Источники энергии. Потенциал и падение напряжения
Еще один пост из серии основы основ. Заметил я, что многие совершенно не въезжают в концепцию падения напряжения, разности потенциалов и типов источников питания. Поэтому запилю ка я ликбез по этой теме. С самого начала. Потом заброшу его в начало рубрики «Начинающим». Пойдет как замена цикла статей канализационной электроники. Т.к. тот цикл писался для «Хакера» и особой подробностью не отличался ввиду ограничений на размер полосы.
Начало начал. Ноль.
Итак, начну с самого начала. Со дна. То есть с земли. Точки нулевого потенциала. Эта точка совершенно произвольная. Просто нам так удобно, что мы приняли ее за ноль. Надо же с чего то начинать. В однополярном питании это, обычно, минус питания. В двуполярном — нечто посредине, впрочем от конструкции зависит.
Источник энергии
Что такое вообще источник электрической энергии? Это всего лишь «зарядовый насос» который перекачивает электроны (или ионы) посредством химической, электростатической, сегнетоэлектрической, электромагнитной, термической, да любой энергии. Это не важно. Суть лишь в том, что он искажает нейтрально-равномерное распределение зарядов, стаскивая положительные в одну сторону, отрицательные в другую.
И вот если мы примем один конец нашей трубы-проводника за ноль, то на другой будет какой то потенциал. Какой?
А это зависит от силы источника энергии, ведь заряды сопротивляются, хотят обратно, к нулевому состоянию. Системе с минимальной энергией. А еще от характеристик самой силы. Например, химическая, что в солевых батарейках, не дает напряжения больше 1.5 вольт. Это свойства электролита и электродов (я химию уже подзабыл, но что то там связано с электрохимическим рядом).
Как если бы мы соединили два насоса последовательно, один набивает нам давление в 1 атмосферу, и второй относительно него набивает 1 атмосферу, а вместе они выдают аж два очка.
У меня на прошлой работе делали стендовые мультиметры. Делали их из обычных DT-838 прикручивая их на панели. Делали массово, сотнями. А все они с завода комплектуются батарейкой типа КРОНА которая тут оказывалась не нужна. Батарейка была голимая, но свои 9вольт давала. И таких батареек была целая коробка от телевизора, россыпью. А Крона прикольна тем, что она может соединяться своим разьемом с другой Кроной. Ну я от нефиг делать давай их соединять последовательно, раскладывая на полу. Сколько я их соединил я уже не помню. Потом мне тупо стало страшно, т.к. в длину у меня пространство кончилось, а в два слоя их соединять сцыкотно — так как концы близко получались. А у меня в результате получился источник напряжением чуть ли не под киловольт и способный дать в течении нескольких минут ток в пару ампер. Коротни я его на себя и от меня бы одни ботинки остались. Пришлось разобрать адскую машину.
Замкнутая цепь
Ну вот есть у нас источники энергии, каждый наращивает потенциал согласно своей дури. На вершине же этой цепи у нас будет их суммарный потенциал. Дикое количество нескомпенсированных зарядов, рвущихся к нулю. Их можно сравнить с сжатым воздухом.
Обратно они прорваться не могут — источник энергии не дает. Вперед — некуда. Для пробоя воздуха энергии не хватает. Вот и висят в таком состоянии. Как батарейка, никуда не подключенная — на выходе голый потенциал и никакой движухи. Напряжение есть, а тока нет. Осталось только дать им путь. Замкнем цепь. Накоротко, без полезной нагрузки.
И ток рванет по короткому пути, а потом обратно за счет источника энергии наверх и так далее. Напряжение наверху сразу же упадет в ноль. Но раз сопротивления нет, то с какой скростью он это будет делать? Идеальный насос, с бесконечной мощностью, разгонит нам ток до бесконечности.
Но в реальности выходит на сцену производительность насоса. Т.е. насос физически, ввиду своей конструкции, не может нам прокачать больше определенного объема (скажем, ограниченный размер цилиндра), а у батареи есть ограниченная площадь электродов, у генератора есть сопротивление обмоток. Получается в цепи все же есть сопротивление, это сопротивление источника. И выше него не прыгнешь. Также и с реальным источником напряжения. У него тоже всегда есть внутреннее сопротивление. И чем оно ниже, тем мощней источник, тем больший ток он сможет отдать.
Впрочем, никто не мешает взять и соединить два насоса-источника параллельно. И у нас получится, что они с одинаковым давлением (напряжением) родят вдвое больший ток. Правда тут надо учитывать, что ставить в параллель два источника с разным напряжением нельзя — тогда более слабый будет продавливаться более сильным и служить потребителем. Разумеется если внешней нагрузки, которая бы просадила напряжение до уровня слабого, нет.
Тоже самое касается и последовательного включения. Если мы воткнем в последовательное включение источник с большим внутренним сопротивлением чем у всех остальных, то он забьет всю цепь и будет обузой, не давая развивать максимальный ток.
Теперь вспомним о батарейках. Когда батарейка новая, то у ней малое внутреннее сопротивление, но чем больше электролита вступает в реакцию тем внутреннее сопротивление становится больше. И получается, что напряжение то она выдает и мультиметр показывает вроде бы четкие полтора вольта, но стоит затребовать с нее большой ток, как она мгновенно сдувается — возросшее сопротивление не позволяет выдать его и напряжение падает.
А теперь немног больше конкретики. Закон Ома для полной цепи.
Есть просто закон Ома: напряжение = ток * сопротивление
U = I * R
Это частный случай закона Ома для отдельного элемента цепи. Но есть еще закон Ома для полной цепи, с учетом источника.
Итак, у нас в цепи есть:
Наш идеальный насос — источник электродвижущей силы (ЭДС) — Е. У него бесконечная мощность и нулевое внутреннее сопротивление.
А также есть нагрузки R1 и R2, включенные последовательно.
Ток (I) в последовательной неразветвленной цепи одинаков везде. И равен он величине ЭДС поделенной на сумму ВСЕХ сопротивлений, в том числе и внутреннего. И из этого получается вот что:
E = I*Re+I*R1+I*R2
Т.к. I*R=U перепишем все по иному:
E = I*Re + U1 + U2
Получается, что электродвижущая сила нашего источника, раскладывается, в зависимости от величины нагрузки, по всей цепи. Чем больше нагрузка, тем больше там надо приложить энергии для ее преодоления. Т.е. в нашей батарейке, если у нас E константа и не меняется (напомню, что она зависит только от химии процесса и подбора материалов батареи — т.е. это конструктивная особенность батареи), то при увеличении Re у нас, чтобы сохранить равенство, приходится снижать ток. А раз так, то падает U1 и U2 т.е. напряжение на потребителе. Еще, можно заметить, что у последовательных потребителей напряжение на каждом из них зависит от его R. И там где сопротивление больше — будет большее напряжение.
А что происходит когда мы тыкаем вольтметром в нашу дохлую батарею? А у вольтметра ОГРОМНОЕ сопротивление. И по сравнению с ним внутреннее сопротивление источника даже не отсвечивает.
Re <<<< Rвольтметра
А ток одинаково мал (доли милиампера) для всех потребителей. Таким образом в уравнении:
Е = I*Re + I*Rвольтметра
На цифрах:
Е=1.5
Re=10 Ом
Rвольтметра = 10 000 000 Ом
I = 1.5/10 000 010 = 1,499Е-7
I*Re = 0.00000015 * 10 = 1.499Е-6
I*Rвольтметра = 1,499Е-7 * 10 000 000 = 1.4991.5 = 1.499Е-6 + 1.499
Львиная доля напряжения высадится там, где сопротивление больше — на вольтметре. И вольтметр покажет практически величину Е, но это будет работать лишь на малых токах. При снижении сопротивления нагрузки и увеличении тока, часть I*Re будет все весомей и весомей, пока не перетащит на себя все напряжение. Тогда на нагрузке напряжение упадет почти до нуля — батеря просто не способна дать ток, такой, чтобы удержать напряжение. Либо, если это не батарейка, а какой либо другой источник — источник не тянет нагрузку. А если у батареи от долгой работы на нагрузку увеличилось внутреннее сопротивление, то в этом случае батарейка села.
Источник напряжения. Стабилизация
Но бывают такие хитрые схемы, где у источника внутреннее сопротивление можно менять в широких пределах. И есть следящая система, которая регулирует его таким образом, чтобы на нагрузке было строго определенное напряжение. Разумеется до тех пор пока токи не выходят за оговоренные рамки, а дальше неизбежный провал. Причем если сопротивление нагрузки, например, уменьшится, то и сопротивление источника уменьшится, чтобы иметь возможность пустить через нагрузку больший ток и выровнять напряжение на нагрузке.
Если брать идеальный источник напряжения — фактически голый источник ЭДС с нулевым сопротивлением, то он при снижении нагрузки в ноль даст бесконечный ток. Простейшим примером источника напряжения является конденсатор в момент разрядки. У идеального конденсатора внутреннее сопротивление равно нулю, поэтому когда он разряжается, то на бесконечно малом промежутке времени дает бесконечно большой ток.
Потенциал
Исходя из названия величины — это потенциальная энергия электрического поля в конкретной точке. Но для того, чтобы ее замерить надо задать отправную точку, систему отсчета — точку нулевого потенциала. Она может быть где угодно. Зависит лишь от наших целей в текущий момент. Но обычно за ноль принимают корпус или минус питания. Это и будет нашей точкой нулевого потенциала — Землей.
Возьмем и пририсуем к нашей цепи эту точку, вот так.
Итак, у нас есть цепь. Параметры такие:
Е = 5В
R = 1 Ом — все резисторы, для простоты.
I = 1 A
Теперь найдем потенциал во всех точках. Он, традиционно, обозначется буквой фи. Правило тут простое:
- 0. Выбираем точку нуля.
- 1. Выбираем направление обхода.
- 2. Выбираем направление тока в контуре. Совершенно произвольно, если ошибешься с направлением, то ряд величин будет с отрицательным знаком, но уравнение все равно сойдется. Однако лучше все же выбирать ток исходя из логического предположения того, как он должен течь при данном направлении источника — минусов будет меньше.
- 2. Если источник нам по пути, то он увеличивает потенциал, на величину своей ЭДС.
- 3. Если по пути нагрузка. То если ток совпадает с выбранным направление обхода, то потенциал уменьшаем на I*Rн Если же ток через нагрузку идет против нашего обхода, то увеличиваем потенциал на I*Rн.
И вернемся к нашему контуру:
- 0. Точка нуля задана.
- 1. Пусть обход контура по часовой.
- 2. Ток по часовой.
- 3. Проходим источник ЭДС. Потенциал в точке Б сразу же подскакивает на его величину. Вот оно максимальное напряжение. Но это где то в глубине батареи, мы его не замерим кроме как математически. Поэтому проходим внутреннее сопротивление. Идем по току, поэтому у нас потенциал снижается на I*Rе. В Точке В мы получили реальный потенциал на клемме нашей батареи. Идем дальше, дальше у нас резистор. Там ток течет по обходу, а значит потенциал уменьшается еще на I*R1. Дальше аналогично. В итоге, когда мы сделаем круг, на каждом резисторе потенциал будет падать до тех пор, пока не выйдет в ноль, по возвращении в точку начала обхода.
Если сделать обход в обратную сторону, то получится все то же самое, только потенциал будет рости до тех пор пока мы не дойдем до Е и, пройдя его против направления, не вычтем ЭДС выйдя опять на ноль.
Но это мы получали потенциал относительно нуля. А если взять разность потенциалов между точкой Г и Е ? А мы получим напряжение между двумя этими точками. Если ткнуть туда вольтметром, то он покажет именно это напряжение. Т.е. напряжение это разность потенциалов. А падение напряжения между точками — это та величина на которую меняется потенциал при переходе из одной точки схемы в другую.
И главное надо очень четко понять тот факт, что главное в цепи это разность потенциалов. Есть разность потенциалов — есть ток, заряды текут и стремятся эту разность свести на ноль. Нет — тока не будет, т.к. зарядам в этом случае совершенно не захочется куда то бежать и где то там что то выравнивать, т.к. энергия системы в этом случае минимальная.
Тока может и не быть, если цепь не замкнута, а вот потенциала хоть отбавляй. Например, лежит кусок провода, никуда не подключен. На концах разность ноль — все заряды равномерно распределены.
Пошла мимо провода электромагнитная волна, извне откуда то прилетела, послужила тем самым источником энергии и раскидала заряды по разным концам провода. Появилась разность потенциалов на концах.
Таким образом, даже в никуда не подключенной ноге микроконтроллера, если она висит в режиме высокого входного сопротивления (HiZ — т.е. практически никуда не подключена и цепь разомкнута), из воздуха, от случайных помех, могут наводится большие потенциалы, достаточные для хаотичного переключения входа из 0 в 1 и обратно. А если к ноге приделать длинный провод, то на нем может навестись такой потенциал, что контроллер пожгет нафиг. Поэтому то длинные линии обычно делают в виде токовой петли, с низким сопротивлением, чтобы не наводилось на них перенапряжений. А наличие-отсутствие сигнала ловят по наличию-отсутствию тока нужной величины.
Эту концепцию потенциала и зависимости тока от него надо понять досконально, на уровне спинного мозга. Потому что потом дальше оперирование будет в основном потенциалами относительно общей точки.
Понятие падения напряжения активно юзается при обсчете нелинейных элементов, вроде диодов.
Расчет резистора для светодиода
Итак, есть у нас светодиод. Некий абстрактный. И у него по даташиту падение напряжения 2.5 вольта. А допустимый ток 10мА. А еще есть батарея, дающая 5 вольт и имеющая внутреннее сопротивление в 1Ом.
Что означает падение напряжения светодиода? А то, что между его выводами напряжение может быть не выше 2.5 вольта. Т.е. воткнешь ты его на батарею хоть в 100 вольт, а там все равно должно быть 2.5 вольта. Достигается это за счет того, что сопротивление диода тем меньше, чем большее к нему приложено напряжение. Куда же деть остальные 97.5 вольт? А их придется высадить на внутреннем сопротивлении источника. А если оно мало? А не волнует! Придется вкачать большой ток, настолько болшой, чтобы на внутреннем сопротивлении источника высадило это злосчастные 97.5 вольт. Вот только ток там уйдет в сотни ампер. А светодиод от таких токов пыхнет плазменной вспышкой и устроит тебе КЗ со взрывом.
Конечно, у реального светодиода все не так страшно и сопротивление его бесконечно падать не может, а падение напряжения не константное и меняется, но когда эти отклонения будут значительными ток будет уже за гранью допустимого. Так что можно смело принять падение напряжения на светодиоде за константу.
Итак, вернемся к нашим баранам.
Есть источник, есть диод. Вот такая схема.
Е=I*Re+Vled
5=I*1 + 2.5
Воткнув наш пятивольтовый источник на наш 2.5 вольтовый диод мы получим падение напряжения на диоде 2.5 вольта. И столько же должно высадиться на внутреннем сопротивлении источника. Ток будет 2.5А это очень много, на два порядка выше чем разрешено. Значит надо добавить еще один резистор, дабы он сбросил на себя часть напряжения и обеспечил ток в 10мА.
Е=I*Re + I*R + 2.5
Понятно, т.к. I = 0.01 то вычислить R не сложно. R = 249 Ом. Ближайший из ряда E24 — 240 Ом.
Параметры диода из его даташита, токоограничительное сопротивление мы выбираем, а откуда взять внутреннее сопротивление источника? А обычно им пренебрегают, считая его равным нулю. Один фиг его сопротивление в порядки меньше чем сопротивление ограничивающего резистора.
Источник тока
Антипод источника напряжения. Если источник напряжения выдает напругу и может развить бесконечный ток, лишь бы эту напругу удержать.
То источник тока выдает ток и может выдать бесконечное напряжение, лишь бы этот ток продавить. Имеет бесконечное внутреннее сопротивление, поэтому его выдаваемое напряжение (I*Rвн) и стремится к бесконечности. У реального же источника тока есть внутреннее сопротивление и расположено оно параллельно. Т.е. если ток через нагрузку не продавливается, то он уходит по внутреннему сопротивлению, не давая броска напряжения до победного конца. И чем выше внутреннее сопротивление источника тока, тем большее падение напряжения будет на нем, а значит и большее напряжение на нагрузке. Тем самым, по закону Ома, через нагрузку продавит больший ток.
Источниками тока в природе является катушка индуктивности, в момент разрыва цепи. Поэтому то она так и искрит, т.к. накачивает дикое напряжение, стремясь пробить дорогу току и удержать его на прежнем уровне.
easyelectronics.ru
Падение напряжения на участке цепи
Доставшуюся этому участку.
Ту часть , которая достается какому-либо участку цепи, принято называть напряжением на этом участке (часто говорят — «падение напряжения») и обозначать буквой U. Напряжение измеряется в Вольтах «В», в честь Алессандро Вольта, который создал первый в мире химический источник тока.
Напряжение это разность значений потенциала в начальной и конечной точках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого заряда.
Так, чтобы получить напряжение в 1 В нужно, чтобы заряд в 1 Кл пройдя по цепи, совершил работу в 1 Дж:
На самом деле в теории не все так просто. Мы постарались изложить основными понятиями, которые используют для простого изложения материала по этой теме.
На практике мы можем увидеть то самое падение напряжения. Чтобы понимать еще лучше, изучите закон Ома
Теперь перейдем к примерам:
1) Я создал пробную схему в программе Multisim. На источнике питания я выставил постоянное напряжение 1 В, последовательно с источником в цепь включен резистор номиналом 1 Ом. Теперь мультиметром в режиме измерения постоянного напряжения мы «посмотрим», что же упало на этом двухполюснике (резисторе). Для этого плюсовой контакт мультиметра подключаем к резистору со стороны положительного контакта источника, а минус к (минусу). Смотрим!
Теперь мы увидели, что на резисторе упало все напряжение источника, т.е. 1 В. Действительно, с другой стороны мы так же измеряем напряжение и на концах генератора.
2) Давайте попробуем не меняя напряжения на источнике поставить последовательно 2 резистора номиналом 1 Ом. Смотрим!
Вот! Теперь вспоминаем что я писал выше:
Ту часть э.д.с., которая достается какому-либо участку цепи, принято называть напряжением на этом участке (часто говорят — «падение напряжения») и обозначать буквой U.
Каждому резистору в данной электрической цепи досталась часть всей э.д.с. Разница в избыточных зарядах на концах какого-либо участка последовательной цепи автоматически оказывается тем больше, чем больше сопротивление этого участка. То есть, иными словами, напряжение на участке цепи пропорционально сопротивлению участка. Ну, а кроме того, по абсолютной величине это напряжение тем больше, чем больше сама э.д.с., — если делить на несколько человек большой каравай хлеба, то каждому достанется больше, чем если бы делить маленькую булочку.
Так как сопротивление резисторов одинаково, то им досталось по равной части э.д.с., а именно по 0.5 В.
3) Для наглядности я возьму два разных резистора, номиналами 1 Ом и 7 Ом, потому, что я тут рассказываю, падение напряжения на резисторе 7 Ом должно быть больше, чем на резисторе 1 Ом. Проверяем!
Все верно! Мы получили большее падение напряжения на резисторе R2 = 7 Ом.
4) Ну и наверное последний эксперимент. Повысим напряжение на источнике до 2 В. Напряжение на резисторах должно возрасти в 2 раза (так как на источнике напряжение подняли тоже в 2 раза). Смотрим!
И снова верно! Местная э.д.с., то есть напряжение на участке цепи, это не выдумка, помогающая что-то объяснить или подсчитать. Это реальность. Причем настолько реальность, что к любому участку цепи, как к генератору, можно подключить свою нагрузку и образовать свою местную цепь в большой общей цепи. При подключении такой местной нагрузки, как при всяком параллельном подключении, несколько уменьшится общее сопротивление этого участка, а значит, и реально действующее на нем напряжение.
Заключение.
Напряжение, так же как и э.д.с., говорит о той энергии, с которой проталкивается каждый кулон свободных электрических зарядов (а если строго — о той работе, которую он выполняет), но, конечно, уже по какому-либо участку, а не по всей цепи. Поэтому напряжение, так же как и э.д.с., измеряется в вольтах. Очевидно, что общая работа, выполняемая единичным зарядом во всей цепи, равна сумме работ, выполненных на отдельных ее участках, то есть э.д.с. равна сумме всех напряжений на участках цепи.
Литература
- Сворень Р. А. Электроника шаг за шагом. Практическая энциклопедия юного радиолюбителя. — Москва: Детская литература — 1991. — 461 с.
Если вы нашли ошибку, пожалуйста выделите ее и нажмите Shift + Enter или чтобы сообщить нам об этом.
СОДЕРЖАНИЕ: Электрические цепи постоянного тока и методы их расчета 1.1. Электрическая цепь и ее элементы В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрические цепи постоянного тока и методы их расчета
1.1. Электрическая цепь и ее элементы
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.
Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.
Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в
les74.ru
Напряжение на участке цепи
Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.
На рис. 1-13 изображен участок цепи, на котором есть резистор сопротивлением и нет ЭДС. Крайние точки этого участка обозначены буквами a и b. Пусть ток течет от точки a к точке b.
Рис. 1-13. Участок электрической цепи
На участке без ЭДС ток течет от более высокого потенциала к более низкому. Следовательно, потенциал точки a выше потенциала точки b на величину, равную произведению тока на сопротивление :
.
В соответствии с определением, напряжение между точками a и b
. (1-8)
Другими словами, напряжение на резисторе равно произведению тока, протекающего по резистору, на величину сопротивления этого резистора.
В электротехнике разность потенциалов на концах резистора принято называть либо «напряжением на резисторе», либо «падением напряжения». В литературе встречаются оба этих определения.
Рассмотрим теперь вопрос о напряжении на участке цепи, содержащем не только резистор, но и источник ЭДС.
На рис. 1-14 а и б показаны участки некоторых цепей, по которым протекает ток .. Найдем напряжение между точками a и c для этих участков.
а) б)
Рис. 1-14. Участки электрической цепи
По определению
. (1-9)
Выразим потенциал точки a через потенциал точки c. При перемещении от точки c к точке b (рис. 1-14,а) идем встречно ЭДС , поэтому потенциал точки b оказывается меньше, чем потенциал точки c на величину ЭДС , т.е.
. (1-10)
На рис. 1-14,б при перемещении от точки c к точке b идем согласно ЭДС и потому потенциал точки b оказывается больше, чем потенциал точки c на величину ЭДС , т.е.
. (1-11)
Ранее говорилось, что на участке цепи без ЭДС ток течет от более высокого потенциала к более низкому. Поэтому в обеих схемах рис. 1-14 потенциал точки a выше, чем потенциал точки b на величину падения напряжения на резисторе сопротивлением :
. (1-12)
Таким образом, для рис. 1-14,а имеем
, или
. (1-13)
И для рис. 1-14, б имеем
, или
. (1-14)
Положительное направление напряжения указывают на схемах стрелкой. Стрелка должна быть направлена от первой буквы индекса ко второй. Так, положительное направление напряжения изобразится стрелкой, направленной от a к c.
Из самого определения напряжения следует также, что . Поэтому . Другими словами, изменение чередования индексов равносильно изменению знака этого напряжения. Из изложенного ясно, что напряжение может быть и положительной, и отрицательной величиной.
Закон ома для участка цепи, не содержащего эдс
Закон Ома устанавливает связь между током и напряжением на некотором участке цепи. Так, применительно к участку цепи, изображенному на рис. 1-13 имеем
или
. (1-15)
studfile.net
Закон Ома для участка цепи простым языком для чайников
Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.
Диаграмма, упрощающая запоминаниеКлассическая формулировка
Этот простой вариант трактовки, известный нам со школы.
Однородный открытый участок электроцепиФормула в интегральной форме будет иметь следующий вид:
Формула в интегральной формеТо есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.
В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.
Принятые единицы измерения
Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:
- напряжение – в вольтах;
- ток в амперах
- сопротивление в омах.
Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.
Формулировка для полной цепи
Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.
Схема с подключенным с источникомУчитывая «r» ЭДС, формула предстанет в следующем виде:
Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.
Напряжение будет меньше ЭДС, определить его можно по формуле:
Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.
Неоднородный участок цепи постоянного тока
Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.
Схема неоднородного участкаФормула для такого участка (обобщенный закон) будет иметь следующий вид:
Формула для неоднородного участка цепиПеременный ток
Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:
Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.
Практическое использование
Видео: Закон Ома для участка цепи — практика расчета цепей.
Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.
Применяем закон к любому участку цепиИспользуя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:
- Напряжение – 220 В;
- R нити накала – 500 Ом.
Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.
Рассмотрим еще одну задачу со следующими условиями:
В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:
Преобразуем исходные данные:
- 20 кОм = 20000 Ом;
- 10 мА=0,01 А.
Решение: 20000 Ом х 0,01 А = 200 В.
Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.
Сопротивление.
Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.
Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.
Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».
Рассмотрим несколько примеров.
Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.
Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).
Изображение вольт-амперной характеристики, где R=1 Ом
Изображение вольт-амперной характеристикиВертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).
Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.
Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.
Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.
Вывод
Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.
Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.
Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.
Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.
www.asutpp.ru
Закон Ома для участка цепи. Определение, формула расчета, калькулятор
В 1827 году Георг Ом опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.
Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.
Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с удельным сопротивлением) величина постоянная, можно оформить это следующей формулой:
где
- I — тока в амперах (А)
- V — напряжение в вольтах (В)
- R — сопротивления в омах (Ом)
Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в 1 В.
Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:
где
- σ – проводимость материала
- J — плотность тока
- Е — электрическое поле.
Закон Ома и резистор
Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. Резистор, который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.
Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.
Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.
В статьях о параллельном и последовательно соединении более подробно описано как это сделать.
Немецкий физик Георг Симон Ом опубликовал в 1827 свою полную теорию электричества под названием «теория гальванической цепи». Он нашел, что падение напряжения на участке цепи является результатом работы тока, протекающего через сопротивление этого участка цепи. Это легло в основу закона, который мы используем сегодня. Закон является одним из основных уравнений для резисторов.
Закон Ома — формула
Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».
или
или
Ниже приведены два примера использования такого треугольного калькулятора.
Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах. Какой ток протекает через этот резистор? Треугольник напоминает нам, что: | |
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В. Какое будет падение напряжения на этом резисторе? Использование треугольника показывает нам, что:Таким образом, напряжение на выводе будет 120-20 = 100 В. |
Закон Ома — мощность
Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.
Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):
где
- Р — мощность в ваттах (В)
В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:
или
Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной.
Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.
На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.
Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.
Закон Ома — калькулятор
Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет:
Для закрепления понимания работы закона Ома, приведем несколько задач для самостоятельного решения.
www.joyta.ru
Как определить напряжение на участке цепи. Падение напряжения на участке цепи. Электрическая цепь и ее элементы
Доставшуюся этому участку.
Ту часть , которая достается какому-либо участку цепи, принято называть напряжением на этом участке (часто говорят — «падение напряжения») и обозначать буквой U. Напряжение измеряется в Вольтах «В», в честь Алессандро Вольта, который создал первый в мире химический источник тока.
Напряжение это разность значений потенциала в начальной и конечной точках траектории.
Продолжим раздел 2 и в этом разделе мы будем рассматривать делители напряжения и уравнения мощности для последовательных схем. Падение напряжения в цепи пропорционально значениям сопротивления, так что это говорит о том, что падение напряжения, которое мы будем испытывать в данной схеме, будет пропорционально значениям сопротивления в этой схеме.
В предыдущем разделе мы рассмотрели и что сказал закон Кирхгофа? Он сказал, что приложенные напряжения будут равны приложенному напряжению, поэтому напряжение питания каждого из отдельных компонентов будет равно источнику напряжения. В этом случае напряжение на индивидуальном противники равны источнику напряжения.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого заряда.
Так, чтобы получить напряжение в 1 В нужно, чтобы заряд в 1 Кл пройдя по цепи, совершил работу в 1 Дж:
На самом деле в теории не все так просто. Мы постарались изложить основными понятиями, которые используют для простого изложения материала по этой теме.
Мощность в цепи сопротивления можно рассматривать как тепло, рассеиваемое величиной, и мы измеряем мощность в количестве, называемом ваттами. Мы говорили о ваттах в предыдущих главах, чем больше мощность рассеивала более горячий резистор. Общая мощность в последовательной цепи определяется суммой отдельных рассеивателей мощности. Общая мощность будет равна сумме всех индивидуальных мощностей в цепи. Мы снова посмотрим на ту же схему, и на этот раз мы будем использовать наш маленький калькулятор. Мы будем смотреть на сопротивление текущего времени, и мы также рассмотрим сопротивление в квадрате по времени.
На практике мы можем увидеть то самое падение напряжения. Чтобы понимать еще лучше, изучите закон Ома
Теперь перейдем к примерам:
1) Я создал пробную схему в программе Multisim. На источнике питания я выставил постоянное напряжение 1 В, последовательно с источником в цепь включен резистор номиналом 1 Ом. Теперь мультиметром в режиме измерения постоянного напряжения мы «посмотрим», что же упало на этом двухполюснике (резисторе). Для этого плюсовой контакт мультиметра подключаем к резистору со стороны положительного контакта источника, а минус к (минусу). Смотрим!
Прежде всего, если мы будем использовать эту формулу, нам нужно знать, что такое полный ток в цепи. У нас есть приложенное напряжение, которое составляет 120 вольт, и мы разделим его на общее сопротивление внутри схемы, чтобы найти то, что является полным током. В этом случае у нас есть 120 вольт, и мы делим это на общее сопротивление, равное 60 К, и поэтому у нас есть наше значение миллиампов.
Один из последних позволил нам использовать другую формулу, и мы будем выполнять текущее квадратичное сопротивление времени, поэтому мы собираемся пройти два показателя минус три, и мы возьмем это и сделаем квадрат, тогда мы возьмем это время на полное сопротивление и в этом случай, который составляет 30 тыс. поэтому мы скажем раз 30 экспонентов три, и мы получим 120 милливатт. Здесь мы имеем наш окончательный расчет здесь, и если бы мы их суммировали, мы бы сказали, что 40 плюс 80 плюс 120, и здесь не должно быть сюрпризов, 240 милливатт.
Теперь мы увидели, что на резисторе упало все напряжение источника, т.е. 1 В. Действительно, с другой стороны мы так же измеряем напряжение и на концах генератора.
2) Давайте попробуем не меняя напряжения на источнике поставить последовательно 2 резист
instrrument.ru
Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогер
Итак, резистор… Базовый элемент построения электрической цепи.
Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.
Пример с лампочкой
Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.
Ограничение тока резистором
Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.
Падение напряжение на резистореРазумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.
Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.
Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).
V=I*R
Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.
V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом
Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.
Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.
Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.
При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.
Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.
Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.
Соединение резисторов
Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.
Последовательное соединение резисторов
При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:
Последовательное соединение резисторов
Параллельное соединение резисторов
При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:
Параллельное соединение резисторов
Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)
Автор публикации
не в сети 4 месяца
wandrys
877 Комментарии: 0Публикации: 31Регистрация: 17-03-2016micro-proger.ru