинальное число оборотов вала асинхронного электродвигателя, p – число пар полюсов (см. на паспортной табличке), s – скольжение (разность скоростей поля ротора и поля статора), f – частота переменного тока (например, 50 Гц). Число пар полюсов статора зависит от конструкции катушек статора. Скольжение зависит от нагрузки на валу электродвигателя. Таким образом, подключив электродвигатель к сети переменного тока, мы получим вращение с постоянной скоростью.

Зачем нужно регулировать скорость и как это делается?

Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.

Шильдик электродвигателя EQPIII Toshiba

Принцип работы частотного преобразователя

Вот тут и приходит на помощь частотный преобразователь, иначе говоря ЧРП (частотно-регулируемый привод). Он, как говорилось в самом начале, позволяет задавать на своем выходе заданные в настройках амплитуду напряжения и частоту переменного тока.

Частота вы выходе может регулироваться в диапазоне 0.01 — 590 Гц если брать инверторы серии AS3 Toshiba. Для серии S15 Toshiba диапазон регулирования находится в пределах 0.01 — 500 Гц. Для серии nC3E Toshiba диапазон регулирования находится в пределах 0.01 — 400 Гц. Это объясняется функциональным назначением разных серий ПЧ.

Напряжение на выходе может изменяться в диапазоне от 0 В до напряжения питания ПЧ, т.е. текущего напряжения на входе частотного преобразователя. Это свойство можно использовать для получения нужного выходного напряжения и частоты, что ценно, например, для испытания стендового оборудования. Правда для этого придется использовать специальный выходной синусный фильтр, чтобы получить чистые синусоидальное напряжение и ток.

С частотой все понятно, но зачем нужно изменять напряжение?

Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.

Также существует закон векторного регулирования. Векторное регулирование используется для оборудования, где требуется поддерживать необходимый крутящий момент на валу при низких скоростях электродвигателя, высокое быстродействие и точность регулирования частоты вращения. Векторное управление представляет собой математический аппарат в «мозге» частотного преобразователя, который позволяет точно определять угол поворота ротора по токам фаз двигателя.

Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.

Схема частотного преобразователя

Ниже представлена типовая схема частотного преобразователя. Входное сетевое трехфазное или однофазное напряжение подается через опциональный входной фильтр на клеммы диодного моста. Неуправляемый диодный (или управляемый тиристорный) мост преобразует переменное напряжение сети в постоянное пульсирующее напряжение. Для фильтрации пульсаций служит звено постоянного тока из одного или нескольких конденсаторов C.

Схема преобразователя частоты

Напряжение в звене постоянного тока после выпрямления трехфазного напряжения будет равно согласно формуле: 380*1,35 = 513 В.

Дроссель DCL в звене постоянного тока позволяет дополнительно сгладить пульсации напряжения после диодного моста и выполняет функции снижения гармоник выпрямителя, инжектируемых в питающую сеть.

Транзисторы T1-T6 инвертора с помощью специального алгоритма системы управления генерируют на клеммы электродвигателя 3 пакета импульсов, разнесенных по трем фазам на 120 градусов во времени. Ни рисунке ниже показана только одна фаза: пачка выходных импульсов широтно-импульсной модуляции (ШИМ), проходя через обмотку электродвигателя, сгладится до формы, напоминающей синусоиду. Частота импульсов ШИМ (опорная частота) в промышленных преобразователях обычно составляет 3-4 кГц, но для ПЧ малой мощности может доходить до 16 кГц. Чем выше частоты ШИМ, тем будет меньше гармонических искажений «синусоиды» на выходе инвертора. Но при этом возрастают тепловые потери на силовых транзисторах, что уменьшает КПД. В ПЧ Toshiba величину частоты можно изменять, регулируя таким образом тепловые потери.

ШИМ инвертора

Выходное напряжение частотного преобразователя будет всегда ниже входного сетевого напряжения. Это связано с потерями в силовом модуле и алгоритме получения ШИМ импульсов.

Между частотным преобразователем и электродвигателем можно установить дополнительный фильтр, позволяющий значительно улучшить форму выходного напряжения после частотника. Это необходимо для того, чтобы импульсы ШИМ не разрушали изоляцию обмоток двигателя и не вызывали перенапряжения на конце длинного кабеля. Подробнее о выходных фильтрах.

Тормозной прерыватель (Brake Chopper)

На схеме частотного преобразователя можно заметить еще один транзисторный ключ T7. Его назначение — сброс энергии звена постоянного тока при значительном превышении напряжения на конденсаторах. Перенапряжение возникает в том случае, когда частота вращения вала электродвигателя превышает частоту тока на клеммах электродвигателя (например, при торможении). Это часто встречается на кранах или крупных вентиляторах, когда невозможно быстро затормозить вращение.

При наступления события превышения напряжения DC, этот транзисторный ключ T7 замыкается, передавая энергию звена постоянного тока на тормозной резистор. Конечно, резистор при этом может очень сильно нагреться и даже разрушится, но при этом не пострадает наиболее дорогое оборудование — частотный преобразователь.

Тормозной резистор является опциональным оборудованием и подключается к специальным клеммам преобразователя частоты.

КПД частотного преобразователя

Такие важные параметры как КПД частотника и производительность воздушного потока для его охлаждения можно посмотреть в соответствующем столбце следующей таблицы на примере серии VF-AS3 TOSHIBA.

Питающая сеть Допустимая мощность двигателя (kW) Типоразмер частотника Размер корпуса КПД Мощность тепловыделения на радиаторе охлаждения (Вт) *1 Мощность тепловыделения передней части инвертора (Вт) *1 Требуемое значение потока воздушного охлаждения (м³/мин) Площадь стенок закрытой стальной оболочки без вентиляции (м²)
3-фазы 380/480 В 0.75 VFAS3-4004PC A1 0,89 56 26 0.32 1.13
1.5 VFAS3-4007PC A1 0,93 79 28 0.45 1.58
2.2 VFAS3-4015PC A1 0,94 100 30 0.57 2.00
4.0 VFAS3-4022PC A1 0,96 140 33 0.79 2.80
5.5 VFAS3-4037PC A1 0,96 192 37 1.09 3.83
7.5 VFAS3-4055PC A2 0,96 233 45 1.32 4.66
11 VFAS3-4075PC A2 0,97 323 53 1.84 6.47
15 VFAS3-4110PC A3 0,97 455 62 2.58 9.10
18.5 VFAS3-4150PC A3 0,97 557 70 3.16 11.14
22 VFAS3-4185PC A3 0,97 603 71 3.42 12.06
30 VFAS3-4220PC A4 0,97 770 94 4.37 15.40
37 VFAS3-4300PC A4 0,97 939 107 5.33 18.78
45 VFAS3-4370PC A4 0,97 1101 123 6.25 22.02
55 VFAS3-4450PC A5 0,98 1094 132 6.21 21.88
75 VFAS3-4550PC A5 0,98 1589 175 9.02 31.78
90 VFAS3-4750PC A5 0,98 1827 199 10.37 36.54
110 VFAS3-4900PC A6 0,97 2920 309 16.58 58.40
132 VFAS3-4110KPC A6 0,97 3457 358 19.62 69.13
160 VFAS3-4132KPC A6 0,97 4013 405 22.78 80.26
220 VFAS3-4160KPC A7 0,97 5404 452 30.68 108.08
250 VFAS3-4220KPC A8 0,97 6279 606 35.64 125.58
280 VFAS3-4250KPC A8 0,97 6743 769 38.28 134.86
315 VFAS3-4280KPC A8 0,97 7749 769 43.99 154.98

*1) В таблице приведены данные для нормального (не тяжелого) режима работы преобразователя частоты.


Области применения и экономический эффект использования частотных преобразователей

Сферы применения преобразователей частоты

  • Краны и грузоподъемные машины
    Крановые двигатели работают в старт-стопном режиме и переменной нагрузке. Применение частотных преобразователей позволяет убрать рывки и раскачивание груза при пусках и стопах. Также обеспечивается остановка крана точно в требуемом месте. При этом снижается нагрев электродвигателей и максимальный пусковой момент.
  • Привод нагнетательных вентиляторов в котельных и дымососах
    Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный КПД котельных агрегатов.
  • Транспортеры, прокатные станы, конвейеры, лифты
    Частотник позволяет регулировать скорость перемещения транспортного оборудования без рывков и ударов. Это увеличивает срок службы механических узлов и позволяет экономить электроэнергию на старт-стопных режимах по сравнению с прямым пуском.
  • Насосные агрегаты и вентиляторы
    Благодаря встроенным ПИД-регуляторам, частотники позволяют обойтись без задвижек и вентилей, регулирующих давление и расход. Также значительно увеличивается общий КПД линии водо- или воздухоподачи.
  • Перемоточные и намоточные станки
    Современные частотные приводы Toshiba содержат 2 встроенных ПИД-регулятора: контроля скорости намотки и контроля позиции в регуляторе натяжения. Таким образом можно обойтись без использования внешнего контроллера для управления скоростью и натяжением перемоточного станка.
  • Электродвигатели станков с ЧПУ и поворотных механизмов
    Использование частотника вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. Встроенное в серию AS3 Toshiba управление несколькими режимами точного позиционирования может быть использовано для построения системы управления без использования контроллера. Таким образом, ПЧ широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
  • Испытательные стенды
    В связи с тем, что ПЧ способен регулировать частоту и напряжение на своем выходе, то это можно использоваться для питания разного рода стендовой аппаратуры. Правда, для этого придется после ПЧ установить синусный фильтр для получения синусоидального выходного напряжения. Это позволит подавать на испытуемое оборудование широкий диапазон частот и напряжений.

Преимущества частотных преобразователей
  • Экономия электроэнергии
    Использование ПЧ позволяет уменьшить пусковые токи и оптимизировать потребляемую мощность благодаря встроенным алгоритмам управления.
  • Увеличение срока службы электрического оборудования и механизмов
    Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межсервисный интервал механизма и увеличить срок эксплуатации электродвигателей.
    Появляется возможность отказаться от редукторов, дросселирующих задвижек для регулирования потока, электромагнитных тормозов и прочей регулирующей аппаратуры, снижающей надежность и увеличивающей энергопотребление оборудования.
  • Отсутствие необходимости проводить техническое обслуживание
    Частотники не нуждающихся в регулярной чистке и смазке, как например, задвижки и редукторы.
  • Возможность удаленного управления и контроля параметров частотного преобразователя и подключенных к нему датчиков
    В частотниках Toshiba реализована возможность подключения удаленных устройств телеметрии и телемеханики. Это позволяет ПЧ встраиваться в системы автоматизации.
  • Широкий диапазон мощностей и типов двигателей
    Линейка ПЧ может применяться для двигателей мощностью от 100 Вт и до нескольких МВт, как на асинхронные, так и на синхронные электродвигатели.
  • Защита электродвигателя от аварий и перегрузок
    Частотные преобразователи содержат в себе защиту от перегрузок, коротких замыканий, обрыва фаз. Функции перезапуска при возобновлении подачи электроэнергии позволяют автоматически запускать двигатель.
  • Множество функциональных настроек приводов Toshiba
    Можно перечислить следующие востребованные функции ПЧ:
    • Автозапуск/перезапуск ПЧ при появлении напряжения питания
    • Возможность включения трехфазного частотника в однофазную сеть питания при определенном конфигурировании параметров
    • Множество тонких настроек для работы с подъемно-транспортным, насосным оборудованием, станками
    • Сохранение истории аварийных отключений
    • Встроенный функционал защиты двигателя от перегрева
    • Возможность работы с множеством протоколов связи
    • ПИД-регуляторы для различных областей применения
    • Работа на множестве предустановленных скоростях
    • Толчковая работа двигателя для сложного старта
    • Автоподхват вращающегося двигателя
    • Линейное, S-образное, 5-точечное задание разгона.
    • Пропуск проблемных частот (для насосного оборудования)
    • Широкий диапазон частот работы 0-400/500 Гц
    • Ручное задание диапазона частот работы электродвигателя
    • Легкий перенос настроек с одного частотника на другой
    • Работа с асинхронными и синхронными электродвигателями
    • Возможность трассировки работы преобразователя частоты для нахождения причины возникновения аварии или предупреждения
    • Траверс-контроль для текстильных машин
    • Защита от повышенного или пониженного момента (тока) двигателя
  • Замена двигателей постоянного тока
    Ранее для регулирования момента и скорости вращения часто использовались двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Их стоимость существенно дороже асинхронных двигателей и они подключаются с помощью дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные двигатели с частотным регулированием существенно уменьшает стоимость решения.

Внедрение частотных преобразователей дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и техническое обслуживание электродвигателей и оборудования. Появляется возможность использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до 3-х лет.


Частотные преобразователи Toshiba

Компания СПИК СЗМА как единственный официальный дилер Toshiba в России и СНГ предлагает купить частотные преобразователи серии VF-AS3 для решения задач регулирования скорости электродвигателя. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты. 

Высоковольтные преобразователи частоты ВПЧ

Выше рассмотрены низковольтные частотные преобразователи. Но также существует множество вариантов высоковольтных преобразователей частоты. Компания СПИК СЗМА является дистрибьютором ПЧ среднего напряжения TMEIC.

Высоковольтные преобразователи частоты MVe2

Преобразователи частоты для насосов систем водоснабжения

В традиционных системах водоснабжения обычно используют самый простой способ регулирования давления в системе – дросселирование. Двигатель насоса в этом случае постоянно работает на номинальных оборотах, а давление в системе после насоса регулируется с помощью с помощью запорной арматуры. Это могут быть вентили, шаровые краны или задвижки. Способ достаточно неэффективный. Если провести аналогию с автомобилем, то это выглядит так, что газ постоянно нажат до упора, а скорость регулируется с помощью педали тормоза.

Одна из особенностей водопроводных систем – это сильные колебания расхода воды в зависимости от времени суток, а также в рабочие и выходные дни. Большинство людей моют посуду, умываются, принимают душ и стирают в утреннее или вечернее время суток. При этом вода практически не расходуется в другое время, например, днем или ночью. Это приводит к значительным суточным колебаниям давления воды в системе. Как следствие возникает ускоренный износ запорной арматуры, труб и недостаточный напор воды в пиковые часы потребления. Так как для каждой конкретной системы мощность насоса берется с некоторым запасом (больше уровня максимально потребления), а моменты пиковых нагрузок по расходу составляют обычно 10-20% от общего времени работы, избыточная мощность насоса остается невостребованной.

Частотные преобразователи позволяют управлять насосами гораздо эффективнее и рациональнее. С их помощью можно изменять скорость вращения двигателя насоса, тем самым регулируя его мощность. Это позволяет затрачивать меньшее количество энергии на поддержание нужного давления в трубопроводе. Реальная экономия электроэнергии при этом достигает 60%, вследствие чего установка частотного преобразователя окупается в течение 1-2 лет. Кроме того, увеличивается ресурс самого насоса за счет плавного пуска и останова двигателя.

Рассмотрим более подробно схему управления насосами с помощью преобразователей частоты (Рис. 1)

Рис.1

Датчик давления измеряет величину давления в системе водоснабжения и передает результат измерения с помощью токового сигнала 4-20 мА на частотный преобразователь (ПЧ). Встроенный в ПЧ ПИД- регулятор обрабатывает аналоговый сигнал с датчика и, соответственно, изменяют частоту питающего напряжения. При этом изменяется и частота вращения ротора двигателя насоса. Таким образом, в системе поддерживается постоянное давление при колебаниях расхода воды. При снижении частоты вращения ротора снижается сила тока, а значит и потребление электроэнергии. Использование частотных преобразователей для управления насосами позволяет изменять «кривую насоса» (зависимость давления от расхода в подающей части системы), подстраивая ее под «кривую системы» (зависимость давления от расхода в потребляющей части системы), за счет регулирования оборотов двигателя и подводимой мощности (Рис. 2).

Рис.2

Основные преимущества от внедрения ПЧ для управления насосами в системах водоснабжения:

  1. Сокращение эксплуатационных расходов:
    • на электроэнергию до 60% по сравнению с регулированием давления заслонкой (дросселированием), так как потребляемая насосом мощность N находится к кубической зависимости от оборотов двигателя (N = Nном * n3/nном3), а напор воды прямо пропорционален оборотам двигателя;
    • на ремонт водопровода за счёт «плавного пуска», исключающего гидроудары в системе и, соответственно, разрывы трубопроводов по этой причине;
    • на ремонт насосного оборудования, благодаря увеличению его срока службы в 1,5 — 2 раза за счёт снижения механических нагрузок на узлы насоса при «плавном пуске»;
    • на заработную плату обслуживающему персоналу за счёт автоматизации работы всей системы.
  2. Повышение качества водоснабжения, благодаря непрерывному автоматическому поддержанию давления на заданном уровне, независимо от изменения расхода воды.
  3. Снижение потерь (утечек) воды на 5-10 % за счёт снижения и стабилизации давления в сети.

Для подбора преобразователя частоты для вашей системы водоснабжения, заполните форму «Получить коммерческое предложение»


Получить коммерческое предложение

Преобразователь частоты: описание и применение

Преобразователь частоты: вся информация об устройстве

Оглавление

Физическая основа преобразователей частоты.

Конструкция и принцип работы преобразователей частоты.

Выпрямитель.

Промежуточная цепь.

Инвертор.

Типы управления частотным преобразователем.

Интерфейсы частотных преобразователей.

ГОСТы и ТУ для частотных преобразователей.

Преимущества использования частотных преобразователей.

Недостатки преобразователей частоты.

Назначение и область применения частотных преобразователей.

Как выбрать частотный преобразователь?

Как осуществляется подключение преобразователя частоты?

Техника безопасности при подключении преобразователя частоты.

Преобразователь частоты – это статическое преобразовательное устройство, которое предназначено для регулировки частоты электрического тока. Преимущественно он используется для управления скоростью вращения двигателей асинхронного типа и позволяет повысить эффективность их работы, а также снизить изнашиваемость узлов.

Теоретические основы по работе преобразователей частоты были изложены еще в 30-х годах 20 столетия, но на тот период из-за отсутствия транзисторов и микропроцессоров практическая их реализация была невозможной. Только, когда в США, Европе и Японии были разработаны недостающие компоненты, начали появляться первые вариации частотных преобразователей. С тех пор они претерпели существенных технологических изменений, но принцип их работы до сих пор строится на одних и тех же физических законах.

Работа преобразователей частоты строится на следующей формуле:

Из данного выражения сразу становится ясно, что при изменении частоты входного напряжения, которое в формуле обозначено, как f1, будет меняться и угловая скорость магнитного поля статора, которая определяет и скорость вращения самого статора. Такой эффект может быть достигнут только в случае, если величина p (количество пар полюсов) будет оставаться неизменной.

Что же это дает нам? Во-первых, возможность плавного регулирования скорости вращения. Особенно актуально это на пиковых нагрузках при запуске. Во-вторых, такая зависимость позволяет повысить скольжение двигателя асинхронного типа, увеличив его КПД.

Стоит также отметить, что такие характеристики, как коэффициент мощности, КПД, коэффициент перегрузочной способности принимают высокие значения именно при одновременном регулировании частоты и напряжения тока. Закономерности изменения этих параметров напрямую зависят от нагрузочного момента, который может принимать следующий характер:

  • Постоянный. При таком характере нагрузочного момента напряжение на статоре будет прямо пропорционально зависеть от частоты:

  • Вентиляторный. В данном случае напряжение будет пропорционально частоте в квадрате:

  • Обратно пропорциональный. В данном случае формула будет иметь следующий вид:

Вышеописанные выкладки подтверждают, что при одновременной регулировке частоты и напряжения с помощью частотного преобразователя можно обеспечить плавное и равномерное изменение скорости вращения вала.

Если рассматривать общую конструкцию преобразователей частоты, то в ней стоит выделить два основных блока компонентов:

  • Управления.
  • Электропреобразований.

Первый блок обычно представлен микропроцессором, который воспринимает команды от внешних систем управления и интерфейсов и передает непосредственно на электропреобразовательные элементы.

Блок электропреобразований является основным рабочим механизмом всей системы. Именно он отвечает за прием входного тока и преобразование его параметров до нужных значений, установленных оператором через управляющий блок. В состав данного блока входят следующие элементы:

  • Выпрямитель.
  • Промежуточная цепь.
  • Инвертор.

Поговорим о каждом более подробно.

Данный компонент предназначен для формирования пульсирующего напряжения в одно- или трехфазных сетях переменного тока. Выпрямители обычно строятся либо на диодах, либо на тиристорах. В первом случае они считаются неуправляемыми, а во втором управляемыми.

  • Неуправляемые выпрямители. В их конструкции используется две группы диодов, которые подсоединены к различным клеммам и проводят различные напряжения – положительное и отрицательное. В конечном счете выходное напряжение равняется разности напряжений на этих группах диодов и в математическом выражении имеет следующее значение: 1,35*входное напряжение сети.
  • Управляемые выпрямители. В конструкции таких выпрямителей вместо диодов используются тиристоры. На них может подаваться входящий сигнал a, который стимулирует задержку тока, выражаемую в градусах. В случаях, когда значение данного параметра колеблется в пределах 0-90 градусов, тиристоры играют роль выпрямителей, а когда в 90-300 градусов – инвертора. Выходное значение постоянного напряжения составляет: 1,35* входное напряжение сети*cos α.

Промежуточная цепь выполняет роль своеобразного хранилища, из которого электродвигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточная цепь может иметь одну из следующих формаций:

  1. Инвертор-источник питания. В данном случае промежуточная цепь имеет в составе мощную индуктивную катушку, которая преобразует напряжение выпрямителя в изменяющийся постоянный ток. Само напряжение двигателя определяется по нагрузке. Такой тип цепей может работать только с управляемыми выпрямителями.
  2. Инверторы — источники напряжения. В данном случае в промежуточной цепи используется фильтр, в состав которого входит конденсатор. Он сглаживает напряжение, поступающее от выпрямителя. Такие цепи способны работать с любыми типами выпрямителей.
  3. Цепь изменяющегося постоянного напряжения. В данном случае перед фильтром устанавливается прерыватель, в котором имеется транзисторы, выключающий и включающий подачу напряжения от выпрямителя. В данном случае фильтр обеспечивает сглаживает прямоугольные напряжения после прерывателя, а также поддерживает постоянное напряжение на заданной частоте.

Инвертор является последним звеном в частотном преобразователе перед самим электродвигателем. Именно он окончательно преобразует напряжение в нужный для работы вид. Вследствие вышеописанных преобразований, происходящих на выпрямителе и промежуточной цепи, инвертор получает:

  • Постоянный ток изменяющегося характера.
  • Изменяющееся или неизменное напряжение постоянного тока.

Собственно, сам инвертор и обеспечивает подачу напряжения необходимой частоты. Если на него поступает изменяемое напряжение или ток, то он создает только нужную частоту. Если же неизменяемое, то он создают и нужную частоту, и нужное напряжение.

Обычно в конструкции инверторов используются высокочастотные транзисторы, частота коммутации которых находится в диапазоне от 300 до 20 кГц.

Существует два основным метода управления электродвигателями с использованием частотных преобразователей:

  • Скалярный.
  • Векторный.

Асинхронные системы управления на сегодняшний день считаются самыми распространенными. Они используются в приводах вентиляторов, насосов, компрессоров и т.д. Главный принцип, который лежит в основе скалярного управления, состоит в изменении частоты и амплитуды напряжения по закону U/fn = const, где n всегда больше 1. Соответственно, меняя напряжение U, мы изменяем и частоту f в степени n. При этом степенное значение определяется в зависимости от особенностей самого частотного преобразователя и его назначения.

Сама методика скалярного управления достаточно проста с точки зрения ее технической реализации, но при этом имеет два существенных недостатка. Первый заключается в том, что без дополнительного датчика скорости вы не сможете регулировать скорость вала, ведь она напрямую зависит от нагрузки. Данную проблему можно решить простым приобретение датчика.

Но существует еще один недостаток – невозможность регулировки момента. Казалось бы, данная проблема тоже решается покупкой датчика момента. Но он достаточно дорог, да и само управление получится весьма спорным. К тому же, совместно управлять и скоростью и моментом при скалярном типе управления невозможно.

Векторный тип управления подразумевает, что в саму систему закладывается математическая модель работы электродвигателя, что позволяет на программном уровне по входным параметрам рассчитывать и скорость, и момент. При этом обязательно только наличие датчика, который будет снимать показатели тока фаз статора.

Существует два класса векторных систем управления:

  • Без датчиков скорости.
  • С датчиками скорости.

Их использование в тех или иных случаях определяется в зависимости от условий эксплуатации двигателя. Если диапазон изменения скорости вращения вала не превышает 1:100, а требования по точности не более 0,5%, то отлично подойдет система без датчиков.

Если же диапазон изменения скорости составляет 1:1000, а требования по точности установлены на уровне до 0,02%, то лучше использовать системы управления с датчиками.

Стоит отметить, что у векторного управления также есть свои недостатки. Например, для их настройки требуются большие вычислительные мощности и знание рабочих параметров двигателей. Кроме того, векторное управление не может использоваться там, где в преобразователю частот подключено сразу несколько рабочих агрегатов – там целесообразно применять скалярные системы.

В конструкции большинства современных частотных преобразователей имеется целый набор различных интерфейсов, через которые можно осуществлять подключение стороннего оборудования или синхронизировать несколько частотников. Рассмотрим основные входы и выходы, используемые в подобных устройствах:

  • Аналоговый вход. Данный интерфейс служит для приема стандартного аналогового сигнала производственного диапазона, который располагается в пределах от 0(4) до 20мА или от 0 до 10В. Через него можно осуществлять регулировку работы частотного преобразователя. Например, минимальная величина аналогового сигнала может сигнализировать устройству о том, что выходная частота, поступающая на двигатель, должна иметь свое минимальное значение и наоборот – максимальная должна соответствовать максимальной. 
  • Аналоговый выход. Данный выход по своему функционалу аналогичен входу. Только в этом случае он передает информацию о частоте, поступающей на двигатель, через аналоговый сигнал определенной величины, что позволяет контролировать режим работы.
  • Дискретный вход. Данный вход способен принимать скачкообразные сигналы. Как и аналоговый вход, он способен изменять параметры. Например, минимальный сигнал может соответствовать мгновенной минимальной выходной частоте преобразователи, а максимальный – максимальной выходной частоте.
  • Дискретный выход. Данный выход позволяет выполнять аналогичные входу операции только в обратном порядке.
  • RS-485. Данный интерфейс является полноценным входом, который позволяет в полной мере взаимодействовать с преобразователем частот, например, через компьютер. С его использованием можно настраивать рабочие параметры оборудования, отслеживать его состояние и т.д. В интерфейсе RS-485 используется особенный дифференциальный сигнал, который позволяет проводить линии длиной до 120 метров. Таким образом, можно установить преобразователь частот на производственном участке, а управление им осуществлять в командной рубке, удаленной от рабочего пространства.

Кроме того, в частотных преобразователях могут использоваться и другие интерфейсы. Все зависит от конкретной модели устройства и его производителя.

Собственно, как и любые технические средства, используемые на производственных предприятиях и в оборудовании, частотные преобразователи и требования к ним регламентируются определенной технической базой, а именно следующими документами:

  • Правила устройства электроустановок 7-е издание.
  • ГОСТ 24607-88 Преобразователи частоты.
  • ГОСТ 13109-97 Совместимость технических средств электромагнитная.
  • ГОСТ Р 51137-98 Электроприводы регулируемые асинхронные.
  • ФЗ 261 Федеральный закон об энергосбережении и энергоэффективности.
  • ТР ТС 00_2011 Электромагнитная совместимость технических средств.
  • ГОСТ26284-84 — Преобразователи электроэнергии полупроводниковые. Условные обозначения.
  • ГОСТ23414-84 — Преобразователи электроэнергии полупроводниковые. Термины и определения.
  • ГОСТ 4.139-85 Система показателей качества продукции. Преобразователи электроэнергии полупроводниковые. Номенклатура показателей.

В соответствии с описанными в этих документах требованиями должен осуществлять выбор конкретной модели устройства, а также ее установка и отладка.

Частотные преобразователи нашли широкое применение в самых различных производственных нишах и оборудовании. Столь высокий спрос на подобные устройства обусловлен следующими преимуществами их использования:

  • Уменьшение тока запуска. В случае запуска электродвигателя с помощью прямых пускателей наблюдается резкое увеличение тока, значения которого превышают номинальное в 7-15 раз. Это негативно сказывается на электропривод и может привести к пробою изоляции, выгоранию контактов и ряду других негативных последствий. Кроме того, такой способ запуска оказывает влияние и на механические компоненты системы. В момент пуска рабочие узлы двигателя подвергаются высоким нагрузкам, что приводит к их более быстрому износу. Благодаря частотным преобразователям можно существенно снизить пусковые нагрузки на электродвигатель, продлив срок его безремонтной эксплуатации.
  • Экономичность. Как правило, двигатели, поддерживающие работу вентиляционных и насосных систем, всегда работают на одной и той же частоте, а регулировка давления и других рабочих показателей осуществляется с помощью арматуры (шиберы, заслонки и т.д.). Это приводит к нерациональному расходованию электроэнергии. В случае использования преобразователей частот можно осуществлять настройку рабочих параметров системы за счет корректировки интенсивности работы двигателя. Это дает возможность более рационально расходовать его ресурсы.
  • Повышенная адаптивность. При использовании частотных преобразователей можно конструировать автоматизированные системы, которые по установленным алгоритмам будут корректировать работу оборудования. Это снижает трудозатраты производственных процессов и позволяет сделать их более точными за счет исключения человеческого фактора.
  • Ремонтопригодность. В случае поломки преобразователя частот вы можете отдать его в мастерскую, где мастер заменит вышедшие из строя детали. Правда, это касается только электропреобразующего блока – с блоками управления все намного сложнее и они более требовательны с точки зрения восстановления.

Частотные преобразователи являются оптимальным решением для организации самых различных производственных процессов и отладки рабочего оборудования, на базе которого используются электромоторы.

Частотные преобразователи также имеют и свои недостатки. К ним следует отнести:

  • Дороговизна. Частотные преобразователи являются самым дорогим преобразовательным оборудованием. Правда, данный недостаток весьма относителен с учетом того, что такие устройства позволяют продлить срок эксплуатации электродвигателей, а также увеличить срок их безремонтной эксплуатации.
  • Ограниченность. Далеко не все старые электродвигатели способны работать в связке с частотным преобразователем. Даже, если это возможно с технической точки зрения, то эксплуатационного ресурса устаревших моделей может просто не хватить на постоянные скачки частоты и скорости вращения вала.
  • Сложность настройки и подключения. Преобразователь частот достаточно сложно установить самостоятельно, поэтому для выполнения подобных работ часто приходится привлекать сторонних специалистов, а это в свою очередь влечет определенные финансовые затраты.

Если сопоставить недостатки и преимущества частотных преобразователей, то они, все равно, выглядят более эффективными даже на фоне других преобразовательных устройств. Именно это и делает их особенно популярными в производственных отраслях, где они используются практически повсеместно.

Частотные преобразователи уже много лет используются в строительстве электромеханических устройств и агрегатов. Они позволяют модулировать частоту тока, что в свою очередь делает возможной точную регулировку скорости вращения двигателя. На сегодняшний день частотники используются во многих отраслях деятельности. Мы рассмотрим лишь некоторые из них:

  • Пищевая промышленность. Частотные преобразователи часто используются для регулировки работы фасовочных линий. Они позволяют настроить скорость подачи продукта и движения ленты в соответствии с пропускной способностью самого упаковочного станка. Кроме того, их часто используют в крупных миксерных агрегатах, вентиляционных системах и т.д.
  • Механизация производственного оборудования. Без преобразователей частоты не обходятся конвейерные ленты, покрасочные и моющие станки, прессы, штамповочное оборудование и т.д. Такие устройства позволяют контролировать скорость рабочих процессов, снижая вероятность повреждения продукции и повышая качество конечного результата.
  • Медицина. Относительно любого медицинского оборудования всегда устанавливаются самые высокие технические требования, добиться соответствия которым невозможно без использования управляемых электродвигателей в связке с частотником. Они устанавливаются в различных системах жизнеобеспечения, подъемных механизмах кроватей и т.д.
  • Подъемно-транспортное обеспечение. Лифты, подъемные краны, подъемники – все эти средства уже давно используют преобразователи частоты. Они позволяют точно контролировать скорость выполнения различных операций, а также продлевать срок безремонтной эксплуатации оборудования.

Перечислять области применения частотных преобразователей можно бесконечно, ведь их можно использовать в любом оборудовании, использующем электродвигатели.  

Следует выделить несколько основных параметров, на которые нужно обращать внимание  при выборе частотного преобразователя:

  • Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
  • Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения  на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
  • Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
  • Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
  • Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки. На это обязательно следует обратить внимание.
  • Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство. Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
  • Тип управления и интерфейсы. Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.

Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.

На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:

  • Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность. Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
  • Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник».  Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
  • В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.

Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:

  • После подключения всех элементов системы (предохранитель, панель управления, частотник, двигатель) необходимо перевести рукоять на пульте управления в активное положение на несколько градусов.
  • Тумблеры предохранителя переключить в положение «ВКЛ». После этого на частотном преобразователи должны загореться световые индикаторы, которые будут сигнализировать, что оборудование подключено правильно, а двигатель должен начать медленно вращаться.
  • Если вал двигателя начал вращаться в другу от нужной сторону, необходимо перепрограммировать сам частотный преобразователь на реверсное движение. Практически все современные устройства поддерживают такую функцию.
  • Постепенно передвигайте рукоять управления и следите за работой двигателя – частота вращения вала должна расти по мере того, как вы передвигаете рукоять.

Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.

Следует выделить несколько основных правил безопасности, о которых нужно помнить при выполнении работ по подключению частотных преобразователей:

  • Категорически запрещается касаться любой частью тела к токоведущим элементам цепи. Это может нанести ущерб вашему здоровью или даже лишить жизни. Перед началом работ рекомендуется полностью обесточить оборудование и использовать специальные электромонтажные инструменты с защитой от ударов током.
  • Стоит помнить, что даже после угасания индикаторов на устройстве в цепи может оставаться напряжение. Чтобы избежать ударов током при работе с системами до 7 кВт необходимо выждать 5 минут до начала работ, с агрегатами свыше 7 кВт – 15 минут. Этого времени должно хватить, чтобы все конденсаторы в цепи разрядились.
  • Заземление является неотъемлемой частью любой электрической цепи, включая цепь частотный преобразователь-двигатель. Оно должно устанавливаться в виде отдельного кабеля и ни в коем случае не может присоединяться к нулевой шине.
  • Стоит помнить, что отключения частотного преобразователя не гарантирует, что в других узлах сети не осталось напряжения, поэтому перед ремонтом или обслуживанием необходимо полностью отключить цепь от сети.

Выполнять работы по подключению преобразователей частоты могут только квалифицированные специалисты, имеющие соответствующую подготовку, а также необходимые допуски.

Рекомендации по покупке частотных преобразователей

Покупка частотного преобразователя является достаточно ответственным делом, ведь подобные устройства стоят достаточно дорого и на них возлагаются очень серьезные задачи, поэтому некорректность работы оборудования может привести не только к финансовым потерям, но и остановке всего производства или других работ.

Перед тем как покупать преобразователь частот, необходимо:

  • Определиться с параметрами, которые будут соответствовать вашему электродвигателю.
  • Составить рабочую схему, по которой будет осуществляться монтаж и подключение оборудования.
  • Выбрать дополнительные модели, которые будут подключаться к самому преобразователю.
  • Закупить все необходимые кабеля, крепления и каркасы, необходимые для установки.
  • Подготовить рабочую площадку для монтажа. Возможно, нужно будет оборудовать дополнительные источники питания или реорганизовать производственное оборудование для возможности его подключения к преобразователю.

Многие в связи с дороговизной преобразователей частот покупают б/у устройства. Такой подход более рискованный, чем покупка новой продукции, но позволяет сэкономить некоторую сумму денег.  Если вы также решили купить бывший в употреблении преобразователь, то стоит его тщательно проверять не только по внешним признакам, но и в работе. Лучше всего, если продавец не будет демонтировать его со своего объекта и сможет продемонстрировать его работоспособность на практике.

Опять же, если вы никогда не сталкивались с покупкой преобразователя частоты, лучше поручить это дело профессионалу, который сможет подобрать для вас подходящую модель и помочь с ее установкой.

Преобразователь частоты

— преобразователь частоты

ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Преобразователь частоты, также известный как преобразователь частоты сети, представляет собой устройство, которое принимает входящую мощность, обычно 50 или 60 Гц, и преобразует ее в выходную мощность 400 Гц. Существуют разные типы преобразователей частоты сети, в частности, есть как вращательные преобразователи частоты, так и твердотельные преобразователи частоты. Вращающиеся преобразователи частоты используют электрическую энергию для привода двигателя.Твердотельные преобразователи частоты принимают входящий переменный ток (AC) и преобразуют его в постоянный ток (DC).

Для чего нужен преобразователь промышленной частоты для коммерческого использования?

Стандартным источником питания для коммерческих сетей является переменный ток (AC). Под переменным током понимается количество циклов в секунду («герц» или Гц), при которых мощность колеблется, положительная и отрицательная, вокруг нейтральной точки отсчета. В мире существует два стандарта: 50 и 60 герц. 50 Гц распространен в Европе, Азии и Африке, а 60 Гц является стандартом в большей части Северной Америки и некоторых других странах (Бразилия, Саудовская Аравия, Южная Корея) по всему миру.

У одной частоты нет неотъемлемого преимущества перед другой. Но могут быть и существенные минусы. Проблемы возникают, когда нагрузка, на которую подается питание, чувствительна к входной частоте сети. Например, двигатели вращаются с частотой, кратной частоте сети. Таким образом, двигатель 60 Гц будет вращаться со скоростью 1800 или 3600 об / мин. Однако при подаче питания 50 Гц частота вращения составляет 1500 или 3000 об / мин. Машины, как правило, чувствительны к скорости, поэтому мощность для их запуска должна соответствовать предполагаемой расчетной скорости вращения.Таким образом, для типичного европейского оборудования требуется входная частота 50 Гц, а если он работает в Соединенных Штатах, требуется преобразователь частоты 60–50 Гц для преобразования имеющейся мощности 60 Гц в 50 Гц. То же самое относится и к преобразованию мощности 50 Гц в 60 Гц. Хотя для преобразователей частоты существуют стандартные номиналы мощности и мощности, наши преобразователи работают в диапазоне напряжений от 100 В до 600 В. Чаще всего указываются напряжения 110 В, 120 В, 200 В, 220 В, 230 В, 240 В, 380 В, 400 В и 480 В. Поскольку наши стандартные и нестандартные конструкции могут удовлетворить ряд требований энергосистем, Georator является вашим поставщиком преобразователей частоты в напряжение.

ПОЧЕМУ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ТАК ДОЛЖЕН?

Многие клиенты испытывают «шок от наклеек», когда смотрят на преобразователь частоты. Не имеет большого значения, является ли преобразователь промышленной частоты вращающимся блоком (мотор-генератор) или твердотельным (электронным) блоком. И действительно, разброс цен между поставщиками на удивление невелик.

Так что же делает преобразователи частоты такими дорогими? Что ж, это закон. В частности, законы физики.

В отличие от преобразования напряжения, для которого требуется только довольно пассивный трансформатор, преобразователь частоты должен полностью переделывать мощность, чтобы изменить частоту.Во вращающемся преобразователе поступающая электрическая энергия преобразуется в механическую энергию в приводном двигателе. Эта мощность вращения затем питает генератор, где энергия вращения снова преобразуется в электрическую мощность. Много движущихся частей, много оборудования, много затрат.

Аналогичным образом твердотельный преобразователь частоты преобразует входящую мощность переменного тока в постоянный ток с помощью выпрямителя. Затем энергия постоянного тока снова преобразуется в мощность переменного тока с помощью секции инвертора. Опять же, много запчастей, много затрат.

Одним из положительных преимуществ преобразователей частоты любого типа является то, что любое желаемое преобразование напряжения происходит «бесплатно» как часть процесса преобразования частоты. К сожалению, это часто не утешает наших клиентов.

Извините, это просто закон.

ДЕЙСТВИТЕЛЬНО НУЖЕН ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Когда потенциальные клиенты сталкиваются с необходимостью покупки преобразователя частоты, нашего или наших конкурентов, они часто считают, что его стоимость является серьезным препятствием.Им действительно нужен преобразователь частоты? Что ж, ответ заключается в том, какой тип нагрузки обслуживается.

Приложения с нагрузкой на двигатели часто нуждаются в преобразователе промышленной частоты, поскольку характеристики вращения, в частности число оборотов в минуту (об / мин), напрямую зависят от входной частоты электричества. Двигатель с частотой 60 Гц будет вращаться со скоростью, кратной 60, например, 1800 об / мин. Одновременно двигатель с частотой 50 Гц будет вращаться с частотой, кратной 50, например 1500 об / мин. Таким образом, при работе с нагрузкой двигателя, особенно в машине с несколькими двигателями, может оказаться необходимым использовать преобразователь частоты, чтобы двигатели вращались в соответствии с исходной конструкцией вращения.

Однако резистивные нагрузки, такие как резистивные нагреватели и некоторые источники света, не заботятся о частоте входящей мощности. Таким образом, если нагрузка является неустойчивой, преобразование частоты может не потребоваться. Единственное предостережение — напряжение должно быть в нужном диапазоне. Даже если только большая часть нагрузки является резистивной, может оказаться более экономичным разделить нагрузку на части и запитать только частотно-зависимый компонент с преобразователем.

Также разумно рассмотреть возможность замены двигателя (ов) в нагрузке на правильную частоту, так как это может дать менее затратное решение, чем использование преобразователя частоты.

Инженеры

Georator готовы обсудить с вами эти вопросы; свяжитесь с нашей командой для получения помощи. Хотя мы ценим ваш бизнес, мы не хотим продавать вам то, что вам не нужно.

Преобразователи частоты

| Power Systems International

Авиация


Преобразователи частоты

Marine


Преобразователи частоты

От берега до корабля

Промышленные преобразователи частоты


От 50 Гц до 60 Гц / от 60 Гц до 50 Гц

Преобразователи частоты

Что такое преобразователь частоты?

Проще говоря, преобразователи частоты — это устройство преобразования энергии.Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.

Зачем нужен преобразователь частоты?

Основная функция преобразователя частоты в водной среде — экономия энергии. За счет управления скоростью насоса вместо регулирования потока с помощью дроссельных клапанов можно значительно сэкономить энергию.

Например, снижение скорости на 20% может дать экономию энергии на 50%.Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.

Доступно множество различных типов преобразователей частоты, которые предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, применяемая к двигателю переменного тока, определяет скорость двигателя.

Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые могут быть подключены через линию питания переменного тока.За счет включения байпасных пускателей работа может поддерживаться даже в случае выхода инвертора из строя.

Преобразователи частоты

также обладают дополнительным преимуществом — увеличенным сроком службы подшипников и уплотнений насоса. Благодаря поддержанию в насосе только давления, необходимого для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо. Следовательно, компоненты служат дольше.

Те же преимущества, но в меньшей степени, применимы и к вентиляторам, работающим от преобразователей частоты.

Для достижения оптимальной эффективности и надежности многие специалисты получают подробную информацию от производителей.Это может включать эффективность преобразователя частоты, необходимое техническое обслуживание, диагностические возможности преобразователя частоты и общие рабочие характеристики.

Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.

Дополнительные преимущества преобразователей частоты

Помимо экономии энергии и лучшего управления технологическим процессом, преобразователи частоты могут обеспечить и другие преимущества:

  • Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера.Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
  • Расходы на техническое обслуживание можно снизить, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
  • Устранение дроссельных клапанов и заслонок также отменяет техническое обслуживание этих устройств и всех связанных с ними средств управления.
  • Устройство плавного пуска для двигателя больше не требуется.
  • Контролируемая скорость разгона в жидкостной системе может устранить проблемы гидравлического удара.
  • Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.

Анализировать систему в целом

Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы.

Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы.Для обеспечения экономии энергии требуется детальное знание работы оборудования и требований к технологическим процессам. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.

Преобразователи частоты | Внутренняя конфигурация

Преобразователи частоты

содержат три первичные секции:

  • Схема выпрямителя — состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
  • Шина постоянного тока — состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
  • Инвертор
  • — состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.

Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.

Или для получения дополнительной информации о преобразователях частоты используйте форму ниже

Что такое преобразователь частоты? Как это работает?

Работа с переменной частотой в виде генератора переменного тока существует с момента появления асинхронного двигателя. Измените скорость вращения генератора, и вы измените его выходную частоту. До появления высокоскоростных транзисторов это был один из немногих вариантов, доступных для изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора приводило к снижению выходной частоты, но не напряжения.Мы увидим, почему это важно, чуть позже. В нашей отрасли насосы с регулируемой скоростью в прошлом были намного сложнее, чем сегодня. Один из более простых методов заключался в использовании многополюсного двигателя, намотанного таким образом, чтобы переключатель (или переключатели) мог изменять количество полюсов статора, которые были активными в любой момент времени. Скорость вращения можно было изменять вручную или с помощью датчика, подключенного к переключателям. Этот метод до сих пор используется во многих насосных системах с переменным расходом.Примеры включают циркуляционные насосы горячей и охлажденной воды, насосы для бассейнов, а также вентиляторы и насосы градирни. Некоторые отечественные бустерные насосы использовали гидравлический привод или системы ременного привода с переменным приводом (своего рода автоматическая трансмиссия) для изменения скорости насоса на основе обратной связи от напорного диафрагменного клапана. И несколько других были еще более сложными.

Судя по обручам, через которые нам приходилось преодолевать в прошлом, становится довольно очевидно, почему появление современного преобразователя частоты произвело революцию (еще один каламбур) в среде насосов с регулируемой скоростью.Все, что вам нужно сделать сегодня, это установить относительно простой электронный блок (который часто заменяет более сложное пусковое оборудование) на месте применения и, внезапно, вы можете вручную или автоматически изменить скорость насоса по своему желанию.

Итак, давайте взглянем на компоненты преобразователя частоты и посмотрим, как они на самом деле работают вместе, чтобы изменять частоту и, следовательно, скорость двигателя. Думаю, вы удивитесь простоте этого процесса. Все, что для этого потребовалось, — это созревание твердотельного устройства, известного как транзистор.

Компоненты преобразователя частоты

Выпрямитель
Поскольку трудно изменить частоту синусоидальной волны переменного тока в режиме переменного тока, первая задача преобразователя частоты — преобразовать волну в постоянный ток. Как вы увидите немного позже, относительно легко управлять постоянным током, чтобы он выглядел как переменный ток. Первым компонентом всех преобразователей частоты является устройство, известное как выпрямитель или преобразователь, оно показано слева на рисунке ниже.

Схема выпрямителя преобразует переменный ток в постоянный и делает это почти так же, как в зарядном устройстве для аккумуляторов или в аппарате для дуговой сварки. Он использует диодный мост для ограничения распространения синусоидальной волны переменного тока только в одном направлении. В результате получается полностью выпрямленная форма волны переменного тока, которая интерпретируется цепью постоянного тока как естественная форма волны постоянного тока. Трехфазные преобразователи частоты принимают три отдельные входные фазы переменного тока и преобразуют их в один выход постоянного тока. Большинство трехфазных преобразователей частоты также могут принимать однофазное питание (230 В или 460 В), но, поскольку есть только две входящие ветви, мощность преобразователя частоты (HP) должна быть снижена, поскольку производимый постоянный ток уменьшается пропорционально.С другой стороны, настоящие однофазные преобразователи частоты (те, которые управляют однофазными двигателями) используют однофазный вход и вырабатывают выход постоянного тока, который пропорционален входу.

Есть две причины, по которым трехфазные двигатели более популярны, чем их однофазные счетчики, когда речь идет о работе с регулируемой скоростью. Во-первых, они предлагают гораздо более широкий диапазон мощности. Но не менее важна их способность начать вращение самостоятельно. С другой стороны, однофазный двигатель часто требует некоторого вмешательства извне, чтобы начать вращение.В этом случае мы ограничимся рассмотрением трехфазных двигателей, используемых в трехфазных преобразователях частоты.

Шина постоянного тока
Второй компонент, известный как шина постоянного тока (показанный в центре рисунка), не виден и не во всех преобразователях частоты, потому что он не вносит прямого вклада в работу с переменной частотой. Но он всегда будет там в виде высококачественных преобразователей частоты общего назначения (производимых специализированными производителями преобразователей частоты).Не вдаваясь в подробности, шина постоянного тока использует конденсаторы и катушку индуктивности для фильтрации «пульсаций» переменного напряжения от преобразованного постоянного тока до того, как оно попадет в секцию инвертора. Он также может включать фильтры, препятствующие гармоническим искажениям, которые могут возвращаться в источник питания, питающий преобразователь частоты. Преобразователи частоты более старых версий и некоторые преобразователи частоты для конкретных насосов требуют отдельных сетевых фильтров для выполнения этой задачи.

Инвертор
Справа от рисунка — «внутренности» преобразователя частоты.Инвертор использует три набора высокоскоростных переключающих транзисторов для создания «импульсов» постоянного тока, которые имитируют все три фазы синусоидальной волны переменного тока. Эти импульсы определяют не только напряжение волны, но и ее частоту. Термин инвертор или инверсия означает «реверсирование» и просто относится к движению вверх и вниз генерируемой формы волны. Современный инвертор с преобразователем частоты использует метод, известный как «широтно-импульсная модуляция» (ШИМ), для регулирования напряжения и частоты. Мы рассмотрим это более подробно, когда рассмотрим выход инвертора.

Еще один термин, с которым вы, вероятно, столкнулись при чтении литературы или рекламы по преобразователям частоты, — это «IGBT». IGBT относится к «биполярному транзистору с изолированным затвором», который является переключающим (или импульсным) компонентом инвертора. Транзистор (который заменил лампу) выполняет две функции в нашем электронном мире. Он может действовать как усилитель и увеличивать сигнал, как в радио или стереосистеме, или он может действовать как переключатель и просто включать и выключать сигнал. IGBT — это просто современная версия, которая обеспечивает более высокие скорости переключения (3000 — 16000 Гц) и пониженное тепловыделение.Более высокая скорость переключения приводит к повышению точности эмуляции волн переменного тока и снижению слышимого шума двигателя. Уменьшение выделяемого тепла означает меньшие радиаторы и, следовательно, меньшую площадь основания преобразователя частоты.

Выход инвертора
На рисунке справа показана форма волны, генерируемая инвертором преобразователя частоты ШИМ, в сравнении с формой синусоидального сигнала истинного переменного тока. Выход инвертора состоит из серии прямоугольных импульсов с фиксированной высотой и регулируемой шириной.В этом конкретном случае есть три набора импульсов — широкий набор в середине и узкий набор в начале и конце как положительной, так и отрицательной частей цикла переменного тока. Сумма площадей импульсов равна эффективному напряжению истинной волны переменного тока (мы обсудим эффективное напряжение через несколько минут). Если бы вы отрезали части импульсов выше (или ниже) истинной волны переменного тока и использовали их для заполнения пустых пространств под кривой, вы бы обнаружили, что они почти идеально совпадают.Таким образом, преобразователь частоты регулирует напряжение, подаваемое на двигатель.

Сумма ширины импульсов и пустых промежутков между ними определяет частоту волны (отсюда ШИМ или широтно-импульсная модуляция), воспринимаемой двигателем. Если бы импульс был непрерывным (то есть без пробелов), частота все равно была бы правильной, но напряжение было бы намного больше, чем у истинной синусоидальной волны переменного тока. В зависимости от желаемого напряжения и частоты преобразователь частоты будет изменять высоту и ширину импульса, а также ширину пустых промежутков между ними.Хотя внутренние компоненты, обеспечивающие это, относительно сложны, результат элегантно прост!

Теперь некоторые из вас, вероятно, задаются вопросом, как этот «поддельный» переменный ток (на самом деле постоянный ток) может управлять асинхронным двигателем переменного тока. В конце концов, разве не требуется переменный ток, чтобы «вызвать» ток и соответствующее ему магнитное поле в роторе двигателя? Что ж, переменный ток вызывает индукцию естественным образом, потому что он постоянно меняет направление. DC, с другой стороны, этого не делает, потому что обычно он неподвижен после активации цепи.Но постоянный ток может индуцировать ток, если его включать и выключать. Для тех из вас, кто достаточно взрослый, чтобы помнить, автомобильные системы зажигания (до появления твердотельного зажигания) имели набор точек в распределителе. Назначение точек — «импульсное» питание от батареи в катушке (трансформаторе). Это вызвало заряд в катушке, который затем увеличил напряжение до уровня, при котором свечи зажигания могли загореться. Широкие импульсы постоянного тока, показанные на предыдущем рисунке, на самом деле состоят из сотен отдельных импульсов, и именно это включение и выключение выхода инвертора позволяет возникать индукции через постоянный ток.

Эффективное напряжение
Мощность переменного тока — довольно сложная величина, и неудивительно, что Эдисон почти выиграл битву за то, чтобы сделать постоянный ток стандартом в США. К счастью, для нас все сложности были объяснены, и все, что нам нужно сделать, это следовать правилам, изложенным до нас.

Одним из атрибутов, делающих переменный ток сложным, является то, что он непрерывно изменяет напряжение, переходя от нуля к некоторому максимальному положительному напряжению, затем обратно к нулю, затем к некоторому максимальному отрицательному напряжению и затем снова обратно к нулю.Как определить действительное напряжение, приложенное к цепи? На рисунке слева изображена синусоида 60 Гц, 120 В. Обратите внимание, однако, что его пиковое напряжение составляет 170 В. Как мы можем назвать это волной 120 В, если ее фактическое напряжение составляет 170 В? В течение одного цикла он начинается с 0 В и повышается до 170 В, затем снова падает до 0. Он продолжает падать до –170, а затем снова повышается до 0. Оказывается, площадь зеленого прямоугольника, верхняя граница которого находится на уровне 120 В, равна сумме площадей под положительной и отрицательной частями кривой.Может ли тогда 120 В быть средним? Что ж, если бы вы усреднили все значения напряжения в каждой точке цикла, результат был бы примерно 108 В, так что это не должно быть ответом. Почему тогда значение, измеренное VOM, составляет 120 В? Это связано с тем, что мы называем «эффективным напряжением».

Если бы вы измерили тепло, выделяемое постоянным током, протекающим через сопротивление, вы бы обнаружили, что оно больше, чем тепло, производимое эквивалентным переменным током. Это связано с тем, что переменный ток не поддерживает постоянное значение в течение всего цикла.Если вы проделали это в лаборатории в контролируемых условиях и обнаружили, что определенный постоянный ток вызывает повышение температуры на 100 градусов, его эквивалент по переменному току приведет к увеличению на 70,7 градуса или всего 70,7% от значения постоянного тока. Следовательно, эффективное значение переменного тока составляет 70,7% от постоянного. Также оказывается, что действующее значение переменного напряжения равно квадратному корню из суммы квадратов напряжения на первой половине кривой. Если пиковое напряжение равно 1, и вы должны были измерить каждое из отдельных напряжений от 0 до 180 градусов, эффективное напряжение будет равно 0.707 пикового напряжения. 0,707 пикового напряжения 170, показанного на рисунке, равно 120 В. Это эффективное напряжение также известно как среднеквадратическое или среднеквадратичное напряжение. Отсюда следует, что пиковое напряжение всегда будет в 1,414 пикового значения от эффективного напряжения. Ток 230 В переменного тока имеет пиковое напряжение 325 В, а 460 — пиковое напряжение 650 В. Эффект пикового напряжения мы увидим немного позже.

Что ж, я, вероятно, говорил об этом дольше, чем необходимо, но я хотел, чтобы вы получили представление об эффективном напряжении, чтобы вы поняли иллюстрацию ниже.В дополнение к изменению частоты преобразователь частоты также должен изменять напряжение, даже если напряжение не имеет ничего общего со скоростью, с которой работает двигатель переменного тока.

На рисунке показаны две синусоидальные волны 460 В переменного тока. Красный — это кривая 60 Гц, а синий — 50 Гц. Оба имеют пиковое напряжение 650 В, но 50 Гц намного шире. Вы можете легко увидеть, что область под первой половиной (0–10 мс) кривой 50 Гц больше, чем площадь первой половины (0–8,3 мс) кривой 60 Гц.И, поскольку площадь под кривой пропорциональна эффективному напряжению, его эффективное напряжение выше. Это увеличение эффективного напряжения становится еще более значительным при уменьшении частоты. Если позволить двигателю 460 В работать при этих более высоких напряжениях, его срок службы может значительно сократиться. Следовательно, преобразователь частоты должен постоянно изменять «пиковое» напряжение относительно частоты, чтобы поддерживать постоянное эффективное напряжение. Чем ниже рабочая частота, тем ниже пиковое напряжение и наоборот.По этой причине двигатели 50 Гц, используемые в Европе и некоторых частях Канады, рассчитаны на напряжение 380 В. Видите ли, я говорил вам, что кондиционер может быть немного сложным!

Теперь вы должны иметь довольно хорошее представление о работе преобразователя частоты и о том, как он управляет скоростью двигателя. Большинство преобразователей частоты предлагают пользователю возможность устанавливать скорость двигателя вручную с помощью многопозиционного переключателя или клавиатуры или использовать датчики (давления, расхода, температуры, уровня и т. Д.) Для автоматизации процесса.

Преобразователи частоты — силовые системы и средства управления

Преобразователи частоты для 400 Гц, 100 Гц, 60 Гц, 50 Гц и 25 Гц

Преобразователи частоты , также называемые преобразователями частоты , преобразуют мощность 50 Гц и 60 Гц в мощность 400 Гц.Это осуществляется либо посредством статического преобразователя частоты с двойным преобразованием , либо с помощью двигателя-генератора, называемого вращающимся преобразователем частоты . Преобразователи частоты — это машины, которые преобразуют мощность с одной частоты на другую. Либо с помощью статических преобразователей частоты с двойным преобразованием, либо с помощью мотор-генератора, называемого вращающимся преобразователем частоты. В методе двойного преобразования выпрямитель преобразует переменный ток в постоянный, а инвертор преобразует DC обратно в AC .В мотор-генераторной установке это достигается либо изменением скорости вращения генератора в версиях с ремнями и шкивами или коробкой передач, либо с помощью двигателей и генераторов с различным числом полюсов, работающих для достижения того же результата производства. желаемая выходная частота.


Примеры преобразователей частоты:


Однофазный преобразователь
: SFC1 серии
(однофазный статический преобразователь частоты) имеет универсальную коммуникационную платформу, позволяющую осуществлять локальный, сетевой или удаленный мониторинг и управление.Коммуникационные пакеты включают последовательный порт RS-232, а также USB. PS&C потратила много времени на разработку этого сложного коммуникационного пакета для сегодняшних технически подкованных клиентов. При добавлении батареи к SFC1 серии этот преобразователь частоты превратится в ИБП с преобразователем частоты. Статический преобразователь частоты
: Фазовый преобразователь частоты SFC3 серии
использует 6- и 12-импульсную топологию, а также топологию «IGBT» для наиболее эффективного из имеющихся твердотельных преобразователей частоты.Это усовершенствование дает преобразователям PS&C большое преимущество перед другими традиционными преобразователями. PS&C избегает использования старых технологий в наших продуктах, что позволяет этой машине поддерживать оборудование в самых экстремальных электрических условиях. При добавлении батареи к SFC3
серии этот преобразователь частоты превратится в ИБП с преобразователем частоты. Динамический регулятор частоты
: DFR серии
обеспечивает такую ​​же бескомпромиссную надежность, как и все оборудование Power Systems & Controls, поскольку оно основано на нашей гибридной роторной технологии.Доступен частотный регулятор от 25 до 500 кВА. Наша приверженность качеству электроэнергии способствовала разработке этого продукта промышленного класса, который будет корректировать частоту и напряжение одновременно. Эта надежность в сочетании с долгим сроком службы дает регулятору серии DFR явное преимущество перед всеми другими регуляторами, представленными сегодня на рынке. Вращающийся преобразователь частоты
: RFC серии
включает проверенную технологию мотор-генераторных установок. Вращающийся преобразователь частоты обеспечивает оборудование надежным питанием, одновременно преобразуя входное напряжение и частоту.RFC действует как вращающийся фильтр, защищающий критическую нагрузку от переходных процессов и выбросов. Как правило, это 100% эффект для отключений менее 100 мсек. Наши модели доступны с синхронным или асинхронным двигателем и предлагаются в горизонтальной или вертикальной конфигурации.

Компьютеры и небольшая электроника работают с импульсными источниками питания, способными работать как на частоте 50 Гц, так и на частоте 60 Гц. В этом случае единственное, что вам может понадобиться, это преобразователь вилки, поскольку розетки 50 Гц не то же самое, что розетки 60 Гц по следующей причине.Поскольку 60 Гц и 50 Гц работают на разных частотах, вам не нужно подключать оборудование к неправильному источнику питания. Однако, если ваше оборудование работает от напряжения 208 В (которое используется как для 50 Гц, так и для 60 Гц), все может быть в порядке. В противном случае вы рискуете повредить оборудование или нанести себе вред. После того, как вы выпустили дым из оборудования, вы не сможете его снова вставить.

Более крупное и трехфазное оборудование не может работать на неправильной частоте. Это может вызвать повреждение или преждевременный износ оборудования.Оборудование с частотой 50 Гц не может работать с частотой 60 Гц. Если вы заставите оборудование работать за пределами проектных критериев, возникнут проблемы. Скорее всего, сразу оборудование выйдет из строя (помните дым)? Если не сразу, то со временем выйдет из строя от переутомления и перегрева. В условиях постоянно растущей мировой экономики оборудование из других частей мира все чаще используется в странах, в которых оно не производилось.

Это обычно приводит к необходимости преобразователя частоты (также называемого преобразователем частоты).Это изменит частоту местной электросети (а иногда и ее напряжение) по мере необходимости. В результате он будет совместим с требованиями к питанию оборудования, с которым вы пытаетесь работать (также называемого нагрузкой).

. . .

Для каких отраслей нужны преобразователи частоты:

Конкретные отрасли промышленности предъявляют особые требования к частоте, и это зависит от того, как они подают питание на свое оборудование. Системы для авиации и вооружения требуют 400 Гц, поэтому оборудование, используемое на земле, работающее на частоте 400 Гц, требует поддержки заземления для электрической системы.

Помимо авиации и военных, использующих 400 Гц, Rail использует 25 Гц, 91,66 Гц или 100 Гц для работы своих систем сигнализации. Судовые верфи и лодочные доки требуют преобразования энергии с берега. Суда, построенные в странах с частотой 50 Гц, имеют системы электропитания, работающие на частоте 50 Гц. В этом случае вам понадобится преобразователь частоты, который будет соответствовать электрическим потребностям строящихся, ремонтируемых или стыкованных судов. Также существует множество уникальных и / или переменных частот, необходимых в лабораториях и испытательных центрах.

Когда оборудование производится в одной стране и используется в другой, есть вероятность, что вам придется не только преобразовать напряжение, но и частоту. Наиболее распространенными частотами являются 50 Гц и 60 Гц, поскольку они используются в большинстве коммерческих машин , однако есть много приложений, не связанных с этой проблемой, которые нуждаются в преобразователях частоты. Гидроэнергия, например, производит 25 Гц.

Так ПОЧЕМУ так много разных частот? Это очень просто и связано с числом оборотов в минуту, на котором вращается основной производитель энергии. 1500 об / мин = 50 Гц , а 1800 об / мин = 60 Гц с использованием 4-полюсного синхронного генератора. С усилением глобализации мировой экономики потребность в преобразовании частоты возрастает, поскольку транснациональные корпорации из стран 60 Гц ведут больше бизнеса в странах 50 Гц и наоборот.

. . .

Технология преобразователя частоты:

Существует 2 основных типа преобразователей частоты: вращающиеся преобразователи частоты, изготовленные с использованием двигателя-генератора и твердотельные (статические) преобразователи частоты, изготовленные с использованием полупроводников и силовых каскадов.Роторная машина — это грубая сила в отличие от статической машины. Статический блок предназначен для непромышленных применений. При выборе преобразователя частоты необходимо учитывать и другие факторы. Одним из факторов является то, нужен ли вам преобразователь для поддержания выходной мощности, когда электросеть больше не доступна. В этом случае преобразователь также будет источником бесперебойного питания, называемым ИБП с преобразователем частоты.

Если преобразователю частоты также необходимо очистить нестабильную входную частоту, например, принять плохой частотный диапазон на входе и обеспечить стабильную выходную частоту и напряжение, следует использовать динамический регулятор частоты.Этот блок позволяет использовать очень нестабильную утилиту, производя при этом требуемый результат.

Используя опыт работы в области 400 Гц и первых мэйнфреймов, PS&C предлагает две технологии для решения этой проблемы с преобразователем частоты ; Статические ( твердотельные, ) преобразователи частоты и роторные ( мотор-генератор ) преобразователи частоты. Есть несколько факторов, которые помогут определить, какое решение по преобразованию частоты подходит для вашего проекта. Группа технических специалистов PS&C поможет вам оценить ваше приложение и выбрать лучшее решение для ваших конкретных требований.

Какие существуют применения преобразователя частоты:

  • В Китае открывается завод с производственным оборудованием американского производства (преобразователь 50/60 Гц).
  • Небольшой аэропорт решает добавить центр обслуживания и ремонта вертолетов (преобразователь 400 Гц).
  • Американский производитель закупает оборудование у европейского завода (преобразователь 50/60 Гц).
  • Железная дорога решает увеличить количество путей на новые территории (преобразователь 100 / 25Гц).

Основы преобразователя частоты

Для достижения высокой эффективности, отличной управляемости и энергосбережения в приложениях, связанных с промышленными асинхронными двигателями, необходимо использовать системы регулируемых преобразователей частоты.Система преобразователя частоты в настоящее время представляет собой двигатель переменного тока, питаемый от статического преобразователя частоты. Современный преобразователь частоты отлично подходит для двигателей переменного тока и прост в установке. Однако одна важная проблема связана с несинусоидальным выходным напряжением. Этот фактор вызвал массу нежелательных проблем. Повышенные потери в асинхронном двигателе, шум и вибрация, пагубное воздействие на систему индукционной изоляции и выход из строя подшипников являются примерами проблем систем, связанных с преобразователями частоты.Повышенные индукционные потери означают снижение выходной мощности индукции для предотвращения перегрева. Лабораторные измерения показывают, что повышение температуры может быть на 40% выше при использовании преобразователя частоты по сравнению с обычными источниками питания. Постоянные исследования и совершенствование преобразователей частоты помогли решить многие из этих проблем. К сожалению, кажется, что решение одной проблемы акцентировало внимание на другой. Снижение потерь в индукции и преобразователе частоты ведет к увеличению вредного воздействия на изоляцию.Производители индукционных устройств, конечно, знают об этом. На рынке начинают появляться новые индукционные конструкции (инверторно-резистивные двигатели). Лучшая изоляция обмотки статора и другие конструктивные улучшения гарантируют, что асинхронные двигатели будут лучше адаптированы для применений с преобразователями частоты.

Введение
Одной из наиболее серьезных проблем асинхронного двигателя была сложность его адаптации к регулировке скорости. Синхронная скорость двигателя переменного тока определяется следующим уравнением.

n s = 120 * f / p
n с = синхронная скорость
f = частота электросети
p = номер полюса

Единственный способ отрегулировать скорость для данного количества полюсов — это изменить частоту.

Основной принцип
Теоретически основная идея проста, процесс преобразования стабильной частоты линии электропередачи в переменную частоту в основном выполняется в два этапа:

  1. Источник переменного тока преобразуется в постоянное напряжение.
  2. Постоянное напряжение преобразуется в переменное напряжение желаемой частоты.
Преобразователь частоты в основном состоит из трех блоков: выпрямителя, звена постоянного тока и инвертора.

Различные типы преобразователей частоты
Инвертор источника напряжения PWM (VSI)
ШИМ (широтно-импульсная модуляция) широко применяется в промышленности преобразователей частоты. Они доступны от нескольких сотен ватт до мегаватт.

ШИМ-преобразователь не обязательно должен точно соответствовать нагрузке, ему нужно только убедиться, что нагрузка не потребляет ток, превышающий номинальный ток ШИМ-преобразователя. Вполне возможно запустить индукцию 20 кВт с преобразователем PWM на 100 кВт. Это большое преимущество, которое упрощает работу приложения.

В настоящее время преобразователь частоты ШИМ использует биполярный транслятор с изолированным затвором (IGBT). Современные преобразователи частоты с ШИМ работают очень хорошо и не сильно отстают от конструкций, использующих синусоидальный источник питания — по крайней мере, не в диапазоне мощностей до 100 кВт или около того.

Инвертор источника тока (CSI)
Инвертор источника тока представляет собой грубую и довольно простую конструкцию по сравнению с ШИМ. Он использует простые тиристоры или тиристоры в цепях питания, что делает его намного дешевле. Кроме того, он очень надежен. Конструкция обеспечивает защиту от короткого замыкания благодаря большим индукторам в звене постоянного тока. Он крупнее ШИМ.

Раньше инвертор источника тока был лучшим выбором для больших нагрузок. Недостатком инвертора источника тока является необходимость согласования с нагрузкой.Преобразователь частоты должен быть рассчитан на используемый асинхронный двигатель. Фактически, сама индукция является частью перевернутой цепи.

Инвертор источника тока подает на асинхронный двигатель ток прямоугольной формы. На низких скоростях индукция создает зубцовый момент. Этот тип преобразователя частоты будет создавать больше шума на источнике питания по сравнению с преобразователем PWM. Нужна фильтрация.

Сильные переходные процессы выходного напряжения являются дополнительным недостатком инвертора источника тока.В худших случаях переходные процессы могут почти в два раза превышать номинальное напряжение. Также существует риск преждевременного износа изоляции обмотки при использовании этого преобразователя частоты. Этот эффект наиболее серьезен, когда нагрузка не соответствует преобразователю частоты должным образом. Это может произойти при работе с частичной нагрузкой. Такой преобразователь частоты все больше теряет свою популярность.

Векторное управление потоком (FVC)
Управление вектором магнитного потока — это более сложный тип преобразователя частоты, который используется в приложениях, требующих экстремального управления.Например, на бумажных фабриках необходимо очень точно контролировать скорость и силу растяжения.

Преобразователь частоты FVC всегда имеет какой-то контур обратной связи. Такой тип преобразователя частоты обычно не представляет особого интереса для насосов. Это дорого, и его преимуществами нельзя воспользоваться.

Влияние на двигатель
Индукция лучше всего работает при питании от источника чистого синусоидального напряжения. Чаще всего это происходит при подключении к надежному источнику питания от электросети.

Когда индукция подключена к преобразователю частоты, на него будет подаваться несинусоидальное напряжение — больше похоже на напряжение срезанной прямоугольной формы. Если мы подадим 3-фазную индукцию с симметричным 3-фазным квадратичным напряжением, все гармоники, кратные трем, а также четные числа будут исключены из-за симметрии. Но остались цифры 5, 7 и 11, 13 и 17, 19 и 23, 25 и так далее. Для каждой пары гармоник меньшее число вращается в обратном направлении, а большее число — в прямом.

Скорость асинхронного двигателя определяется основным числом, или числом 1, из-за его сильного доминирования. Что теперь происходит с гармониками?

С точки зрения гармоник индукция, кажется, заблокировала ротор, что означает, что скольжение для гармоник составляет примерно 1. Это не дает никакой полезной работы. В результате обычно возникают потери в роторе и дополнительный нагрев. В частности, в нашем приложении это серьезный исход. Однако с помощью современных технологий можно устранить большую часть гармоник в индукционном токе, тем самым уменьшив дополнительные потери.

Преобразователь частоты до
Самые ранние преобразователи частоты часто использовали простое прямоугольное напряжение для питания асинхронного двигателя. Они вызвали проблемы с нагревом, и индукция работала с типичным шумом, вызванным пульсацией крутящего момента. Намного лучшая производительность была достигнута, если просто исключить пятый и седьмой. Это было сделано за счет дополнительного переключения сигнала напряжения.

Преобразователь частоты сегодня
В наши дни эта техника стала более сложной, и большинство недостатков остались в прошлом.Разработка мощных полупроводниковых приборов и микропроцессора позволила адаптировать схему переключения таким образом, чтобы исключить большинство вредных гармоник.

Для преобразователей частоты среднего диапазона мощности (до нескольких десятков кВт) доступны частоты переключения до 20 кГц. Индукционный ток с этим типом преобразователя частоты будет почти синусоидальным.

При высокой частоте коммутации индукционные потери остаются низкими, но потери в преобразователе частоты увеличиваются.Общие потери увеличиваются при чрезмерно высоких частотах переключения.

Некоторые основы теории двигателя
Производство крутящего момента в асинхронном двигателе может быть выражено как

T = V * τ * B [Нм]
V = Активный объем ротора [м 3 ]
τ = ток на метр окружности отверстия статора
B = Плотность потока в воздушном зазоре
B = пропорционально (E / ω) = E / (2 * π * f)
ω = угловая частота напряжения статора
E = индуцированное напряжение статора

Для достижения наилучших характеристик на различных скоростях становится необходимым поддерживать соответствующий уровень намагничивания для индукции для каждой скорости.

Диапазон различных характеристик крутящего момента показан на следующем рисунке. Для нагрузки с постоянным крутящим моментом соотношение V / F должно быть постоянным. Для нагрузки с квадратичным крутящим моментом постоянное отношение V / F приведет к чрезмерно высокой намагниченности при более низкой скорости. Это приведет к излишне высоким потерям в стали и потерям сопротивления (I 2 R).

Лучше использовать квадратное отношение V / F. Таким образом, потери в стали и потери I 2 R снижаются до уровня, более приемлемого для фактического момента нагрузки.

Если мы посмотрим на рисунок, то обнаружим, что напряжение достигло своего максимума и не может быть увеличено выше базовой частоты 50 Гц. Диапазон выше базовой частоты называется диапазоном ослабления поля. Следствием этого является невозможность поддерживать необходимый крутящий момент без увеличения тока. Это приведет к проблемам с нагревом того же типа, что и при нормальном пониженном напряжении от синусоидальной электросети. Скорее всего, номинальный ток преобразователя частоты будет превышен.

Работа в диапазоне ослабления поля
Иногда возникает соблазн запустить насос на частотах, превышающих частоту промышленной сети, чтобы достичь рабочей точки, которая в противном случае была бы невозможна. Это требует дополнительной осознанности. Мощность на валу насоса будет увеличиваться в кубе скорости. Превышение скорости на 10% потребует на 33% больше выходной мощности. Грубо говоря, можно ожидать, что повышение температуры увеличится примерно на 75%.

Тем не менее, есть предел тому, что мы можем выжать из индукции при превышении скорости.Максимальный крутящий момент индукции будет падать как функция 1 / F в диапазоне ослабления поля.

Очевидно, что индукция пропадет, если преобразователь частоты не сможет поддерживать ее с напряжением, которое соответствует необходимому крутящему моменту.

Снижение номинальных характеристик
Во многих случаях индукция работает на максимальной мощности от синусоидальной электросети, и любой дополнительный нагрев недопустим. Если такая индукция питается от какого-либо преобразователя частоты, то, скорее всего, она должна работать с меньшей выходной мощностью, чтобы избежать перегрева.

Нет ничего необычного в том, что преобразователь частоты для больших насосов мощностью более 300 кВт добавляет дополнительные индукционные потери в размере 25–30%. В верхнем диапазоне мощностей только некоторые преобразователи частоты имеют высокую частоту переключения: от 500 до 1000 Гц обычно для преобразователей частоты предыдущего поколения.

Для компенсации дополнительных потерь необходимо уменьшить выходную мощность. Мы рекомендуем общее снижение номинальных характеристик на 10–15% для больших насосов.

Поскольку преобразователь частоты загрязняет питающую сеть гармониками, энергокомпания иногда предписывает входной фильтр.Этот фильтр снижает доступное напряжение обычно на 5–10%. Следовательно, индукция будет работать при 90–95% номинального напряжения. Следствие — дополнительный обогрев. Может потребоваться снижение номинальных характеристик.

Пример
Предположим, что выходная мощность фактического двигателя насоса составляет 300 кВт при 50 Гц, а повышение температуры составляет 80 ° C при использовании синусоидальной электросети. Дополнительные потери в 30% приведут к нагреву на 30%. Консервативное предположение состоит в том, что повышение температуры зависит от квадрата мощности на валу.

Чтобы температура не превышала 80 ° C, необходимо уменьшить мощность на валу до

P пониженный = √ (1 / 1,3) * 300 = 263 кВт
Уменьшение может быть достигнуто либо за счет уменьшения диаметра рабочего колеса, либо за счет снижения скорости.

Преобразователь частоты Потери
Когда определяется общий КПД системы преобразователя частоты, необходимо учитывать внутренние потери преобразователей частоты. Эти потери преобразователя частоты непостоянны, и их нелегко определить.Они состоят из постоянной части и части, зависящей от нагрузки.

Постоянные потери:
Потери на охлаждение (вентилятор охлаждения) — потери в электронных схемах и так далее.

Потери в зависимости от нагрузки:
Коммутационные потери и свинцовые потери в силовых полупроводниках.

На следующем рисунке показан КПД преобразователя частоты как функция частоты при кубической нагрузке для блоков мощностью 45, 90 и 260 кВт. Кривые характерны для преобразователей частоты в диапазоне мощностей 50–300 кВт; с частотой коммутации около 3 кГц и с IGBT второго поколения.

Влияние на изоляцию двигателя
Выходные напряжения современных преобразователей частоты имеют очень короткое время нарастания напряжения.

dU / dT = 5000 В / мкс — обычное значение.
Такой крутой скачок напряжения вызовет чрезмерное напряжение в изоляционных материалах индукционной обмотки. При малом времени нарастания напряжение в обмотке статора распределяется неравномерно. При синусоидальном источнике питания напряжение между витками индукционной обмотки обычно равномерно распределяется.С другой стороны, с преобразователем частоты до 80% напряжения будет падать на первом и втором витках. Поскольку изоляция между проводами является слабым местом, это может быть опасным для индукции. Короткое время нарастания также вызывает отражение напряжения в индукционном кабеле. В худшем случае это явление удвоит напряжение на индукционных клеммах. Индукция, подаваемая от преобразователя частоты на 690 вольт, может подвергаться воздействию напряжения до 1900 вольт между фазами.

Амплитуда напряжения зависит от длины индукционного кабеля и времени нарастания. При очень коротком времени нарастания полное отражение происходит в кабеле длиной от 10 до 20 метров.

Для обеспечения работы и длительного срока службы двигателя абсолютно необходимо, чтобы обмотка была адаптирована для использования с преобразователем частоты. Индукторы для напряжений выше 500 вольт должны иметь усиленную изоляцию. Обмотка статора должна быть пропитана смолой, обеспечивающей изоляцию без пузырьков или полостей.Тлеющие разряды часто начинаются вокруг полостей. Это явление в конечном итоге приведет к разрушению изоляции.

Есть способы защитить двигатель. Помимо усиленной системы изоляции, может потребоваться установка фильтра между преобразователем частоты и индукцией. Такие фильтры можно приобрести у большинства известных поставщиков преобразователей частоты.

Фильтр обычно замедляет время нарастания напряжения с

dU / dT = от 5000 В / мкс до 500-600 В / мкс
Выход из строя подшипника
Поломка вращающегося оборудования часто может быть связана с выходом из строя подшипников.Помимо чрезмерного нагрева, недостаточной смазки или усталости металла, электрический ток через подшипники может быть причиной многих загадочных поломок подшипников, особенно при больших индукциях. Это явление обычно вызвано несимметрией в магнитной цепи, которая индуцирует небольшое напряжение в структуре статора, или током нулевой последовательности. Если потенциал между конструкцией статора и валом становится достаточно высоким, через подшипник будет происходить разряд.Небольшие электрические разряды между телами качения и дорожкой качения подшипника в конечном итоге могут повредить подшипник.

Использование преобразователей частоты увеличивает вероятность отказа подшипников такого типа. Технология переключения современного преобразователя частоты вызывает ток нулевой последовательности, который при определенных обстоятельствах проходит через подшипники.

Самый простой способ решить эту проблему — поставить преграду для тока. Обычный метод заключается в использовании подшипника с изолирующим покрытием на наружном кольце.

Выводы
Использование преобразователя частоты не означает беспроблемного использования. Множество вопросов, на которые необходимо обратить внимание при проектировании. Будет ли необходимо, например, ограничивать доступную мощность на валу для предотвращения чрезмерного нагрева? Во избежание этой проблемы может потребоваться работа с более низкой выходной мощностью.

Будет ли изоляция асинхронного двигателя сопротивляться воздействию инвертора? Нужна ли фильтрация? Современные эффективные инверторы оказывают пагубное влияние на изоляцию из-за высокой частоты коммутации и короткого времени нарастания напряжения.

Какую максимальную длину кабеля можно использовать без полного отражения напряжения? Амплитуда напряжения зависит как от длины кабеля, так и от времени нарастания. При очень коротком времени нарастания полное отражение будет происходить в кабелях длиной от 10 до 20 метров.

Можно ли использовать изолированные подшипники, чтобы предотвратить попадание тока нулевой последовательности в подшипники?

Только когда мы решим все эти вопросы, мы сможем принимать правильные решения относительно использования преобразователя частоты.

Функция преобразователя частоты и базовая.

Преобразователь частоты преобразует частоту переменного тока, то есть преобразует переменный ток 50 или 60 Гц в переменный ток любой желаемой частоты. Устройство также может изменять напряжение, если это необходимо.

Зачем нужен преобразователь частоты

Преобразователи частоты

используются для облегчения точного управления критическими процессами, такими как: система охлаждения (радиаторы, насосы), топливная система (бустер, нагреватели…), вентиляция (вентиляция машинного зала).Преобразователь частоты также является энергосберегающим и во многих случаях ограничителем шума.

Как работает преобразователь частоты:

Для изменения частоты переменного тока преобразователь частоты проходит двухступенчатое преобразование. Сначала он преобразует переменный ток в постоянный, затем, во-вторых, постоянный ток в переменный ток желаемой частоты.


Итак, преобразователь частоты имеет два рабочих набора: сначала схема выпрямителя преобразует переменный ток в постоянный ток, а затем схема инвертора с тиристорами / IGCT / IGBT преобразует постоянный ток в переменный ток с желаемой частотой.Изменение или сдвиг частоты происходит в ступени преобразователя.

Если требуется преобразование напряжения, трансформатор обычно включается в цепь входа или выхода переменного тока, и этот трансформатор может также обеспечивать гальваническую развязку между цепями входа и выхода переменного тока.
Батарея также может быть добавлена ​​в схему постоянного тока, чтобы улучшить работу преобразователя при кратковременных перебоях в подаче питания.

преобразователь частоты базовый Блок-схема преобразователя частоты
  1. AC Напряжение сети -3 x 400… 500 В AC, 50/60 Гц.
  2. Сетевой фильтр — Ограничивает электрические помехи в электросети общего пользования и улучшает электромагнитную совместимость
    устройства в отношении помех от электросети.
  3. Выпрямитель — Преобразует трехфазное напряжение переменного тока в постоянное.
  4. Шина постоянного тока — Напряжение постоянного тока в режиме ожидания = √2 x линейное напряжение [В]
  5. Конденсаторы шины постоянного тока — Сглаживает напряжение шины постоянного тока
  6. Инвертор — Преобразует D.C. напряжение в переменное напряжение переменного тока с переменной частотой.
  7. Напряжение двигателя -Переменное напряжение переменного тока, 0-95% напряжения питания.
    Переменная выходная частота: 0–700 Гц
  8. Плата управления — Плата управления управляет преобразователем частоты. Он генерирует последовательность импульсов, которая используется для преобразования
    напряжения постоянного тока в переменное напряжение переменного тока с переменной частотой.

Принципиальная схема силовой части преобразователя

Блок-схема преобразователя частоты принципиальная схема преобразователя частоты

AS Блокировка пуска; EW Трансформатор замыкания на землю; Выпрямитель GL с тиристорной подзарядкой; SE Текущее обнаружение; Блок питания импульсный СНТ; WS Управление инвертором; Инвертор WR; Шина постоянного тока ZK Вариант устройства
; BC Тормозной прерыватель.
Принадлежности
BW Тормозной резистор; MF Моторный фильтр; Сетевой фильтр NF

Типичный IGBT — биполярный транзистор с изолированным затвором

Дополнительная литература

Кому нужен преобразователь частоты? Я просто куплю инвертор …

Ken Reindel, 2019

Чтобы просмотреть преобразователи частоты и напряжения для покупки, щелкните здесь: https://www.kccscientific.com/frequency-converters/

Неудивительно, что люди всегда в поисках «более дешевого» или «умного» способа преобразования частоты.Недавно к нам пришел один любопытный покупатель и спросил: «Зачем мне преобразователь частоты? Я просто куплю дешевый китайский синусоидальный инвертор, и он мне поможет ».

Довольно интересная идея! Да, правильный синусоидальный инвертор обеспечит определенное выходное напряжение и частоту переменного тока. А для некоторых приложений это может работать как часть головоломки. Но прежде чем приступить к такому подходу «сделай сам», было бы разумно подумать, с чем вам предстоит столкнуться.

Если вы опытный инженер-электронщик, желающий заниматься исследованиями, возможно, вы сможете им управлять.В противном случае не пытайтесь это сделать. Не существует «котельных» решений, потому что инверторы различаются по многим параметрам.

Давайте рассмотрим некоторые проблемы.

> Вам будет сложно найти подходящее устройство для измерения напряжения и частоты в том месте, где вы находитесь. Например, если вы живете в США, сложно найти инвертор 230 В переменного тока, 50 Гц.

> Вам нужно будет оценить инвертор на предмет его выходной составляющей постоянного тока. Это может быть серьезной проблемой, если вы думаете о питании аудиооборудования с входными трансформаторами.

> Один инвертор не может обеспечить настраиваемую частоту или выходное напряжение.

> Точность частоты инвертора обычно составляет в лучшем случае 1%. … а некоторые — до 5%. Для устройств, требующих точного времени, это просто не сработает. На верхнем пределе этого предела ошибок вы довольно отчетливо услышите ошибку высоты звука, если вы включаете проигрыватель виниловых пластинок. Мы знаем некоторых людей, которые могут обнаружить ошибку высоты тона с точностью до 1%. Если вы хотите привести в действие дрель или пилу в отдаленном месте, вдали от бытовой электросети, тогда да, такой уровень точности подойдет.

> Тара, тара, тара. Вероятно, вам не нужен синусоидальный инвертор, предназначенный для работы в кемпинге, пучок проводов, некоторые незакрепленные электронные детали и источник питания с открытой рамой рядом с вашим дорогим проигрывателем, ламповым предусилителем или музыкальным автоматом.

> Вам может понадобиться БОЛЬШОЙ аккумулятор и зарядное устройство. Многие инверторы рассчитаны на питание от батарей. Оставайтесь в безопасности! Требования по силе тока могут привести к возгоранию проводов или расплавлению межсоединений, если вы не спроектируете их должным образом.Кроме того, некоторые батареи представляют собой опасность взрыва при наличии искр. Тщательно выбирайте зарядное устройство; некоторые из них выкипят аккумуляторный электролит.

> Вам необходимо защитить аккумулятор от глубокого разряда. Для этого потребуется датчик уровня и переключатель. Для этого может оказаться полезным выбор инвертора с дистанционным «включенным» входом.

> Замена источника питания постоянного тока на батарею требует инженерных знаний. Может сработать, если вы захотите интегрировать электронику и выбрать совместимый источник питания.Вам нужно будет оценить мгновенные требования к мощности многих инверторов и электронного устройства, которое вы, возможно, пытаетесь запитать. Некоторые из них имеют такие высокие значения входной емкости, что многие источники питания не могут их запустить.

В процессе правильного решения этой проблемы может оказаться, что источник питания будет дороже, чем инвертор. Вам также могут понадобиться правильно подобранные конденсаторы и фильтры на пути между источником питания и инвертором. Подумайте, как их выбрать и зачем они нужны, и как их защитить.Вам может повезти, и все получится, но как долго? Например, что, если инвертор выйдет из строя и закоротит блок питания?

> Вы не получите поддержки клиентов от компании, производящей инверторы, о том, как объединить части вместе. Если что-то пойдет не так или инвертор перестанет работать из-за допущенной вами ошибки, вы будете предоставлены сами себе.

> Качественную изоляцию не получишь. Инверторы не для этого предназначены. Так что будьте готовы к высокочастотным контурам заземления и всем связанным с ними проблемам с шумом.

> Вы можете столкнуться с радиочастотными помехами. Когда вы соединяете два коммутационных устройства вместе, даже если каждое из них сертифицировано на радиочастотное излучение, это азартная игра, каким будет взаимодействие между ними.

Это похоже на философию смартфона. Вы можете купить стандартный телефон, портативный компьютер, фотоаппарат, диктофон, видеокамеру, большую батарею и носить с собой все вокруг. Или вы можете купить смартфон. Зачем покупать по частям и собирать самодельный «преобразователь частоты» (который может работать ненадежно), когда бесконечно проще купить хорошо продуманный, привлекательный продукт KCC Scientific, который отлично работает и элегантно интегрирован?

Качество инвертора, конечно, здесь тоже не рассматривается.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *