+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Мощность электрического тока — Технарь

С мощностью электрического тока мы уже встречались, когда вводили понятие напряжения. Выведем теперь формулу для расчета мощности электрического тока. Вспомним, что напряжение на концах участка цепи равно отношению мощности к силе тока. Это кратко можно записать в виде формулы:

U = P/I

в которой буквой U обозначено напряжение, Р — мощность и I — сила тока. Из этой формулы легко получить формулу для расчета мощности электрического тока:

P = UI

Мощность электрического тока равна произведению напряжения на силу тока.

Единицей мощности, как мы знаем, является 1 ватт, по формуле мощности электрического тока ватт можно выразить через вольт и ампер.

1 ватт = 1 вольт X 1 ампер, или 1 Вт = 1 В • 1 А = 1 В • А.

В практике используются также единицы мощности, дольные и кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).

1 гВт = 100 Вт; 1 кВт = 1000 Вт; 1 МВт = 1,000 000 Вт.

В таблице 14 приведены мощности некоторых источников и потребителей электрического тока.

Измерить мощность электрического тока можно с помощью вольтметра и амперметра. Чтобы вычислить искомую мощность, перемножают напряжение и силу тока, найденные по показаниям приборов.

Существуют специальные приборы — ваттметры, которые непосредственно измеряют мощность электрического тока в цепи.

Вопросы. 1. Что называют мощностью? 2. Как рассчитать мощность? 3. Как выражается мощность электрического тока через напряжение и силу тона? 4. Что принимают за единицу мощности? 5. Как выражается единица мощности через единицы напряжения и силы тока? 6. Какие единицы мощности используют на практике?

Упражнения. 1. В цепь с напряжением 127 В включена электрическая лампа, сила тока в которой 0,6 А. Найдите мощность тока в лампе. 2. Электроплитка рассчитана на напряжение 220 В и силу тока 3 А Определите мощность тока в плитке. 3. Электрическая лампа мощностью 15 Вт и плитка мощностью 600 Вт включены в осветительную сеть квартиры под напряжением 220 В. Определите силу тока в подводящих ток проводах.

Вы спрашивали: Как определить мощность формула?

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

Как определить мощность?

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Как определить мощность тока формула?

P = A t = U ⋅ I ⋅ t t = U ⋅ I . Таким образом: Мощность электрического тока равна произведению напряжения на силу тока: P = U ⋅ I . Из этой формулы можно определить и другие физические величины.

Как определить мощность на участке цепи?

Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+… +Pn+… 6.

Как рассчитать мощность если известно напряжение и сила тока?

МОЩНОСТЬ = СИЛА ТОКА * НАПРЯЖЕНИЕ, то есть ВАТТЫ = АМПЕРЫ * ВОЛЬТЫ.

Как рассчитать мощность ватт?

Мощность равна произведению силы тока на напряжение, то есть 1 Вт = 1 А х 1 В. Формула: Р = I х V. Например, если сила тока равна 3 А, а напряжение равно 110 В, то мощность равна: 3 х 110 = 330 Вт. (Формула: Р = I х V, где Р – мощность).

Как определить электрическую мощность?

Для измерения мощности электрического тока принята единица, называемая ватт (Вт). Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В. Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.

Какую формулу удобнее всего использовать для вычисления мощности тока на участке цепи на котором проводники соединены последовательно?

Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Как определить мощность двигателя формула?

Мощность (N) определяют по формуле: N = A t . Единицей измерения мощности в системе СИ является Ватт (русское обозначение — Вт, международное — W). Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.

Как найти мощность зная силу тока и сопротивление?

P = U*I. Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R.

Как определить мощность насоса?

Q=P, где Q — расход теплоносителя через котел, л/мин; Р — мощность котла, кВт. Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

Как найти силу тока через мощность?

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U. Данное выражение вытекает из формулы для расчета мощности: P = IU.

Какие меры принимаются Чтобы увеличить коэффициент мощности?

Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

  • заменой мало загруженных двигателей двигателями меньшей мощности,
  • понижением напряжения
  • выключением двигателей и трансформаторов, работающих на холостом ходу,

Как найти эдс если есть напряжение?

I=U/R, где U – напряжение, а в рассмотренном примере — ЭДС.

Чем отличается мощность и сила тока?

Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени.

МОЩНОСТЬ ЭЛЕКТРИЧЕСКАЯ • Большая российская энциклопедия

МО́ЩНОСТЬ ЭЛЕКТРИ́ЧЕСКАЯ, ра­бо­та, со­вер­шае­мая элек­трич. то­ком в еди­ни­цу вре­ме­ни. В це­пях по­сто­ян­но­го то­ка М. э. рав­на про­из­ве­де­нию элек­трич. на­пря­же­ния $U$ (в воль­тах) и си­лы то­ка $I$ (в ам­пе­рах). В це­пях пе­ре­мен­но­го то­ка раз­ли­ча­ют мгно­вен­ную, ак­тив­ную, ре­ак­тив­ную и пол­ную мощ­но­сти. Мгно­вен­ная М. э. рав­на про­из­ве­де­нию мгно­вен­ных зна­че­ний $U$ и $I$. Ак­тив­ная М. э. – сред­нее за пе­ри­од зна­че­ние мгно­вен­ной мощ­но­сти пе­ре­мен­но­го то­ка; ха­рак­те­ри­зу­ет ско­рость пре­об­ра­зо­ва­ния элек­трич. энер­гии в др. ви­ды энер­гии (напр., те­п­ло­вую, све­то­вую, ме­ха­ни­че­скую). В це­пях од­но­фаз­но­го (си­ну­сои­даль­но­го) то­ка ак­тив­ная М.

2}=UI$. Еди­ни­ца пол­ной М. э. – вольт-ам­пер (В·А). Для це­пей не­си­ну­сои­даль­но­го то­ка М. э. рав­на сум­ме ср. мощ­но­стей отд. гар­мо­ник.

Урок 8. переменный электрический ток — Физика — 11 класс

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически.

Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

XL= ωL

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение.   В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

P=IU cosφ

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Найти: T.

Решение:

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

Ответ: T = 0,08 c.

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Дано:

ν=50 Гц,

R=1 кОм=1000 Ом,

C=1 мкФ=10-6 Ф,

U=220 В.

Найти: Im

Решение:

Напишем закон Ома для переменного тока:

I=U/Z

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

Ответ: Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

 Физические величины

    Физические приборы

Сила тока

Омметр

Напряжение

Вольтметр

Сопротивление

Амперметр

Мощность

Ваттметр

Правильный ответ:

 Физические величины

    Физические приборы

Сила тока

Амперметр

Напряжение

Вольтметр

Сопротивление

Омметр

Мощность

Ваттметр

Произведение — сила — ток

Произведение — сила — ток

Cтраница 3

В свою очередь количество электричества определяется произведением силы тока на время его прохождения. Разность напряжений Е на концах цепи зависит от сопротивления данного проводника.  [31]

Мощность, потребляемая электрофильтром, рассчитывается как произведение силы тока на напряжение.  [32]

Магнитным моментом называется вектор, численно равный произведению силы тока на площадь, охватываемую его контуром, и направленный нормально плоскости контура по правилу правого винта.  [33]

Напряжение на индуктивности определяется согласно закону Ома произведением силы тока на величину индуктивного сопротивления. Так как в цепи увеличилась сила тока, то напряжение UL IXL возросло.  [35]

Как показывает опыт, возникающая разность температур пропорциональна произведению силы тока и напряженности магнитного поля.  [36]

Индукция магнитного поля, создаваемого током, пропорциональна произведению силы тока на длину участка проводника.  [37]

Магнитным моментом называется вектор, по модулю равный произведению силы тока на площадь, охватываемую его контуром, и направленный нормально плоскости контура по правилу правого винта.  [38]

Элементом тока называют векторную величину Ml, равную произведению силы тока / в проводнике на длину Л / данного участка проводника. Направление элемента тока совпадает с направлением тока на этом участке проводника.  [39]

Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка. Любой электрический прибор ( нагреватель, лампа, электродвигатель) рассчитан на потребление определенной мощности.  [40]

При этом обязательно происходит усиление мощности сигнала, равной произведению силы тока на напряжение.  [41]

В соответствии с этими значениями параметр Q, равный произведению силы тока на время It, является постоянным и лежит в пределах 50 — 65 мА — с. Эти токи считаются допустимыми для наиболее вероятных путей их протекания в теле человека: рука — рука, рука — ноги и нога — нога.  [42]

Следовательно, работа электрического тока на участке цепи равна произведению силы тока / на напряжение U, приложенное к данному участку, и на время t, в течение которого совершалась работа.  [43]

Напряжение на индуктивности определяется, согласно закону Ома, произведением силы тока на величину индуктивного сопротивления. Так как в цепи увеличилась сила тока, то напряжение UL IXL возросло.  [44]

Таким образом, напряженность поля внутри бесконечно длинного соленоида равна произведению силы тока на число витков, приходящееся на единицу, длины. Вне соленоида напряженность поля равна нулю.  [45]

Страницы:      1    2    3    4

Закон Ома.

Закон Ома.

Программа КИП и А

В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / RгдеI — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × UгдеP — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока,I=U/RP/U√(P/R)
Напряжение,U=I×RP/I√(P×R)
Сопротивление,R=U/IP/I²U²/P
Мощность,P=I×UI²×RU²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.


Последовательное включение R, L, C
Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, CПри параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2)Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / ZгдеI — сила переменного тока, измеряемая в Амперах, (A)   
U — напряжение переменного тока, измеряемое в Вольтах, (V)
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока,I=U/ZP/(U×Cos(φ))√(P/Z)
Напряжение,U=I×ZP/(I×Cos(φ))√(P×Z)
Полное сопротивление, импедансZ=U/IP/I²U²/P
Мощность,P=I²×ZI×U×Cos(φ)U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:


Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)

 

Глоссарий

АВАРИЙНЫЙ ИСТОЧНИК ПИТАНИЯ

Независимый резервный источник электрической энергии, который, при неисправности или простое основного источника, обеспечивает электропитание необходимого качества и необходимого количества для продолжения работы оборудования пользователя.

АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ

Защитный переключающий прибор, размыкающий цепь протекания тока при заранее заданной величине.

АВТОМАТИЧЕСКИЙ СИНХРОНИЗАТОР

Этот прибор в простейшем виде представляет собой магнитоуправляемое реле, которое автоматически замыкает выключатель генератора при достижении условия синхронизации.

АМПЕР (А)

Единица измерения силы электрического тока. Ток равен одному Амперу при его протекании через проводник сопротивлением 1 Ом при напряжении 1 Вольт.

ВАТТ

Единица измерения электрической мощности. В случае постоянного тока она равна произведению напряжения в Вольтах на ток в Амперах. В случае переменного тока она равна произведению эффективного значения напряжения в Вольтах, эффективного значения тока в Амперах, коэффициента мощности и постоянной, зависящей от количества фаз.

ВЫПРЯМИТЕЛЬ

Устройство, преобразующее переменный ток в постоянный.

ГЕНЕРАТОР

Общее название устройства для преобразования механической энергии в электрическую. В качестве электрической энергии может использоваться постоянный или переменный ток.

ГЕРЦ (ГЦ)

См. Частота

ДЕЙСТВИТЕЛЬНАЯ МОЩНОСТЬ

Термин, используемый для описания произведения тока, напряжения и коэффициента мощности. Выражается в кВт.

ДЕЦИБЕЛ (ДБ)

Единица измерения уровня шума.

ДИАПАЗОН ЧАСТОТ

Допустимое отклонение частоты от среднего значения в установившемся состоянии.

ДРЕЙФ ЧАСТОТЫ

Дрейф частоты это постепенное увеличение или уменьшение ее среднего значения при постоянной нагрузке.

ЕМКОСТЬ (С)

Если напряжение приложено к двум проводникам, разделенным изолятором, изолятор получит электрический заряд. Выражается в микрофарадах (мкФ).

ИНДУКТИВНОСТЬ (L)

Любое устройство, в состав деталей которого входит железо, имеет некоторое количество магнитной инерции. Эта инерция препятствует любым изменениям тока. Характеристика контура, которая вызывает эту магнитную инерцию, известна под названием самоиндуктивность. Она измеряется в Генри и обозначается как L.

ИСТОЧНИК БЕСПЕРЕБОЙНОГО ПИТАНИЯ (UPS)

Система для обеспечения питания без задержек или переходных процессов в любое время, когда невозможна подача основного электропитания с требуемыми параметрами.

КАЖУЩАЯСЯ МОЩНОСТЬ (КВА, ВА)

Термин, используемый в случае, когда ток и напряжение находятся в разных фазах, т.е. напряжение и ток не достигают соответствующих величин в одно и то же время. В результате, говорят о кажущейся мощности и выражают ее в кВА.

КВА

1000 Вольт-ампер (кажущаяся мощность). Соответствует мощности в кВт, деленной на коэффициент мощности.

КВТ

1000 Ватт (реальная мощность). Соответствует мощности в кВА, умноженной на коэффициент мощности.

КОЭФФИЦИЕНТ ВЛИЯНИЯ НА ТЕЛЕФОННЫЕ ЛИНИИ (TIF)

Коэффициент влияния синхронного генератора на телефонные линии является мерой возможного влияния гармоник напряжения, производимого генератором, на телефонные контуры. TIF измеряется на клеммах генератора в режиме холостого хода при номинальных значениях напряжения и частоты.

КОЭФФИЦИЕНТ МОЩНОСТИ

В цепях переменного тока индуктивности и емкости могут образовывать точку, в которой волны напряжения и тока, проходящие через ноль, отличаются по фазе. Когда ток опережает напряжение, говорят о коэффициенте мощности, соответствующем опережению или о емкостном характере нагрузки, а также о возбуждении синхронных двигателей. Когда напряжение опережает ток, говорят о коэффициенте мощности, соответствующем запаздыванию. Это общий случай. Коэффициент мощности равен длине отрезка, на котором ноль напряжения отличается от нуля тока. Считая период равным 360 градусам, разница в положении нулей может быть выражена как угол . Коэффициент мощности вычисляется как косинус угла между нулевыми точками и выражается в виде десятичной дроби (0.8) или процентах (80%). Он также может быть выражен как отношение мощности в кВт к мощности в кВА. Другими словами: Р (кВт) = Р (кВА) × cos φ.

КОЭФФИЦИЕНТ МОЩНОСТИ РАВНЫЙ ЕДИНИЦЕ

Нагрузка, коэффициент мощности которой равен 1.0, не имеет реактивной составляющей, вызывающей запаздывание или опережение волны напряжения волной тока.

МОЩНОСТЬ

Скорость выполнения работы или энергия в единицу времени. Механическая мощность часто измеряется в лошадиных силах, а электрическая — в киловаттах.

НЕПРЕРЫВНАЯ НАГРУЗКА

Любая нагрузка, величина которой не превышает номинальную, которую может обеспечить данный генератор на неопределенно долгое время, за исключением случаев отключения для проведения обслуживания.

НОМИНАЛЬНАЯ МОЩНОСТЬ

Установившаяся или гарантированная, чисто электрическая мощность, постоянно получаемая с генераторного агрегата при работе в нормальных условиях. Если агрегат оснащен дополнительным оборудованием получения энергии, то при расчете номинальной мощности необходимо учитывать и электрическую мощность этого оборудования, если это условие не оговаривается иначе.

НОМИНАЛЬНАЯ СКОРОСТЬ ВРАЩЕНИЯ

Количество оборотов в минуту, на которое рассчитан агрегат.

НОМИНАЛЬНОЕ ЗНАЧЕНИЕ НЕПРЕРЫВНОЙ НАГРУЗКИ

Номинальная нагрузка электрической генераторной системы, которую эта система может питать без превышения заданных пределов максимальной температуры.

НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ

Номинальное напряжение генераторного агрегата — это напряжение, на которое рассчитан агрегат.

НОМИНАЛЬНЫЙ ТОК

Номинальный непрерывный ток установки или аппаратуры определяет среднеквадратичное значение переменного тока или величину постоянного тока в Амперах, который может поддерживаться при нормальном режиме работы без превышения установленных пределов температуры.

ОДНОФАЗНЫЙ

Нагрузка или источник переменного тока, обычно имеющие две входных или две выходных клеммы, соответственно.

ПЕРВИЧНЫЙ ИСТОЧНИК ПИТАНИЯ

Источник электроэнергии, используемый непрерывно в течение дня и ночи. Обычно обеспечивается коммунальной службой, но иногда и собственной установкой.

ПЕРЕМЕННЫЙ ТОК

Электрический ток, который периодически изменяет свое направление и амплитудное значение при протекании через проводник или контур. Величина переменного тока растет от нуля до максимального значения, затем возвращается к нулю, а далее происходит то же самое в противоположном направлении. Одно полное изменение происходит за один период или 360 градусов. В случае переменного тока с частотой 50 Герц изменение направления тока происходит 50 раз в секунду.

ПЕРИОД

Полное изменение переменного тока или напряжения от нуля до положительного максимума, нуля, отрицательного максимума и снова до нуля. Количество периодов в секунду представляет собой частоту, величина которой выражается в Герцах (Гц).

ПОСТОЯННЫЙ ТОК

Электрический ток, который течет только в одном направлении при данном напряжении и сопротивлении. Величина постоянного тока обычно неизменна для конкретной нагрузки.

ПРЕРЫВАЕМЫЙ РЕЖИМ

График работы устройства, составленный в зависимости от режима коммунального электроснабжения для конкретного пользователя. Этот график согласуется с пользователями.

РЕАКТИВНОСТЬ

Фазовая компонента импеданса. Присутствует при наличии в цепи индуктивности и/или емкости.

СОЕДИНЕНИЕ ЗВЕЗДОЙ

Метод соединения фаз в трехфазной системе. К средней точке может быть подключен четвертый или нейтральный проводник.

СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ

Трехфазное соединение, в котором начало каждой фазы соединено с концом следующей. Нагрузка подключается к углам треугольника. В некоторых случаях в каждой фазе делается центральный отвод, но наиболее часто он делается в одном плече, обеспечивая четырехпроводное соединение.

СПАД ЧАСТОТЫ

Изменение частоты между значением в установившемся состоянии без нагрузки и значением в установившемся состоянии при полной нагрузке, которое является функцией двигателя и систем управления.

СРЕДНЕЕ ЭФФЕКТИВНОЕ ДАВЛЕНИЕ НА ПОРШЕНЬ (ВМЕР)

Это теоретическое среднее давление на поршень цилиндра двигателя при рабочем ходе, когда двигатель развивает заданную мощность. Обычно выражается в фунтах/дюйм2. Вычисление данной величины затруднено и она не может быть измерена, т.к. действительное давление в цилиндре постоянно меняется. Средняя величина давления используется для сравнения двигателей в предположении, что, чем меньше величина ВМЕР, тем больше ожидаемый срок службы и надежность двигателя. На практике не существует надежного индикатора характеристик двигателя по следующим причинам: формула предпочтительна для оценки более старых конструкций двигателей, имеющих относительно низкую мощность в зависимости от рабочего объема цилиндров по сравнению с более современными конструкциями. Современные двигатели работают при большей средней величине давления в цилиндрах, но подшипники и другие детали двигателя сконструированы так, что они выдерживают эти высокие давления и обеспечивают такой же или больший срок службы и надежность, чем двигатели более старых конструкций. Формула также дает завышенное значение надежности, когда один и тот же двигатель отдает такую же мощность при большей скорости вращения коленчатого вала. При прочих равных условиях маловероятно, что генераторный агрегат, рассчитанный на 60 Гц и работающий при скорости вращения 1800 об/мин, более надежен, чем генераторный агрегат, рассчитанный на 50 Гц и работающий при скорости вращения 1500 об/мин. Также сомнительно, что генераторный агрегат, работающий при скорости вращения 3000 об/мин, более надежен, чем такой же агрегат, работающий при скорости вращения 1500 об/мин даже в том случае, если последний имеет существенно большую величину ВМЕР.

Величина ВМЕР для конкретного генераторного агрегата будет изменяться при изменении параметров, зависящих от топлива, температуры и высоты над уровнем моря. Величина ВМЕР также влияет на эффективность генератора, которая изменяется в зависимости от величины напряжения и нагрузки.

СРЕДНЕКВАДРАТИЧНОЕ ЗНАЧЕНИЕ

Используется для измерения переменного тока и напряжения. Является характеристикой синусоидальной волны.

ТЕМПЕРАТУРА ОКРУЖАЮЩЕЙ СРЕДЫ

Температура среды, в которой функционирует генераторная система. Может выражаться в градусах Цельсия или Фаренгейта.

ТОК (1)

Скорость потока электричества. Постоянный ток течет от отрицательного полюса к положительному. Переменный ток меняет свое направление. Теоретически, при расчете тока и мощности, общепризнанно направление от положительного полюса к отрицательному.

ТОК ПОЛНОЙ НАГРУЗКИ

Ток полной нагрузки агрегата или аппаратуры представляет собой среднеквадратичное значение переменного тока или значение постоянного тока, выраженное в Амперах, при достижении номинальной мощности в нормальных условиях. Обычно ток полной нагрузки является «номинальным» током.

ТРЕХФАЗНЫЙ

Три синусоидальные волны напряжения/тока с периодом 360 градусов и сдвигом между ними в 120 градусов. Трехфазная система может быть либо 3-, либо 4-проводной (3 фазовых проводника и один нейтральный).

ЧАСТОТА

Число полных периодов переменного тока или напряжения в единицу времени, обычно секунду. Единицей измерения является Герц (Гц), равный 1 периоду в секунду.

ЭФФЕКТИВНОСТЬ

Эффективность генераторного агрегата определяется, как отношение его полезной мощности к суммарной мощности, выраженной в процентах.

закон Ома | физика | Britannica

Закон Ома , описание взаимосвязи между током, напряжением и сопротивлением. Величина постоянного тока через большое количество материалов прямо пропорциональна разности потенциалов или напряжению на материалах. Таким образом, если напряжение В (в единицах вольт) между двумя концами провода, сделанного из одного из этих материалов, утроится, ток I (амперы) также утроится; и отношение V / I остается постоянным.Частное V / I для данного куска материала называется его сопротивлением, R, , измеренным в единицах, называемых омами. Сопротивление материалов, для которых действует закон Ома, не изменяется в огромных диапазонах напряжения и тока. Математически закон Ома может быть выражен как V / I = R . То, что сопротивление или отношение напряжения к току для всей или части электрической цепи при фиксированной температуре обычно является постоянным, было установлено к 1827 году в результате исследований немецкого физика Георга Симона Ома.

Альтернативные утверждения закона Ома заключаются в том, что ток I в проводнике равен разности потенциалов В поперек проводника, деленной на сопротивление проводника, или просто I = В / R , и что разность потенциалов в проводнике равна произведению тока в проводнике и его сопротивления, В = IR . В цепи, в которой разность потенциалов или напряжение постоянна, ток можно уменьшить, добавив большее сопротивление, или увеличить, удалив некоторое сопротивление.Закон Ома также может быть выражен в терминах электродвижущей силы или напряжения E источника электроэнергии, такого как батарея. Например, I = E / R .

С изменениями закон Ома применяется также к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянного тока. Именно из-за того, что ток меняется, помимо сопротивления, возникают другие формы противодействия току, называемые реактивным сопротивлением.Комбинация сопротивления и реактивного сопротивления называется импедансом, Z. Когда полное сопротивление, эквивалентное отношению напряжения к току, в цепи переменного тока является постоянным, обычно применяется закон Ома. Например, V / I = Z .

С дальнейшими изменениями закон Ома был расширен до постоянного отношения магнитодвижущей силы к магнитному потоку в магнитной цепи.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Законы Ома и Ватта | SpazzTech

Что такое закон Ома и закон Ватта ?:

Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением. Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.

Вольт:

Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, — это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры. Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге. Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками.Напряжение иногда называют «потенциалом», потому что оно может перемещать эти электроны.

Ампер или Ампер:

Единицей измерения параметра тока является ампер. Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, — это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр. Символ, используемый для представления параметра тока, — это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге.Единица A равна количеству кулонов, проходящих через контур за одну секунду.

Ом:

Единицей измерения параметра сопротивления является ом. Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, — это буква «R». Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками.Это составляет основу форм закона Ома, приведенных в следующем разделе.

Формы закона Ома:

Мощность:

Единицей измерения мощности в электронике чаще всего является ватт. Символ, используемый для обозначения ватта, — это заглавная буква «W». По сути, мощность — это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, приведенных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт — это мера джоулей на кулон, а ампер — мера кулонов в секунду.Кулоны сокращаются, и у нас остаются джоули в секунду.

Формы закона Ватта:

Настенная диаграмма комбинированных соотношений закона Ома и закона Ватта:

Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие. Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.

© Copyright 2014-2017 SpazzTech LLC.
Все права защищены

Электрический ток — Веб-формулы

Электрический ток определяется по формуле:

I = В / R

Соответствующие единицы:
ампер (А) = вольт (В) / Ом (Ом)

Эта формула получена из закона Ома. . Где у нас:
В: напряжение
I: ток
R: сопротивление

Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:

I = √ ( P / R )

Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))

Где P — электрическая мощность.


Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлического провода (или электролита) называется током через эту область.

Если скорость потока заряда непостоянна, тогда ток в любой момент определяется дифференциальным пределом: I = dQ / dt.

Если заряд Q течет по цепи в течение времени t, то
I = Q / t.

Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек

В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ​​ионизированных газах и электроны, и положительные ионы движутся в противоположном направлении. Направление тока принимается за направление движения положительных зарядов.

В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному.Поэтому направление тока считается противоположным потоку электронов.

Если ток постоянный: Δq = I.Δt

функция времени:

Заряд = Площадь под графиком = ½ × t 0 × I 0

To Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:

Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа

Первый закон: Этот закон основан на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.

Стрелка, отмеченная на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, которое противоположно направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6

Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.

Электродвижущие силы ЭДС (𝜖) источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к ​​концу с высоким потенциалом. Таким образом,
𝜖 = w / Q

Когда ток не течет, ЭДС источника точно равна разности потенциалов между его концами. Единица ЭДС такая же, как у потенциала, то есть вольт.

Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. Таким образом, ток не течет по проводнику, пока он не будет подключен к батарее.

Скорость дрейфа свободных электронов в металлическом проводнике

В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, и поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .

Если E — приложенное поле, e — заряд электрона, m — масса электрона и τ — временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона составляет

Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:

Если I — ток через проводник и n — это количество свободных электронов на единицу объема, тогда можно показать, что:

Подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:

Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока — это векторная величина, ее направление — это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]

Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.

Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.

Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.

Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I — в амперах, а t — в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.

Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt

Следовательно, общий заряд, прошедший за интервал t = 2 секунды и t = 6, равен
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов

Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа

Решение : (a)

Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа составляет
носители заряда:
(a) Уменьшается
(b) Увеличивается
(c) Остается прежним
(d) Уменьшается до нуля
Решение : (b)

Мощность Калькулятор коэффициента мощности

Этот калькулятор коэффициента мощности представляет собой удобный инструмент для анализа переменного тока, протекающего в электрических цепях.Вы, наверное, уже знаете, что вы можете смоделировать постоянный ток (DC) с помощью закона Ома. В случае с переменным током эта задача не так проста, поскольку такие цепи содержат как активную, так и реактивную мощность.

Этот калькулятор поможет вам не только узнать, каковы значения различных типов мощности в цепи, но также предоставит вам формулу коэффициента мощности, которая выражает соотношение между реальной и полной мощностью.

Активная, реактивная и полная мощность

Если вы хотите понять, что такое коэффициент мощности, вам сначала необходимо более глубокое понимание его компонентов: реальной, реактивной и полной мощности.

  • Реальная мощность (также называемая истинной или активной мощностью), обозначаемая как P , выполняет реальную работу в электрической цепи и рассеивается на резисторах. Это единственная форма мощности, которая появляется в цепи постоянного тока. В цепи переменного тока значения тока и напряжения не фиксированы — они изменяются синусоидально. Если между этими двумя значениями нет сдвига фазы , то вся переданная мощность активна. Эта мощность измеряется в Вт .

  • Реактивная мощность , обозначенная как Q , передается, когда ток и напряжение сдвинуты по фазе на 90 градусов. В таком случае чистая энергия, передаваемая в цепи переменного тока, равна нулю, и реальная мощность не рассеивается. Реактивная мощность никогда не появляется в цепях постоянного тока; в цепях переменного тока он связан с реактивным сопротивлением, создаваемым катушками индуктивности и конденсаторами. Он измеряется в Вольт-Ампер-реактивном режиме (ВАР).

  • Полная мощность , обозначенная как S , представляет собой комбинацию реальной и реактивной мощностей.Это произведение среднеквадратичных (среднеквадратичных) значений напряжения и тока в цепи без учета влияния фазового угла. Это также векторная сумма P и Q. Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощности

Поскольку полную мощность можно найти путем векторного сложения реальной и реактивной мощности, вы можете использовать графический метод для представления этих трех значений в форме треугольника, называемого треугольником мощности .

Каждая сторона треугольника представляет собой одну из трех форм мощности, передаваемых в цепи переменного тока. Катеты прямоугольного треугольника представляют собой активную и реактивную мощность, а гипотенуза — полную мощность.

Одним из следствий использования треугольника степеней является то, что вы можете легко установить математическую связь между тремя значениями с помощью теоремы Пифагора:

S² = P² + Q²

Кроме того, угол между реальной мощностью и полной мощностью, обозначенный как φ , представляет собой полное сопротивление цепи , фазовый угол .

Формула коэффициента мощности

Коэффициент мощности — это соотношение между реальной и полной мощностью в цепи. Если реактивной мощности нет, то коэффициент мощности равен 1. Если, наоборот, активная мощность равна нулю, то полная мощность также равна 0.

Формула коэффициента мощности:

коэффициент мощности = P / S

Например, коэффициент мощности 0,87 означает, что 87% тока, подаваемого в цепь, выполняет реальную работу.Остальная мощность, а точнее 13%, должна быть предоставлена ​​для компенсации реактивной мощности. Знание того, как рассчитать коэффициент мощности, может быть полезно, например, при вычислениях, касающихся генераторов энергии.

Как рассчитать коэффициент мощности?

Коэффициент мощности также можно рассчитать с помощью треугольника мощности. Используя принципы тригонометрии, вы можете записать это как

P / S = cos φ

Поскольку коэффициент мощности равен отношению активной и полной мощности,

коэффициент мощности = cos φ

Это означает, что зная только одно из трех значений — действительную, реактивную или полную мощность — и коэффициент мощности или фазовый угол, вы можете быстро вычислить остальные из этих значений, которые определяют цепь переменного тока.Конечно, вместо того, чтобы вычислять числа вручную, вы можете просто использовать этот калькулятор коэффициента мощности! 🙂

Сопротивление, реактивное сопротивление и импеданс

Три основных компонента цепи переменного тока — это резисторы, конденсаторы и катушки индуктивности. Вы можете использовать этот калькулятор коэффициента мощности не только для описания мощности, передаваемой через каждый из этих компонентов, но и для определения того, что происходит, когда через них проходит электрический ток, а именно, каким сопротивлением, реактивным сопротивлением и импедансом обладают такие элементы.

  • Сопротивление , обозначенное как R и выраженное в омах (Ом), является мерой того, насколько проводник (особенно резистор) снижает электрический ток I , протекающий через него. Это значение напрямую связано с реальной мощностью, протекающей в цепи переменного тока. Это соотношение можно записать как P = I²R .

  • Реактивное сопротивление , обозначаемое X и также измеряемое в омах (Ом), представляет собой инерцию, которая препятствует движению электронов в компоненте схемы.Он присутствует в основном в конденсаторах и катушках индуктивности. Если вы пропустите переменный ток через компонент с высоким реактивным сопротивлением, падение напряжения будет не совпадать по фазе с током на 90 градусов. Реактивное сопротивление связано с реактивной мощностью уравнением Q = I²X .

  • Импеданс , обозначенный Z и измеренный в омах (Ом), является эквивалентом сопротивления в цепях постоянного тока по переменному току. Он присутствует во всех компонентах всех электрических цепей. Его можно рассчитать путем векторного сложения сопротивления (см. Ниже) и реактивного сопротивления или по формуле S = I²Z .

Соотношение между сопротивлением, реактивным сопротивлением и импедансом аналогично треугольнику мощности:

Z² = R² + X²

Идеальные резисторы имеют ненулевое сопротивление, но нулевое реактивное сопротивление. Идеальные катушки индуктивности или конденсаторы имеют нулевое сопротивление, но ненулевое реактивное сопротивление. Все компоненты электрической цепи обладают некоторым сопротивлением.

11.2: Истинная, реактивная и полная мощность

Реактивная мощность

Мы знаем, что реактивные нагрузки, такие как катушки индуктивности и конденсаторы, рассеивают нулевую мощность, но тот факт, что они падают напряжение и потребляют ток, создает обманчивое впечатление, что они на самом деле рассеивают мощность .Эта «фантомная мощность» называется реактивной мощностью и измеряется в единицах, называемых вольт-ампер-реактивная мощность (ВАР), а не в ваттах. Математическим обозначением реактивной мощности является (к сожалению) заглавная буква Q.

.

Истинная сила

Фактическая мощность, используемая или рассеиваемая в цепи, называется истинной мощностью и измеряется в ваттах (как всегда, обозначается заглавной буквой P).

Полная мощность

Комбинация реактивной мощности и истинной мощности называется кажущейся мощностью и является произведением напряжения и тока в цепи без учета фазового угла.Полная мощность измеряется в единицах вольт-ампер (ВА) и обозначается заглавной буквой S.

Расчет реактивной, истинной или полной мощности

Как правило, истинная мощность является функцией рассеивающих элементов схемы, обычно сопротивления (R). Реактивная мощность зависит от реактивного сопротивления цепи (X). Полная мощность — это функция полного сопротивления цепи (Z). Поскольку для расчета мощности мы имеем дело со скалярными величинами, любые комплексные начальные величины, такие как напряжение, ток и импеданс, должны быть представлены их полярными величинами , а не действительными или мнимыми прямоугольными составляющими.Например, если я вычисляю истинную мощность по току и сопротивлению, я должен использовать полярную величину для тока, а не просто «реальную» или «мнимую» часть тока. Если я рассчитываю полную мощность по напряжению и импедансу, обе эти ранее комплексные величины должны быть уменьшены до их полярных величин для скалярной арифметики.

Существует несколько уравнений мощности, связывающих три типа мощности с сопротивлением, реактивным сопротивлением и импедансом (все с использованием скалярных величин):

Обратите внимание, что существует два уравнения для расчета истинной и реактивной мощности.Для расчета полной мощности доступны три уравнения, P = IE используется для только для этой цели. Изучите следующие схемы и посмотрите, как эти три типа мощности взаимосвязаны: чисто резистивная нагрузка на рисунке ниже, чисто реактивная нагрузка на рисунке ниже и резистивная / реактивная нагрузка на рисунке ниже.

Только резистивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для чисто резистивной нагрузки.

Только реактивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для чисто реактивной нагрузки.

Активная / реактивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для резистивной / реактивной нагрузки.

Треугольник власти

Эти три типа мощности — истинная, реактивная и полная — связаны друг с другом в тригонометрической форме. Мы называем это треугольником мощности : (рисунок ниже).


Треугольник мощности, связывающий кажущуюся мощность с реальной и реактивной мощностью.

Используя законы тригонометрии, мы можем найти длину любой стороны (количество любого типа мощности), учитывая длины двух других сторон или длину одной стороны и угол.

Обзор

  • Мощность, рассеиваемая нагрузкой, называется истинной мощностью . Истинная мощность обозначается буквой P и измеряется в ваттах (Вт).
  • Мощность, просто поглощаемая и возвращаемая нагрузкой из-за ее реактивных свойств, называется реактивной мощностью .Реактивная мощность обозначается буквой Q и измеряется в вольт-амперных реактивных единицах (ВАР).
  • Полная мощность в цепи переменного тока, как рассеиваемая, так и поглощенная / возвращаемая, обозначается как полная мощность . Полная мощность обозначается буквой S и измеряется в вольт-амперах (ВА).
  • Эти три типа власти тригонометрически связаны друг с другом. В прямоугольном треугольнике P = смежная длина, Q = противоположная длина и S = ​​длина гипотенузы.Противоположный угол равен фазовому углу импеданса цепи (Z).

Номинальный ток, л.с., Вольт | carlingtech.com

Рейтинг любого коммутатора Carling Technologies, одобренного агентством, будет указан на его основании. Номиналы переключателей Carling Technologies указаны для ампер , вольт и лошадиных сил (если применимо).

Электричество — это движение электронов от одного атома к другому.Поток электронов через электрический проводник называется электрическим током, который измеряется в амперах или амперах . Электрическое давление, необходимое для того, чтобы вызвать это движение, составляет напряжение . Само по себе напряжение не течет по проводникам, а является силой, которая заставляет ток течь. Напряжение также называют электрическим потенциалом, потому что, если в проводнике присутствует напряжение, существует потенциал для протекания тока.

Двигатели рассчитаны на лошадиных сил, (л.с.) или доли лошадиных сил (1/4, 1/3, 1/2 и т. Д.).) Механически одна лошадиная сила (1 л.с.) равна 33 000 фунтов, перемещаемым на 1 фут за 1 минуту (или 33 000 фунт-футов в минуту). Одна лошадиная сила (1 л.с.) также равна 746 Вт электрической мощности.

Номинальное напряжение — это функция способности переключателя подавлять внутреннюю дугу, возникающую при размыкании контактов переключателя. Номинальное напряжение , указанное для коммутаторов Carling Technologies, представляет собой максимальное напряжение , допустимое для правильной работы коммутатора при номинальном токе.Номинальный ток ампер переключателя Carling — это максимальный ток в амперах, который переключатель будет выдерживать непрерывно. Так, в приведенном ниже примере максимальный номинальный ток для этого переключателя при 250 вольт переменного тока (В переменного тока) составляет 10 ампер; Максимальный номинальный ток при 125 В переменного тока для того же переключателя составляет 15 А.

Переключатели, которые будут подвергаться высоким индуктивным нагрузкам, такие как двигатель переменного тока, часто будут иметь номинальную мощность в лошадиных силах в дополнение к вольтам и амперам. Этот рейтинг отражает величину тока, которую могут выдержать контакты переключателя в момент включения устройства.Двигатель переменного тока потребляет в восемь раз больше рабочего тока при первом включении или в неподвижном состоянии при включенном питании (остановленный ротор). Переключатель в приведенном ниже примере рассчитан на использование с двигателем мощностью 3/4 л.с. при напряжении от 125 до 250 вольт переменного тока.

Типичный номинал переключателя Carling Technologies:
10A 250VAC
15A 125VAC
3 / 4HP 125-250VAC

AC / DC

Carling предлагает номинальное напряжение переключателя как переменного (переменного тока), так и постоянного (постоянного тока). Переменный или переменный ток — это электрический ток или напряжение, которые меняют направление потока через равные промежутки времени и имеют попеременно положительные и отрицательные значения, среднее значение которых за период времени равно нулю.Количество изменений (или циклов) этого значения в секунду составляет , частота . Частота измеряется в герцах (Гц). Чем больше циклов в секунду, тем выше частота. Электрическая «сеть» в Северной Америке основана на очень стабильной частоте 60 Гц. В большинстве европейских стран используется частота 50 Гц. Все номинальные значения переменного напряжения Carling Technologies указаны для 50/60 Гц, и все переключатели, одобренные агентством Carling Technologies, будут указывать конкретные номинальные значения переменного напряжения.

Постоянный или постоянный ток — это электрический ток или напряжение, которые могут иметь пульсирующие характеристики, но не меняют направление на противоположное.Его потенциал всегда одинаков по отношению к земле, а его полярность может быть положительной или отрицательной. Батарея — один из примеров источника постоянного тока.

A Carling AC Рейтинг следует за «VAC», например, 125VAC — это 125VAC. За номинальными характеристиками Carling AC / DC следует только «V», без букв AC и DC. Например, номинальное значение 125 В будет считаться как 125 вольт переменного тока и 125 вольт постоянного тока.

Практическое правило округа Колумбия

Для тех переключателей, в которых указано только номинальное напряжение переменного тока, можно применить «Практическое правило постоянного тока» для определения максимального номинального постоянного тока переключателя.Это «правило» гласит, что максимальная сила тока на переключателе должна удовлетворительно работать до 30 вольт постоянного тока. Например, выключатель рассчитан на 10 А 250 В переменного тока; 15A 125VAC; 3 / 4HP 125–250 В переменного тока, вероятно, будет удовлетворительно работать при 15 А и 30 В постоянного тока (В постоянного тока).

Виды нагрузок

Электрическая нагрузка — это количество электроэнергии, поставляемой или требуемой в любой конкретной точке или точках системы. Требование исходит от энергопотребляющего оборудования потребителей.Проще говоря, нагрузка — это то оборудование, которое вы включаете и выключаете.

Резистивные нагрузки в первую очередь обеспечивают сопротивление протеканию тока. Примеры резистивных нагрузок включают электрические нагреватели, плиты, духовки, тостеры и утюги. Если устройство должно нагреваться и не двигаться, скорее всего, это резистивная нагрузка.

Индуктивные нагрузки — это обычно движущиеся устройства, обычно включающие в себя электрические магниты, такие как электродвигатель. Примеры индуктивных нагрузок включают в себя дрели, электрические миксеры, вентиляторы, швейные машины и пылесосы.Трансформаторы также создают индуктивные нагрузки.

Высокие пусковые нагрузки потребляют больше тока или силы тока при первом включении по сравнению с величиной тока, необходимой для продолжения работы. Примером высокой пусковой нагрузки является электрическая лампочка, которая при первом включении может потреблять в 20 или более раз превышающий нормальный рабочий ток. Это часто называют ламповой нагрузкой. Другими примерами нагрузок с высоким пусковым током являются импульсные источники питания (емкостная нагрузка) и двигатели (индуктивная нагрузка).

Рейтинги UL / CSA

Типичный номинальный ток UL / CSA — это одно значение, которое представляет индуктивные / резистивные нагрузки. Если указана номинальная мощность в лошадиных силах, это означает, что переключатель подходит для использования с нагрузками двигателя, которые рассчитаны на данную мощность. Если номинальная мощность в лошадиных силах не указана, переключатели проверяются на индуктивную / ненагруженную нагрузку при 75% коэффициента мощности.

Типичный пример рейтинга UL / CSA приведен ниже:
10A 250VAC
15A 125VAC
3 / 4HP 125-250VAC

Европейские рейтинги

Типичный европейский рейтинг различает резистивную и индуктивную нагрузки.Ниже приведен пример типичного европейского номинала:
16 (4) A 250 В ~ T85 µ

В этом примере 16 = сила тока резистивной нагрузки; (4) = сила тока индуктивной нагрузки; A = сила тока; 250 В = напряжение; ~ = AC; T85 = максимальная рабочая температура в градусах Цельсия; µ = микрозазор (<3 мм) одобрен.

Если между контактами переключателя в разомкнутом положении остается менее 3 мм воздушного зазора, может быть предоставлено разрешение на микрозазоры (µ). Этот знак указывает на то, что коммутатор имеет общее одобрение применения с оговоркой, что другое устройство, такое как шнур и вилка, должно обеспечивать альтернативные средства отключения от основного источника питания.

Рейтинги L & T

Рейтинг «L» обозначает способность переключателя выдерживать начальные высокие характеристики броска тока лампы накаливания с вольфрамовой нитью только от переменного напряжения. Рейтинг «T» — это эквивалентная ламповая нагрузка для постоянного тока.

H Рейтинг

Рейтинг «H» означает неиндуктивное сопротивление. Рейтинги, перечисленные в информации о продуктах Carling Technologies, могут обозначаться символом «H» или словами «неиндуктивный» или «резистивный». Для переключателей, используемых в коммерческих духовках, обычно требуется рейтинг «H».

Номинальные параметры переключателя с подсветкой

Для выключателей с подсветкой с зависимыми лампами линейное напряжение должно соответствовать номинальному напряжению лампы. Например, если используется лампа постоянного тока на 6 В, то контакты переключателя должны выдерживать только линейное напряжение 6 В постоянного тока; Неоновая лампа на 125 В не должна использоваться на переключателях, управляющих переменным током 250 Вольт. Несоответствие этих двух значений может привести к тому, что срок службы лампы будет намного короче, чем ожидалось, или лампа перегорит, или ее характеристики будут более яркими, чем ожидалось.

Рабочая температура

Все переключатели, сертифицированные в Европе, имеют максимальную рабочую температуру 85 градусов по Цельсию, если не указано иное.Выключатели с номиналом T85, если они работают напрямую, не должны использоваться в приложениях, где температура исполнительного элемента, включая любое повышение температуры, превышает 85 градусов по Цельсию.

Если не указано иное, все переключатели, рассчитанные на североамериканские стандарты, имеют максимальную температуру материала 105 градусов по Цельсию.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии

курсов.»

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным.Я многому научился и их было

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт. Хорошо организованный. Я действительно воспользуюсь вашими услугами снова.

проеду по вашей компании

имя другим на работе.»

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно с учетом того, что я думал, что я уже знаком.

с деталями Канзаса

Авария City Hyatt «

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель.Мне нравится просматривать текст перед покупкой. Нашел класс

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны. You

— лучшее, что я нашел ».

Рассел Смит, П.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «.

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы. На самом деле

человек узнают больше

от сбоев.»

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы, т.е. позволяете

студент для ознакомления с курсом

материалов до оплаты и

получает викторину.»

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев «

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, P.E.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курсов. Процесс прост, и

намного эффективнее, чем

вынуждены ехать «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утром

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и сдать

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими, а

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими.

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное.

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использовать в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы я мог сделать

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат . Спасибо за изготовление

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилась возможность скачать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — очень удобный способ доступа к информации по

много различных технических зон за пределами

по своей специализации без

надо ехать.»

Гектор Герреро, P.E.

Грузия

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *