+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:
  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя. Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:
  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений
Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:
  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.
Практическое использование
Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:
  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть:
    — с гальванической развязкой сети питания и потребителя электроэнергии;
    — без гальванической развязки;
    — с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.
Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Похожие темы:

Что такое перекос фаз, как исправить эту проблему.

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. Одной из проблем многих частных владений, общественных заведений и производственных мощностей является перекос фаз.

Что это такое, и как его исправить?

Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.

В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.

Следует отметить, что существуют разные виды перекоса в электросети. В зависимости от типа проблемы, выбирается наиболее оптимальный способ ее решения. Остановимся на наиболее распространенной и, в то же время, самой простой ситуации – перекос фаз, вызванный неравномерным распределением внутрисетевой нагрузки.

Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.

Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.

Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей.

Что же собой представляет перекос фаз с точки зрения электротехники?

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине. Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

AB=BC=CA=380 В;

AN=BN=CN=220 В.

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN.

Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Чем опасен перекос фаз.

Во время перекоса наблюдается неравномерная нагрузка на фазы – на задействованной напряжение падает ниже нормы, тогда как недогруженная фаза испытывает скачок напряжения, превышающий допустимые показатели. Результаты такого положения могут быть плачевными для многих электроприборов. Это вызвано тем, что отдельный прибор может либо недополучать требующейся мощности, либо получать ее в избытке. Особенно такое положение опасно для приборов, потребляющих много энергии: двигателей для ворот, насосов, оборудования, использующегося в бассейнах и при поливе.

Вернемся: как исправит проблему с перекосом фаз?

Предотвратить негативные последствия для оборудования от перекоса между фазами позволяет трехфазный автомат. Если мощность в одной фазе превышаю предусмотренную нагрузку, автоматически отключается электричество во всем доме/линии. Это не является решением ситуации, потому что лишь подобный подход не позволяет использовать всю доступную мощность.

К примеру, при трехфазном автомате на 16А, при превышении нагрузки на одной фазе 16А – система отключится, но это не позволяет полностью использовать всю возможную мощность 48А (16Х3).

Идеальным вариантом является планирование всех мощностей на начальном этапе проектирования здания, таким образом можно равномерно распределить напряжение между всеми фазами, предотвратив тем самым перекос. Если же здание уже сдано в эксплуатацию – можно замерить напряжение на каждой фазе в отдельности, для этого используется вольтметр, и при необходимости осуществить перераспределение.

Реальные рабочие условия

При стандартном распределении на дом с тремя подъездами обычно одна фаза используется для питания одного подъезда, вторая для второго и третья, соответственно, для третьего. Это позволяет равномерно нагрузить развязывающий понижающий трансформатор на подстанции и обеспечить ему оптимальные режимы работы. Но это справедливо, только если нагрузка примерно одинакова, притом как в активной, так и реактивной составляющей.

Но, к сожалению, потребителю не объяснишь, что необходимо придерживаться норм расхода электричества, а если рассматривать сельскую местность, то многие умельцы в сеть подключают очень большую активную нагрузку, что существенно ухудшает условия работы трансформатора на подстанции. Через одно плечо начинает течь больший ток, чем через остальные, тем самым разогревая магнитопровод, а это приводит к возникновению в нем паразитных вихревых токов, нарушающих режим работы источника еще сильнее.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Перекос фаз в трехфазной сети, причины и последствия – инженерная компания LiderTeh

Вопрос:
Что такое перекос фаз? Какие выраженные признаки говорят о перекосе фаз, конечно нестабильность в работе трехфазного и однофазного электрооборудования.  


Ответ:

  С каждым годом увеличивается количество и мощность бытовых приборов и техники в домах. 

Основные признаки перекоса. 
  • Нестабильная работа электроприборов.
  • При замере напряжения на фазах, показания сильно отличаются.

Перекос фаз в трехфазной сети причины и последствия.

 Одна фаза может быть перегружена и напряжение на ней низкое, а другие, наоборот, с низкой нагрузкой, вот и из-за этого на них появляется высокое напряжение смотрите рис. 2

Перекос фаз представляет большую опасность для электроприборов. С низким или высоким напряжением они могут работать не правильно, вплоть до выхода их из строя. Наибольшей опасности подвергается трехфазные приборы, такие как двигатели, насосы и компрессоры.

Например, срок службы электроприборов снижается на 10-15%, при длительной работе с коэффициентом несимметрии по обратной последовательности K2U = 2.

..4 %.

И наоборот, при работе с нормальной, номинальной нагрузкой и питанием, срок службы увеличивается вдвое.

 

Перекос фаз в сети делят на два основных типа:

  •  Систематическая (вероятная) 
  •  Случайная.
  1.  Систематическая несимметрия (перекос фаз) появляется, когда одна из фаз постоянно перегружена относительно других.
       Вероятностная несимметрия возникает в зависимости от случайных факторов (перемежающийся перекос фаз), когда непостоянные нагрузки в разное время перегружают разные фазы.      2. 
Случайная несиметрия
возникает в результате короткого замыкания фазного провода и нулевого провода нейтрали- такое явление возникает редко, и является аварийной ситуацией. Также напряжения сильно зависят от сопротивления проводов и внутреннего сопротивления трансформатора.

 

В случае возникновения случайного перекоса фаз, при обрыве нулевого провода, напряжения распределяются по фазам  пропорционально электрическому сопротивлению потребителей.

 Способы устранения последствий перекоса фаз могут быть разными. Например, самый востребованный вариант, установка

стабилизаторов напряжения в частном доме или применение симметрирующих трансформаторов.

 

Нормы на перекос фаз

 

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

Кабельная линия, проверка на перекос фаз

Сначала давайте определимся в терминах.  Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник. В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание. Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания. Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей. В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

Щит электрический, питающий кабель, проверка на перекос фаз

Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках. Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины  нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений. Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов. При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД. В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах.  Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам. Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи. Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты. Наша электролаборатория выполняет любые электротехнические измерения. Мы прошли государственную аккредитацию и имеем соответствующие документы.  Мы с радостью поможем решить ваши проблемы.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

Перекос фаз в быту — Построй свой дом

 

Мы уже говорили о том как определить фазу в электросети вашего дома. Но составляя проект электроснабжения своего частного дома, особое внимание необходимо уделить равномерности распределения нагрузки между фазами электрической сети. Делается это для того, чтобы в процессе эксплуатации загородного дома не допустить перекос фаз. Вот о том, что такое перекос фаз в трехфазной сети и что происходит, если он случается, мы и поговорим в этой статье.

 

Перекос фаз встречается в многофазной сети переменного тока, когда амплитуды фазных напряжений (токов) не равны между собой. Причины перекоса напряжений могут быть разными, но основная из них — это не симметрия токов в сети, обусловленная неравенством нагрузки по фазам. При этом наблюдается снижение мощности трехфазных электрических приборов.

 

Перекос фаз в быту

 

Если рассмотреть перекос фаз с точки зрения эксплуатации частного дома, то может возникать риск выхода из строя или некорректной работы электроприборов с преобладающей реактивной нагрузкой. К ним относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания.

 

Необходимо знать, что существуют разные виды перекоса в электросети. В этой статье я рассмотрю перекос фаз, вызванный неравномерным распределением внутри сетевой нагрузки.

 

Большинство сетей, особенно обеспечивающих электричеством поселки, предназначенные для ИЖС, являются трехфазными. Если в них нагрузка распределена неравномерно, из-за чего одна или две фазы перегружены, а третья недогружена, происходит перекос. На практике чаще всего это происходит, когда электрики неравномерно распределили однофазные нагрузки.

 

Наиболее часто встречаются ситуации, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.

 

Подключение на одну из фаз приборов с высокой потребляемой мощностью, неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах. Во всех перечисленных случаях важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение проблем.

 

Перекос фаз в трехфазной сети

 

Наиболее распространенную схему соединений нагрузок в трехфазной сети, называемой «звездой», которую дополняют нейтральным проводом, подключенным к центральной точке и электрически связанным с заземлением. Для простоты понимания трехфазную электрическую сеть можно представить с помощью равностороннего треугольника с нейтральной точкой в его середине.

Треугольник визуализирует работу силового трансформатора на подстанции, которая установлена в каждом поселке и предназначена для равномерного распределения электричества по всем потребителям. Обозначив вершины треугольника точками A, B, C а середину N (нейтраль), можно составить формулу напряжений и зависимость между ними:

AB=BC=CA=380 В;

AN=BN=CN=220 В.

 

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN.

 

Трехфазный генератор, который используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

 

Что происходит при перекосе фаз

 

Прежде всего, во время перекоса наблюдается неравномерная нагрузка на фазы. При этом на перегруженной фазе напряжение падает ниже нормы, а на недогруженной происходит скачок напряжения, превышающий допустимые показатели, при этом линейное напряжение остается постоянным. В результате, электрические приборы могут выйти из строя, особенно, если в них нет стабилизатора напряжения. Это вызвано тем, что отдельные приборы могут: либо недополучать требуемой мощности, либо получать ее с избытком. Особенно такое положение опасно для мощных приборов, например, водонагревателей, скваженных насосов, электрокотлов и т.д..

 

Как исправить перекос фаз

 

Предотвратить негативные последствия для оборудования от перекоса между фазами позволяет трехфазный стабилизатор. Еще его часто называют трансформатор для выравнивания перекоса фаз. В отличие от бытовых стабилизаторов напряжения, фазные стабилизаторы устраняют асимметрию путем усиления или перераспределения нагрузки. Применение этого прибора позволит исключить случаи, когда из-за превышения потребления мощность на одной фазе автоматически отключается электричество во всем доме.

 

 

В принципе, функцию многофазного симметрирующего стабилизатора может выполнять сборка из трех однофазных стабилизаторов напряжения. Совместное использование трех стабилизаторов может сулить существенную выгоду. Принцип действия трехфазного прибора заключен в том, что он имеет одно устройство запаса и преобразования энергии, в роли которого выступает импульсный трансформатор. Если сказать проще, здесь однофазный стабилизатор, установленный на наиболее просаженной фазе, вынужден компенсировать повышение напряжения за счет увеличения потребляемой мощности, что сопровождается сильным снижением КПД преобразователя.

 

Трехфазные же стабилизаторы берут необходимую для выравнивания мощность от фаз, на которых напряжение выше номинального, за счет этого размер потерь на преобразование значительно ниже. При этом происходит дополнительная нагрузка на ненагруженные фазы, то есть стабилизируется не только потребительская, но и частично питающая сеть. Наличие общего инвертора также позволяет поддерживать трехфазную сеть при временном отсутствии напряжения на одной из фаз питания.

 

Защита от перенапряжений для однофазных подключений

 

Как же быть потребителям с однофазным подключением? К сожалению, повлиять на вероятность возникновения перекоса и вызванного им повышения напряжения не представляется возможным. Такие явления периодически случаются, всему виной недостаточная оснащенность магистральных сетей, отсутствие работ по прогнозированию нагрузок и плохое техническое состояние электрических сетей.

 

Но защитить собственное электрическое хозяйство все же можно. Простейший способ — установка реле напряжения, которое отключит потребители при скачке напряжения. Если даже временное отсутствие электроснабжения недопустимо, существует два способа защиты от перекоса фаз: установка однофазного стабилизатора или оснащение вводно-распределительной группы АВР с автономным источником питания.

 

Все же, идеальным вариантом является планирование всех мощностей на начальном этапе проектирования дома, таким образом можно заранее равномерно распределить нагрузку между фазами, предотвратив тем самым перекос. Если дом уже эксплуатируется, можно замерить напряжение на каждой фазе по отдельности, для этого используется вольтметр и при необходимости сделать перераспределение мощностей.

 

В следующей статье я расскажу, что делать если ваш сайт заражен вирусом.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Перекос фаз в трехфазной сети

В трехфазных электрических сетях напряжение должно равномерно распределяться по каждой фазе, с незначительными отклонениями в пределах допустимой нормы. При несоблюдении этого условия возникает перекос фаз в трехфазной сети, способный вызвать серьезные негативные последствия. В промышленности данное явление приводит к значительному снижению мощности электродвигателей, трансформаторов и другого оборудования.

В быту из-за перекоса возникают неисправности бытовой техники и прочих потребителей. Для того чтобы предотвратить подобные ситуации, необходимо хорошо разбираться в сути этого явления.

Причины возникновения

В качестве причины перекоса рассматриваются различные факторы, однако, по общему мнению, специалистов, чаще всего перекос возникает из-за неравномерного и неправильного распределения нагрузки в фазах внутренних электрических сетей. Это означает, что работа одной или двух фаз осуществляется с перегрузкой, а другие фазы в это время находятся под значительно меньшей нагрузкой.

Нередки случаи, когда однофазные потребители оказываются на одной фазе. В результате, причиной перекоса становится большое количество бытовой техники, включенной одновременно. Основными признаками подобного явления считается заметное падение мощности электрических приборов, а иногда их работа вообще прекращается. Обычные лампы накаливания начинают гореть очень тускло, а у люминесцентных ламп начинается мерцание.

Главная опасность таких ситуаций заключается в некорректной работе бытовых приборов и оборудования. Больше всего страдают электродвигатели, установленные во многих устройствах. В некоторых случаях причиной перекоса является обрыв фазы, вызывающий значительное увеличение токов в других фазах. Такой режим работы приводит к перегрузкам оборудования и считается аварийным.

Кроме того, перекос может возникнуть в результате короткого замыкания фазы и нулевого провода. В такой ситуации автоматический выключатель выходит из строя, а между нулем и остальными фазами резко увеличивается напряжение.

Защита и устранение

Для того чтобы предотвратить возникновение перекоса и обеспечить нормальную эксплуатацию трехфазной сети, необходимо привести напряжение на каждой фазе в соответствие с номиналом. Это можно сделать с помощью специальных приборов и устройств, например, используя стабилизатор напряжения. Как правило, это трехфазное устройство, состоящее из трех однофазных приборов, используемое в условиях промышленного производства. Тем не менее, стабилизаторы не способны устранять перекосы, они лишь выравнивают напряжение в каждой фазе.

Иногда они сами становятся причиной неравномерного распределения электроэнергии. Поэтому для борьбы с перекосами разработаны специальные технологии, способные выровнять напряжение между фазами. Среди них наибольшее распространение получили:

  • Использование автоматических устройств, выравнивающих нагрузки.
  • Проектирование электроснабжения на объекте с учетом предполагаемых нагрузок. Эффективное устранение перекоса фаз в трехфазной сети возможно путем тщательного планирования мощностей и расчетов возможных нагрузок с учетом их правильного распределения по фазам.
  • Возможность изменения электрических схем с учетом добавленных мощностей потребителей.
  • Подключение специальных устройств, контролирующих фазное напряжение и отключающих питание в случае перекоса.

В процессе эксплуатации нередко приходится измерять перекос фаз в трехфазной сети. Для этого используются специальные тестеры и по итогам измерений однофазные нагрузки перебрасываются с перегруженных фаз на менее загруженные. Ток на каждой фазе должен тщательно измеряться, чтобы при перераспределении токи каждой фазы были примерно одинаковые.

Существуют нормативы, определяющие допустимый перекос и нормы несимметрии. Так, разница нагрузок в вводно-распределительных устройствах между фазами не должна превышать 15%, а в распределительных щитах – 30%.

Использование симметрирующего трансформатора

Одним из наиболее эффективных средств предотвращения перекоса фаз считается симметрирующий трансформатор, способный поддерживать установленное значение фазного напряжения. Он производит выравнивание не на отдельной фазе, а обеспечивает симметрию всех имеющихся фаз. То есть, выравнивается вся трехфазная сеть.

Это высокотехнологичное устройство работает даже при 100-процентных перекосах напряжения и устраняет их в самом широком диапазоне, независимо от причин возникновения. Прибор равномерно распределяет потребителей между фазами, поддерживает заданное значение напряжения. Преобразует токи трехфазных сетей под конкретные условия эксплуатации, выполняет ряд других важных функций.

Последствия

Всем известно, что перекосы фаз могут вызвать серьезные негативные последствия для трехфазной сети. Заметно увеличивается энергопотребление, электроприборы и оборудование начинает работать неправильно, в их работе происходят сбои, отключения, отказы, перегорают предохранители, изнашивается изоляция. В трехфазных автономных источниках под влиянием неравномерной загрузки фаз возникают механические повреждения подшипников вала и подшипниковых щитов генератора вместе с приводным двигателем.

Все негативные последствия получают довольно широкое распространение и охватывают многие сферы деятельности:

  • Все электроприемники, в том числе приборы, оборудование и другие в значительной степени подвержены повреждениям, отказам, увеличенному износу, снижению сроков эксплуатации.
  • Источники электроэнергии – генераторы также попадают под воздействие перекоса. У них резко возрастает расход топлива и масла, жидкости в системе охлаждения. Повреждается генератор, увеличивается потребление электричества из общей сети.
  • Для потребителей становится опасен электротравматизм, возгорание проводки или приборов. Возрастают расходы, связанные с необходимостью ликвидации негативных последствий.

чем опасен и когда возникает?

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. Одной из проблем многих частных владений, общественных заведений и производственных мощностей является перекос фаз.

Блок: 1/3 | Кол-во символов: 443
Источник: https://elektronchic.ru/elektrotexnika/chto-takoe-perekos-faz.html

Что это такое, и как его исправить?

Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.

В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.

Следует отметить, что существуют разные виды перекоса в электросети. В зависимости от типа проблемы, выбирается наиболее оптимальный способ ее решения. Остановимся на наиболее распространенной и, в то же время, самой простой ситуации – перекос фаз, вызванный неравномерным распределением внутрисетевой нагрузки.

Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.

Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.

Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей.

Блок: 2/3 | Кол-во символов: 2130
Источник: https://elektronchic.ru/elektrotexnika/chto-takoe-perekos-faz.html

Напряжения в трехфазной сети

Вначале перед тем, как перейти к рассмотрению вопроса о перекосе фаз и к какой опасности он приводит, не лишним будет напоминание о видах напряжений, существующих в трехфазной сети, и некоторых других нюансах.

Напряжения (токи) рассматриваемой сети, по отношению к активной нагрузке, сдвинуты по циклу на 120 градусов. Между любыми двумя фазами присутствует линейное напряжение, величина которого составляет 380 В. Провод любой из трех фаз, по отношению к нулевому проводу, имеет значение напряжения 220 В, которое называется фазным напряжением.

В современных электрических кабелях жилы имеют цветовую окраску, в соответствии с которой принято их подключать к электросети. Нулевой проводник всегда обозначается синим цветом, а «земляной» — желтым с зелеными полосками.

Для подключения линейного напряжения используются любые другие цвета, кроме отмеченных двух. В зависимости от производителя кабелей набор цветных проводников, подключаемых к фазным шинам, может варьироваться в различных сочетаниях.

Если потребитель электроэнергии нуждается в однофазном напряжении, то он аналогично и называется. К нему подводится как минимум два провода, не считая «земляного», от нейтрали и провода фазного напряжения (220 В). Потребители электроэнергии считаются трехфазными, если для питания требуют напряжения 380 вольт.

Если суммарная мощность электроэнергии составляет меньше 10 кВт, то к таким потребителям, по большей части, подводят однофазное напряжение. Когда в дом введено такое напряжение и нейтральный проводник, то следует обязательно позаботиться об оборудовании надежного контура заземления. Иначе, вероятная возможность фазового перекоса может вызвать необратимые последствия с печальным исходом.

Блок: 2/7 | Кол-во символов: 1753
Источник: https://inbarabin.ru/perekos-faz-i-chem-on-opasen

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Блок: 3/8 | Кол-во символов: 973
Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Причины перекоса фаз в трехфазной сети

Обрыв нулевого провода является одной из причин перекоса фаз

Известно несколько причин появления перекоса фаз в трехфазных сетях, основными их которых принято считать:

  • Неравномерное распределение действующих мощностей по нагрузкам, подключенным к каждой из фазных линий.
  • «Обрыв нуля», чаще всего проявляющийся в отгорании нейтрали.
  • Другие неполадки в станционном оборудовании или в подключенных к нему местных потребителях.

В первом случае потребляемая линейной нагрузкой мощность резко возрастает (или снижается), что приводит к соответственному изменению тока, протекающего в данной ветке.

При отсутствии перекоса фаз по каждой из линий, включенной по схеме «звезда», протекают равные по величине токовые составляющие. Их результирующая в нейтрали за счет векторного сложения трех отдельных компонентов теоретически должна быть равна нулю. При увеличении потребления по одной из линий токовая составляющих через нее возрастает, вследствие чего нейтральный провод не выполняет свою функцию и нарушает равномерность распределения фазных потенциалов.

В случае обрыва нейтрали (отгорания нуля) перекос возникает из-за того, что функция нулевого провода автоматически передается одному из фазных проводников; при этом напряжение на всех других смещается в сторону увеличения. Нарушения в работе станционного оборудования также приводят к неравномерному распределению по фазным линиям, но уже на стороне трансформаторной «звезды», а не подключенного к ней объекта (загородного дома, в частности).

Блок: 3/6 | Кол-во символов: 1532
Источник: https://StrojDvor. ru/elektrosnabzhenie/chto-takoe-perekos-faz-v-trexfaznoj-seti-i-kak-ego-proverit/

Что же собой представляет перекос фаз с точки зрения электротехники?

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине. Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

AB=BC=CA=380 В;

AN=BN=CN=220 В.

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN.

Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Чем опасен перекос фаз

Во время перекоса наблюдается неравномерная нагрузка на фазы – на задействованной напряжение падает ниже нормы, тогда как недогруженная фаза испытывает скачок напряжения, превышающий допустимые показатели. Результаты такого положения могут быть плачевными для многих электроприборов. Это вызвано тем, что отдельный прибор может либо недополучать требующейся мощности, либо получать ее в избытке. Особенно такое положение опасно для приборов, потребляющих много энергии: двигателей для ворот, насосов, оборудования, использующегося в бассейнах и при поливе.

Вернемся: как исправит проблему с перекосом фаз?

Предотвратить негативные последствия для оборудования от перекоса между фазами позволяет трехфазный автомат. Если мощность в одной фазе превышаю предусмотренную нагрузку, автоматически отключается электричество во всем доме/линии. Это не является решением ситуации, потому что лишь подобный подход не позволяет использовать всю доступную мощность. К примеру, при трехфазном автомате на 16А, при превышении нагрузки на одной фазе 16А – система отключится, но это не позволяет полностью использовать всю возможную мощность 48А (16Х3).

Идеальным вариантом является планирование всех мощностей на начальном этапе проектирования здания, таким образом можно равномерно распределить напряжение между всеми фазами, предотвратив тем самым перекос. Если же здание уже сдано в эксплуатацию – можно замерить напряжение на каждой фазе в отдельности, для этого используется вольтметр, и при необходимости осуществить перераспределение.

Реальные рабочие условия

При стандартном распределении на дом с тремя подъездами обычно одна фаза используется для питания одного подъезда, вторая для второго и третья, соответственно, для третьего. Это позволяет равномерно нагрузить развязывающий понижающий трансформатор на подстанции и обеспечить ему оптимальные режимы работы. Но это справедливо, только если нагрузка примерно одинакова, притом как в активной, так и реактивной составляющей.

Но, к сожалению, потребителю не объяснишь, что необходимо придерживаться норм расхода электричества, а если рассматривать сельскую местность, то многие умельцы в сеть подключают очень большую активную нагрузку, что существенно ухудшает условия работы трансформатора на подстанции. Через одно плечо начинает течь больший ток, чем через остальные, тем самым разогревая магнитопровод, а это приводит к возникновению в нем паразитных вихревых токов, нарушающих режим работы источника еще сильнее.

Пишите ,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Блок: 3/3 | Кол-во символов: 3516
Источник: https://elektronchic.ru/elektrotexnika/chto-takoe-perekos-faz.html

Как создается перекос фаз?

Трехфазная электросеть включает в себя высоковольтную и низковольтную части. На границе разделения этих частей сети устанавливаются, как правило, электрические подстанции с трехфазными трансформаторами, которые понижают высоковольтное напряжение.

В первой половине сети перекос напряжений в принципе, нереален, потому что все три фазы нагружены равномерно. Поэтому электроэнергия передается по трем проводам, надобность в четвертом дополнительном проводнике отпадает, что составляет существенную экономию.

Электрическая подстанция распределяет энергию между потребителями. В этой части электросети используются напряжения до 1 тысячи вольт.

Чаще всего аварийная ситуация в виде перекоса напряжений возникает именно в этой части, когда подключаемая нагрузка распределена между фазами неравномерно или при обрыве нулевого проводника. Она объясняется особенностями распределения мощности между однофазным электрооборудованием.

Блок: 4/7 | Кол-во символов: 957
Источник: https://inbarabin.ru/perekos-faz-i-chem-on-opasen

Использование симметрирующего трансформатора

Одним из наиболее эффективных средств предотвращения перекоса фаз считается симметрирующий трансформатор, способный поддерживать установленное значение фазного напряжения. Он производит выравнивание не на отдельной фазе, а обеспечивает симметрию всех имеющихся фаз. То есть, выравнивается вся трехфазная сеть.

Это высокотехнологичное устройство работает даже при 100-процентных перекосах напряжения и устраняет их в самом широком диапазоне, независимо от причин возникновения. Прибор равномерно распределяет потребителей между фазами, поддерживает заданное значение напряжения. Преобразует токи трехфазных сетей под конкретные условия эксплуатации, выполняет ряд других важных функций.

Блок: 4/5 | Кол-во символов: 734
Источник: https://electric-220.ru/news/perekos_faz_v_trekhfaznoj_seti/2017-12-14-1405

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Блок: 5/8 | Кол-во символов: 944
Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Для чего нужны знания о перекосе

Когда произошла авария из-за перекоса, уже ничего не поделаешь, придется исправлять ситуацию. Но знать о признаках нестабильности в сети стоит знать каждому обывателю. Есть признаки, понимание которых поможет рассказать об аварийной ситуации. Как только замечены сильные перепады напряжения, конечно в этой ситуации токи будут изменчивы, но нестабильное напряжение – признак, на котором основан перекос. Как только вы заметите признаки перекоса (об обрыве нейтрали мы сейчас не говорим, так как эта авария видна практически сразу), рассмотрим большую нагрузку на одну фазу.

Подключение реле контроля напряжения

Как только замечены признаки нестабильности, срочно обесточьте сеть, и выньте все приборы из розеток, иначе исправить ситуацию не получится. На что нужно обратить внимание:

  • Самыми чувствительными источниками света, которые реагируют на перепады в сети, являются энергосберегающие светильники и лампы дневного света, как только вы заметите мерцание этих источников света, сразу нужно принимать меры;
  • Обычные лампочки – мигание изменение света в тусклую или яркую сторону. Как только началось подобное мигание, срочно выключайте рубильник ввода, и выясняйте в чем причина. Так как это говорит о сильном перекосе;
  • Если приборы перестали работать, например, отключается утюг, не включается телевизор или микроволновка, все это говорит о том, что в сети недостаточно напряжения. Обычно автоматы могут не среагировать моментально, но эти признаки должны вас насторожить;

    Автоматические рубильники защищающие электрическую сеть от скачков напряжения

  • Подошли к выключателю, чтобы включить свет и обнаружили, что он нагрелся – это тревожный признак, при этом мигания лампочки можно и не заметить;
  • Искрение розетки при включении вилки, потрескивание или пощелкивание в розетке стоит не включать в розетку приборы – искрение признак обрыва нуля;
  • Если автоматы защиты выключаются без видимых к тому причин, это, признак аварии, и стоит обратиться в специальные службы для их устранения. Когда отключаются автоматы, ваши приборы останутся целыми пока не включится резервное электроснабжение дома, но не стоит на этом успокаиваться, так как последствия могут быть непоправимые и трудно устранимые;
  • Щелчки в щитке, говорят о том, что авария произошла на линии, и не следует, войдя в дом включать свет – лампочку может просто разорвать и поранить вас. Схема для подключения трехфазного стабилизатора напряжения

    Срочно вызывайте аварийную службу, не лезьте в щиток самостоятельно – это опасно для жизни. Можно дойти до соседей и узнать, что происходит со светом у них.

Современный рынок предлагает обывателям специальный счетчик, в котором встроен индикатор, способный в режиме реального времени контролировать и показывать напряжение в сети. Если купить и установить такой измерительный прибор вам не под силу, то стоит купить небольшой индикатор, которым можно при необходимости произвести замеры. Оптимальным решением может стать стабилизатор для частных строений, который устанавливается на входе тока в дом. Он не только покажет напряжение сети, но и сделает ток стабильным.

Вернуться к оглавлению

Блок: 5/6 | Кол-во символов: 3129
Источник: https://Proekt-sam.ru/proektsistem/perekos-faz-v-chastnom-dome.html

Как защитится от перекоса

Хороший электрик может не только грамотно смонтировать электроснабжение в доме, но и правильно распределит приборы, потребляющие электричество, даст подробные рекомендации и предупредит, что будет, если их не соблюдать. Есть несколько способов избежать перекоса:

  • Правильное составление проекта, и грамотное прогнозирования. Распределение нагрузки на каждый провод, который участвует в электропитании дома;
  • Использовать стабилизаторы сети – специальные приборы, которые будут контролировать нагрузку. Особенно это актуально для больших объектов;
  • Если происходят постоянные перекосы, то можно изменить схему в сети, смонтированной ранее, особенно если были выявлены существенные ошибки;
  • Изменение мощности.

Для промышленных объектов существуют другие способы уравнивания нагрузки на фазы, которые не стоит рассматривать в данной статье. И как мы уже выяснили, что грамотно составленный проект не может полностью гарантировать правильное распределение нагрузки на фазы. Стоит отметить, что в течение суток нагрузка в сети меняется неоднократно, так как электроэнергия живет вместе с жильцами дома и часто отходит от нормативов.

Вывод – прежде чем монтировать электричество у себя дома, нужно продумать всю нагрузку, которая будет на нее оказываться, для предотвращения перекоса. Если вы планируете купить мощную варочную панель, и духовой шкаф такой же мощности, то лучше предусмотреть отдельные провода и для одного и для другого.

Схема электропроводки в доме

То же относится и к стиральной машине. Не стоит забывать о надворных постройках, будь то гараж, баня, или летняя кухня, там могут использоваться приборы, которые нужно учитывать.

Вернуться к оглавлению

Блок: 4/6 | Кол-во символов: 1686
Источник: https://Proekt-sam.ru/proektsistem/perekos-faz-v-chastnom-dome.html

Обрыв нейтрального проводника

Обрыв нулевого провода в 3-х фазной электрической сети самая неприятная авария, которая вызывает немедленно перекос фаз. Она является непосредственной причиной выхода из строя однофазного электрооборудования.

В этом случае величина напряжения становится 380 В, вместо положенных 220 В, что будет катастрофой для электроприбора, рассчитанного на данное напряжение.

На электрических подстанциях в силовых согласующих трансформаторах 3 имеющихся обмотки, соединены по схеме «звезда». Из общей точки их подключения исходит нулевой проводник. В случае его обрыва в электросети создается несимметрия напряжений, то есть перекос фаз, который находится в прямой зависимости от подключенной нагрузки. Ниже рисунок демонстрирует такую ситуацию.

Рисунок показывает: если все нагрузки RH одинаковы, то наиболее загруженной окажется фаза C, а разгруженная – фаза А. Обрыв нейтрального проводника вызывает неуправляемый процесс.

Последствия обрыва нулевого проводника

В конечном результате неуправляемого процесса последует перераспределение в фазах разности потенциалов. Проводник фазы, которая подвержена наибольшей загрузке, будет выполнять роль нейтрального провода и напряжение в нем увеличится до 380 вольт. В фазе, загруженной по минимуму, напряжение «проседает» до 127 вольт и ниже.

Тогда, если в домашней электросети будут включены электроприборы, то индикатор будет показывать наличие в розетках двух фаз, то есть 380 В. Все потребители электроэнергии будут запитаны по принципу «Звезда без нуля».

Отсюда следует, что выйдут из строя первыми потребители энергии с двигателями. К их числу следует отнести: холодильники, вентиляторы, сплит-системы, стиральные машины, кондиционеры.

За ними последуют ИБП и приборы, в конструкцию которых включены нагревательные элементы. Точная радиоэлектронная аппаратура, которая содержит элементы локальной защиты пострадает меньше всего. Современный телевизор, скорее всего, отключится, но сгореть не должен.

В худшем положении окажутся потребители электроэнергии, находящиеся «в конце» данной цепочки. На этом участке сети будет наблюдаться превышение допустимых величин нагрузки и положение усугубляется тем, что далеко не все автоматы сработают в штатном режиме.

Тогда возрастает вероятность возгораний источников потребляемой мощности и электропроводки. В этом состоит исключительный эпизод перекоса фаз. Полная асимметрия напряжений сети приводит к поражению электрическим током, если к тому же отсутствует надежное дополнительное заземление.

Методы защиты

Одна из причин обрыва нейтрали указывает на неверное подсоединение нулевого проводника либо нарушение последовательности подключений проводов электриком. Однако аварийная ситуация также может создастся и без человеческого фактора.

Так, например, не исключено «отгорание» нейтрального проводника на электроподстанции или в силовом распределительном щите, обрыв жилы в электрическом кабеле и др. Когда нулевой проводник не надежно закреплен, то он нагревается, окисляется и в конечном итоге перегорает.

Использование больших номиналов предохранителей также может привести к аналогичному результату. Частенько нулевая жила обрывается от обледенений, проведения некачественных ремонтных работ, от сильного ветра и др.

Единственный выход из такого аварийного положения просматривается в немедленном отключении питающего напряжения. Это действие доступно сделать вручную, но не всегда можно успеть. С подобной задачей на высоком уровне справляются автоматические устройства защиты, которые способны моментально отключить сеть при возникновении в ней перенапряжения.

К таким устройствам относятся стабилизаторы, УЗО, в которых предусмотрена защита от повышенного напряжения, дифференциальные автоматы, реагирующие на обрыв нейтрали, автоматические выключатели.

Возможности автоматических выключателей расширяются, если совместно с ними используются расцепители напряжения, срабатывающие от допустимой максимальной и минимальной величины разности потенциалов. Нередко для предупреждения аварийных ситуаций используются специализированные реле напряжения.

Эффективен также ограничитель перенапряжения УЗИП. Он отключает электросеть при перенапряжении в электрической проводке, которое возникает из-за обрыва либо «отгорании» нейтрального проводника, при попадании разряда молнии и по ряду других причин. Часто используется в частных домовладениях.

Блок: 6/7 | Кол-во символов: 4533
Источник: https://inbarabin.ru/perekos-faz-i-chem-on-opasen

Как исправить проблему с перекосом фаз

Представленные ниже специализированные устройства выбирают с определенным запасом по мощности (20-25%). Это продлит срок службы оборудования, упростит перемещение техники и подключение новых нагрузок. Для экономии средств можно создать защиту только для отдельных групп потребителей.

Стабилизатор

Такие аппараты можно использовать для поддержания заданного уровня напряжения в одной или трех фазах. Как правило, дополнительно обеспечивается фильтрация импульсных помех. Дорогие модели формируют на выходе сигнал с минимальными искажениями синусоиды.

Современный электронный стабилизатор с индикацией рабочих параметров на ЖКИ экране

Симметрирующий трансформатор

Технику этой категории в соответствующем исполнении применяют в одно,- и трехфазных сетях. С ее помощью:

  • обеспечивают одинаковое распределение нагрузки для источника электропитания вне зависимости от реального распределения токов по фазным линиям;
  • предотвращают падение напряжения (сглаживают переходной процесс) при подключении мощных двигателей и других изделий с индуктивными характеристиками;
  • оптимизируют потребление электроэнергии, когда нагрузка отличается выраженными реактивными параметрами внутреннего сопротивления.

Вместо симметрирующего трансформатора для устранения перекоса применяют комплекты конденсаторов. Также используют комбинированное включение емкостных/ индуктивных компенсационных элементов.

Блок: 7/8 | Кол-во символов: 1418
Источник: https://amperof.ru/teoriya/perekos-faz.html

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Блок: 8/8 | Кол-во символов: 877
Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Видео

Блок: 8/8 | Кол-во символов: 6
Источник: https://amperof.ru/teoriya/perekos-faz.html

Кол-во блоков: 21 | Общее кол-во символов: 28717
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://elektronchic.ru/elektrotexnika/chto-takoe-perekos-faz.html: использовано 3 блоков из 3, кол-во символов 6089 (21%)
  2. https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html: использовано 3 блоков из 8, кол-во символов 2794 (10%)
  3. https://StrojDvor.ru/elektrosnabzhenie/chto-takoe-perekos-faz-v-trexfaznoj-seti-i-kak-ego-proverit/: использовано 2 блоков из 6, кол-во символов 2808 (10%)
  4. https://amperof.ru/teoriya/perekos-faz.html: использовано 3 блоков из 8, кол-во символов 2372 (8%)
  5. https://Proekt-sam.ru/proektsistem/perekos-faz-v-chastnom-dome.html: использовано 2 блоков из 6, кол-во символов 4815 (17%)
  6. https://inbarabin.ru/perekos-faz-i-chem-on-opasen: использовано 4 блоков из 7, кол-во символов 9105 (32%)
  7. https://electric-220.ru/news/perekos_faz_v_trekhfaznoj_seti/2017-12-14-1405: использовано 1 блоков из 5, кол-во символов 734 (3%)

Что такое несимметричное напряжение и несимметрия тока?

Проблемы с электропитанием, которые наиболее часто затрагивают промышленные предприятия, включают провалы и выбросы напряжения, гармоники, переходные процессы, а также несимметрию напряжения и тока.

В сбалансированной трехфазной системе фазные напряжения должны быть равными или очень близкими к равным. Несимметрия или дисбаланс — это измерение неравенства фазных напряжений. Неуравновешенность напряжений — это мера разницы напряжений между фазами трехфазной системы.Это снижает производительность и сокращает срок службы трехфазных двигателей.

Что вызывает несимметрию напряжения?

Несбалансированная трехфазная система может привести к снижению производительности трехфазных двигателей и других трехфазных нагрузок или их преждевременному выходу из строя по следующим причинам:

  • Механические напряжения в двигателях из-за более низкого, чем обычно, выходного крутящего момента.
  • Ток выше нормального в двигателях и трехфазных выпрямителях.
  • Ток небаланса протекает в нейтральных проводниках в трехфазных системах «звезда».

Несимметрия напряжения на клеммах двигателя вызывает большой дисбаланс тока, который может быть в шесть-10 раз больше, чем несимметрия напряжения. Несбалансированные токи приводят к пульсации крутящего момента, повышенной вибрации и механической нагрузке, повышенным потерям и перегреву двигателя. Несбалансированность напряжения и тока также может указывать на проблемы с обслуживанием, такие как ослабленные соединения и изношенные контакты.

Дисбаланс может возникнуть в любой точке распределительной системы. Нагрузки должны быть равномерно распределены по каждой фазе щитка.Если одна фаза становится слишком нагруженной по сравнению с другими, напряжение на этой фазе будет ниже. Трансформаторы и трехфазные двигатели, питаемые от этой панели, могут нагреваться сильнее, быть необычно шумными, чрезмерно вибрировать и даже преждевременно выходить из строя.

Как рассчитать небаланс напряжений

Расчет для определения дисбаланса напряжений довольно прост. Результатом является процентный дисбаланс, который может использоваться для определения следующих шагов при поиске и устранении неисправностей двигателя.Расчет состоит из трех этапов:

  1. Определение среднего напряжения или тока.
  2. Вычислите наибольшее отклонение напряжения или тока.
  3. Разделите максимальное отклонение на среднее напряжение или ток и умножьте на 100.

Расчет

% дисбаланса = (Максимальное отклонение от среднего V или I / среднего V или I) x 100

Пример

Это приводит к процентной несимметрии напряжения или тока для напряжения питания на входе привода.Вот пример:

30 + 35 + 30 = 95

95/3 = 31,7 средний ток

35 — 31,7 = 3,3 максимальное отклонение

3,3 / 31,7 = 0,14

.104 x 100 = ток 10,4% небаланс

В этом примере текущий дисбаланс составляет 10,4%. В зависимости от номинала и импеданса цепи это может быть либо приемлемым, либо серьезной проблемой. Если ток нагрузки близок к номинальному току цепи, высокий уровень дисбаланса может вызвать ложное срабатывание выключателя.

Учитывайте это

Расчет дисбаланса вручную — это определение несимметрии напряжения или тока на определенный момент времени. Анализатор моторного привода покажет дисбаланс напряжения или тока в реальном времени, включая любые отклонения дисбаланса.

Что такое несимметрия напряжения и несимметрия тока?

Проблемы с электропитанием, которые наиболее часто затрагивают промышленные предприятия, включают провалы и выбросы напряжения, гармоники, переходные процессы, а также несимметрию напряжения и тока.

В сбалансированной трехфазной системе фазные напряжения должны быть равными или очень близкими к равным.Несимметрия или дисбаланс — это измерение неравенства фазных напряжений. Неуравновешенность напряжений — это мера разницы напряжений между фазами трехфазной системы. Это снижает производительность и сокращает срок службы трехфазных двигателей.

Воздействие переходных процессов на двигатели может быть серьезным. Изоляция обмотки двигателя может выйти из строя, что может привести к дорогостоящему преждевременному отказу двигателя и незапланированным простоям.

Проверка переходного напряжения в двигателях

Переходные напряжения — временные нежелательные скачки или скачки напряжения в электрической цепи — могут поступать из любого количества источников внутри или за пределами промышленного предприятия.

Включение и выключение смежных нагрузок, конденсаторные батареи для коррекции коэффициента мощности или даже отдаленная погода могут создавать переходные напряжения в распределительных системах. Эти переходные процессы, которые различаются по амплитуде и частоте, могут разрушать или вызывать пробой изоляции в обмотках двигателя.

Поиск источника этих переходных процессов может быть затруднен из-за частоты возникновения и того факта, что их симптомы могут проявляться по-разному. Например, на кабелях управления может появиться переходный процесс, который не обязательно напрямую вызывает повреждение оборудования, но может нарушить работу.

Хорошим способом выявления и измерения переходных процессов является использование трехфазного анализатора качества электроэнергии с функцией переходных процессов, такого как анализатор качества электроэнергии и двигателя Fluke 438-II. Функция переходного процесса на измерителе установлена ​​на значение более чем на 50 В выше нормального напряжения. Затем дисплей измерителя покажет потенциально проблемное напряжение выше 50 В — переходные процессы.

Если при первоначальном измерении переходных процессов не обнаружено, рекомендуется измерять и регистрировать качество электроэнергии с течением времени с помощью усовершенствованного промышленного регистратора качества электроэнергии, такого как трехфазный регистратор качества электроэнергии Fluke 1750.

Что вызывает несимметрию напряжения?

Несбалансированная трехфазная система может привести к снижению производительности трехфазных двигателей и других трехфазных нагрузок или их преждевременному выходу из строя по следующим причинам:

  • Механические напряжения в двигателях из-за выходного крутящего момента ниже нормального
  • Выше чем нормальный ток в двигателях и трехфазных выпрямителях
  • Ток дисбаланса будет течь в нейтральных проводниках в трехфазных системах звездой

Несимметрия напряжения на клеммах двигателя вызывает большой дисбаланс тока, который может быть в 6-10 раз больше, чем напряжение дисбаланс.Несбалансированные токи приводят к пульсации крутящего момента, повышенной вибрации и механической нагрузке, повышенным потерям и перегреву двигателя. Несбалансированность напряжения и тока также может указывать на проблемы с обслуживанием, такие как ослабленные соединения и изношенные контакты.

Дисбаланс может возникнуть в любой точке распределительной системы. Нагрузки должны быть равномерно распределены по каждой фазе щитка. Если одна фаза становится слишком нагруженной по сравнению с другими, напряжение на этой фазе будет ниже. Трансформаторы и трехфазные двигатели, питаемые от этой панели, могут нагреваться сильнее, быть необычно шумными, чрезмерно вибрировать и даже преждевременно выходить из строя.

Как рассчитать дисбаланс напряжений

Расчет для определения дисбаланса напряжений прост. Результатом является процентный дисбаланс, который может использоваться для определения следующих шагов при поиске и устранении неисправностей двигателя. Расчет состоит из трех этапов:

  1. Определение среднего напряжения или тока
  2. Расчет наибольшего отклонения напряжения или тока
  3. Разделите максимальное отклонение на среднее напряжение или ток и умножьте на 100% дисбаланс = (Максимальное отклонение от среднего В или I / среднее значение В или I) x 100

Расчет дисбаланса вручную — это определение несимметрии напряжения или тока на определенный момент времени.Анализатор электропривода, такой как Fluke 438-II, покажет дисбаланс напряжения или тока в реальном времени, включая любые отклонения дисбаланса.

Связанные ресурсы

Связанные ресурсы

Трехфазное питание: дельта и звезда, объяснение

Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру. Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях.Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем обогрева, инверторов, выпрямителей, источника питания и индукционных цепей. Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.

В трехфазной системе есть три проводника, по которым протекает переменный ток.Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одну и ту же частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, обеспечивая постоянную передачу мощности во время электрических циклов.

Конфигурации с трехфазным питанием особенно важны, поскольку они могут поддерживать в три раза больше мощности, используя всего в 1 ½ — 2 раза больше проводов, чем конфигурация с однофазным питанием. Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы.Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.

Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой высшие гармоники различных частот переключения.

По этой причине 3-фазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они уменьшают количество электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.

Различия между Delta и WYE

Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода после соединения друг с другом. «Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE, обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и потоке тока.Конфигурация WYE приобрела популярность в последние годы, поскольку она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).

Что такое трехфазные фильтры линии питания?

Трехфазные фильтры электромагнитных помех

разработаны в соответствии со строгими требованиями норм электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), допустимые на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери.В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.

Дельта-трехфазный фильтр электромагнитных помех

3-фазные фильтры электромагнитных помех

Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токоведущих и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.

В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия не подключена / заземлена. Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.

Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость.Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.

Проектирование и трехфазный дельта-фильтр электромагнитных помех
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на линейное напряжение.
  4. Умножьте предыдущий ответ на квадратный корень из 3.
Преимущества дельта-конфигурации
  • Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
  • Защита для дельта-конфигураций может быть простой.
  • Конфигурации
  • Delta обычно настраиваются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.

WYE 3-фазный фильтр для защиты от электромагнитных помех

Фильтры EMI

WYE предназначены для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три провода под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, к которой подключается нейтральный провод.

Когда нагрузки WYE-конфигурации полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать в фильтре конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока), что может привести к экономии затрат, веса и объема.

Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.

Проектирование и трехфазный фильтр электромагнитных помех WYE
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на напряжение между фазой и нейтралью / землей.
Преимущества конфигураций WYE
  • Предпочтительно для распределения электроэнергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
  • Точка звезды обычно заземлена, что отлично подходит для несимметричных нагрузок.
  • Для такой же поддержки напряжения требуется меньшая изоляция.

Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE

Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более рентабельной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.

Трехфазный фильтр электромагнитных помех Astrodyne TDI с дельта- и WYE-конфигурациями

Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь уменьшить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480 В / 520 В до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.

Благодаря нашему обширному ассортименту фильтров и сильным конструктивным возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазного фильтра электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.

Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.

Новое определение асимметрии напряжения с использованием фазового сдвига питания

  • Адекитан, И.А., и АбдулКарим, А. (2019). Значение режима разбаланса напряжений на работу и потери энергии 3-х фазного асинхронного двигателя. Инженерные и прикладные научные исследования, 46 (3), 200–209.

    Google Scholar

  • Адекитан А., Огунджуйигбе А. С. и Айоделе Т. Р. (2019a). Влияние сдвига фаз питания на работу трехфазного асинхронного двигателя. Engineering Review, 39 (3), 270–282.

    Артикул Google Scholar

  • Адекитан, А. И., Самуэль, И., и Амута, Э. (2019b). Набор данных о характеристиках трехфазного асинхронного двигателя в условиях сбалансированного и несимметричного напряжения питания. Data in Brief, 24, 103947. https://doi.org/10.1016/j.dib.2019.103947.

    Артикул Google Scholar

  • Анвари, М., & Хиендро, А. (2010). Новый коэффициент дисбаланса для оценки производительности трехфазного асинхронного двигателя с небалансом по пониженному и повышенному напряжению. IEEE Transactions on Energy Conversion, 25 (3), 619–625.

    Артикул Google Scholar

  • де Кастро и Силва, М. Д., Феррейра Филью, А. Л., Невес, А. Б. Ф. и Мендонса, М. В. Б. (2016). Влияние компонентов последовательного напряжения на крутящий момент и КПД трехфазного асинхронного двигателя. Electric Power Systems Research, 140 (Приложение C), 942–949. https://doi.org/10.1016/j.epsr.2016.03.051.

    Артикул Google Scholar

  • душ Сантуш Перейра, Г. М., Фернандес, Т. С. П., и Аоки, А. Р. (2018). Размещение конденсаторов и регуляторов напряжения в трехфазных распределительных сетях. Журнал управления, автоматики и электрических систем, 29 (2), 238–249. https: // doi.org / 10.1007 / s40313-018-0367-x.

    Артикул Google Scholar

  • Фаиз, Дж., Эбрахимпур, Х., и Пиллэй, П. (2004). Влияние несимметричного напряжения на установившееся состояние трехфазного асинхронного двигателя с короткозамкнутым ротором. IEEE Transactions on Energy Conversion, 19 (4), 657–662.

    Артикул Google Scholar

  • Гарсия, Д.К., Анесио Филью, Л., Оливейра, М. А., Фернандес, О. А., & ду Насименто, Ф. А. (2009). Численная оценка и минимизация небаланса напряжений. Исследование электроэнергетических систем, 79 (10), 1441–1445.

    Артикул Google Scholar

  • Гнацински П. (2008). Влияние неуравновешенного напряжения на температуру обмоток, срок службы и грузоподъемность асинхронной машины. Преобразование энергии и управление, 49 (4), 761–770.https://doi.org/10.1016/j.enconman.2007.07.033.

    Артикул Google Scholar

  • Гнацински, П., Пеплински, М., и Халльманн, Д. (2018) Тепловые переходные процессы в асинхронной машине при изменяющемся несимметричном напряжении. В 2018 XIII Международная конференция по электрическим машинам (ICEM), 2018 (стр. 1338–1343). IEEE.

  • Гнацински П., Тарасюк Т. (2016). Энергоэффективная работа асинхронных двигателей и стандарты качества электроэнергии. Исследование электроэнергетических систем, 135 (Приложение C), 10–17. https://doi.org/10.1016/j.epsr.2016.03.022.

    Артикул Google Scholar

  • Хиендро, А. (2010). Количественный метод асинхронного двигателя в условиях несимметричного напряжения. Телкомника, 8 (2), 73–80.

    Артикул Google Scholar

  • Паласиос, Р.Х. К., да Силва, И. Н., Гёдтель, А., Годой, В. Ф., и Олескович, М. (2014). Надежный нейронный метод оценки крутящего момента трехфазного асинхронного двигателя. Журнал управления, автоматики и электрических систем, 25 (4), 493–502. https://doi.org/10.1007/s40313-014-0118-6.

    Артикул Google Scholar

  • Пиллэй П. и Маньяж М. (2001). Определения несимметрии напряжения. Обзор энергетики IEEE, 21 (5), 50–51.

    Артикул Google Scholar

  • Цю, Х., Чжан, Ю., Ян, К., и И, Р. (2019). Влияние комбинации пазов статора и ротора на производительность высоковольтного асинхронного двигателя. Журнал управления, автоматики и электрических систем . https://doi.org/10.1007/s40313-019-00502-w.

    Артикул Google Scholar

  • Quispe, E., & Lopez, I.(2015). Влияние несимметричных напряжений на энергетические характеристики трехфазных асинхронных двигателей . В 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 2015 (стр. 1–6). IEEE. https://doi.org/10.1109/PEPQA.2015.7168237.

  • Quispe, E., Vigeo, P., & Cogollos, J. (2005). Статистические уравнения для оценки влияния несимметрии напряжения на КПД и коэффициент мощности трехфазных асинхронных двигателей. Транзакции WSEAS по цепям и системам, Бразилия, 4 (4), 234–239.

    Google Scholar

  • Райнери К. А., Гомес Дж. К., Балагер Э. Б. и Моркос М. М. (2006). Экспериментальное исследование работы асинхронного двигателя при несимметричном питании. Электроэнергетические компоненты и системы, 34 (7), 817–829. https://doi.org/10.1080/15325000500488636.

    Артикул Google Scholar

  • Сингх Шаши, Б., и Сингх Ашиш, К.(2013). Точная оценка производительности асинхронного двигателя при несимметричном питании через коэффициент несимметрии импеданса. Journal of Electrical Engineering, 64, 31.

    Статья Google Scholar

  • Yaw-Juen, W. (2001). Анализ влияния несимметрии трехфазного напряжения на асинхронные двигатели с акцентом на угол комплексного коэффициента несимметрии напряжения. IEEE Transactions on Energy Conversion, 16 (3), 270–275.https://doi.org/10.1109/60.937207.

    Артикул Google Scholar

  • Автоматическая балансировка фаз в электрических сетях переменного тока — 3DFS

    02 Фев

    Автоматическая балансировка фаз в электрических сетях переменного тока

    Программно-определяемая электроэнергия автоматически уравновешивает фазы в сетях переменного тока

    (Чтобы просмотреть последнюю статью с обновленными изображениями, нажмите здесь)


    Программно-определяемый метод электричества контролирует и уравновешивает поток энергии в режиме реального времени, используя инновации в вычислительной и силовой электронике, а также достижения в области датчиков и управления.Баланс между фазами является критическим компонентом качества электроэнергии в электрических сетях. Когда имеется дисбаланс фаз, возникают прямые потери в электросети, вызывающие вихревые токи на входе трансформатора на стороне питания и потери тока нейтрали на стороне нагрузки.

    Всегда важно помнить, что потери и нестабильность, возникающие из-за несбалансированных фаз, всегда колеблются. Каждая фаза загружается независимыми машинами, потребляющими электроэнергию из сети без какой-либо обратной связи по этому процессу, поэтому дисбаланс колеблется в соответствии со случайной схемой потребления энергии нагрузкой.

    Встраивание программно-определяемого электричества в электрическую сеть учитывает это, равномерно потребляя мощность от восходящих фаз и идеально балансируя трансформатор, а также перераспределяя мощность по каждой фазе в соответствии с потребностями на месте на панели. Регулировка баланса происходит каждую микросекунду, чтобы учесть любую корректировку энергопотребления нагрузками.

    Взаимодействие с электричеством в реальном времени

    Наша методология позволяет одновременно осуществлять сбор, анализ, корректировку и балансировку фаз в реальном времени.Система разработана так, чтобы быть ненавязчивой и идеально сбалансировать сеть для полностью оптимизированной электрической среды. Это включает в себя этапы восходящего потока и инфраструктуру, а также обеспечивает точное распределение чистой электроэнергии по всей сети.

    Благодаря автоматической балансировке фаз, корректировке реактивной мощности и гармоник по мере прохождения мощности с помощью программно-определяемого электричества электрические сети объекта динамически и гибко предотвращают внутренние электрические помехи.Эта эластичность предотвращает срабатывание защитных устройств и защищает все подключенные нагрузки во время сбоев питания. Независимо от того, находится ли электрическая сеть на объекте или в микросети, Software-Defined Electricity максимизирует время безотказной работы и эффективность, сокращая затраты и техническое обслуживание каждую микросекунду.

    Динамическое программное управление электроэнергией с полными данными и проверкой необходимо для любой операции. Свяжитесь с 3DFS, чтобы узнать больше.

    Трехфазная балансировка нагрузки | Sunbird DCIM

    Трехфазная балансировка нагрузки происходит, когда нагрузки источников питания, таких как трехфазный стоечный PDU, равномерно распределяются по всем трем фазам (L1 / L2, L2 / L3 и L3 / L1).

    Это может быть достигнуто за счет подключения равного количества устройств к розеткам PDU для каждой фазы и использования одинаковой мощности нагрузки на каждой фазе. Некоторые производители предоставляют трехфазные PDU с переменно-фазированным питанием для каждой розетки, а не для каждой ветви.

    Трехфазная балансировка нагрузки желательна, поскольку несбалансированная система может привести к снижению эффективности, срабатыванию автоматических выключателей и сокращению срока службы оборудования.

    Преимущества сбалансированного трехфазного питания

    • Повышенное использование мощности вышестоящей электрической инфраструктуры, что приводит к повышению общей эффективности центра обработки данных и может снизить капитальные затраты.
    • Способность поддерживать значительно более высокую удельную мощность по сравнению с однофазной схемой с аналогичной силой тока.
    • Поддерживайте коэффициент мощности входящей мощности и избегайте штрафов, налагаемых энергокомпанией.
    • Масштабируемость для будущих требований к нагрузке.
    • Требуется меньше хлыстов и кабелей, что снижает препятствия для воздушного потока, создает более чистую рабочую среду и упрощает установку и обслуживание.
    • Продлить срок эксплуатации оборудования.

    Мониторинг трехфазной мощности с помощью программного обеспечения DCIM

    Расчет мощности для трехфазных систем электроснабжения может значительно усложниться, если нагрузка не сбалансирована.Это происходит, когда ток нагрузки между любыми двумя линиями значительно отличается от тока нагрузки между оставшимися линиями. Когда есть несбалансированная нагрузка, эффективность системы и количество подаваемой мощности будут снижены. Поставщики интеллектуальных стоечных БРП с трехфазным питанием предоставляют локальные измерители нагрузки тока для каждой фазы на БРП, что значительно упрощает мониторинг и балансировку мощности, чем выполнение ручных расчетов.

    Для мониторинга энергопотребления и емкости рекомендуется использовать программное обеспечение для управления инфраструктурой центра обработки данных (DCIM).Современное программное обеспечение DCIM имеет предупреждения о трехфазном дисбалансе для всего оборудования предприятия, включая стоечные PDU, напольные PDU, ИБП, RPP, счетчики и шинопроводы. Ранее это была чрезвычайно сложная задача, теперь менеджеры центров обработки данных имеют простое решение для мониторинга, которое автоматически вычисляет процент дисбаланса и предупреждает их о любом дисбалансе в тракте питания на основе настраиваемых пороговых значений. Пользователи могут сообщать о текущих показаниях трехфазного тока и процентном дисбалансе.

    Анализ несимметричных трехфазных цепей

    Анализ несимметричных трехфазных цепей:

    Типы несимметричных нагрузок — Несимметрия существует в цепи, когда импедансы одной или нескольких фаз отличаются от импедансов других фаз.В этом случае линейные или фазные токи различны и смещены друг от друга на разные углы. До сих пор мы рассматривали сбалансированные нагрузки, подключенные к сбалансированным системам. Достаточно решить проблемы, рассматривая одну фазу только на сбалансированных нагрузках; условия на двух других фазах аналогичны. С проблемами анализа несимметричных трехфазных цепей трудно справиться, потому что условия в трех фазах различны. Однако предполагается, что напряжения источника сбалансированы. Если система представляет собой трехпроводную систему, токи, протекающие к нагрузке в трех линиях, должны добавляться к нулю в любой данный момент.Если система является четырехпроводной, сумма трех исходящих линейных токов равна обратному току в нейтральном проводе. Теперь мы рассмотрим различные методы управления несимметричными нагрузками, соединенными звездой и треугольником. На практике мы можем встретить следующие несбалансированные нагрузки:

    • Несимметричная нагрузка, подключенная по схеме треугольник
    • Несимметричная трехпроводная нагрузка, подключенная звездой, и
    • Несимметричная четырехпроводная нагрузка, соединенная звездой.

    (a) Несимметричная нагрузка, подключенная по схеме треугольник:

    На рисунке 9.33 показана несимметричная треугольная нагрузка, подключенная к симметричному трехфазному источнику питания.

    Несимметричная нагрузка, подключенная по схеме треугольника, питаемая от сбалансированного трехфазного источника питания, не представляет никаких новых проблем, поскольку напряжение на фазе нагрузки является фиксированным. Оно не зависит от характера нагрузки и равно линейному напряжению источника питания. Ток в каждой фазе нагрузки равен линейному напряжению, деленному на полное сопротивление этой фазы.Линейный ток будет разностью фаз соответствующих фазных токов, принимая V RY в качестве опорного вектора.

    Предполагая последовательность фаз RYB, мы имеем

    Фазные токи

    Три линейных тока равны

    (b) Несимметричная четырехпроводная нагрузка, подключенная звездой:

    Рисунок 9.35 показывает несимметричную нагрузку звездой, подключенную к симметричному 3-фазному 4-проводному источнику питания.

    Точка звезды N L нагрузки подключена к точке звезды N S источника питания.Это простейший случай анализа несимметричной трехфазной цепи из-за наличия нейтрального провода; точки звезды источника питания N S (генератор) и нагрузки N L имеют одинаковый потенциал. Это означает, что напряжение на каждом импедансе нагрузки равно фазному напряжению источника питания (генератора), то есть напряжения на трех импедансах нагрузки уравниваются, даже если импедансы нагрузки не равны. Однако ток в каждой фазе (или линии) будет разным.Очевидно, что векторная сумма токов в трех линиях не равна нулю, а равна току нейтрали. Фазные токи можно рассчитать аналогично тому, как это используется для несимметричной нагрузки, соединенной треугольником.

    Принимая фазное напряжение V RN = V∠0 ° V в качестве эталона и предполагая последовательность фаз RYB, мы имеем следующие три фазных напряжения:

    Фазные токи

    Между прочим, I R , I Y и I B также являются линейными токами; ток в нейтральном проводе — это векторная сумма трех линейных токов.

    (c) Несимметричная трехпроводная нагрузка, подключенная звездой:

    В трехфазной четырехпроводной системе, если соединение между нейтралью питания и нейтралью нагрузки нарушено, это приведет к несбалансированной трехпроводной нагрузке по схеме звезды. Этот тип нагрузки редко встречается на практике, потому что все нагрузки трехпроводной звезды сбалансированы. Такая система показана на рис. 9.37. Обратите внимание, что точка звезды питания (N S ) изолирована от точки звезды нагрузки (N L ).

    Потенциал звезды нагрузки отличается от потенциала звезды питания.В результате напряжения фазы нагрузки не равны напряжению фазы питания; и они не только не равны по величине, но и имеют друг с другом углы, отличные от 120 °. Величина каждого фазного напряжения зависит от отдельных фазных нагрузок. Потенциал нейтральной точки нагрузки изменяется в соответствии с изменениями импедансов фаз, поэтому иногда нейтраль нагрузки также называют плавающей нейтральной точкой. Все небалансные нагрузки, соединенные звездой, питаемые от многофазных систем без нейтрального провода, имеют плавающую нейтральную точку.Сумма векторов трех несимметричных линейных токов равна нулю. Фазовое напряжение нагрузки не равно 1 / √3 линейного напряжения. С несимметричной трехпроводной нагрузкой типа «звезда» трудно справиться. Это связано с тем, что напряжения фазы нагрузки не могут быть определены непосредственно из заданных напряжений питающей сети. Существует множество методов устранения таких несимметричных нагрузок с Y-соединением. Здесь представлены два часто используемых метода. Их

    • Метод преобразования звезда-треугольник и
    • Применение теоремы Миллмана
    Метод звезда-треугольник для решения несбалансированной нагрузки:

    Рисунок 9.38 (a) показывает несимметричную нагрузку, соединенную звездой. В разделе 9.6 уже было показано, что трехфазная нагрузка, соединенная звездой, может быть заменена эквивалентной нагрузкой, соединенной треугольником. Таким образом, звездная нагрузка на рис. 9.38 (a) может быть заменена эквивалентной дельтой, как показано на рис. 9.38 (b), где полное сопротивление в каждой фазе равно

    .

    Затем проблема решается как несимметричная система с треугольным соединением. Рассчитанные таким образом линейные токи по величине и фазе равны токам, принимаемым исходной несбалансированной нагрузкой, подключенной звездой (Y).

    Метод Миллмана решения несбалансированной нагрузки:

    Один из методов решения проблемы несимметричной трехпроводной нагрузки, соединенной звездой, с помощью преобразования звезда-треугольник описан в разделе 9.10.5. Но этот метод трудоемок и требует длительных вычислений. Используя теорему Миллмана, мы можем решить этот тип задач намного проще. Рассмотрим несимметричную нагрузку звездой (Y), подключенную к сбалансированной трехфазной сети, как показано на рис. 9.40 (a). V RO , V YO и V BO — фазные напряжения источника питания.Они равны по величине, но смещены друг от друга на 120 °. V RO ‘, V YO’ и V BO ‘ — напряжения фазы нагрузки; они не равны по величине, а по фазе различаются на разные углы. Z R , Z Y и Z B — это импедансы ветвей несбалансированной нагрузки, подключенной звездой (Y). На рисунке 9.40 (b) показана треугольная векторная диаграмма всей системы. Расстояния RY, YB и BR представляют линейные напряжения питания и нагрузки.Они равны по величине, но смещены на 120 °. Здесь O — точка звезды источника питания, расположенная в центре равностороннего треугольника RYB. O ’- точка звезды нагрузки. Точка звезды источника питания с нулевым потенциалом отличается от точки звезды на нагрузке из-за несбалансированной нагрузки. O ’имеет некоторый потенциал по отношению к O и смещен от центра треугольника. Расстояние O’O представляет собой напряжение нулевой точки нагрузки по отношению к нейтральной точке источника питания Vo′o.

    V o’o вычисляется с использованием теоремы Миллмана.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *