+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

как проводят лужение, паяют нержавейку и подбирают флюс для надежного соединения металлов

Пайка, как технология создания неразъёмных соединений металлических изделий имеет древнюю историю. И сегодня, несмотря на лидирующую позицию сварочных процессов, пайка стали, алюминия, меди, и многих других металлов и сплавов продолжает успешно применяться в различных отраслях техники.

Процесс пайки разных по составу металлических сплавов имеет свои особенности. Это связано с различной температурой плавления и химическим составом сплавов. К некоторым маркам стали пайка не применяется.

Сущность паяльной технологии

Пайкой называют соединение металлических деталей с помощью припоя, являющегося более легкоплавким металлом, который, будучи расплавленным, смачивает соединяемые поверхности.

Таким образом, процесс паяния связан с нагреванием и протекает при температуре, превышающей точку плавления припоя, но не достигающей температуры плавления соединяемого металла.

В процессе пайки соединяемые детали основного металла не изменяют форму, поскольку сами не подвергаются плавлению.

Прочность создаваемого соединения определяется механическими свойствами, которыми обладает припой для пайки. Когда стальные детали припаивают друг к другу, соединение всегда уступает по прочности основному материалу.

Главным препятствием для создания паяных соединений является окисел, образующийся на поверхности любого металла. Слой окисла не позволяет расплавленному припою равномерно смочить поверхность детали, поэтому металл должен предварительно зачищаться.

Для защиты поверхностей от окисления в процессе спаивания, применяются специальные вещества – флюсы. Для соединения разных материалов используются различные флюсы. Например, для того, чтобы спаять нержавейку, применяют буру. Флюсами для стали могут служить канифоль, паяльная кислота.

Основным процессом, сопровождающим создание паяного соединения, является нагрев заготовок. В зависимости от массы спаиваемых деталей и вида применяемого припоя, нагрев может осуществляться следующими способами:

  • паяльником;
  • газовой горелкой;
  • высокочастотным индуктором;
  • в специальных печах.

Например, проволоку небольшого диаметра можно легко прогреть обычным паяльником, при пайке стальных труб понадобится газовая горелка, а массивную заготовку придётся помещать в печь.

Низколегированной

Низколегированная углеродистая сталь относится к сплавам железа, наиболее легко подвергаемым процессу пайки.

Это объясняется тем, что на поверхности сталей данного типа образуется сравнительно непрочная плёнка окислов, легко устраняемая применением обычных флюсов.

Процесс пайки чёрных металлов может проходить при относительно низкой температуре, не превышающей 450 ℃ в случае применения мягких и легкоплавких свинцово-оловянных припоев.

Для получения паяного соединения, обладающего большей твёрдостью и механической прочностью, следует применять более твёрдые тугоплавкие припои, например на основе меди. Такая пайка осуществляется при температуре до 750 ℃.

Конструктивной

Этот вид сталей характеризуется наличием хрома, применяемого в качестве легирующей добавки. Благодаря хрому сталь приобретает необходимые механические характеристики.

Однако наличие этого легирующего компонента существенно затрудняет процесс пайки, так как на поверхности конструкционных сталей образуется довольно прочная и с трудом разрушаемая плёнка окисла.

Припаять сталь с добавкой хрома можно, применяя активный флюс, содержащий кислоты. Кроме этого, для получения качественного результата, используются специальные приспособления, создающие защитную атмосферу в зоне осуществления пайки.

Кроме этого, стальную поверхность, подготовленную для пайки, покрывают слоем порошка, содержащего металлические компоненты. Этот защитный слой предотвращает окисление стальной поверхности и выгорание легирующих элементов в процессе нагревания.

Паяное соединение легированных сталей производится с применением твёрдых припоев, содержащих медь, серебро или никель.

Инструментальной

Инструментальная сталь отличается очень высокой твёрдостью. Однако виды инструментальной стали, не имеющие в своём составе вольфрама, изменяют свои механические свойства при нагревании до 200 ℃ и более, значительно теряя при этом прочность.

Такие виды стали не подлежат пайке. Для устранения этого недостатка инструментальные стали, подлежащие нагреву в процессе эксплуатации, производятся с вольфрамовыми добавками. Такая сталь может подвергаться нагреву до 600 ℃, не утрачивая при этом ценных механических свойств.

Спаять инструментальную сталь можно припоем на основе никеля или ферросплавов. Нагревание заготовок обычно производят индукционным способом. При этом применяются флюсы, содержащие бор и фтор.

Последовательность операций

Процесс пайки стальных деталей начинается с тщательной очистки заготовок от грязи, ржавчины и следов масел. Для этого пользуются шлифовальной шкуркой, напильником, стальной щёткой. Ржавые детали можно обработать преобразователем ржавчины на основе ортофосфорной кислоты. Жировые загрязнения удаляются растворителем или щелочным раствором.

После очистки и обезжиривания, на поверхность деталей наносится слой флюса. Если в качестве припоя служит олово, детали предварительно лудят. Лужение представляет собой равномерное смачивание поверхности расплавленным оловом.

После этого, детали собирают и надёжно фиксируют в том положении, в котором они должны находиться после соединения.

Далее, детали нагреваются подходящим способом. Нагрев производится до температуры, несколько превышающей температуру плавления применяемого припоя, который должен быть помещён в область соединения.

При расплавлении он затекает в зазор между деталями, образуя соединение. После остывания и кристаллизации припоя, шов зачищают, следы флюса удаляют.

Технология пайки углеродистых и низколегированных сталей

Пайка низкоуглеродистых и низколегированных сталей не вызывает особых трудностей и может быть осуществлена всеми известными способами. Особенно легко протекает пайка низкоуглеродистых сталей. При пайке высокоуглеродистых сталей требуется лишь более тщательная подготовка соединяемых поверхностей.

Низкотемпературную пайку углеродистых и низколегированных сталей часто выполняют оловянно-свинцовыми припоями. В качестве флюса обычно применяют водные растворы хлористого цинка.

При пайке сталей мартенситного класса оловянно-свинцовыми припоями возможно возникновение трещин под действием расплавленного припоя.

При этом наблюдается определенная закономерность: чем больше олова в применяемом припое и чем выше собственные напряжения в паяемом металле, тем большая вероятность возникновения в нем трещин в процессе пайки.

Для устранения этого явления перед пайкой необходимо производить отпуск закаленных сталей. При сборке заготовок из таких сталей под пайку необходимо стремиться не создавать собственных напряжений и производить пайку припоями, содержащими не более 40% Sn.

При пайке сталей наиболее часто применяют оловянно-свинцовые припои: ПОССу 40-0,5; ПОС 61, олово.

В соединениях, паянных этими припоями, на границе раздела припой — основной металл может образоваться прослойка хрупкой интерметаллидной фазы FeSn2, которая ослабляет шов.

Не допускается перегрев припоя, так как это увеличивает толщину интерметаллидной прослойки, повышается пористость паяных швов и прочность соединений снижается.

Прочность паяных соединений во многом зависит и от технологического процесса пайки, зазора, применяемых флюсов и припоев. Наибольшую прочность имеют соединения стали, паянные припоем ПОС 40 и ПОС 61.

Низкотемпературные припои на основе цинка малопригодны для пайки углеродистых и низколегированных сталей из-за плохого смачивания, затекания в зазор и низкой прочности паяных соединений в результате образования на границе раздела хрупкой интерметаллидной прослойки.

Кадмиевые припои системы (Cd — Ag), состоящие из металлов, не образующих твердых растворов с железом, плохо растекаются при пайке сталей и не дают прочных соединений.

Кадмиево-серебряные припои, легированные цинком, который активно взаимодействует с железом, обеспечивают более прочные соединения, чем припои системы Pb — Sn или Pb — Ag.

Например, прочность соединений стали 10, паянных припоем состава 82% Cd, 16% Zn и 2% Ag, составляет 16,0 кгс/мм2.

Высокотемпературную пайку углеродистых и низколегированных сталей выполняют обычно медью, медно-цинковым и серебряными припоями.

Медно-фосфористые припои применять для пайки сталей не рекомендуется, так как на границе со сталью они образуют хрупкие фосфиды железа, что придает паяным соединениям повышенную хрупкость и хладноломкость.

Применение медно-фосфористых припоев возможно только для соединений, не работающих при вибрационных и динамических нагрузках, а также при низких температурах.

Для пайки низколегированных сталей возможно применение в качестве припоя чугуна. Для этого используют высокопрочные и пластичные модифицированные чугуны.

При пайке углеродистых и низколегированных сталей в качестве флюсов применяют буру, флюсы № 200, 201, 209, паяют также в газовых средах, в атмосфере водорода, диссоциированного аммиака, продуктов неполного сгорания смесей воздуха с газами: генераторным городским, пропаном и другими.

Окисная пленка, образующаяся на поверхности углеродистых и низколегированных сталей, химически нестойкая. Она легко восстанавливается в газовых средах и растворяется всеми флюсами, рекомендуемыми для пайки сталей.

При пайке в контролируемых средах углеродистых и низколегированных сталей самим распространенным способом является пайка медью в печи с восстановительной атмосферой.

Соединения, паянные медью, более прочные, чем медь в исходном состоянии. Предел прочности при растяжении соединений стали СтЗ, паянных медью в защитной среде, составляет 35 кгс/мм2, а предел прочности литой меди 19-20кгс/мм2.

Повышение прочности паяных швов, выполненных медью, обусловлено растворением железа в жидкой меди в процессе пайки. Необходимо учитывать, что медь и некоторые медные припои склонны к проникновению по границам зерен железа низкоуглеродистых и конструкционных сталей.

Нагрев при пайке термически обработанных низколегированных и углеродистых сталей в некоторых случаях приводит к отжигу, превращению остаточного аустенита в мартенсит, распаду мартенсита, к отпускной хрупкости. Поэтому при выборе температуры пайки и способа нагрева необходимо учитывать возможность развития этих процессов.

Способы нагрева, припои и флюсы для пайки сталей приведены в соответствующих разделах.

Низколегированные стали также можно паять всеми известными способами. Затруднения в процессе пайки встречаются только в тех случаях, когда легирующие элементы, например алюминий или хром, образуют на поверхности стали химически устойчивые окислы.

В этом случае применяют более активные флюсы, а магнитные стали, содержащие алюминий, перед пайкой предварительно обрабатывают в растворе NaOH для удаления плотной пленки окислов алюминия.

В качестве газовой среды при пайке используют азот или аргон в смеси с трехфтористым бором. При этом следует иметь в виду возможность поверхностного азотирования стали в процессе пайки, что при небольших толщинах (менее 1 мм) может привести к повышению прочности и снижению пластичности стали.

При пайке закаленных низколегированных сталей следует иметь в виду возможность отжига в процессе пайки, и, следовательно, снижения их механических свойств.

Во избежание этого пайку ведут при температуре высокого отпуска (620°С) с применением припоя ПСр 40 и флюсов № 284 или 209, которые обеспечивают получение высококачественных паяных соединений.

Возможен и другой вариант высокотемпературной пайки конструкционных сталей без снижения прочности основного металла.

Для этого совмещают процесс пайки с закалкой и последующим отпуском. Такой технологический процесс дает возможность не только сохранить прочность основного металла, но и существенно повысить прочность паяных соединений.

Инструкция по пайке сталей. Пайка высокотемпературными припоями узлов агрегатов

Назначение

Инструкция является руководством по пайке сталей: конструкционных, коррозионностойких (нержавеющих) и жаропрочных высокотемпературными твердыми серебрянными припоями ПСр40; ПСр МИН63; ПСр21,5; и медными припоями ВПР1; ВПР4 и их импортными аналогами газовыми горелками, а также в камерных печах и печах с вакуумной средой.

Оборудование и материалы

2.1 Горелка газовая ГОСТ 1077-79
2.2 Электропечь камерная с температурой до 1300 градусов
2.3 Вакуумная печка типа СНВ
2.4 Необходимые приспособления для установки и фиксации деталей
2.5 Ацетон ГОСТ 2603-79
2.6 Аргон чистый класса «А» ГОСТ 10157-79
2.7 Пинцет

ТВЕРДЫЕ ПРИПОИ И ФЛЮСУЮЩИЕ ВЕЩЕСТВА

3.1 Для пайки применять припои, указанные в табл.

Марка

припоя

Температура пайки оС
ПСр40 ГОСТ 19738-74

19746-74

650-670
ПСрМИН63 800-820
ПСр21.5 1080
ВПР1 1130
ВПР4 1050

3.2 Термообработка припоя производится в случае целесообразности, если припой недостаточно пластичен.
3.3 Для пайки применять перечисленные виды флюсов:
• ПВ200 для пайки припоями ПСр21,5 и ВПР1;
• ПВ201 для ПСр40 и ПСрМИН63;
• Калий тетрафторборат (КВF2) ГОСТ 9532-75 для пайки ПСр21,5 и ВПР1 в нейтральной среде.

Читайте статью «Как приготовить флюс своими руками»

4 ПОДГОТОВКА ПОВЕРХНОСТИ ДЕТАЛЕЙ И ПРИПОЯ

4.1 Размер зазоров должен быть, как правило, от 0,7 до 0,15мм для соединений типа «телескоп» и до 0,2 мм для других соединений (нахлесточных, стыковых, тавровых) Допускается уменьшение зазора в соединении типа «телескоп», если это вызвано особенностями конструкции узла.
4.2 Поверхности, подлежащие пайке, должны быть доведены до шероховатости не ниже 2,5.
4.3 На цементированных изделиях, после снятия медного покрытия, поверхности под пайку должны быть зачищены механически до чистого металла.
4.4 Наличие фаски в месте формирования галтели при печной пайке необходимо исключить. Кромки разделки в которой размещается паяемая деталь, должны притупляться радиусом ±0,1 мм.
4.5 Присутствие цветов побежалости и коррозии на паяемых поверхностях узлов после мех. обработки не допускается
4.6 Детали, поступающие на пайку, должны быть промыты.
4.7 Непосредственно перед пайкой обезжирить детали, входящие в узел и припой в ацетоне или другом растворителе и посушить на воздухе 10-15 мин. Сборку после данной процедуры проводить пинцетом или пользоваться х/б перчатками.

5 ПОДГОТОВКА ОБОРУДОВАНИЯ И ОСНАСТКИ

5.1 При пайке в камерной печи в аргоне внутренняя поверхность контейнера должна быть очищена от грязи и очищена путем промывки ацетоном или др. растворителем.
5.2 Вакуумная печь перед загрузкой узлов под пайку должна быть очищена от грязи и масла согласно руководству по эксплуатации.
5.3 Оснастка должна быть перед пайкой промыта в ацетоне или др. растворителе. В случае наличия рыхлых окисных пленок допускается обдувка оснастки электрокорундом или гидрохонингом.
5.4 При пайке в нейтральной среде перед запуском аргона в печь систему трубопроводов продуть аргоном. Смена баллонов в процессе пайки запрещается.

6 СБОРКА

6.1 Сборку узлов производить в приспособлениях обеспечивающих требуемое положение деталей и исключающих напряжения в зоне пайки.
6.2 Фиксацию припоя производить на машинах контактной сварки при помощи сварочного пистолета или сварочных клещей.

7 ПАЙКА

а) Пайка газовой горелкой
7.1 Развести флюс в Н2О или в спирте до пастообразного состояния, затем покрыть соединяемые поверхности.
7.2 Припой покрыть флюсом, разведенным в Н2О или в спирте и обсыпать порошком флюса
В процессе нагрева необходимо наблюдать за тем, чтобы поверхность металла у места зазора не оголялась от флюса и, при необходимости, делать подсыпку порошка флюса.
7.3 Нагреть паяемый участок до температуры, указанной в таблице выше. Температура при пайке контролируется зрительно по началу плавления припоя.
Нагрев зоны соединения производить равномерно по всей длине соединения, не допуская перегрева. При пайке деталей с разной толщиной стенок прогревать сначала более массивные детали.
7.4 Не допускать контакта флюса с пламенем более 4-5 минут из-за возможности потери им флюсующих свойств. Оптимальное время нагрева флюса при пайке в газовом пламени 20-60 сек.

7.5 В процессе пайки до полного охлаждения узел подвергать механическому воздействию воспрещается.

7.6 При необходимости для предохранения внутренней поверхности труб от чрезмерного окисления, на внутреннюю поверхность трубы нанести флюс или пропускать внутрь аргон.

При пайке трубу в зоне соединения располагать, по возможности, вертикально. Арматура должна находиться снизу.

7.7 Нагартованные детали из стали типа 12Х18Н9Т перед пайкой подвергать отжигу (детали из труб после гибки)

7.8 Подгибка трубопроводов после пайки не рекомендуется и совершенно не разрешается на расстоянии меньшем 20 мм от места пайки. Наплывы припоя на ниппеле разрешается запиливать.

б) Пайка в камерной печи

7.9 Производить в герметичных контейнерах со стальным колпаком-экраном в атмосфере аргона.

7.10 Флюсы 200, 201, 209 разводятся в воде до пастообразного состояния и наносятся тонким слоем, затем просушиваются в течение 10-15 мин. Порошок тетрафторбората калия засыпается в контейнер. Количество флюса, температура, время выдержки, расход аргона, скорость нагрева и охлаждения оговаривается в технологии.

7.12 Контроль температуры производить термопарой, вводимой внутрь контейнера.

Горячий спай термопары должен быть помещен, по возможности, как можно ближе к поверхности паяемого изделия.

7.13 Детали охлаждать под потоком аргона до комнатной температуры. Допускается обдув контейнера сжатым воздухом с целью уменьшения времени охлаждения.

в) Пайка в вакуумной печи

7.14 Производить преимущественной в среде аргона.

7.15 Собранный узел в приспособлении поместить на поддон печи, закрыв его колпаком-экраном из стали типа 12Х18Н10Т.

7.16 Пайка в среде аргона выполняется по следующей схеме:

  • Продуть систему трубопроводов до вакуумного крана аргоном
  • Откачать из печи воздух до остаточного давления, указанного в технологии. Разрешается промывка камеры аргоном, заключающаяся в следующем: откачка до 10-3мм рт. ст., заполнение газом и снова откачка до требуемого разряжения.
  • Подать в камеру печи газообразный аргон. Подачу вести непрерывно в течение 8-10 мин.
  • Включить нагрев и произвести пайку.

7.18 Контроль температуры выполняют при помощи термопары с записью на самописце. Горячий спай термопары должен быть помещен как можно ближе к поверхности паяемого узла. Допускается замер температуры в камере при условии учета экспериментально определенной разницы температур на поверхности изделия и в камере.

8 УДАЛЕНИЕ ОСТАТКОВ ФЛЮСА

В горячей, затем в холодной проточной воде с последующей обдувкой гидрохонингом.

9 КОНТРОЛЬ ШВОВ

9.1  Контроль состояния узлов должен проводиться на всех этапах тех.процесса подготовки поверхностей, сборки и пайки, введения флюса и припоя, устранения остатков флюса после пайки.

9.2 Применяемые материалы должны быть  ГОСТированны или иметь ТУ. Следить за сроком годности флюса.

9.3 Применять следующие виды контроля:

а) внешний осмотр;

б) рентгенографический анализ;

в) проверка узлов на прочность и герметичность;

г) металлография;

9.4 Внешнему осмотру подвергать 100% узлов с помощью увеличительного стекла 4-7 кратного увеличения.

 Осматривать нужно паяный шов и зону, примыкающего к нему основного металла на расстоянии не менее 10 мм.

9.5 Шов должен быть чистым, без пористости, раковин, свищей, непропаев, посторонних включений, остатков флюсов и т.д. при условии, что припой заполнил зазор и образовал галтель.

10 ИСПРАВЛЕНИЕ ДЕФЕКТОВ

10.1 Недопустимые непропаи, поры, раковины и др. дефекты устранять подпайкой не более 2-х раз тем же припоем, которым проводилась пайка или с более низкой температурой плавления.

Газопламенная пайка металлов | Сварка и сварщик

Пайка металлов
технологический процесс получения неразъемных соединений металлов нагревом до расплавления более легкоплавкого присадочного металла — припоя, заполняющего зазор между соединяемыми деталями. Основной металл при пайке не плавится, а нагревается до температуры расплавления припоя.

В качестве источников теплоты при пайке используют газокислородное и газовоздушное пламя, электронагрев, индукционный нагрев, паяльники. К преимуществам пайки относятся отсутствие расплавления и незначительный нагрев основного металла. Эти преимущества позволяют получать высококачественные соединения не только однородных металлов, но и разнородных металлов и сплавов.

Согласно ГОСТ 17325-79, различают две основных вида пайки:

  • высокотемпературную
  • низкотемпературную

Температура плавления припоев для высокотемпературной — свыше 550°С, а для низкотемпературной — ниже 550°С. В основу высокотемпературных припоев входят медь (Сu), цинк (Zn), серебро (Ag), а низкотемпературных — свинец (Pb), олово (Sn), сурьма (Sb). Пайке поддаются чугун, низкоуглеродистая и легированная сталь, медь , никель, алюминий и их сплавы и др.

Источником нагрева при газопламенной пайке является сварочное пламя. В качестве основного инструмента используют сварочную горелку. При пайке крупногабаритных изделий применяют многопламенные горелки. Припои выпускают в виде проволоки, прутков, полос, порошковой проволоки, порошков и пасты. Для получения надежного паяного соединения припои должны удовлетворять следующим требованиям:

  • температура плавления припоя должна быть ниже температуры плавления основного металла;
  • расплавленный припой в сочетании с флюсом должен быть жидкотекуч, хорошо растекаться, проникая в щели зазора, и хорошо смачивать металл;
  • припой и металл должны взаимно диффундировать и образовывать сплав;
  • припой должен обладать одинаковой или более высокой, чем основной металл, коррозионной стойкостью;
  • припой должен удовлетворять требованиям, предъявляемым к внешнему виду изделий, и не содержать дорогих и дефицитных компонентов.

Все припои для высокотемпературной пайки можно разбить на следующие группы:

  • медные;
  • медно-цинковые;
  • серебряные;
  • медно-фосфористые.

Медные припои применяют для пайки стали преимущественно в печах с защитной атмосферой.

Медно-цинковые — при пайке стали, чугуна, меди, бронзы и никеля. Лучшие результаты дает припой марки ЛОК 62-06-04, содержащий 60-63% Сu; 0,3-0,4% Sn; 0,4-0,6% Si, остальное — цинк (Zn). Температура плавления припоя 905°С, предел прочности 450 МПа.

Серебряные припои можно применять при пайке всех черных и цветных металлов, кроме алюминия и цинка, имеющих более низкую температуру плавления, чем припой. Температура плавления серебряных припоев 720- 870°С. В зависимости от содержания серебра серебряные припои выпускаются марок от ПСр10 до ПСр70.

Медно-фосфористые припои находят широкое применение в электропромышленности. Их используют только для пайки меди и латуни. Припои для низкотемпературной пайки готовят на основе оловянно-свинцовых сплавов различного состава. В зависимости от содержания Sn используют припои марок от ПОС 90 (89-90% Sn) до ПОС 18 (17-18% Sn). Для низкотемпературной пайки применяют также сурьмянистые припои марки ПОСС-4-6. Для пайки алюминия в качестве низкотемпературных припоев рекомендуются сплавы: 50% Zn, 45% Sn, 5% Аl и 25% Zn, 70% Sn, 5% Al. Паяные низкотемпературными припоями соединения обладают низкой коррозионной стойкостью, что ограничивает их применение для деталей, работающих в воде или влажном воздухе.

Для высокотемпературной пайки алюминия и его сплавов рекомендуются припои с температурой плавления 577°С, содержащие 10-12% Si, 0,7% Fe, остальное — Al, и припой с температурой плавления 525°С состава 28% Cu, 6% Si, 66% Al. При газопламенной пайке применяются флюсы в виде порошков, пасты и газа. Основой большинства флюсов при твердой пайке является бура Na2B4O7. Для усиления действия флюса к буре часто добавляют борную кислоту, благодаря которой флюс становится более густым и вязким, требующим повышения рабочей температуры. Для понижения рабочей температуры флюса, что особенно важно для легкоплавких припоев, вводят хлористый цинк ZnCl2, фтористый калий KF и другие щелочные металлы.

Перед пайкой соединяемые детали тщательно очищают от загрязнений, окалины, оксидов, жира и др. Порошкообразные флюсы насыпают тонким слоем на очищенные кромки, причем часто применяют предварительный подогрев кромок, с тем чтобы частицы флюса плавились, прилипали к металлу и не сдувались пламенем горелки при пайке. Порошкообразный флюс наносят также па конец прутка припоя. Пасты и жидкие растворы наносят на поверхность соединяемых деталей кистью или обмакивают в них припой. При пайке наибольшее применение получили нахлесточные соединения. Зазор между соединяемыми поверхностями должен быть минимальным, а при пайке серебряными припоями — 0,05-0,03 мм. Техника пайки подготовленного соединения сводится к нагреву их до температуры плавления припоя, введения и расплавления припоя. Обычно пайку выполняют нормальным пламенем.

При пайке медно-цинковыми припоями рекомендуется применять пламя с избытком кислорода. Нагрев ведут широкой частью пламени. Для равномерного прогрева горелкой совершают колебательные движения вдоль шва. После того как флюс, предварительно нанесенный на кромки, расплавится и заполнит зазоры, а изделие прогреется до необходимой температуры, начинают вводить припой. Для гарантии полного заполнения зазора припоем горелкой еще некоторое время подогревают место спая после прекращения подачи припоя. После окончания пайки спай должен медленно остывать, остатки флюса после пайки необходимо тщательно удалять. Для полного удаления флюсов изделие погружают в 10%-ный раствор серной кислоты с последующей промывкой водой. Брак, возникший при пайке, может быть исправлен. Для этого необходимо нагреть деталь до температуры плавления припоя, разъединить спаянные элементы, после чего заново зачистить соединяемые поверхности и повторно произвести пайку.

Пайка металлов » Пайка легированных сталей

Легированные стали типа хромансиль, хромомолибденовая и др. имеют специфические особенности пайки, связанные с их химическим составом. По сравнению с углеродистой сталью стали типа хромансиль, хромомолибденовая и др. характеризуются более низкой теплопроводностью и склонностью к самозакаливанию на воздухе. Содержание в этих сталях хрома в сочетании с углеродом способствует образованию в процессе нагревания твердых структурных составляющих в виде сложных карбидов в зоне около паяного шва.

Присутствие в легированных сталях марганца, кремния и других элементов, активных по отношению к кислороду, затрудняет ведение пайки вследствие значительной склонности материала к окислению.

Марка стали: 30ХГСА 30ХМА 25ХНВА 20ХНЗА 38ХА
Содержание компонентов, %:
Углерод: 0,28-0,75 0,25-0,32 0,2-0,3 0,17-0,25 0,34-0,42
Хром: 0,8-1,1 0,8-1,1 1,3-1,7 0,6-0,9 0,8-1,1
Марганец: 0,8-1,1 ,4-0,7 0,25-0,35 0,25-0,35 0,5-0,8
Кремний: 0,9-1,2 0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37
Никель: 0,3 0,3 4-4,5 2,75-3,25 –
Молибден: – 0,15-0,25 – – –
Вольфрам: – – 0,8-1,2 – –

Перечисленные особенности легированных сталей затрудняют их пайку, способствуют образованию трещин в паяном соединении и усиленному короблению изделий. Однако трудности пайки этих сталей могут быть преодолены или сведены к минимуму, если будут соблюдены предписываемые условия ведения процесса.

При пайке легированных сталей нужно обратить особое внимание на подготовку соединяемых изделий.

Паяемые поверхности должны быть хорошо зачищены, а зазоры выдержаны в рекомендуемых пределах. Пламя горелки должно быть нейтральным или слегка восстановительным. Пайку нужно вести быстро, без перерывов, не отрывая пламени горелки от шва. Номер наконечника следует выбирать согласно правилам, указанным выше.

Особое значение при пайке легированных сталей имеет правильный выбор флюсов. Обычные флюсы, применяемые при пайке углеродистых сталей, бура, борная кислота и их смеси, не пригодны для легированных сталей, так как окислы хрома и других элементов, входящих в состав стали, не удаляются с помощью соединений бора.

Только флюсы, содержащие фториды щелочных металлов и имеющие довольно высокую температуру плавления, обеспечивают пайку легированных сталей тугоплавкими припоями. Для пайки этих сталей при температурах 850-1100гр. применяются флюсы 200 и 201. В качестве припоя при этом служат медь, медноцинковые, серебряные и другие сплавы.

При пайке легированных сталей серебряными припоями при температурах ниже 850гр. применяются флюсы 18В, 209 и 284. Очистка изделия после пайки производится согласно указаниям, данным выше.

Пайка оцинкованного железа в домашних условиях: советы от мастера

Автор perminoviv На чтение 4 мин. Опубликовано

Пайка оцинкованного железа требует определенного под хода к процессу. Для выполнения необходим флюс. Это вещество одновременно является и растворителем, и окислителем. Дополнительно это вещество позволяет металлу смачиваться железом, так можно получить шов высокого качества. Чаще всего в качестве флюса для работы с оцинкованными деталями или изделиями в домашних условиях используют канифоль или соляную кислоту. В отдельных случаях возможно применение борной кислоты или хлористого цинка.        

Для правильного решения вопроса, как паять оцинковку, необходимо рассмотреть некоторые свойства цинка. Этот металл начинает плавиться при температуре в +460 оС. А при температуре +960 оС начинает испаряться. Выше этих температурных значений в материале начинают образовываться поры, трещины и дефекты паяных соединений. Поэтому процедуру можно проводить только при меньших показателях. Альтернативой может служить использование присадочной проволоки. В промышленных условиях процедура в этом случае проводится в защитной среде газа. Чаще используют проволоку, содержащую медь с кремнием, бронзой и алюминием.

Эти материалы дают такие преимущества:

  • сварочный шов защищен от коррозии;
  • разбрызгивание в процессе выполнения пайки – минимально;
  • покрытие выгорает незначительно;
  • для процедуры нужны небольшие показатели тепла;
  • обработка сформированного шва – проста;
  • в зоне шва формируется естественная катодная защита.

Припой для проведения домашних работ, его состав и свойства

Припои принято классифицировать на твердые и мягкие. Для пайки оцинковки в домашних условиях используется только вторая группа. Если применять твердые припои, то не только невозможно добиться качественного сварного шва, но и существуют риски коробления самих изделий из оцинкованного железа. Присадочные материалы должны иметь низкую температуру плавления, точка должна располагаться ниже, чем у основного материала. Чаще всего в домашних условиях используют припой ПОС-30, это вещество на основе олова. Для него в качестве флюса лучше использовать хлористый цинк. Если поверхности были заранее облужены, то возможно использование канифоли. ПОС 30 характеризуется следующими свойствами:

  • оптимальная текучесть, материалы проникают во все пространства, заполняя даже небольшие пустоты;
  • сравнительно низкая температура плавления;
  • ПОС 30 производятся в различных типоразмерах, что позволяет подобрать оптимальную модификацию для выполнения конкретных работ;
  • высокая степень смачиваемости облегчает процесс и гарантирует более высокие качества результата;
  • материалы могут использоваться для лужения заготовок;
  • ПОС 30 имеет хорошую проводимость и низкое сопротивление, что позволяет использовать его для пайки небольших деталей;
  • материалы после застывания жестко фиксируют детали между собой.

Соединения получаются ровными и герметичными. Швы представляют собой шары поверх основного материала.

Если спаиваемые элементы велики, то перед пайкой их нужно облудить – покрыть поверхности тонким слоем припоя. Это же действие необходимо при пайке цилиндрических изделий, входящих друг в друга. Если это трубы, то на элемент большего диаметра припой наносится с внутренней стороны, а у детали меньшего диаметра – с внешней.

ПОС 30 состоит из 30% олова и 70% свинца. Материал имеет следующие технические параметры:

  • материал начинает плавиться при +180 оС;
  • полное расплавление ПОС 30 происходит при температуре +256 оС;
  • плотность – 10,1 кг/м3;
  • удлинение сплава в относительных показателях – 58%;
  • кристаллизационный интервал – 73 оС;
  • сопротивление действию на разрыв – 32 мПа.

Оборудование для проведения работ в домашних условиях

Прежде, чем задаваться вопросом, как паять оцинкованное железо в домашних условиях, нужно подготовить необходимое оборудование. Главным инструментом является обычный паяльник с жалом в форме шила. Но будут нелишними и другие приспособления. Для паяльника необходим специальный держатель или подставка, который удержит инструмент в нагретом состоянии. Для точного соединения мелких деталей понадобятся штативы с оптическими линзами. Для удаления из помещения дыма – дымопоглотители. Для удаления излишков олова понадобятся оловоотсосы. Существуют различные коммутаторы, термопасты, модули управления и адаптеры. Это оборудование позволит не только выполнять процесс пайки, но и обеспечит максимально качественный результат.

Сталь Пайка — Энциклопедия по машиностроению XXL

Углеродистые и низколегированные стали. Пайка сталей этого класса не вызывает особых трудностей и может осуществляться всеми известными способами в печи, погружением в расплавленные соли, нагревом токами высокой частоты, газопламенной горелкой и паяльником. Подготовка поверхности, подлежащей пайке, заключается в зачистке напильником, шкуркой и обезжиривании в горячих щелочных растворах.  [c.540]

Высоколегированные стали. Пайка этих сталей осложняется наличием на их поверхности термически и химически стойких оксидов хрома, титана и других легирующих элементов. Указанные оксиды ухудшают смачиваемость паяемых поверхностей припоями. Поэтому для пайки высоколегированных коррозионностойких сталей газопламенной горелкой используют активные флюсы.  [c.540]


Газовая сварка стали, пайка и подо- 7 0,65 0,3 Горелки универсальные Г 2  [c.22]

Пайка меди с никелированным вольфрамом Пайка титана и титановых сплавов с нержавеющей сталью Пайка меди и медных сплавов с жаропрочными сплавами и нержавеющими сталями  [c.235]

Пайка и лужение цветных металлов и сталей Пайка и лужение серебряных деталей  [c.235]

Пайка белой жести, латуни, стали. Пайка свинцовых деталей  [c.685]

Для обеспечения высокой электропроводности (не менее 75% электропроводимости чистой меди) соединения контактов медных элементов протонных ускорителей с коррозионно-стойкими сталями пайку их выполняют припоями 50% Аи — 50% Си или 35% Аи — 62% Си — 3% Ni в печи в среде водорода при температуре 1180° С— 10″ мм рт. ст.  [c.138]

Пайка латуни, медных проводов, стали Пайка латуни, меди, стали, радиоаппаратуры Лужение автоклавов для стерилизации медицинских инструментов  [c.124]

Лучшие результаты получаются при нанесении на сталь комбинированного медно-цинкового или никель-медь-цинкового покрытия. Отличительной чертой техники выполнения стыковых и нахлесточных сталеалюминиевых соединений является необходимость точного ведения дуги в течение всего процесса сварки по кромке алюминиевого листа на расстоянии приблизительно 1—2 мм от линии стыка. Присадочную алюминиевую проволоку подают либо по линии стыка, либо немного смещенной в ванночку. При смещении дуги в сторону стали возрастает опасность оплавления последней. При избыточном смещении дуги в противоположную сторону возможно несплавление соединяемых металлов. В сущности, описанное соединение стали с алюминием является сваркой-пайкой. Для алюминия оно является сваркой, а для стали — пайкой.  [c.682]

ПОС-61 59-61 До 0,8 0,314 Пайка и горячее лужение меди, латуни, бронзы, стали пайка монтажных соединений, допускающих нагрев до 175° С  [c.139]

Пайка белой жести, латуни, стали. Пайка свинцовых деталей и свинцовых муфт  [c.626]

ПОС-40. 183—235 32 — 63 Пайка стали, меди, латуни, цинка, оцинкованной стали. Пайка электро- и радиоаппаратуры, физико-технических приборов, проводов  [c.301]

Конструкция трубчатого нагревателя представляет собой двойной ряд сильно изогнутых труб это создает определенные трудности в изготовлении и вызывает необходимость применения сложной технологии их пайки к головке цилиндра (рис. 5.6). Для труб нагревателя используются коррозионно-стойкие стали с высоким содержанием никеля для изготовления головок цилиндров применяют обычную коррозионно-стойкую сталь. Пайка труб осуществляется или погружением, или в вакуумных печах. Трубчатые нагреватели обычно применяют в конструкциях двигателей с разделенным на отдельные части регенератором, в каждую из которых входит от трех до шести труб нагревателя. Это делает конструкцию гибкой, что позволяет трубам нагревателя относительно свободно перемещаться как в начальный момент нагрева двигателя, так и в конце его работы (при охлаждении). Трещины, как следствие термического перенапряжения, были общей особенностью первых конструкций трубчатых нагревателей.  [c.105]


Соединение пайкой производится при сравнительно незначительном нагреве деталей. Пайкой соединяют детали не только из однородных металлов (стали любых марок, чугун), но и разнородных, например  [c.248]

По прочности паяные соединения уступают сварным. Паять можно углеродистые и легированные стали всех марок, твердые сплавы, цветные металлы, серые и ковкие чугуны. При пайке металлы соединяются в результате смачивания и растекания жидкого припоя по нагретым поверхностям и затвердевания его после охлаждения. Прочность сцепления припоя с соединяемыми поверхностями зависит от физико-химических и диффузионных процессов, протекающих между припоем и основным металлом.  [c.238]

По конструкции паяные и клееные соединения подобны сварным — рис. 4.1. В отличие от сварки пайка и склеивание позволяют соединять детали не только из однородных, но и неоднородных материалов например, сталь с алюминием металлы со стеклом, графитом, фарфором керамика с полупроводниками пластмассы дерево, резину и пр.  [c.67]

Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрочных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбин, топливные и масляные трубопроводы и др. В самолетостроении наблюдается тенденция перехода от клепаной алюминиевой  [c.68]

ПМЦ-54 52—56 47—43 Пайка латуни, бронзы и стали  [c.314]

В последнее время возникла тенденция покрывать сталь более экономичным комбинированным покрытием, состоящим из нижнего хромового слоя (0,008—0,01 мкм), находящегося на нем слоя оксида хрома и наружного органического покрытия. Таким образом в США защищают 16 % всей жести, выпускаемой для консервной тары [18]. Система обеспечивает следующие преимущества лучшую сохранность продуктов, стойкость к воздействию сульфидов, хорошую адгезию и отсутствие подтравливания наружного органического покрытия, стойкость наружной поверхности тары к нитевидной коррозии. Однако это покрытие трудно поддается пайке, что ограничивает его использование для консервных банок.  [c.241]

Пайкой обычно называют процесс соединения материалов с помощью припоя без их расплавления. Процессы сварки и пайки часто бывает трудно разграничить, например при сварке разнородных металлов в сочетаниях сталь и медь, вольфрам и молибден и др., когда расплавляется только один, более легкоплавкий металл. Поэтому в дальнейшем при анализе источников энергии целесообразно объединять сварку и пайку одним термином — сварка. Пайку можно выполнить с использованием тех же энергетических процессов, что и сварку.  [c.15]

Развитие реактивной авиационной техники первого поколения в 1980 — 1965 гг. базировалось на изготовлении деталей, имеющих сложные формы и точные размеры. Их изготавливали объемной штамповкой, механической обработкой, сваркой или пайкой и шлифованием. Получать пустотелые лопатки методом объемной штамповки практически стало невозможно, т.е. их можно изготовить только методом точного литья.  [c.11]

На первом этапе (1950 — 1965 гг.) развития реактивной авиационной техники основные детали (лопатки), имеющие сложные геометрические формы и точные размеры, изготовляли объемной штамповкой, механической обработкой, шлифованием, сваркой или пайкой. Получение пустотелых лопаток методом штамповки практически стало невозможным.  [c.12]

Линии X = о на номограммах соответствуют теоретически возможному максимальному значению 1д при данной плотности укладки. Увеличение п до 2000 дало бы возможность приблизить Згд к 16…17, т. е. к теплопроводности некоторых сплавов, применяемых для изготовления технологических аппаратов (нержавеющих сталей). Однако, как видно из номограмм, наличие охранного слоя толщиной всего в 0,05 мм приводит к резкому падению 1,д, в особенности при плотной укладке термоэлементов и малых Х , Поэтому практически для металлических стенок применяются лишь одиночные датчики, причем закрепляться на стенке они должны пайкой или сваркой, так как использование любого клея вызывает тот же эффект резкого падения Хл.  [c.73]


ПСрЮ 50+1 10 + 3 Ос-. таль-ное 0.5 815—850 — Медь, медные сплавы, сталь Пайка стали и цветных металлов, пайка меди со сталью  [c.191]

ПСр25 40+1 25 + 0.3 0.5 745—775 28 Медь, медные сплавы, сталь Пайка деталей, требующих повышенной прочности при вибрациях  [c.191]

ПСр65 20 + 0,5 65 + 0,5 0,3 685—720 30—35 Сталь Пайка ленточных пил н пищевых сосудов  [c.191]

При температурах потока до 400° С заборные трубки (рис. 2-52 и 2-53) и корпус лневмометрической трубки выполняются из меди, при температурах до 800° С — из стали. Пайку трубок производят медью или серебром. Заборные  [c.127]

В отдельных случаях для пайки лопаток можно использовать также припой на медно-цинковой основе типа латуней марок ЛОК-62-0,6-0,4 и ЛОК-59-1-03. Эти припои имеют более высокую температуру плавления (905—938°) и поэтому их применение целесообразно лишь при пайке лопаток из аустенитных сталей. Пайка ими лопаток из хромистой стали неиз-  [c.152]

Диэтиламин хлористый — 5 кани-фо.пь — 25 спирт этиловый — 68. (Пайка меди медных сплавов углеродистой стали пайка бронзы с медью, оцинкованных металлов между собой.)  [c.121]

Самофлюсующие серебряные и медные припои с фосфором нашли применение для пайки медных деталей электромашин, медицинского оборудования и т. д., где нежелательна последующая операция промывки остатков флюсов. Самофлюсующий серебряный припой ПСр72ЛМН нашел применение при пайке титана и тонкостенных ажурных конструкций из нержавеющих сталей. Пайка тонкостенных изделий из нержавеющих сталей во многих случаях производится также самофлюсующими припоями системы Си — N1 — Мп ВПр2 и ВПр4.  [c.246]

Припой ПСр 45 — пайка лонаток паровых турбин и других деталей из нержавеюш их высокохромистых сталей пайка латунных и бронзовых изделий, имеюш их тонкие сечения.  [c.788]

П. ьчстинкн из минералокерамики крепят к державкам резцов или корпусам инструментов механическим способом либо пайкой, сделав металлизацию пластинок. Инструменты, оснащенные пластинками из минералокерамики, можно эффективно использовать при по-лучис юиой обработке деталей из сталей и цветных металлов в услоииях безударной нагрузки. Для повышения эксплуатационных характеристик инструментов с пластинками из минералокерамики в нее добавляют W, Л1о, В, Ti, Ni. Такие материалы называют керме-тами. Особое значение керметы приобретают при обработке деталей из труднообрабатываемых материалов.  [c.279]

Цельные фрезы изготовляют из инструментальных сталей. У сборных фрез зубья (ножи) выполняют из быстроре кущих сталс ii или оснащают пластинками из твердых сплавов и закрепляют в ко -пусе фрезы пайкой или механически.  [c.331]

При применении бронз следует иметь в виду, что контакт бронз с другими цветными металлами (с цинком, свинцом, алюминием и др.) нежелателен вследствие возникновения больщой разности потенциалов между ними. По этой причине не рекомендуется пайка бронзы оловом или третником. Недопустим также контакт бронзы с углеродистой сталью.  [c.252]

Биметаллы. Биметаллами называют металлические материалы, состоящие из двух или более слоев, нанример из стали и цветного сплява. Биметаллы удовлетворяют различным требованиям к сердце-вине изделий (например, прочности и жесткости) и к поверхностным слоям (например, коррозионной стойкости и антифрикционным свойствам). Применение биметаллов приводит к большой экономии дорогих сплавов. Биметаллические изделия изготовляют отливкой, плакированием (совместной прокаткой), сваркой, пайкой и другими способами нанесения покрытий.  [c.37]

Кадмиевые покрытия получают почти исключительно электро-осаждением. Разница в потенциалах между кадмием и железом не столь велика, как между цинком и железом, следовательно степень катодной защиты стали покровным слоем кадмия с ростом размера дeфeкtoв в покрытии падает быстрее. Меньшая разность потенциалов обеспечивает важное преимущество кадмиевых покрытий применительно к защите высокопрочных сталей (твердость Яр > 40, см. разд. 7.4.1). Если поддерживать потенциал ниже значения критического потенциала коррозионного растрескивания под напряжением (КРН), но не опускаясь в область еще более отрицательных значений, отвечающую водородному растрескиванию, то кадмиевые покрытия надежнее защищают сталь от растрескивания во влажной атмосфере, чем цинковые. Кадмий дороже цинка, но он дольше сохраняет сильный металлический блеск, обеспечивает лучший электрический контакт,, легче поддается пайке и поэтому нашел использование в электронной промышленности. Кроме того, он устойчивее к воздействию водяного конденсата и солевых брызг. Однако, с другой стороны, кадмиевые покрытия не столь устойчивы в атмосферных условиях, как цинковые покрытия такой же толщины.  [c.238]

Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрЬчных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбо-реактивных авиадвигателей, топливные и масляные насосы и др. Клеевые соединения элементов конструкции находят достаточно широкое применение в самолетостроении. Путем склеивания можно соединять элементы конструкции малой толщины с разнородными заполнителями. Так, например, на смену клепаной конструкции обшивки самолета приходит клеевая конструкция (см. рис. 3.8, где 1 — стыковка по контуру, II — клеевое соединение панелей с поясом лонжерона, III — клеевое соединение панелей с профилем носка крыла).  [c.362]


На первом этапе исследований были установлены экспериментально некоторые закономерности механического поведения рассматриваемых соединений. Для этих целей исползова1и моделирующие образцы, выполненные пайкой. В качестве металла мягких прослоек при моделировании сварных соединений использовали свинец С-1, в качестве основного металла — сталь Ст. 3. Большое различие в механических характеристиках металлов М иТ (А ц — а /а =25) обеспечивало при деосновной металл не вовлекался в пластическую деформацию), которые отвечают расчетной схеме при анализе и полу чении соотношений по Л .  [c.132]

Как спаять металл вместе | Паяльный металл

Пайка — это процесс соединения двух независимых металлических частей для образования одного прочного несущего соединения.

  • Пайка аналогична пайке, но при более высоких температурах.
  • Используйте пруток, подходящий для металла, используемого в вашем проекте.
  • Пруток для припоя должен плавиться за счет тепла соединяемых металлических деталей, а не за счет прямого контакта с пламенем горелки.
  • Используйте горелку, излучающую пламя высокой интенсивности.
Рекомендуемые стержни по типу металла

Медь, латунь, бронза:
Медно-фосфорные прутки для пайки и сварки

Сталь, нержавеющая сталь, никелевые сплавы, медные сплавы, чугун, карбид вольфрама:
Прутки для пайки и сварки нейзильбера

Чугун, оцинкованный, никель, сталь, ковкий чугун:
Бронзовые прутки для пайки и сварки

Алюминий:
Bernzomatic AL3 Алюминиевые прутки для пайки и сварки

Указания

  1. С помощью металлической щетки или наждачной бумаги потрите поверхность металла.Затем очистите поверхности мыльной водой или обезжиривающим средством.
  2. Расположите металл по желанию. В большинстве случаев соединение внахлест прочнее и легче спаивается, чем соединение с зазором. При необходимости используйте зажимы, чтобы закрепить детали на месте.
  3. Нагрейте стык в месте соприкосновения двух металлических частей до тех пор, пока стык не загорится.
  4. Приложите пруток к стыку, продолжая нагревать металлические поверхности. Для больших площадей нагрейте участки стыка до температуры, а затем переходите к следующему прилегающему участку.
  5. После пайки используйте проволочную щетку для очистки паяной поверхности от окисления или остатков.

Советы

  • Прочтите наши Общие меры безопасности перед тем, как начать свой проект.
  • Прочтите инструкции, прилагаемые к горелке и пайке, прежде чем приступить к проекту.
  • После завершения проекта всегда снимайте горелку с топливного цилиндра и храните топливо в вертикальном положении.

Соединение металлов: пайка против сварки

Соединение металлов: пайка против сварки

Существует несколько методов соединения металлов, включая сварку, пайку и пайку.В чем разница между сваркой и пайкой? В чем разница между пайкой и пайкой? Давайте рассмотрим различия и сравнительные преимущества, а также общие области применения. Это обсуждение углубит ваше понимание соединения металлов и поможет вам определить оптимальный подход для вашего приложения.

Как работает пайка

Паяное соединение выполняется совершенно иначе, чем сварное соединение. Первая большая разница заключается в температуре — пайка не плавит основные металлы.Это означает, что температуры пайки неизменно ниже, чем точки плавления основных металлов. Температуры пайки также значительно ниже, чем температуры сварки тех же основных металлов, при этом требуется меньше энергии.

Если пайка не расплавляет недрагоценные металлы, как она соединяется с ними? Он работает, создавая металлургическую связь между присадочным металлом и поверхностями двух соединяемых металлов. Принцип, по которому присадочный металл протягивается через соединение для создания этой связи, — это капиллярное действие.При пайке вы применяете тепло к основным металлам. Затем присадочный металл контактирует с нагретыми деталями. Он мгновенно плавится под действием тепла в основных металлах и полностью протягивается капиллярным действием через соединение. Так делается пайка.

Применения пайки включают электронику / электротехнику, аэрокосмическую, автомобильную, климатическую / холодильную, строительство и многое другое. Примеры варьируются от систем кондиционирования воздуха для автомобилей до высокочувствительных лопастей реактивных турбин, вспомогательных компонентов и ювелирных изделий.Пайка дает значительное преимущество в областях, где требуется соединение разнородных основных металлов, включая медь и сталь, а также неметаллов, таких как карбид вольфрама, оксид алюминия, графит и алмаз.

Сравнительные преимущества. Во-первых, паяное соединение — это прочное соединение. Правильно выполненное паяное соединение (например, сварное соединение) во многих случаях будет таким же прочным или прочным, как соединяемые металлы. Во-вторых, соединение выполняется при относительно низких температурах, в диапазоне от примерно 1150 ° F до 1600 ° F (от 620 ° C до 870 ° C).

Наиболее важно то, что неблагородные металлы никогда не плавятся. Поскольку основные металлы не плавятся, они обычно могут сохранять большую часть своих физических свойств. Такая целостность основного металла характерна для всех паяных соединений, включая соединения как тонкого, так и толстого сечения. Кроме того, более низкий нагрев сводит к минимуму опасность деформации или коробления металла. Учтите также, что более низкие температуры требуют меньше тепла — значительный фактор экономии.

Еще одним важным преимуществом пайки является легкость соединения разнородных металлов с использованием флюса или сплавов с порошковой сердцевиной / покрытием.Если вам не нужно плавить основные металлы, чтобы соединить их, не имеет значения, имеют ли они сильно различающиеся точки плавления. Вы можете паять сталь с медью так же легко, как сталь со сталью. Сварка — это другая история, потому что вы должны расплавить основные металлы, чтобы сплавить их. Это означает, что если вы пытаетесь сварить медь (точка плавления 1981 ° F / 1083 ° C) со сталью (точка плавления 2500 ° F / 1370 ° C), вы должны использовать довольно сложные и дорогие методы сварки. Полная простота соединения разнородных металлов с помощью обычных процедур пайки означает, что вы можете выбрать любые металлы, которые лучше всего подходят для функции сборки, зная, что у вас не возникнет проблем со соединением их независимо от того, насколько сильно они различаются по температурам плавления.

Кроме того, паяное соединение имеет приятный внешний вид. Здесь проводится дневное и ночное сравнение крошечной аккуратной кромки паяного шва и толстого неровного валика сварного шва. Эта характеристика особенно важна для соединений на потребительских товарах, где внешний вид имеет решающее значение. Паяное соединение почти всегда можно использовать «как есть», без каких-либо чистовых операций — еще одна экономия средств.

Пайка предлагает еще одно существенное преимущество перед сваркой, так как операторы обычно приобретают навыки пайки быстрее, чем навыки сварки.Причина кроется во внутренней разнице между двумя процессами. Линейный сварной шов необходимо отслеживать с точной синхронизацией подачи тепла и наплавки присадочного металла. Паяное соединение, с другой стороны, имеет тенденцию «создавать себя» за счет капиллярного действия. Фактически, значительная часть навыков, связанных с пайкой, основана на проектировании и проектировании соединения. Сравнительная скорость обучения высококвалифицированных операторов является важным фактором затрат.

Наконец, пайку относительно легко автоматизировать.Характеристики процесса пайки — широкий диапазон нагрева и простота размещения присадочного металла — помогают устранить потенциальные проблемы. Существует множество способов автоматического нагрева стыка, множество форм припоя и множество способов их нанесения, так что операцию пайки можно легко автоматизировать практически для любого уровня производства.

Как работает сварка

Сварка соединяет металлы путем их плавления и сплавления, обычно с добавлением присадочного металла.Соединения получаются прочными — обычно такими же прочными, как соединяемые металлы, или даже прочнее. Чтобы сплавить металлы, вы прикладываете концентрированный нагрев непосредственно к месту соединения. Это тепло должно иметь высокую температуру, чтобы расплавить основные металлы (соединяемые металлы) и присадочные металлы. Следовательно, температуры сварки начинаются с точки плавления основных металлов.

Сварка обычно подходит для соединения больших сборок, в которых обе металлические секции имеют относительно большую толщину (0,5 дюйма / 12,7 мм) и соединены в одной точке.Поскольку валик сварного шва имеет неправильную форму, он обычно не используется в изделиях, требующих косметических швов. Области применения включают транспорт, строительство, производство и ремонтные мастерские. Примерами являются роботизированные сборки плюс изготовление сосудов под давлением, мостов, строительных конструкций, самолетов, железнодорожных вагонов и путей, трубопроводов и многого другого.

Сравнительные преимущества . Поскольку сварочное тепло очень интенсивное, оно обычно локализовано и точечно; нецелесообразно наносить его равномерно на большой площади.Этот четко очерченный аспект имеет свои преимущества. Например, если вы хотите соединить две небольшие полосы металла в одной точке, практичным будет метод контактной сварки сопротивлением. Это быстрый и экономичный способ изготовления сотен и тысяч прочных неразъемных соединений.

Однако, если соединение является линейным, а не точечным, возникают проблемы. Местный нагрев при сварке может стать недостатком. Например, если вы хотите сварить встык два куска металла, вы начнете со снятия фаски с краев металлических деталей, чтобы оставить место для сварочного присадочного металла.Затем вы свариваете, сначала нагревая один конец области соединения до температуры плавления, затем медленно перемещая тепло вдоль линии соединения, нанося присадочный металл синхронно с теплом. Это типичная обычная сварочная операция. Правильно выполненный сварной шов не менее прочен, чем соединяемые металлы.

Однако у этого метода сварки линейных стыков есть недостатки. Соединения выполняются при высоких температурах — достаточно высоких, чтобы плавить как основные металлы, так и присадочный металл.Эти высокие температуры могут вызвать проблемы, в том числе возможные деформации и коробление основных металлов или напряжения вокруг области сварного шва. Эти опасности минимальны, когда соединяемые металлы имеют большую толщину, но они могут стать проблемой, когда основные металлы представляют собой тонкие секции. Кроме того, высокие температуры обходятся дорого, поскольку тепло — это энергия, а энергия стоит денег. Чем больше тепла вам нужно, чтобы сделать стык, тем больше будет затрат на производство стыка.

Теперь рассмотрим автоматизированный процесс сварки.Что происходит, когда вы присоединяетесь не к одной сборке, а к сотням или тысячам сборок? Сварка по своей природе создает проблемы для автоматизации. Соединение контактной сваркой, выполненное в одной точке, относительно легко автоматизировать. Однако, как только точка становится линией — линейным соединением — снова необходимо провести линию. Эту операцию отслеживания можно автоматизировать, перемещая линию стыка, например, мимо нагревательной станции и автоматически подавая присадочную проволоку с больших катушек. Однако это сложная и требовательная установка, которая оправдана только в том случае, если у вас есть большие партии идентичных деталей.

Имейте в виду, что методы сварки постоянно совершенствуются. Сварку на производстве можно производить электронным лучом, разрядом конденсатора, трением и другими методами. Эти сложные процессы обычно требуют специального и дорогостоящего оборудования, а также сложных и трудоемких настроек. Подумайте, подходят ли они для более коротких производственных циклов, изменения конфигурации сборки или типичных повседневных требований к соединению металлов.

Выбор правильного процесса соединения металлов

Если вам нужны долговечные и прочные соединения, вы, вероятно, сузите круг вопросов, касающихся соединения металлов, до сварки, а не пайки.При сварке и пайке используются термические и присадочные металлы. И то, и другое может быть выполнено на производственной основе. Однако на этом сходство заканчивается. Они работают по-разному, поэтому помните, что нужно учитывать при пайке и сварке:

  • Размер сборки
  • Толщина профилей основного металла
  • Требования к стыкам точечных или линейных
  • Металлы присоединяются
  • Необходимое количество окончательной сборки

Другие варианты? Механически скрепленные соединения (резьбовые, стержневые или заклепочные) обычно не сравнятся с паяными по прочности, устойчивости к ударам и вибрации или герметичности.Адгезионное соединение и пайка обеспечат прочное соединение, но, как правило, ни одно из них не может обеспечить прочность паяного соединения — такую ​​же или большую, чем у самих основных металлов. Они также, как правило, не могут производить соединения, устойчивые к температурам выше 200 ° F (93 ° C). Когда вам нужны постоянные, прочные соединения металла с металлом, пайка является сильным конкурентом.

6 шагов к успешной пайке

Паяное соединение в принципе может «сделать себя» — капиллярное действие, в большей степени, чем навыки оператора, обеспечивает распределение присадочного металла в соединении.

Настоящее мастерство заключается в проектировании и конструировании соединения, но даже правильно спроектированное соединение может оказаться плохим, если вы не будете следовать надлежащим процедурам пайки. Эти процедуры сводятся к шести основным шагам. Хотя они, как правило, просты в исполнении, ни один из них не следует пропускать.

Шаг 1: Обеспечьте хорошую посадку и соответствующие зазоры.

Пайка использует капиллярное действие для распределения расплавленного присадочного металла между поверхностями основных металлов. Поэтому при пайке сохраняйте зазор между основными металлами, чтобы капиллярное действие работало наиболее эффективно.Практически во всех случаях это означает тесный зазор. Оптимальный зазор или зазор стыка для большинства присадочных металлов составляет 0,0015 дюйма, но типичные зазоры составляют от 0,001 до 0,005 дюйма.

При повседневной пайке зазоры не должны быть слишком точными, чтобы получить достаточно прочное соединение. Капиллярное действие действует в диапазоне зазоров, поэтому у вас есть определенная свобода действий. В повседневной торговой практике простая скользящая посадка обычно обеспечивает адекватное паяное соединение между двумя трубчатыми деталями.Имейте в виду, что обычно с увеличением зазора прочность соединения снижается. Капиллярное действие прекращается примерно на 0,012 дюйма. Если вы соединяете две плоские части, вы можете положить одну на другую. Контакт металл-металл — это весь зазор, который вам обычно понадобится, потому что средняя чистовая обработка металлов обеспечивает достаточную шероховатость поверхности для создания капиллярных путей для потока расплавленного присадочного металла. С другой стороны, хорошо отполированные поверхности, как правило, ограничивают поток присадочного металла.

При планировании зазоров между швами помните, что паяные соединения выполняются при температурах пайки, а не при комнатной температуре.Учитывайте коэффициент теплового расширения соединяемых металлов, особенно трубных узлов, в которых соединяются разнородные металлы.

Какой допуск вы должны сделать для расширения и сжатия, зависит от природы и размеров соединяемых металлов и конфигурации соединения. Несмотря на то, что для определения точных допусков зазоров для каждой ситуации используются многие переменные, помните о следующем принципе: разные металлы расширяются с разной скоростью при нагревании.

Для получения дополнительной информации о настройке посетите сайт www.lucasmilhaupt.com.

Шаг 2: Очистите металлы.

Капиллярное действие работает должным образом только на чистых металлических поверхностях. Если они покрыты маслом, жиром, ржавчиной, окалиной или грязью, вы должны удалить эти загрязнения, иначе они образуют барьер между поверхностями основного металла и припоями.

Очистка металлических деталей редко бывает сложной, но вы должны делать это в правильной последовательности. Сначала следует удалить масло и жир, потому что кислотный травильный раствор, предназначенный для удаления ржавчины и накипи, не подойдет для жирной поверхности.Начните с избавления от масла и жира. В большинстве случаев это можно сделать либо путем погружения деталей в подходящий обезжиривающий растворитель, либо путем обезжиривания паром, либо путем щелочной или водной очистки. Если металлические поверхности покрыты оксидом или окалиной, вы можете удалить эти загрязнения химическим или механическим способом. Для химического удаления используйте обработку кислотным рассолом. Убедитесь, что химические вещества совместимы с очищаемыми основными металлами и что в щелях или глухих отверстиях не осталось следов кислоты. Механическое удаление требует абразивной очистки.

В частности, при ремонтной пайке, когда детали могут быть очень грязными или сильно заржавевшими, вы можете ускорить процесс очистки с помощью наждачной ткани, шлифовального круга, напильника или пескоструйной обработки с последующей операцией ополаскивания. После того, как детали будут тщательно очищены, нанесите флюс и припаяйте их как можно скорее, чтобы уменьшить вероятность повторного загрязнения поверхностей заводской пылью или телесными маслами, отложившимися в процессе работы.

Имейте в виду, что некоторые чистящие средства оставляют остатки и оседают на поверхности, делая ее несмачиваемой.

Шаг 3: Флюсируйте детали.

Флюс — это химическое соединение, наносимое на стыковые поверхности перед пайкой. Его использование, за некоторыми исключениями, необходимо в процессе пайки при атмосферном давлении. Это связано с тем, что нагрев поверхности металла ускоряет образование оксида в результате химической реакции между горячим металлом и кислородом в воздухе. Если вы не предотвратите образование этих оксидов, они будут препятствовать смачиванию припоя и его сцеплению с поверхностями.

Покрытие из флюса на стыке защищает поверхности от воздуха, предотвращая образование оксидов.Он также растворяет и поглощает любые оксиды, которые образуются во время нагрева или не были полностью удалены в процессе очистки.

Вы можете наносить флюс на стык любым способом, если вы полностью покрываете стыковые поверхности. Обычно флюс делают в виде пасты, поэтому удобнее всего наносить его кистью. Но по мере увеличения объемов производства может быть более эффективным нанесение флюса окунанием: нанесение предварительно отмеренного слоя высоковязкого флюса из пистолета-аппликатора.

Обычно флюс наносится непосредственно перед пайкой, если это возможно, чтобы у него было наименьшее количество времени для высыхания, отслаивания или сбивания деталей при обращении с ними.Выберите флюс, составленный для конкретных металлов, температур и условий вашей пайки.

Шаг 4: Соберите для пайки.

После того, как детали будут очищены и обработаны флюсом, удерживайте их в положении для пайки. Убедитесь, что они остаются в правильном положении во время циклов нагрева и охлаждения, чтобы капиллярное действие могло выполнять свою работу. Если форма и вес частей позволяют, самый простой способ удержать их вместе — это сила тяжести.

Вы также можете помочь гравитации, добавив дополнительный вес, если вы не добавите слишком много.Если вы добавите слишком большой вес, ваши зазоры могут не сохраниться, и припой может быть вытеснен из области соединения. Также помните, что увеличение веса деталей увеличивает их массу, а это увеличивает время, необходимое для нагрева деталей до температуры пайки.

Шаг 5: Припаяйте сборку.

Фактическая пайка включает нагрев узла до температуры пайки и пропускание присадочного металла через соединение. При нагревании сборки до температуры пайки убедитесь, что вы не нагреваете ее до температуры плавления основных материалов.

Во-первых, процесс нагрева: при пайке широко нагревают основные металлы. Если вы паяете небольшую сборку, вы можете нагреть всю сборку до точки текучести припоя. Если вы паяете большую сборку, нагрейте широкую область вокруг стыка. Ручная горелка чаще всего используется для пайки одного узла. Различные виды топлива — природный газ, ацетилен, пропан, пропилен — можно сжигать либо с кислородом, либо с воздухом. Имейте в виду, что оба металла в сборке должны нагреваться как можно более равномерно, чтобы они достигли температуры пайки одновременно.Держите горелку постоянно в движении и не нагревайте зону пайки напрямую.

Во избежание неравномерного нагрева следите за флюсом. Если его внешний вид меняется равномерно, детали нагреваются равномерно.

После того, как вы нагреете узел до температуры пайки, можно приступить к нанесению присадочного металла. При ручной пайке осторожно прижмите стержень или проволоку к месту соединения. Нагретая сборка расплавит часть присадочного металла, которая будет мгновенно вытягиваться капиллярным действием по всей площади стыка.Вы можете добавить немного флюса на конец стержня присадочного металла — примерно от 2 до 3 дюймов — для улучшения потока. Вы можете добавить флюс, нанеся его кистью или окунув стержень во флюс. На более крупных деталях, которым требуется более длительное время нагрева, или если флюс стал насыщенным оксидом, добавление свежего флюса на присадочный металл поможет улучшить текучесть и проникновение присадочного металла в область соединения.

Будьте осторожны: расплавленный припой имеет тенденцию течь в области с более высокой температурой. В нагретом узле внешние поверхности основного металла могут быть немного горячее, чем внутренние стыковые поверхности.Позаботьтесь о том, чтобы присадочный металл прилегал непосредственно к стыку. Если вы отложите его подальше от стыка, он будет иметь тенденцию опускаться на горячие поверхности, а не течь в стык. Также лучше нагреть сторону сборки, противоположную точке подачи присадочного металла. Присадочный металл будет иметь тенденцию следовать за тем местом, где температура наиболее высока.

Шаг 6: Очистите паяное соединение.

После пайки сборки очистите ее. Поскольку большинство флюсов для пайки являются коррозионными, очистка необходима.Очистка обычно состоит из двух этапов:

  1. Удалите остатки флюса.
  2. Удалите оксидную окалину, образовавшуюся в процессе пайки, травлением.

Поскольку большинство флюсов для пайки водорастворимы, вы можете удалить остатки, закалив узел в горячей воде (120 градусов по Фаренгейту или выше). Погрузите сборку, пока она еще горячая, но перед закалкой убедитесь, что присадочный металл полностью затвердел. Стекловидные остатки флюса обычно трескаются и отслаиваются.Если они немного упрямы, слегка почистите их металлической щеткой, пока узел все еще находится в горячей воде.

У вас могут возникнуть проблемы с удалением флюса, если вы не использовали его в достаточном количестве для начала или если вы перегрели детали во время пайки. Затем флюс полностью насыщается оксидами, обычно приобретая зеленый или черный цвет. В этом случае флюс необходимо удалить слабым раствором кислоты.

После того, как вы избавились от флюса, используйте травильный раствор, чтобы удалить любые оксиды, которые остались на участках, которые не были защищены флюсом во время процесса пайки.Как правило, лучший рассол будет рекомендован производителем припоев, которые вы используете.

Гэри ДеВрис — рыночный аналитик, а Крид Дарлинг — инженер по пайке в компании Lucas-Milhaupt Inc., 5656 S. Pennsylvania Ave., Cudahy, WI 53110, 414-769-6000, факс 414-769-1093, www.lucasmilhaupt .com.

Припайка стали к стали — проблемы смачивания и проникновения »Блог компании Carbide Processors

Припайка стали к стали — проблемы смачивания и проникновения

Отправлено в понедельник, 11 мая 2015 г., в 12:20.Твитнуть

Джентльмен разместился на сайте Practical Machinist в поисках информации о его неудачных попытках пайки стали по стали и «уйти от беспорядочной сварки палкой». Используя 56% серебра и пасту Харриса с температурой 1100-1700 рабочих градусов, он при помощи пропановой горелки припаял стальную гайку к шайбе.

… .Я признаю, что в результате экспериментов я нагрел деталь до ярко-КРАСНОГО цвета, чтобы посмотреть, смогу ли я вылить ее дальше…. Это не работает и….Я обнаружил, что серебро кажется… как я могу сказать это… «отслаиваться» от стали при ударе молотком… Прочность сварного шва HARDLY MIG (как и должно быть). Я не могу позволить основному металлу расплавить серебро, я должен использовать нагрев горелки непосредственно на стержне И детали … иногда флюс становится черным, и я должен проволокой колесо, чтобы очистить его, а затем начать заново … каждый раз теряя и более драгоценный серебряный жезл.

Вот ответ Тома:

Чистота, чистоплотность. При возникновении проблем с пайкой всегда начинайте с чистоты.Сварка — это в значительной степени физическое соединение. Пайка — это скорее химический процесс. У действительно хорошего паяного соединения будет как химическое, так и физическое соединение.

Люди действительно используют растворители, такие как ацетон и аналогичные, для очистки перед пайкой, но определенно существуют проблемы с остатками, как упоминалось выше. Было упомянуто преимущество чего-то вроде мыла или моющего средства, средства для чистки духовки и Comet, и они разбивают масла и жиры на легко удаляемые мыла.

Это несколько прутков из мягкой стали, которые я использую для испытаний пайки.На них есть весы. Я использую настольную шлифовальную машину, чтобы сделать их чистыми и яркими, как правый конец верхнего.

Припой с 56 в названии — это припой на 56% серебра, остальное — медь, цинк, немного никеля и, возможно, немного олова или марганца.

Мы провели испытания на ударную вязкость по Шарпи в Weyerhaeuser, чтобы найти лучшие припои для пил для лесопильных заводов. Лучшим был Ez Flo 3. Однако он не считается подходящим, потому что он содержит кадмий. Припой на 50% без кадмия был примерно на 30% слабее.56% -ный припой с оловом прекрасно текучий, но имел примерно половину прочности, чем Ez Flo 3. Припой с 49% -ным содержанием марганца был таким же прочным, как Ez Flo 3, но имел плохие характеристики текучести.

У нас есть эти маленькие наборы для пайки. Мы используем диаметр 0,062 дюйма. проволока, которую должно быть проще использовать. Используемый вами припой на 56% является очень популярным припоем и может очень хорошо подойти вам, если ваши детали подготовлены надлежащим образом.

Как уже несколько раз упоминалось выше, нужна очень и очень чистая поверхность. Похоже, ваши детали были покрыты цинком. Из вашего описания процесса кажется, что вы переворачиваете цинк и оксид цинка, которые являются сильно смачиваемой поверхностью.

У меня есть дешевый круг на дешевом настольном шлифовальном станке, который я использую для подобных вещей. Я шлифую до яркого, блестящего металла. Затем чищу средством для чистки духовки.

В мире много флюсов. В идеале ваш флюс будет соответствовать вашему припою, а также двум соединяемым деталям.Это не всегда так просто. Мы продаем пять видов флюсов только для пайки карбида вольфрама.

Если бы я пытался выполнить ваш проект, я бы отрезал пару коротких кусков припоя и расплющил их. Я бы положил красивую ложку черного флюса поверх нижней части. Я бы поместил плоский провод посередине флюса. Я бы покрыл верхнюю часть флюсом, а затем поставил болт поверх верхней части флюса.

Нагрейте сборку, пока не увидите, что флюс закончился.

Вам понадобится что-нибудь, чтобы удерживать детали на месте и перемещать их.При 212 F вода выкипит из флюса, и это может сместить детали. При температуре около 1000 F поток станет жидким, и это может сместить детали. При температуре около 1500 ° F припой станет жидким, и это также может сместить детали.

Это временная скамья для пайки. Я использую огнеупорный кирпич и нержавеющую сталь. Мне могут не понадобиться два яруса, но горячая пайка нержавеющей стали может поджечь столешницу под нержавеющей сталью.

Вы можете построить свою маленькую духовку. Кирпичи для камина были упомянуты выше, и они будут работать. Мы используем кирпичи, которые используются для обжиговых печей. Они должны быть доступны в магазине керамических материалов. Нам они нравятся, потому что с ними очень легко работать с помощью ножовки, ножа для очистки овощей и т. Д. Не используйте для этого хорошие инструменты, так как они повредят лезвие деревянной пилы за несколько разрезов.

Пайка пропаном

Теги: припой, проблемы с пайкой, флюс

Справочник по сварке припоем

Справочник по сварке припоем Сварка Цветной Металлы Лечение Сварка Чугун Сварка Железо Металлы 5 преимуществ и недостатки пайки для сварки пайкой сварка происходит быстрее, чем сварка плавлением, поскольку требуется гораздо меньше подводимого тепла.Стержень, обычно используемый для пайки сварка имеет температуру плавления около 875 0 С (1600 0 F). При сварке стали припоем, основной металл должен быть нагрет только до температуры около 900 0 C, точнее чем до температуры более 1500 0 С. Экономия времени и экономии на потреблении газа часто бывает более чем достаточно, чтобы уравновесить существенно более высокая стоимость присадочного металла.В уменьшение тепловложения имеет другие преимущества, особенно при сварке литых железо, которое будет покрыто Следующая глава. Это сводит к минимуму необходимое количество предварительного нагрева. Поскольку бронза присадочный металл чрезвычайно пластичен, он может поглощать напряжения, возникающие во время охлаждения, которые в случае отливки могут сварка плавлением железа, вызывает растрескивание основной металл или сварной шов. При использовании на стали сварка пайкой снижает деформацию основной металл из-за сил сжатие и расширение.Когда низкоуглеродистая сталь или чугун правильно сварены пайкой, прочность соединения, при нормальных температурах вероятно быть равным или даже превосходящим прочность основного металла. Пайка Иногда сварка может использоваться для соединения разнородных металлов, что не может быть успешно выполнено. сварены плавлением. Сталь можно приваривать к чугуну пайкой. Медь можно соединить с латунью при помощи пайки. сварка. Однако присоединение При сварке разнородных металлов при любой сварке следует подходить с осторожностью.Тот факт, что вы можете повернуть то, что кажется красивым сварным швом, не является доказательством того, что общий результат удовлетворительно. Основные свойства одного или обоих соединенных металлов, возможно, подверглись неблагоприятному воздействию в результате действия сварки. Так много преимуществ. Какие недостатки? Одно совершенно очевидно, хотя часто не имеет значения; ты не можешь сопоставить цвет сварного шва с цветом основного металла. Другой, менее очевидный, бронза теряет силу при относительно низкие температуры.При 500 0 C, сталь и чугун почти такой же прочный, как и при комнатной температуре (20 0 С). Любая бронза сильно потеряла свою прочность на уровне 500 0 C. Никогда не используйте пайку для ремонта деталей, которые должны работать. при температуре выше 200 0 С. В главе 18 мы поговорим больше о техника и преимущества наплавки бронзой, который очень тесно связан паять сваркой.

Справочник по сварке припоем

Справочник по сварке припоем 2 Наполнитель Металл и флюс для сварки припоем. присадочный металл, используемый для большинства сварочных швов, представляет собой медный сплав, 60% меди, 40% цинка и небольшие количества из олова, железа, марганца и кремния.Бронзовый сварочный стержень OXWELD No. 25M пример сформулированного материала специально для сварки припоем. Легко лужит, свободно течет, образует сварной металл. с отличной прочностью и высокой пластичность. Для наплавки бронзой — процесс наращивания износа. поверхности, а не соединения — присадочный металл немного другого состава, предназначенный для достижения большей твердость при некоторой жертве пластичности, составляет часто указывается. OXWELD Нет.Штанга 31T является примером такого материала. Кремний бронза, содержащая только медь кремний (без цинка) и фосфорная бронза (сплав медь-олово) также иногда используется для пайки-сварки стали. Всякий раз, когда металлический наполнитель медь-цинк используется для сварки пайкой, необходимо использовать флюс. Без флюса, правильное лужение действие, даже на самой чистой стали или чугунных поверхностей, практически невозможно. Флюс также служит другие цели, например, уменьшение количества дыма, которое возникает из-за довольно низкой температуры кипения. точка цинка.Поток может быть предварительно нанесен на сварочный стержень или перенесен на стержень путем погружения нагретый конец стержня в банке с порошком поток. Поток пара, который улавливается ацетиленом на пути к горелке, иногда используется в производстве пайка, сварка. Стержень с предварительно нанесенным покрытием (например, OXWELD Flux-Coated 25M) выбор многих сварщиков, так как это устраняет необходимость прерывать фактическую сварочную операцию, чтобы подобрать флюс на штанге.Сварка Цветной Металлы Лечение Сварка Чугун Сварка Железо Металлы

Как паять, паять и сваривать нержавеющую сталь с медью — за 5 простых шагов! — Learn to Moonshine

Если вы создаете проект, который требует от вас соединения деталей из меди и нержавеющей стали, эта статья научит вас, как это сделать.В моем случае я строил самодельный горшок, и мне нужно было прикрепить трехзажимные феррулы из нержавеющей стали к медной колонне 2 дюйма. Это очень распространенное соединение в пивоваренной и дистилляционной промышленности, и знание того, как правильно соединить эти два разнородных металла, обеспечит успех проекта. Можно приобрести 2-дюймовые медные наконечники, которые можно припаять на место, но они довольно дороги по сравнению с наконечниками из нержавеющей стали, и мы обсуждали в группе Facebook, что медные наконечники не герметизируются должным образом с течением времени.Из-за мягкости меди эти наконечники могут поцарапаться и вмятин. По этим причинам я думаю, что буду придерживаться трехзажимных наконечников из нержавеющей стали. Итак, большой вопрос здесь в том, можно ли соединить медь пайкой, пайкой или даже сваркой их вместе, и если они могут, как вы это делаете?

Можно ли сваривать медь и нержавеющую сталь?

Можно ли сваривать медь и нержавеющую сталь? Короткий ответ: «Да», их можно сваривать вместе, но это чрезвычайно сложно и обеспечивает очень небольшую прочность конструкции.Почему ты спрашиваешь ? Ну вот и длинный ответ.

При сварке меди и нержавеющей стали возникают две проблемы. Во-первых, два металла имеют существенно разные точки плавления. Нержавеющая сталь плавится при температуре около 1400 ° C, а медь плавится при 1085 ° C, то есть разница в 315 ° C делает образование лужи из двух металлов чрезвычайно трудным. Кроме того, существуют металлургические проблемы смешения разнородных металлов в процессе сварки. Поскольку нержавеющая сталь не полностью растворяется с медью и имеет значительно более высокую температуру плавления, она сначала начнет затвердевать и формировать зернистые / кристаллические структуры.Присутствующая медь останется жидкой и будет вытеснена между этими формирующимися кристаллическими структурами, создавая очень слабую связь. По мере дальнейшего охлаждения сварного шва зерна нержавеющей стали начнут сжиматься из-за охлаждения, что приведет к разрыву зерен. На этом этапе медь еще слишком горячая, чтобы добавить структурной прочности зеренной структуре, и сварной шов будет образовывать большие трещины, это называется горячим растрескиванием. Горячее растрескивание серьезно снижает прочность сварного шва этого типа. Если вы хотите соединить медь и нержавеющую сталь, лучше всего подойдет пайка или пайка.Тем не менее, если у вас есть подходящее оборудование и такие навыки, как сварка меди и нержавеющей стали Eb Industries, это можно сделать.

Как сварить медь сваркой с нержавеющей сталью

На рисунке 1 показан сварной шов нержавеющей стали с медью

. Если у вас нет в вашем гараже устройства для электронно-лучевой сварки, такого как Eb Industries, есть другой способ сваривать / паять нержавеющую и медь. Ниже приведено изображение удачного сварного шва с трехзажимным кольцом из нержавеющей стали с медной трубой. Это было сделано с помощью сварочного аппарата Tig со стержнем из кремнистой бронзы.Теперь технически это можно классифицировать как пайку Tig, потому что нержавеющая сталь имеет более высокую температуру плавления, чем присадочный стержень из кремнистой бронзы. Стержень из кремниевой бронзы имеет температуру плавления около 1050 ° C, а нержавеющая сталь имеет температуру плавления 1400-1450 ° C. Этот процесс подробно обсуждается на сайте adiforums.com, если вам интересно узнать, что говорят профессионалы о сварке меди и нержавеющей стали методом TIG.

Если вы хотите попробовать сварку / пайку меди с нержавеющей сталью с помощью сварочного аппарата Tig, у Тома Списака III есть хороший совет.Он говорит: «Любой, у кого есть некоторый опыт работы с Tig, должен иметь возможность использовать эту связку с помощью проволоки из силиконовой бронзы, которую можно легко приобрести в вашем местном магазине сварочных материалов. На изображении выше показан сварной шов, сделанный между трехзажимной муфтой из нержавеющей стали и медной трубой.

Что вам понадобится для сварки / пайки меди и нержавеющей стали:
Процедура сварки TIG:
  • Шаг 1. Очистите все детали, которые будут свариваться / паять, с помощью куска эмори или стальной мочалки.
  • Шаг 2: Соберите детали, убедившись, что они плотно прилегают друг к другу.При необходимости зажать.
  • Шаг 3: Включите газ аргон, установите сварочный аппарат Tig на постоянный ток и
    33 pps с заостренным вольфрамовым электродом.
  • Шаг 4: Сконцентрируйте тепло на меди, медленно добавьте в бассейн материал присадочного стержня, перетаскивая бассейн на наконечник из нержавеющей стали
    . Вы не хотите плавить здесь нержавеющую сталь, иначе вы получите структурное растрескивание, как упомянуто выше.
  • Шаг 5: После завершения проверки сварного шва на наличие дефектов, очистив участок проволочной щеткой, также проверьте наличие утечек.Если ваше здание по-прежнему такое же, как я, вы должны убедиться, что нет утечек.

Вот видео, демонстрирующее сварку / пайку меди TIG с нержавеющей сталью.

Можно ли паять или паять медь и нержавеющую сталь вместе?

Да, медь и нержавеющая сталь можно легко спаять или спаять вместе с использованием присадочного материала, обычно содержащего олово и серебро. В отличие от сварки, при которой мы плавим два металла вместе, при пайке или пайке используется присадочный материал, чтобы соединить две части вместе, не плавя их.Температура отличает пайку от пайки, тогда как пайка обычно требует нагрева более 450 ° C / 840 ° F для соединения деталей с помощью прутка. Пайка выполняется при температуре ниже 450 ° C / 840 ° F с использованием припоя. Оба присадочных материала содержат серебро, чем выше его содержание, тем выше температура плавления и тем прочнее связь между деталями. Таким образом, пайка даст гораздо более прочное соединение, чем пайка.

Как припаять нержавеющую сталь к меди

Если вы решите спаять компоненты вместе, обычный водопроводный припой, содержащий 95% олова и 5% сурьмы, отлично подойдет.Вы также можете использовать комплект Lincon Electric Solder Stay-Bright с флюсом, который на 95% состоит из олова и 5% серебра для достижения лучших результатов. Оба припоя будут иметь температуру плавления 230 ° C / 450 ° F и могут быть нагреты с помощью простой пропановой горелки или газовой горелки Mapp. Вам нужно будет тщательно очистить обе детали и нанести покрытие из флюса на все паяемые поверхности. Для этой работы мне нравится белая флюсовая паста Harris. Флюс важен, потому что он растворяет оксиды, которые образуются в процессе нагрева, и помогает потоку припоя в соединение, обеспечивая защиту от кислорода в воздухе.Ниже представлено видео о пайке нержавеющей стали с медью и последующей проверке соединения на прочность.

Я подробно описал процесс пайки медных фитингов из нержавеющей стали в пошаговом формате ниже, что должно упростить его отслеживание. Если вы собираетесь паять медь с медью, вам может быть интересно это Руководство по пайке меди

Материалы, необходимые для пайки:
Процедура пайки:
  • Шаг 1: Очистите все детали, которые нужно припаять, с помощью куска Эмори или стальная вата.
  • Шаг 2: Нанесите белую флюсовую пасту на паяемые поверхности. Важно использовать флюс, подходящий для нержавеющей стали, так как он должен протравить поверхность, чтобы припой мог правильно склеиться. Вы можете использовать соляную (соляную) кислоту
    , фосфорную кислоту, фтороборатные флюсы и хлорид цинка.
  • Шаг 3: Соедините две части вместе и начните нагревать медь пропановой или газовой горелкой MAPP. Не нагревайте нержавеющую сталь напрямую. Как только припой начнет плавиться на меди, перенесите тепло на нержавеющую сталь.Нагревайте, пока не увидите, как припой течет в соединение. Затем удалите источник тепла.
  • Шаг 4: Дайте детали остыть, пока она не станет теплой, затем сотрите излишки флюса водой с мылом.
  • Шаг 5: Выполните испытание на герметичность, чтобы убедиться, что соединение полностью герметично.

Вот еще несколько продуктов, рекомендованных участниками группы Home Disttilers of America в Facebook:

Как припаять нержавеющую сталь к меди

Пайка меди обеспечит более прочное соединение из-за высокого процента серебра в прутке.Но это также будет стоить дороже и потребует использования ацетиленовой или газовой горелки Mapp для плавления прутка. Вы можете приобрести прутки для пайки с различным содержанием серебра, а также прутки с покрытием из флюса или без него. В моем случае я бы порекомендовал использовать пруток для пайки 45% серебра, покрытый синим флюсом, который имеет температуру плавления приблизительно 600 ° C / 1100 ° F для соединения деталей из меди и нержавеющей стали. Если вам нужна большая прочность, вы можете использовать пруток для припоя 56% серебра с оранжевым флюсом. Вы также можете нанести серебряный припой Harris «Stay-Silv» или аналогичный продукт для очистки всех деталей перед пайкой.Ниже представлено видео, демонстрирующее, как припаять медь к нержавеющей стали.

Ниже я подробно описал процесс пайки фитингов из меди и нержавеющей стали в пошаговом формате. Прежде чем приступить к работе, важно понять, что вы можете повредить поверхность нержавеющей стали из-за ее перегрева в процессе пайки. Хром используется в нержавеющей стали для предотвращения коррозии, когда вы нагреваете нержавеющую сталь между
425–870 ° C (800–1600 ° F) в течение продолжительных периодов времени, хром может диффундировать от поверхности и образовывать карбиды хрома, которые заставят сталь больше не нержавеющая.Оставляя его подверженным коррозии и растрескиванию. Вы можете предотвратить это, избегая чрезмерного нагрева деталей и закалив их в воде после 4 минут нагрева.

Материалы, необходимые для пайки:

Процедура пайки:
  • Шаг 1: Очистите поверхность стальной мочалкой или тканью Emory.
  • Шаг 2. Нанесите флюс на обе паяемые поверхности, убедитесь, что у вас есть флюс, способный травить нержавеющую сталь и рассчитанный на высокую температуру пайки (более 840 F), вы не можете использовать обычный водопроводный флюс. здесь.
  • Шаг 3: Соедините детали вместе и начните нагревать медь круговыми движениями, равномерно нагревая ее вокруг трубы. Когда паяльный стержень начнет течь, переместите горелку ближе к нержавеющей стали, это должно втянуть наполнитель в стык между двумя частями. Нержавеющая сталь передает тепло медленнее, чем медь, поэтому у нее не так много времени, чтобы нагреться до температуры. Поэтому сначала начинаем нагревать медь. Если вы паяете клапан, который может быть чувствительным к температуре, оберните клапан влажным слоем, чтобы внутренние части клапана не плавились.
  • Шаг 4. Дайте детали остыть, пока она не станет теплой на ощупь, затем удалите флюс с мылом и водой до полного остывания.
  • Шаг 5: Выполните испытание на герметичность, чтобы убедиться, что соединение полностью герметично.

В чем разница между прутками для пайки из серебра и без покрытия?

Давайте поговорим о преимуществах и недостатках использования прутков для пайки с флюсовым покрытием и прутков без покрытия. Очевидным преимуществом использования прутков для пайки с флюсовым покрытием является удобство. Нам не нужно наносить флюс на детали, которые мы паяем, потому что он уже находится на стержне, и поэтому нам не нужно отдельно покупать флюс для серебряного припоя.Недостатком паяльного стержня с флюсовым покрытием является то, что трудно контролировать количество флюса, подаваемого на наш сустав, когда он уже находится на стержне, и, что еще хуже, если вы перегреваете стык, флюс может образовывать твердое черное стекло, подобное пленке, которое невероятно трудно Удалить.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *