+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Правило буравчика, правой и левой руки

Правило буравчика, правой руки и левой руки нашли широкое применение в физике. Мнемонические правила нужны для лёгкого и интуитивного запоминания информации. Обычно это приложение сложных величин и понятий на бытовые и подручные вещи. Первым, кто сформулировал данные правила, является физик Петр Буравчик. Данное правило относится к мнемоническому и тесно соприкасается с правилом правой руки, его задачей является определением направления аксиальных векторов при известном направлении базисного. Так гласят энциклопедии, но мы расскажем об этом простыми словами, кратко и понятно.

Объяснение названия

Большинство людей помнят упоминание об этом из курса физики, а именно раздела электродинамики. Так вышло неспроста, ведь эта мнемоника зачастую и приводится ученикам для упрощения понимания материала. В действительности правило буравчика применяют как в электричестве, для определения направления магнитного поля, так и в других разделах, например, для определения угловой скорости.

Под буравчиком подразумевается инструмент для сверления отверстий малого диаметра в мягких материалах, для современного человека привычнее будет привести для примера штопор.

Важно! Предполагается, что буравчик, винт или штопор имеет правую резьбу, то есть направление его вращения, при закручивании, по часовой стрелке, т.е. вправо.

На видео ниже предоставлена полная формулировка правила буравчика, посмотрите обязательно, чтобы понять всю суть:

Как связано магнитное поле с буравчиком и руками

В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.

Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.

Правило буравчика имеет следующий смысл: при вкручивании острия буравчика вдоль направления тока – рукоятка будет вращаться по направлению вектора B (вектор линий магнитной индукции).

Правило правой руки работает так:

Поставьте большой палец так, словно вы показываете «класс!», затем поверните руку так, чтобы направление тока и пальца совпадали. Тогда оставшиеся четыре пальца совпадут с вектором магнитного поля.

Наглядный разбор правила правой руки:

Чтобы увидеть это более наглядно проведите эксперимент – рассыпьте металлическую стружку на бумаге, сделайте в листе отверстие и проденьте провод, после подачи на него тока вы увидите, что стружка сгруппируется в концентрические окружности.

Магнитное поле в соленоиде

Всё вышеописанное справедливо для прямолинейного проводника, но что делать, если проводник смотан в катушку?

Мы уже знаем, что при протекании тока вокруг проводника создается магнитное поле, катушка – это провод, свёрнутый в кольца вокруг сердечника или оправки много раз. Магнитное поле в таком случае усиливается. Соленоид и катушка – это, в принципе, одно и то же. Главная особенность в том, что линии магнитного поля проходят так же как и в ситуации с постоянным магнитом. Соленоид является управляемым аналогом последнего.

Правило правой руки для соленоида (катушки) нам поможет определить направление магнитного поля. Если взять катушку в руку так, чтобы четыре пальца смотрели в сторону протекания тока, тогда большой палец укажет на вектор B в середине катушки.

Если закручивать вдоль витков буравчик, опять же по направлению тока, т.е. от клеммы «+», до клеммы «-» соленоида, тогда острый конец и направление движения как лежит вектор магнитной индукции.

Простыми словами – куда вы крутите буравчик, туда и выходят линии магнитного поля. То же самое справедливо для одного витка (кругового проводника)

Определение направления тока буравчиком

Если вам известно направление вектора B – магнитной индукции, вы можете легко применить это правило. Мысленно передвигайте буравчик вдоль направления поля в катушке острой частью вперед, соответственно вращение по часовой стрелки вдоль оси движения и покажет, куда течет ток.

Если проводник прямой – вращайте вдоль указанного вектора рукоятку штопора, так чтобы это движение было по часовой стрелке. Зная, что он имеет правую резьбу – направление, в котором он вкручивается, совпадает с током.

Что связано с левой рукой

Не путайте буравчика и правило левой руки, оно нужно для определения действующей на проводник силы. Выпрямленная ладонь левой руки располагается вдоль проводника. Пальцы показывают в сторону протекания тока I. Через раскрытую ладонь проходят линии поля. Большой палец совпадает с вектором силы – в этом и заключается смысл правила левой руки. Эта сила называется силой Ампера.

Можно это правило применить к отдельной заряженной частице и определить направление 2-х сил:

  1. Лоренца.
  2. Ампера.

Представьте, что положительно заряженная частица двигается в магнитном поле. Линии вектора магнитной индукции перпендикулярны направлению её движения. Нужно поставить раскрытую левую ладонь пальцами в сторону движения заряда, вектор B должен пронизывать ладонь, тогда большой палец укажет направление вектора Fа. Если частица отрицательная – пальцы смотрят против хода заряда.

Если какой-то момент вам был непонятен, на видео наглядно рассматривается, как пользоваться правилом левой руки:

Важно знать! Если у вас есть тело и на него действует сила, которая стремится его повернуть, вращайте винт в эту сторону, и вы определите, куда направлен момент силы. Если вести речь об угловой скорости, то здесь дело обстоит так: при вращении штопора в одном направлении с вращением тела, завинчиваться он будет в направлении угловой скорости.

Выводы

Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.

Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:

Наверняка вы не знаете:

samelectrik.ru

использование, особенности применения для соленоида и формулировка положений

Чтобы определить направленность напряжения в магнитном поле, используется правило буравчика. Способ показывает довольно точные результаты, если поле располагается прямолинейно относительно проводника, по которому пропущен электрический ток. Для определения характеристики силового поля с магнитным моментом дополнительно применяют правило левой и правой руки.

Общие правила

Существует несколько для вариантов, чтобы указать направление перпендикулярного отрезка к двум исходным векторам и определить ориентацию базиса. В физике есть такие важные направления:

  • оборотов тела вокруг центра движения;
  • силового вектора магнитного поля в выбранной точке.

Выбор пути аксиальной величины является условным, но он происходит одинаково, поэтому в конечном значении знак остается постоянным. Правила и способы помогают сохранять единый выбор:

  • Правило буравчика. Провод помещается в руку, при этом четыре пальца сжимаются в кулак. Главный палец, который располагается вертикально, покажет путь передвижения заряженных электронов (тока). Остальные пальцы, которые ставятся параллельно друг другу, определят направление передвижения электромагнитных линий.
  • Правило правой руки. При помещении исследуемого кабеля в руку сжатые пальцы показывают путь линий силового поля, а большой — направление тока. При поступательном перемещении проводника вдоль линий, которые определяют напряженность, их движение направлено в ладонь. Вытянутый перпендикулярно большой палец совпадает с перемещением стержня. Если раскрыть кулак, то прямые пальцы определят курс индукционного тока.
  • Правило левой руки. Рука располагается так, чтобы четыре пальца показывали направление движения электронов. Путь индукционных линий направлен в ладонь. Отогнутый палец показывает действие силы на провод. Закон действует для отклонения проводникового стержня, справа и слева от которого располагаются магниты, а он находится под током.

С помощью этих правил выбирается направление векторного произведения и базисов (или одного из двух взаимосвязанных понятий). Прием используется для определения направлений основных величин взамен применения остальных методов, если иметь представление о порядке расположения множителей в соответствующих формулах.

Способы выбора правила сочетаются между собой для вычисления положительного пути произведения векторов и базиса (координатной системы) в пространстве. Базис определяется как скоординированный векторный набор, при этом любой вектор в пространстве представляется в едином варианте линейного соотношения векторов из этого пакета.

Использование правила буравчика из физики приводит к главным выводам:

  • движущийся стержень, стационарный магнит, заряженные электроны располагаются в электромагнитном силовом поле;
  • на положительные и отрицательные частицы оказывается воздействие электромагнитного фона;
  • перемещающийся проводник становится ориентиром для передвижения заряженных электронов, значит силовое поле действует на электрический шунт.

Можно применять специальные правила для определения направляющих характеристик стержня, который движется в электромагнитном поле. Этими формулировками пользуются в различных конкретных ситуациях, но они являются менее общими по значению.

Правая и левая системы координат

Чтобы выяснить направление прямоугольных векторных координат, которые используются для показания отрезков любого курса, исходят из правила для чайников, что абсцисса и ордината направленного луча находятся в исходной точке пространства и совпадают с характеристиками их окончания.

Для случаев, когда координаты не совпадают, нужно сделать:

  • перенос луча так, чтобы его начальная точка находилась в начале координатного пространства, таким образом, абсцисса и ордината истока отрезка совпадают с координатами его окончания;
  • вычитание из координатных показателей конца луча значение абсциссы и ординаты конца отрезка вместо перемещения начальной точки.

На плоскости прямоугольных координат расположение отрезка совпадает с ортогональной проекцией луча на координатную направляющую ось. Правило буравчика позволяет применять правый базис, но отход от негласного закона оговаривается отдельно. Эти правила условны, но сочетание векторов устанавливается так, что для базиса декартовой прямоугольной плоскости с одинаковым масштабированием по любым осям выполняются следующие законы:

  • левые базисы вступают во взаимодействие, если применение правосторонних скоплений неудобно или не представляется возможным;
  • зеркальное отображение правого сочетания базиса является копией левого набора векторов.

Правила согласовываются между собой для определения курса векторного произведения и законов построения (выбора) положительного набора векторных отрезков.

Для векторного произведения

Правило буравчика и правой руки для векторного результата гласит, что, если изобразить отрезки так, чтобы совпадали их истоки, и поворачивать первый вектор по наиболее краткому пути по отношению ко второму лучу, то винт будет вращаться в направлении произведения векторов. В качестве винта подразумевается буравчик с правой нарезанной резьбой или с правым винтиком на конце, который встречается часто в списке рабочих инструментов. Этот закон можно переформулировать для стрелки часов, так как правое вращение винта идентично перемещению указателя на циферблате.

Для векторного произведения через стрелку на циферблате правило применяется, если изобразить отрезки так, чтобы их истоки совпадали. При этом второй луч вращается кратко по траектории ко второму вектору из набора. Направление векторного произведения будет идти к наблюдателю, если он стоит так, что обороты видит по часовому указателю. Буравчик закручивается вглубь часов.

Если при таком положении наблюдателя и однотипном вращении с предыдущим случаем ставятся пальцы кисти справа, как бы сжимая поворачивающийся стержень, то они указывают направление витков. Палец, который располагается под углом 90°, определяет курс векторного произведения.

Если векторы изображаются так, что их истоки находятся в одной точке, палец правой кисти ставится по первому вектору-множителю, а указательный — параллельно второму вектору, то средний приблизительно укажет курс векторного произведения для закона буравчика. Физика в таком случае определяет направление:

  • луча электромагнитных линий;
  • движения электронов, заряженных отрицательно и положительно;
  • силы индукции.

Соотношение отрезков, абсцисс и ординат

Векторное соотношение двух отрезков, которые взаимодействуют в трехмерном пространстве, определяется лучом, расположенным перпендикулярно обоим начальным потокам. Длина произведения векторов равняется значению площади параллелограмма между начальными отрезками. Направление этих двух лучей выбирается так, чтобы три по порядку расположенных вектора из набора и результативных отрезков были правыми. Результат умножения векторов коллинеарного типа приравнивается к нулю, если один из них является отрезком с нулевым значением.

Для нахождения произведения пространственных векторов следует определить ориентацию участка, а именно разобраться в том, какие три отрезка относятся к правому и левому положению. При этом необязательна привязка к координатной системе. При выбранной ориентации пространственного участка результат произведения множительных векторов не зависит от левосторонней или правосторонней системы числовых направляющих.

Формулы отличаются по знаку для нахождения координат произведения лучевых векторов через ординаты и абсциссы начальных отрезков в левой и правой системе прямоугольной структуры. Результат сочетания векторов является антикоммутационным, так как в отличие от скалярного результата в итоге имеет также вектор.

Модуль произведения векторов также является результатом перемножения модулей отрезков, если величины располагаются перпендикулярно друг к другу. Значение модуля стремится к нулю в случае коллинеарности лучей. Произведение векторов определяется в физических и технических дополнениях. Например, импульсный момент и действие Лоренца заносятся в данные по форме результата перемножения элементов из векторного набора.

Для упорядоченного набора лучей

Все разнообразные применяемые правила винта или законы обеих рук в электротехнике и физике не являются обязательными к использованию, если направление характеристик электромагнитного поля можно определить основными правилами одновременно со знанием формул для подсчета векторного соотношения. Малораспространенные правила характерны для особых случаев, когда их использование является удобным для быстрого выявления элементарных показателей системы.

Правила для базиса переписаны в виде:

  • Закон для базиса. Если в базисе присутствуют векторы, которые располагаются параллельно осям x, z, y, то большой палец направляется вдоль первого вектора по оси x. Указательный ставится параллельно второму отрезку по оси y, средний располагается вдоль третьего луча по оси z. После расстановки выявляется, что сочетание векторов относится к правостороннему расположению.
  • Закон винта (буравчика) для базиса. Если поворачивать винт и векторы так, чтобы первый отрезок стремился ко второму по наименьшему пути, то буравчик направлением кручения покажет курс третьего вектора базиса (когда он правый).

Такие манипуляции расширяют возможности определения курса в координатном пространстве. Закон буравчика для базиса может заменить общее правило винта, правой кисти и других. Для его применения у наблюдателя должно быть развито некоторое пространственное воображение, так как требуется мысленно осуществлять поворот нарисованных векторов до того момента, пока они не совпадут с базисом. Набор векторов может при этом располагаться случайно.

Принцип для механического вращения

Отрезок вращения взаимно связывается с вектором угловой скорости поворота и лучом, начинающимся в неподвижной точке, приведенным в искомое положение. Величина определяется как произведение векторов. Угловая скорость представляет собой быстроту оборотов материального элемента вокруг центра.

Угловая скорость выражается:

  • для поворотов в двухмерном участке пространства — числом;
  • для трехмерного промежутка — псевдовектором, компоненты которого трансформируются при оборачивании координатной системы и меняют знак противоположно правилам поведения вектора при инверсии;
  • в вариантах общего положения — кососимметрической величиной, меняющей знак при перемене индексации.

Для определения курса модуля отрезка применяются правило винта и правой кисти, эффективно используемые в случае нахождения векторного произведения. Иногда этого хватает, но при реальном вращении законы формулируются в запоминающемся и простом варианте для нахождения направлений:

  • Закон буравчика. Если поворачивать винт в направлении вращения точки, то он завинчивается в сторону курса угловой скорости.
  • Закон правой руки. Для этого тело берется правой рукой и поворачивается в направлении четырех пальцев, большой палец, который располагается под углом 90°, покажет путь угловой скорости при таком движении вокруг центра.

Для определения направления момента импульса, который меняется прямо пропорционально угловому вращению (скорости) с коэффициентом положительного импульса, применяются правила для нахождения показателей механического кручения.

Определение силового момента

Крутящий и вращательный момент представляет собой физический формат, равный произведению векторов силы и радиуса, проведенных от центральной оси к точке действия силы. Характеристики показывают силовое действие на твердом предмете.

Правила аналогичны предыдущим случаям, но отличаются незначительными деталями:

  • Правило винта. Если поворачивать буравчик по курсу, куда сила вращает тело, то инструмент будет завинчиваться или вывинчиваться по путям направления силового момента.
  • Правило правой кисти. Мысленно представляют, что тело в руке, тогда попытка его поворота в направлении вытянутых четырех пальцев (аналогично направляются поворотные усилия) при большом пальце на 90° покажет направление приложения вращательного момента.

Электродинамика и магнитостатика

Магнитная индукция представляет собой векторный фактор, который характеризует силовое поле. Величина показывает влияние магнитного фона на отрицательно и положительно заряженные частицы в исследуемом пространстве. Индукция определяет силу влияния поля на заряд, перемещающийся с заданной скоростью. Для этого случая законы применения описываются так:

  • Правило винта. Если поступательное круговое движение буравчика совпадает с направлением заряженных электронов в катушке, то путь поворота ручки инструмента будет совпадать с курсом магнитного вектора полярной индукции, направление при этом зависит от тока.
  • Принцип правой кисти. Если взять стержень в правую кисть так, что отставленный под прямым углом палец демонстрирует курс тока, то другие пальцы будут соответствовать направлению луча магнитной индукции, продуцируемого током. Путь магнитного вектора индукции прокладывается касательно линии отрезков.

Для подвижного проводника

В стержне из металла находится большое число свободных электронов, движение которых характеризуется как хаотичное. Если катушка движется в силовом электромагнитном поле вдоль линий, то фон отклоняет электроны, перемещающиеся одновременно с проводником. Их движение создает ЭДС (электродвижущую силу) и называется электромагнитной наведенной индукцией.

Под действием индукции заряженные частицы передвигаются и накапливаются в одном конце стержня, при этом на другом проявляется нехватка электронов. В результате такой ситуации зарождается положительный заряд и возникает разность потенциалов, появляется напряжение электричества.

Ток будет протекать под действием разности потенциалов при подсоединении такой катушки к внешней цепи по замкнутому контуру. При передвижении стержня по направлению силовых линий снижается до нуля воздействие поля на заряды. Не возникает электродвижущая сила, нет напряжения, отсутствует ток электронов.

ЭДС индукции равняется произведению рабочего размера проводника, скорости движения стержня и значения магнитной индукции. Ее направление устанавливается по закону правой руки. Ладонь располагается так, чтобы в нее были направлены линии силового поля, а отогнутый под 90° большой палец ставится вдоль движения стержня. В этом положении четыре распрямленных пальца покажут курс тока индукции.

Нахождение ЭДС по Максвеллу

Электродвижущее давление будет возникать при каждом пересечении стержня и силового поля. Результативным будет перемещение проводника, самого поля или изменение электромагнитных характеристик силового пространства.

ЭДС, полученная в контуре при состыковке его с изменяющимся силовым полем, измеряется скоростью трансформации магнитного потока. Направление индуцированной движущей силы идет так, что продуцируемый ею электрический ток противодействует реконструкции потоков магнитного излучения.

Изменение тока ведет к реформированию создаваемого им магнитного потока. Проходя через пространство, магнитное излучение стыкуется с соседними проводниками и со своим. В стержне наводится электродвижущая сила, которая носит название самоиндукции. Явление означает поддержку тока при его уменьшении и ослабление движения электронов при увеличении силы тока.

Если вращать буравчик по путям завихрения пространства, где возникают векторы, то его движение покажет направление кручения ротора. Это можно проследить, если четыре сжатых пальца правой кисти поставить по курсу завихрения. В этом случае отогнутый палец укажет путь движения ротора.

При растущем значении магнитного потока большой палец под прямым углом покажет прямое движение силового потока через контурные линии. В случае убывания электромагнитного излучения палец будет свидетельствовать об обратном направлении. Согнутые четыре пальца будут располагаться по путям противоположного направления ЭДС в контуре.

Для магнитного вектора индукции правила буравчика совпадают с законом Ампера — Максвелла. Но к электротоку через контур добавляется скорость трансформации силового поля через эту конфигурацию, а магнитное поле воспринимается только в случае его перемещения в пределах очертания.

Применение правил левой кисти:

  • Ладонь ставится так, чтобы индукционные линии входили в центр внутренней стороны, а пальцы соответствовали токовому направлению. Отставленный большой палец определит путь силы, оказывающий давление на стержень со стороны силового поля. Мощь носит наименование силы Ампера.
  • При втором варианте ладонь располагается так, чтобы линии силового поля входили под прямым углом в плоскость руки, а пальцы располагались по направлению перемещения положительных электронов или в противоположную сторону от отрицательных частиц. Тогда палец под углом 90° укажет путь приложения силы Лоренца.

Принцип винта или закон Максвелла для правой руки используется для прямого стержня с током. Но в электротехнике есть много случаев применения катушек, в которых проводник не является прямолинейной формой. Например, соленоид, в котором присутствует витковая обмотка провода.

Правило правой кисти для соленоида: нужно взять катушку индуктивности в правую руку так, чтобы пальцы показывали путь тока в оборотах, отставленный под 90° большой палец определит курс магнитных линий во внутренней части устройства. Зная полярность, легко вычислить путь прохождения электрического тока.

rusenergetics.ru

«В чем заключается «Правило Буравчика»?» – Яндекс.Знатоки

Правило буравчика в электротехнике определяет направление линий магнитной индукции по отношению к вектору электрического тока, протекающего в проводнике и наоборот, он позволяет определить направление электрического тока в катушке по отношению к вектору линий магнитной индукции. Название произошло от фамилии ученного, открывшего данную закономерность, но с практической точки зрения под Буравчиком также понимают винт с правильной (правосторонней резьбой). При закручивании такого винта в направлении базисного вектора – в электротехнике это ток или магнитная индукция, определяется аксиальный. Графическое изображение данного принципа приведено на рисунке ниже:

Как видите из первого рисунка, при протекании электрического тока I по прямому проводнику, лини магнитной индукции закручиваются в таком же направлении, как и ручка винта, который острием направлен в сторону протекания электрического тока.

Второй рисунок показывает, как правило буравчика применяется к базисному вектору магнитной индукции в любой катушке. Если в электрической катушке вам известно направление протекания тока, то направив вращение ручки винта по линиям тока, острие винта укажет вам направление линий магнитной индукции. Его же можно трактовать и в обратной формулировке – если вы знаете направление магнитного потока в катушке, то направив по нему острие винта, вращение ручки покажет направление движения тока по обмотке. Но второй вариант больше применим к теоретической электротехнике, так как на практике магнитное поле возникает от протекания тока.

yandex.ru

Буравчика правило — это… Что такое Буравчика правило?


Буравчика правило

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»

Wikimedia Foundation. 2010.

  • Буравский, Исаак
  • Бураго, Дмитрий

Смотреть что такое «Буравчика правило» в других словарях:

  • БУРАВЧИКА ПРАВИЛО — определяет направление магн. поля, создаваемого электрич. током: если буравчик с правой резьбой ввинчивать по направлению тока I (рис. ), то направление вращения рукоятки буравчика совпадает с направлением магн. поля Н, возбуждаемого этим током.… …   Физическая энциклопедия

  • БУРАВЧИКА ПРАВИЛО — определяет направление напряженности магнитного поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением напряженности магнитного поля …   Большой Энциклопедический словарь

  • Буравчика правило —         удобное для запоминания правило для определения направления магнитного поля, создаваемого электрическим током: если буравчик (с правой нарезкой) ввинчивать по направлению тока (I), то направление вращения рукоятки буравчика совпадает с… …   Большая советская энциклопедия

  • буравчика правило — определяет направление напряжённости магнитного поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока I, то направление вращения рукоятки совпадёт с направлением напряжённости магнитного поля H. *… …   Энциклопедический словарь

  • БУРАВЧИКА ПРАВИЛО — определяет направление напряжённости магн. поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока I, то направление вращения рукоятки совпадёт с направлением напряжённости магн. поля Н …   Естествознание. Энциклопедический словарь

  • правило Ампера — правило буравчика — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы правило буравчика EN Ampere s… …   Справочник технического переводчика

  • правило буравчика — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN right hand screw rule …   Справочник технического переводчика

  • ПРАВИЛО — (1) буравчика определяет направление вектора напряжённости магнитного поля прямолинейного проводника с постоянным током. Если буравчик ввёртывается по направлению тока, то направление его вращения определяет направление магнитных силовых линий… …   Большая политехническая энциклопедия

  • Правило буравчика — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (правило винта), или правило правой руки  варианты мнемониче …   Википедия

  • Правило винта — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

Книги

  • Олимпиадные задачи. Физика. Часть 7, Творческий коллектив программы «Хочу всё знать». При какой температуре кипит вода? Что такое правило буравчика? Как появляется статическое электричество? Знаешь? Тогда скорее звони в эфир шоу «Хочу все знать» и давай вместе решать… Подробнее  Купить за 49 руб аудиокнига
  • Олимпиадные задачи. Физика. Часть 9, Творческий коллектив программы «Хочу всё знать». В рамках рубрики «Физика» мы решали новые олимпиадные задачи по этому прекрасному предмету! Преподаватель Школы развития «Маяк» Алексей Сергеев понял, что вы знаете все законы Ньютона на… Подробнее  Купить за 49 руб аудиокнига

dic.academic.ru

Правило буравчика, правой и левой руки, как сделать самому, Ремонт и Строительство

Правило буравчика, правой руки и левой руки нашли широкое применение в физике. Мнемонические правила нужны для лёгкого и интуитивного запоминания информации. Обычно это приложение сложных величин и понятий на бытовые и подручные вещи. Первым, кто сформулировал данные правила, является физик Петр Буравчик. Данное правило относится к мнемоническому и тесно соприкасается с правилом правой руки, его задачей является определением направления аксиальных векторов при известном направлении базисного. Так гласят энциклопедии, но мы расскажем об этом простыми словами, кратко и понятно.

Объяснение названия

Большинство людей помнят упоминание об этом из курса физики, а именно раздела электродинамики. Так вышло неспроста, ведь эта мнемоника зачастую и приводится ученикам для упрощения понимания материала. В действительности правило буравчика применяют как в электричестве, для определения направления магнитного поля, так и в других разделах, например, для определения угловой скорости.

Под буравчиком подразумевается инструмент для сверления отверстий малого диаметра в мягких материалах, для современного человека привычнее будет привести для примера штопор.

Важно! Предполагается, что буравчик, винт или штопор имеет правую резьбу, то есть направление его вращения, при закручивании, по часовой стрелке, т.е. вправо.

На видео ниже предоставлена полная формулировка правила буравчика, посмотрите обязательно, чтобы понять всю суть:

Как связано магнитное поле с буравчиком и руками

В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.

Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.

Правило буравчика имеет следующий смысл: при вкручивании острия буравчика вдоль направления тока – рукоятка будет вращаться по направлению вектора B (вектор линий магнитной индукции).

Правило правой руки работает так:

Поставьте большой палец так, словно вы показываете «класс!», затем поверните руку так, чтобы направление тока и пальца совпадали. Тогда оставшиеся четыре пальца совпадут с вектором магнитного поля.

Наглядный разбор правила правой руки:

Чтобы увидеть это более наглядно проведите эксперимент – рассыпьте металлическую стружку на бумаге, сделайте в листе отверстие и проденьте провод, после подачи на него тока вы увидите, что стружка сгруппируется в концентрические окружности.

Магнитное поле в соленоиде

Всё вышеописанное справедливо для прямолинейного проводника, но что делать, если проводник смотан в катушку?

Мы уже знаем, что при протекании тока вокруг проводника создается магнитное поле, катушка – это провод, свёрнутый в кольца вокруг сердечника или оправки много раз. Магнитное поле в таком случае усиливается. Соленоид и катушка – это, в принципе, одно и то же. Главная особенность в том, что линии магнитного поля проходят так же как и в ситуации с постоянным магнитом. Соленоид является управляемым аналогом последнего.

Правило правой руки для соленоида (катушки) нам поможет определить направление магнитного поля. Если взять катушку в руку так, чтобы четыре пальца смотрели в сторону протекания тока, тогда большой палец укажет на вектор B в середине катушки.

Если закручивать вдоль витков буравчик, опять же по направлению тока, т.е. от клеммы «+», до клеммы «-» соленоида, тогда острый конец и направление движения как лежит вектор магнитной индукции.

Простыми словами – куда вы крутите буравчик, туда и выходят линии магнитного поля. То же самое справедливо для одного витка (кругового проводника)

Определение направления тока буравчиком

Если вам известно направление вектора B – магнитной индукции, вы можете легко применить это правило. Мысленно передвигайте буравчик вдоль направления поля в катушке острой частью вперед, соответственно вращение по часовой стрелки вдоль оси движения и покажет, куда течет ток.

Если проводник прямой – вращайте вдоль указанного вектора рукоятку штопора, так чтобы это движение было по часовой стрелке. Зная, что он имеет правую резьбу – направление, в котором он вкручивается, совпадает с током.

Что связано с левой рукой

Не путайте буравчика и правило левой руки, оно нужно для определения действующей на проводник силы. Выпрямленная ладонь левой руки располагается вдоль проводника. Пальцы показывают в сторону протекания тока I. Через раскрытую ладонь проходят линии поля. Большой палец совпадает с вектором силы – в этом и заключается смысл правила левой руки. Эта сила называется силой Ампера.

Можно это правило применить к отдельной заряженной частице и определить направление 2-х сил:

  1. Лоренца.
  2. Ампера.

Представьте, что положительно заряженная частица двигается в магнитном поле. Линии вектора магнитной индукции перпендикулярны направлению её движения. Нужно поставить раскрытую левую ладонь пальцами в сторону движения заряда, вектор B должен пронизывать ладонь, тогда большой палец укажет направление вектора Fа. Если частица отрицательная – пальцы смотрят против хода заряда.

Если какой-то момент вам был непонятен, на видео наглядно рассматривается, как пользоваться правилом левой руки:

Важно знать! Если у вас есть тело и на него действует сила, которая стремится его повернуть, вращайте винт в эту сторону, и вы определите, куда направлен момент силы. Если вести речь об угловой скорости, то здесь дело обстоит так: при вращении штопора в одном направлении с вращением тела, завинчиваться он будет в направлении угловой скорости.

Выводы

Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.

Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:

www.remontostroitel.ru

Правило буравчика для определения направления магнитного поля

Далеко не все явления в нашей жизни мы можем увидеть, хотя используем их постоянно. Например, электрический ток и магнитное поле. Если к току, как к явлению, мы более-менее привыкли, с магнитными полями не очень легко разобраться. О том, что это такое и как правило буравчика позволяет определить его направление и поговорим.

Содержание статьи

Что такое магнитное поле

Все, наверное, знают что такое постоянные магниты — они «липнут» к железу и некоторым другим материалам. Если приблизить два магнита, то они будут притягиваться или отталкиваться — в зависимости от того, как мы их повернем друг относительно друга. Почему и за счет чего так происходит? За счет того, что вокруг магнитов создается магнитное поле. Оно возникает при движении заряженных частиц. Например, вокруг провода, по которому протекает электрический ток, есть магнитное поле. Оно слабое, но оно есть.

Магнитное поле нельзя увидеть, но можно ощутить

Постоянные магниты

Как же тогда с магнитами? Откуда в них магнитное поле, ведь в них нет направленного движения частиц? Все просто. В них магнитное поле создается зарядами частиц. Как известно, любой материал состоит из положительно и отрицательно заряженных частиц. В некоторых материалах частицы можно расположить так, чтобы положительные были сконцентрированы с одной стороны, отрицательные — с другой. Эти «две стороны» называют полюсами магнита. Отрицательный — северный, обозначается латинской буквой N и закрашивается обычно синим цветом, положительный называют «южный» и обозначается S, закрашивается в красный цвет.

Постоянные магниты и их виды

Причем, стоит помнить, что однополюсных магнитов не бывает. Всегда есть два полюса. Если есть у вас большой магнит, его можно распилить пополам. И вы получите два магнита меньшего размера с двумя полюсами. Если распилите их — получите еще более мелкие двухполюсные магнитики.

Постоянные магниты можно сделать далеко не из всех материалов. Для этих целей подходят всего три вещества: железо (Fe), никель (Ni) и кобальт (Co). Если их выдержать в магнитном поле, частицы «рассортируются» по полюсам, материал станет магнитом. Но не все будут долго сохранять эти свойства. По способности удерживать магнитные свойства, материалы разделают на магнитомягкие и магнитотвердые материалы. Первые быстро намагничиваются, но и быстро теряют свои свойства. К таким относится железо (не обработанное). Магнитотвердый материал — например, сталь — в магнитном поле надо выдерживать долго. Зато после «выдержки» он становится магнитом на значительный промежуток времени. Можете поэкспериментировать со стальными скрепками.

Что такое магнитное поле

Приближая магниты друг к другу, на некотором расстоянии вы начнете ощущать, как они притягиваются или отталкиваются. Чем ближе подносите, тем сильнее они взаимодействуют. Все потому, что вокруг них существует магнитное поле. И чем ближе к магниту, тем поле сильнее.  Причем выглядит это поле как округлые линии, которые выходят из северного полюса и «заходят» в южный.

Магнитное поле можно представить в виде линий

Почему так решили? А потому что можно эти линии увидеть «вживую». Для этого надо провести эксперимент. На лист фанеры положить магнит, насыпать вокруг мелких металлических опилок и лист фанеры немного потрусить. Металлические опилки расположатся именно так, как показано на рисунке ниже справа. Обратите внимание — чем ближе к магниту, тем опилок больше, чем дальше — тем меньше. Это потому что магнитное поле ослабевает по мере удаления.

Экспериментальное подтверждение: смотрим на магнитное поле и на взаимодействие полюсов

Опилки помогут понять и правила притяжения или отталкивания полюсов. На левом рисунке мы видим что происходит, если приблизить два противоположных полюса. Они притягиваются. Причем когда процесс завершится, картинка будет один в один как та, что справа. Как видите, они даже немного похожи.

Если поднести поближе два одноименных полюса — юг-юг или север-север — они будут отталкиваться. Это демонстрирует средний рисунок. И чем ближе их подносите, тем сильнее будет ощущаться противодействие.

Правило буравчика для магнитных полей

Речь шла о постоянных магнитах. У них все всегда понятно: где какой полюс и куда направлены линии магнитного поля — от северного полюса к южному. Но магнитное поле возникает и вокруг проводников, по которым течет ток. Просто оно слабое, так что даже если поднести два участка, по которым течет ток, особого притяжения или отталкивания мы не ощутим. Чтобы создать сильное электромагнитное поле, проводник накручивают вокруг какого-то сердечника. Это изделие называют соленоидом. Когда по нему течет ток, создается ощутимое магнитное поле. Но как направлены линии магнитного поля в электромагнитах? Где у них северный, где южный полюс? Вот это и выясняют с помощью правила буравчика.

Буравчик можно себе представить как обычный штопор с ручкой-перекладиной и витками, накрученными вправо. Чтобы закручивать такой штопор, ручку надо вращать вправо — по часовой стрелке. При этом острие штопора/буравчика продвигается вниз. Чтобы выкручивать его, надо рукоятку вращать влево — против часовой стрелки. Острие при этом движется вверх.

Правило буравчика для магнитного поля

С движением острия буравчика и направлением вращения рукоятки и связано определение направление магнитного поля. Вот как звучит правило буравчика (еще называют правило винта):

Если направление движения острия буравчика (винта) совпадает с направлением движения тока, то движение рукоятки буравчика укажет направление линий магнитного поля.

С ровными проводниками все просто. Представляете, вкручивать или выкручивать надо буравчик, получаете направление силовых линий. Если по условиям задачи есть только направление линий магнитного поля, при помощи правила буравчика можно установить направление тока. Для этого мысленно представляем, что ручка штопора крутится в указанном направлении. В зависимости от этого, определяем куда движется острие, а, значит, и куда течет ток.

Правило правой руки

Не всегда и не у всех с буравчиком «складывается». Некоторым людям сложно представить, как будет двигаться винт. В этом случае можно попробовать одну из его вариаций: правило правой руки. Для кого-то оно проще и наглядней. Вот как определять направление магнитного поля по правилу правой руки.

Если отогнуть большой палец правой руки и направить его в сторону течения тока, согнутые вокруг проводника пальцы, покажут направление движения магнитного поля.

Правило буравчика в другой интерпретации: правой руки для проводника (иллюстрация)

Внимание! Во время применения правила прикасаться к проводнику не надо. Все операции надо проделывать в собственном воображении, или на солидном расстоянии от реального проводника тока.

Правило правой руки для соленоида

Чем хорош этот вариант, так это тем что его легко применить и для соленоида. Направляем большой палец в том направлении, куда течет ток, и по остальным определяем направление магнитного поля. Все просто. С буравчиком так не получится.

По правилу правой руки определять также можно направление тока по имеющимся линиям магнитного поля. Пальцы располагаем вдоль этих линий, повернув их по движению. Отогнутый на 90° большой палец покажет направление тока.

elektroznatok.ru

Правила буравчика и левой руки в физике: формулировка, принцип действия

Для обозначения направления тока, магнитных линий и прочих физических значений в науке применяют правило левой руки и правило правой руки (закон буравчика или винта). Указанные методы на практике дают наиболее точные результаты. Рассмотрим более подробно каждый из них.

Правило Буравчика

Это правило на практике достаточно удобно для определения такого значения магнитного поля, как направленность напряжённости. Использовать это правило возможно при условии, что к проводнику с током будет прямолинейно расположено магнитное поле. С его помощью можно без наличия специализированных приборов определить различные физические величины (момент сил, импульса, вектор магнитной индукции).

Это правило:

  • поясняет особенность электромагнетизма;
  • объясняет физику движения магнитных полей, сопутствующих ему.

Формулировка правила буравчика состоит в следующем: если буравчик с правой нарезкой вкручивается вдоль линии тока, то направление магнитного поля совпадает с направлением рукоятки этого буравчика.

Основным принципом, используемым в правиле винта, является выбор направленности для базисов и векторов. Зачастую на практике определено использовать правый базис. Левые базисы используются крайне редко, в случае когда использование правого неудобно или в целом нецелесообразно. Этот принцип также применим и на соленоиде.

Соленоидом называется катушка со вплотную привязанными витками. Главным требованием является протяжённость катушки, которая должна быть существенно больше, нежели её диаметр.

Кольца соленоида напоминают поле непрерывного магнита. Магнитная стрелка, находясь в свободном вращении и находясь рядом с проводником тока, будет образовывать поле и устремиться занимать вертикальную позицию, проходящую вдоль проводника.

В этом случае оно звучит так: если охватить соленоид таким образом, чтобы пальцы показывали на направленность тока в винтах, то выпяченный заглавный палец правой руки покажет направленность рядов магнитной индукции.

Различные толкования правила буравчика говорят о том, что все его описания приспосабливаются к различным случаям их применения.

Правило правой руки говорит о следующем: охватив элемент, который исследуется таким образом, чтобы пальцы сжатого кулака показывали вектор магнитных линий, при поступательном движении вдоль магнитных линий, заглавный отогнутый на 90 градусов сравнительно ладошки палец покажет направленность движения тока.

В случае когда дан движущийся проводник, принцип будет иметь следующую формулировку: разместить руку так, чтобы силовые линии поля вертикально вступали в ладонь; заглавный палец руки, выставленный вертикально, будет ориентировать направленность перемещения этого проводника, в этом случае четыре остальных выставленных пальца, будут иметь такую же направленность, как и индукционный ток.

Его применение присуще при расчёте катушек, в которых образуется влияние на ток, что влечёт за собой формирование при потребности противотока.

В реальной жизни также применимо следствие этого принципа: если размесить ладошку правой руки так, чтобы линии магнитного силового поля входили в эту ладошку, а пальцы навести на линию перемещения заряженных частиц по оттопыренному заглавному пальцу, то возможно обозначить, куда будет направляться линия данной силы, оказывающая смещающее влияние на проводник. Иными словами, силы, дающей возможность вращать момент силы на валу любого двигателя, работающего с помощью электрического тока.

Правило левой руки

Рассмотрим правило: если разместить левую ладошку так, что четыре остальные пальца показывают направленность тока, то в этом случае линии индукции будут поступать в ладошку под прямым углом, а отвёрнутый заглавный палец и покажет вектор существующей силы.

Имеется иное обозначение. Направленность силы Ампера и силы Лоренца должен указывать выставленный главный палец левой руки в том случае, если оставшиеся четыре пальца будут размещены в сторону передвижения положительно и отрицательно заряженных элементов электрического тока, и линии индукции образованного поля будут вертикально входить в ладошку. Это изобретение считается теоретическим и практическим объяснением способа работы двигателей и генераторов, работающих с помощью электрического тока.

Можно сделать вывод, что знание данных правил и умение их использовать на практике, позволяют создавать и придумывать электрические приборы и успешно работать с ними.

Видео

Это видео поможет вам лучше понять, что такое магнитное поле.

Что такое «Правило левой руки»? Ответ вы найдете в этом видео.

Магнитное поле — Сила Лоренца.

liveposts.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *