Как определить мощность резистора. | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.
Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.
Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением.
Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.
Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».
Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.
На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.
Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.
Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.
Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.
Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.
А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.
Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности.
И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.
И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.
Удачи!
Мощность резистора, что это, как подобрать, как узнать
Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).
Содержание статьи
Что такое мощность резистора
Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.
Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей
Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий.
Стандартный ряд мощностей резисторов и их обозначение на схемах
Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.
Вт | Условное обозначение не схемах |
---|---|
мощность резистора 0,05 Вт | Как обозначается на схеме мощность рассеивания резистора 0,05 Вт |
мощность резистора 0,125 Вт | Мощность резистора 0,125 Вт на схеме |
мощность резистора 0,025 Вт | Как на схеме выглядит резистор мощностью 0,25 Вт |
мощность резистора 0,5 Вт | Так на схеме обозначается резистор мощностью 0,5 Вт |
мощность резистора 1 Вт | Мощность резистора 1 Вт схематически обозначается так |
мощность резистора 2 Вт | Рассеиваемая на резисторе мощность 2 Вт |
мощность резистора 5 Вт | Обозначение на схеме мощности резистора 5 Вт |
Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления.
Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.
Как определить по внешнему виду
На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.
Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.
Как определить мощность резистора: стоит в маркировке
А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?
В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных. Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.
Тип резистора | Диаметр, мм | Длинна, мм | Рассеиваемая мощность, Вт |
---|---|---|---|
ВС | 2,5 | 7,0 | 0,125 |
УЛМ, ВС | 5,5 | 16,5 | 0,25 |
ВС | 5,5 | 26,5 | 0,5 |
7,6 | 30,5 | 1 | |
9,8 | 48,5 | 2 | |
25 | 75 | 5 | |
30 | 120 | 10 | |
КИМ | 1,8 | 3,8 | 0,05 |
2,5 | 8 | 0,125 | |
МЛТ | 2 | 6 | 0,125 |
3 | 7 | 0,125 | |
4,2 | 10,8 | 0,5 | |
6,6 | 13 | 1 | |
8,6 | 18,5 | 2 |
С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.
Мощность SMD-резисторов
SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.
Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов
Код imperial | Код metrik | Длинна inch/mm | Ширина inch/mm | Высота inch/mm | Мощность, Вт |
---|---|---|---|---|---|
0201 | 0603 | 0,024/0,6 | 0,012/0,3 | 0,01/0,25 | 1/20 (0,05) |
0402 | 1005 | 0,04/1,0 | 0,02/0,5 | 0,014/0,35 | 1/16 (0,062) |
0603 | 1608 | 0,06/1,55 | 0,03/0,85 | 0,018/0,45 | 1/10 (0,10) |
0805 | 2112 | 0,08/2,0 | 0,05/1,2 | 0,018/0,45 | 1/8 (0,125) |
1206 | 3216 | 0,12/3,2 | 0,06/1,6 | 0,022/0,55 | 1/4 (0,25) |
1210 | 3225 | 0,12/3,2 | 0,10/2,5 | 0,022/0,55 | 1/2 (0,50) |
1218 | 3246 | 0,12/3,2 | 0,18/4,6 | 0,022/0,55 | 1,0 |
2010 | 5025 | 0,20/2,0 | 0,10/2,5 | 0,024/0,6 | 3/4 (0,75) |
2512 | 6332 | 0,25/6,3 | 0,12/3,2 | 0,024/0,6 | 1,0 |
В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.
Как рассчитать мощность резистора в схеме
Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.
Если номинал написан в килоомах (кОм) или мегаомах (мОм), его переводим в Омы. Это важно, иначе будет неправильная цифра.
Схема последовательного соединения резисторов
Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.
По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт. Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.
Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.
При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.
Как подобрать резистор на замену
Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.
Примерно определить мощность резистора можно по размерам
Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.
можно ли узнать по размеру детали, расшифровки маркировок
У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Среди основных находится мощность элемента. На неё нельзя не посмотреть при выборе нужной детали. Для этого нужно понимать, как узнать мощность резистора.
Внешний вид резистора
Дополнительная информация. Зачастую резистор называют даже в учебниках сопротивлением. Это происходит из-за того, что это его основной параметр.
Скорость потребления энергии резистором
Призвав на помощь школьный курс физики, необходимо вспомнить формулу мощности в электротехнике:
P=U*I.
Из рассмотрения её видно, что мощность напрямую зависит от силы направленного движения частиц и напряжения. Формула тока, проходящего через деталь, определяется из Закона Ома для участка цепи:
I=U/R.
Отсюда видно, что падение напряжения определяется сопротивлением резистора и силой тока, проходящего через него.
Важно! Падение напряжения – это величина оставшегося потенциала на концах резистора от поданного на него.
У всех металлов есть параметр, зависящий от его структуры, – удельное сопротивление. Когда электроны протекают через проводящий элемент, они преодолевают частицы, образующие металл. Это преодоление мешает движению тока. Т.е. чем плотнее металл, тем труднее направленным частицам течь. Мощность выделяется в процессе взаимодействия тока и элементов металла в форме тепла. Не всегда этого добиваются, т.к. КПД устройств от этого уменьшается, хотя в нагревательных элементах данное свойство требуется.
Вернемся к резисторам. Их, в первую очередь, используют для лимитирования тока при запитке потребителя. Из представленного выражения видно, что сила тока напрямую зависит от падения напряжения. Т.е. напряжение ниже – ток ниже. Избыточный потенциал «переваривается» деталью с появлением тепловыделения на ней. Значение мощности его при этом считается по приведённой выше формуле, где U – величина «переваренных» на детале вольт, а I – проходящий сквозь него ток.
Закон Джоуля-Ленца:
ω = j • E = ϭE2, где ω – величина тепловой энергии, появляющейся в единице объема; E и j – напряжённость и плотность электрического поля; ϭ – электропроводность внешнего окружения. Именно по нему определяется выделенное на элементе тепло.
Как определить мощность резистора
Рассмотрим пример:
- Номинал детали – 2 Ом;
- Поданный от внешнего источника потенциал – 24В.
Решение:
- I=24/2=12А;
- Р=24*12=244 Вт.
Необходимо отметить, что значения в этом примере взяты абсолютно произвольные.
Типы и обозначение резисторов
Зачастую мощности сопротивлений стандартны: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5. Это классические номиналы рассматриваемых устройств. Встречаются и нестандартные величины, которые требуются для конкретных случаев. Когда происходит процесс сборки схем, элементы выбирают, зная порядковые номера схем. Сопротивление и мощность указываются только по специальному запросу. Для моментального «узнавания» деталей на принципиальных схемах существуют специальные графические обозначения. Они чётко регламентируются ГОСТом.
Условные обозначения резисторов
Обычно характеристики и название необходимого для применения резистора указывают в спецификациях к заказу. Могут также регламентировать разрешённый допуск отклонения в %.
На первом рис. видно, что сопротивления сильно различаются внешне по форме и размерам. Есть прямая зависимость размера от мощности: чем больше элемент, тем выше его мощность. Это связано с тем, что при протекании тока сквозь сопротивление с большей поверхностной площади тепло в окружающую среду отдается быстрее (при условии, что это воздушная среда).
Дополнительная информация. По достижении предельной температуры нагрева на детали начинает выгорать наружный слой с нанесённой маркировкой. Это является первым признаком неправильной работы схемы. Если не принять меры, рассеиваемая энергия останется недостаточной, и далее выгорит внутренний (резистивный) слой. Элемент выйдет из строя.
Нагрев резисторов
При выборе нужного сопротивления по мощности необходимо внимательно посмотреть на способность его нормальной работы в требуемой температуре воздуха. Для верного использования элемента производители её всегда указывают. Мощность рассеивания резисторов прямо зависит от его возможностей по своевременной отдаче тепла без перегрева. Поэтому чем ниже температура окружающей среды, тем эффективнее и дольше без выхода из строя будет работать определённый элемент.
Нельзя допускать слишком высокой температуры вокруг сопротивления. Рабочей температурой для большинства из них является промежуток – 19-26 градусов.
Зачастую под рукой может не оказаться элемента с нужной размерностью для сборки конкретной электрической схемы с характеристикой по мощности. При наличии более мощных есть возможность установить их без потери качества. Главное, чтобы размеры соответствовали собираемому устройству. А вот при наличии устройств только меньшего номинала может возникнуть проблема.
Однако и это тоже решаемый вопрос. Особенно если знать правила состыковки сопротивлений: последовательного и параллельного.
Последовательное сочетание характеризуется тем, что сумма потенциалов состоит из потенциалов на единичном подсоединенном элементе. Ток же, протекающий в цепи, равен току ЛЮБОГО резистора. Т.е. в схеме с последовательным соединением напряжения на деталях разные, а токи одинаковые.
Параллельное соединение характеризуется тем, что, наоборот, потенциал на всех элементах одинаковый, а у тока, идущего через единичную ветку, зависимость обратна её резистивному сопротивлению. Здесь общий ток сети складывается из отдельных токов всех ветвей схемы.
Законы последовательного и параллельного соединения
При отсутствии, например, сопротивления 200 Ом на 1 Вт практически всегда допускается замена на две единицы по 100 Ом на 0,5 Вт последовательно, либо две единицы 400 Ом и 0,5 Вт, поставленных в параллель.
«Практически всегда» написано неспроста. Элементы не все хорошо справляются с ударными токами. В схемах, которые производят зарядку конденсаторов с очень серьёзной ёмкостью, вначале происходит огромная ударная нагрузка. Такой режим повреждает неподготовленный изоляционный слой детали. Это выясняется исключительно эмпирическим путём и долгих расчётов. Однако такими сложными вычислениями и наблюдениями все пренебрегают.
Сопротивление – главная характеристика рассматриваемого элемента, однако без знания параметров мощности выбрать его для установки в принципиальную схему не получится. В противном случае, будет происходить перегрев детали и выход её из строя. Если есть сомнения, то необходимо применить резистор увеличенной мощности для перестраховки.
Видео
Оцените статью:Мощность резистора по размеру
Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:
Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)
Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:
Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)
Мощность чип-резисторов тоже связана с их размером:
Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)
Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].
Что такое мощность резистора?
Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.
Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора. Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить. Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.
Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.
Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ? Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски
Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка
поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.
Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,
Дистанцирование мощного резистора от платы
чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.
Полезные ссылки:
- Параметры чип-резисторов — даташит от Panasonic
- Мощность-размер советских резисторов (МЛТ, ВС, КИМ, УЛМ) — картинка-скан таблицы
Определение мощности резистора: можно ли узнать по размеру детали
Главная База знаний Электроника
Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется.
Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе.
Для мелких корпусов есть другой метод определения (см. ниже).
Что такое мощность резистора
Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.
Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей
Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.
Стандартный ряд мощностей резисторов и их обозначение на схемах
Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.
Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.
Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах.
Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д.
Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.
Как определить по внешнему виду
На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.
Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.
Как определить мощность резистора: стоит в маркировке
А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?
В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных.
Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.
ВС | 2,5 | 7,0 | 0,125 |
УЛМ, ВС | 5,5 | 16,5 | 0,25 |
ВС | 5,5 | 26,5 | 0,5 |
7,6 | 30,5 | 1 | |
9,8 | 48,5 | 2 | |
25 | 75 | 5 | |
30 | 120 | 10 | |
КИМ | 1,8 | 3,8 | 0,05 |
2,5 | 8 | 0,125 | |
МЛТ | 2 | 6 | 0,125 |
3 | 7 | 0,125 | |
4,2 | 10,8 | 0,5 | |
6,6 | 13 | 1 | |
8,6 | 18,5 | 2 |
С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.
Мощность SMD-резисторов
SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.
Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов
0201 | 0603 | 0,024/0,6 | 0,012/0,3 | 0,01/0,25 | 1/20 (0,05) |
0402 | 1005 | 0,04/1,0 | 0,02/0,5 | 0,014/0,35 | 1/16 (0,062) |
0603 | 1608 | 0,06/1,55 | 0,03/0,85 | 0,018/0,45 | 1/10 (0,10) |
0805 | 2112 | 0,08/2,0 | 0,05/1,2 | 0,018/0,45 | 1/8 (0,125) |
1206 | 3216 | 0,12/3,2 | 0,06/1,6 | 0,022/0,55 | 1/4 (0,25) |
1210 | 3225 | 0,12/3,2 | 0,10/2,5 | 0,022/0,55 | 1/2 (0,50) |
1218 | 3246 | 0,12/3,2 | 0,18/4,6 | 0,022/0,55 | 1,0 |
2010 | 5025 | 0,20/2,0 | 0,10/2,5 | 0,024/0,6 | 3/4 (0,75) |
2512 | 6332 | 0,25/6,3 | 0,12/3,2 | 0,024/0,6 | 1,0 |
В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.
Как рассчитать мощность резистора в схеме
Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.
Если номинал написан в килоомах (кОм) или мегаомах (мОм), его переводим в Омы. Это важно, иначе будет неправильная цифра.
Схема последовательного соединения резисторов
Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток.
Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R.
Подставляем данные: I = 100 В / 390 Ом = 0,256 А.
По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт. Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже.
Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит.
Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.
Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.
При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.
Как подобрать резистор на замену
Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.
Примерно определить мощность резистора можно по размерам
Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.
Источник: https://elektroznatok.ru/info/elektronika/moshhnost-rezistora
Мощность SMD резистора. Как узнать?
Радиоэлектроника для начинающих
Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?
На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.
Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.
Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.
Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.
Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.
Типоразмер (дюймовый, inch) | Мощность (Power Rating at 70°C) | Мощность, Вт. | Длина (L) /Ширина (W), мм. |
0075 | 1/50W | 0,02 Вт | 0,3/0,15 |
01005 | 1/32W | 0,03 Вт | 0,4/0,2 |
0201 | 1/20W | 0,05 Вт | 0,6/0,3 |
0402 | 1/16W, 1/8W | 0,063 Вт; 0,125 Вт | 1,0/0,5 |
0603 | 1/10W, 1/5W | 0,1 Вт; 0,2 Вт | 1,6/0,8 |
0805 | 1/8W, 1/4W | 0,125 Вт; 0,25 Вт | 2,0/1,25 |
1206 | 1/4W, 1/2W | 0,25 Вт; 0,5 Вт | 3,2/1,6 |
1210 | 1/2W | 0,5 Вт | 3,2/2,5 |
1218 | 1W; 1,5W | 1 Вт; 1,5 Вт | 3,2/4,8 |
1812 | 1/2W, 3/4W | 0,5 Вт; 0,75 Вт | 4,5/3,2 |
2010 | 3/4W | 0,75 Вт | 5,0/2,5 |
2512 | 1W; 1,5W; 2W | 1 Вт; 1,5 Вт; 2 Вт | 6,4/3,2 |
Мощность SMD-резисторов с широкими электродами (Long side termination chip resistors) | |||
0406 | 0,25…0,3W | 0,25…0,3 Вт | 1,0/1,6 |
0612 | 0,75…1W | 0,75…1 Вт | 1,6/3,2 |
1020 | 1W | 1 Вт | 2,5/5,0 |
1218 | 1W | 1 Вт | 3,2/4,6 |
1225 | 2W | 2 Вт | 3,2/6,4 |
В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.
Хочу обратить внимание на то, что в колонке (Мощность, Power Rating at 70°C) для некоторых типоразмеров указано несколько значений мощности. Дело в том, что производители выпускают разные серии SMD-резисторов. В одной серии мощность резисторов для типоразмера 1206 нормирована на уровне 0,5 Вт, а в другой 0,25 Вт.
Например, чип-резисторы серии CRM фирмы Bourns® рассчитаны на повышенную мощность: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Используются такие в импульсных источниках питания в качестве токовых датчиков, токоограничительных резисторов, снабберов (демпфирующих резисторов).
Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.
Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.
Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.
Как правило, это чип резисторы на основе толстой плёнки (thick film chip resistors), так как они являются самыми дешёвыми, и, как следствие, самыми распространёнными. Примером могут служить серии стандартных толстоплёночных SMD резисторов D/CRCW e3 (Vishay®), ERJ (Panasonic) или RC (Yageo).
Не секрет, что существует огромное количество узкоспециализированных SMD-резисторов, которые имеют свои особенности.
К таким можно отнести резисторы, которые работают при повышенных температурах (до 230°C), в условии агрессивной среды (Antisulfur), миллиомные чип резисторы, SMD резисторы-перемычки.
Если такие резисторы и встречаются на печатных платах от потребительской электроники, то, как правило, их количество невелико, они применяются в определённых цепях электронных схем.
Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.
Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.
Как узнать мощность резисторных SMD-сборок?
Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.
Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.
Так, для резисторных SMD-сборок 0202 (0201 × 2) мощность на элемент обычно составляет 0,03W (1/32W). Для тех, кто ещё не знает, сборка типоразмера 0202, – это два резистора 0201 в наборе.
Для сборок 0404 (0402 × 2), 0408 (0402 × 4) мощность на элемент обычно не превышает значения в 0,063W (1/16W).
Для сборок 0606 (0603 × 2), 0612 (0603 × 4), 0616 (0602 × 8) мощность на элемент составляет 0,063…0,125W.
Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т.е. выпуклыми). Мощность на элемент 0,1W.
На следующем фото резисторная чип-сборка 8×1206 с материнской платы старого, но очень крутого промышленного компьютера. На современных платах наборы такого типоразмера встречаются очень редко.
Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.
Хотя, стоит иметь ввиду, что в документации на стандартные современные сборки типоразмера 4×1206 минимальная мощность обычно 0,125W (1/8W) на элемент, что в 2 раза меньше. Так что, тут можно и поспорить, но я всё же остановлюсь на значении в 0,25W.
В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.
Каждая серия резисторов рассчитана на работу в определённом интервале температур. В большинстве своём, рабочая температура обычных чип-резисторов на основе толстой плёнки (thick film) лежит в интервале от -55°C до +155°C. Но, для микроминиатюрных типоразмеров от 0075 до 0201 максимальная температура, как правило, ограничена на уровне +125°C.
Как уже говорилось, в технической документации мощность SMD-резисторов указывается для температуры окружающей среды +70°C. Если резистор, эксплуатируется при температуре выше +70°C, то мощность, которая выделяется на нём в процессе работы должна быть снижена. Проще говоря, при повышенной температуре резистор просто не успевает охлаждаться.
На графике снижения мощности (Power Derating Curve) по шкале Rated Load (%) указан процент от номинальной мощности, которую способен выдержать SMD-резистор при соответствующей температуре окружающей среды (Ambient Temperature, °C).
Так, при температуре в +120°C мощность должна быть снижена до уровня 40% для изделий, рассчитанных на работу в температурном диапазоне -55°C…+155°C. Если у нас резистор на 1 ватт, то при данной температуре он способен долговременно выдерживать мощность в 0,4 ватта. Нетрудно заметить, что температура в 155°C соответствует нулевой мощности.
Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).
Это высокостабильные тонкоплёночные чип резисторы для работы при повышенной температуре окружающей среды (от -55°C до +215°C). Даже к установке таких резисторов на печатную плату предъявляются определённые требования, чтобы эффективно отводить тепло от резистивного слоя.
Мощные SMD-резисторы
Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.
К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью.
90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя.
К тому же, керамика на основе алюмонитрида нетоксична.
Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.
Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.
Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay) | |
Типоразмер, inch | Мощность, W |
0603 | 0,5 |
0805 | 1 |
1206 | 2 |
2512 | 6 |
Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.
Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.
Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5…1,5 ватта больше, чем у стандартных резисторов аналогичного размера.
Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.
Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.
Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.
В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Источник: https://go-radio.ru/moshchnost-smd-rezistorov.html
Как определить мощность резистора
Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.
Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством.
В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим м, этот параметр был раскрыт не полностью.
В этой статье я постараюсь устранить этот пробел.
Итак.
Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.
Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока.
Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.
Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».
Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.
На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.
Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.
Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.
Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.
Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.
А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.
Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.
И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.
- И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.
- Удачи!
Источник: https://sesaga.ru/kak-opredelit-moshhnost-rezistora.html
Как проверить резистор мультиметром
При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора.
Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального.
Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.
Содержание статьи
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром.
Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления.
Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.
Цифровой тестер для проверки резисторов
Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
- Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
- Появление характерного запаха.
- Стирание маркировки.
- Наличие на плате сгоревших дорожек
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Подготовка мультиметра к проведению измерений: какие установить настройки
Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.
Подготовка прибора к проверке
При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.
Режим прозвонки
Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Как определить номинал резистора по маркировке
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем.
Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице.
Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Таблица кодов для прецизионных резисторов
Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.
Как проверяют сопротивление резистора
При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.
Переменный резистор
Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:
- Мультиметр включают в режим измерения.
- Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
- Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.
Видео: как проверить резистор мультиметром
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Источник: https://www.RadioElementy.ru/articles/kak-proverit-rezistor-multimetrom/
Все о резисторах. Определение, типы резисторов и их номинал
КатегорииСправочная Статьи для новичков
Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.
Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе.
В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток.
Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.
По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.
Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм, мОм и гОм.
Для большего понимания этих единиц измерения, привожу следующую расшифровку:
- 1кОм = 1000 Ом;
- 1 мОм = 1000 кОм;
- 1гОм = 1000 мОм;
На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.
По принципу работы, резисторы делятся на постоянные и переменные.
Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.
Постоянные резисторы
Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (цветовая маркировка резисторов). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой статьи.
Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:
- Буква R – означает, что номинал резистора будет измеряться в Омах. Очень важным является позиция этой буквы. Если на резисторе надпить типа 12R то номинал резистора будет 12Ом. Если же буква будет в начале R12, то сопротивление будет 0,12Ом. Также возможно обозначение типа 12R1, что будет означать 12,1 Ом.
- Буква K – означает, что номинал резистора будет измеряться в кОмах. Действуют теже правила что и для предыдущего примера. 12K = 12кОм, K12 = 0,12 кОм и 12К1 = 12,1кОм.
- Буква М– означает, что номинал резистора будет измеряться в мОмах. 12М = 12мОм, М12 = 0,12 мОм и 12М1 = 12,1мОм.
Так же на корпусе резистора обозначают такую величину как отклонение от номинала.
При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала.
Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.
Мощность резисторов
В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.
Обозначение мощности резисторов на схеме
Резисторы разной мощности
Переменные резисторы
Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные.
С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники.
Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.
Переменный резистор
Подстроечные резисторы
Если на переменном резисторе написано что он имеет номинал 10кОм, то это означает, что он производит регулировку в пределах от до 10 кОм. В среднем положении ручки его номинал будет приблизительно около 5 кОм, в крайнем или 0 или 10 кОм.
Если Вам необходимо рассчитать номинал своего резистора, то советуем Вам воспользоватся нашим онлайн калькулятором цветовой маркировки резисторов.
Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . (4
Источник: https://my-chip.info/vse-o-rezistorax-opredelenie-tipy-rezistorov-i-ix-nominal/
Как обозначается мощность на схеме
Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.
Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.
Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.
Максимальная рассеиваемая резистором мощность
В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).
Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.
Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.
SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.
Проволочные и непроволочные резисторы, точность резисторов
Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.
Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.
Высокое удельное сопротивление данных сплавов позволяет получить требуемый номинал резистора, однако несмотря на бифилярную намотку, паразитная индуктивность компонента все равно остается высокой, именно по этой причине проволочные резисторы не подходят для высокочастотных схем.
Непроволочные резисторы изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).
Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.
Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.
Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.
Номиналы резисторов и их маркировка
Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.
Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.
Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.
Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.
SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.
Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.
Обозначение резисторов на схемах
На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.
Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.
Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).
Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.
На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.
Рисунок 1. Общее обозначение резистора на схеме.
Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.
Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).
Обозначение мощности резисторов на схемах показано на рисунке 2.
Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.
Обозначение переменных резисторов на схемах показано на рисунке 3.
Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.
Обозначение педстроечных резисторов на схемах показано на рисунке 4.
Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.
Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.
Эти обозначения приведены на рисунке 5.
Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Мощность резистора: обозначение на схеме, как увеличить, что делать, если нет подходящего
Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о том, как сделать простую резистивную USB нагрузку для длительного тестирования емкости повербанков (ПБ), анализа качества кабелей и сетевых адаптеров.
Это одна из нескольких возможных статей о самостоятельном изготовлении резистивной нагрузки (на балластных резисторах), при удачном раскладе возможно руки дойдут и до электронной нагрузки, с регулировкой и стабилизацией тока.
Данная нагрузка служит уже достаточно давно и постоянно мелькает в моих обзорах, поэтому если заинтересовало, прошу под кат. В последнее время, такая самоделка уже не очень актуальна, т.к. появились бюджетные электронные нагрузки, поэтому имеет смысл доплатить и купить готовую.
Я же покупал еще по старому курсу, да и электронных нагрузок особо не было. Поэтому, если нужна именно резистивная, то приступим…
Возможные пути приобретения/изготовления резистивной нагрузки:
1) купить готовую плату-нагрузку с резисторами: Плюсы: + готовое работающее устройство (минимум телодвижений) + не нужны штекеры и провода (минимум потерь) + переключатель на 1А/2А (индикация) + небольшие размеры + небольшая стоимость Минусы: — очень сильно нагревается (около 180°С при токе 1А и около 230°С при токе 2А) и начинает жутко вонять (судя по отзывам, сам такой не имею) — не имеет корпуса, токоведущие/нагревающиеся части открыты (можно обжечься/прожечь что-нибудь, закоротить) — сложно прикрепить радиатор Так как изготовление хорошего нагрузочного модуля отнимает силы и время, то можно воспользоваться данной приблудой, но оставлять без присмотра не стоит 2) найти в закромах мощные резисторы (советские ПЭВ, ППБ и подобные), рассеиваемая им мощность для продолжительной работы должна быть не менее 10 Вт Плюсы: + меньший, но все равно достаточно высокий нагрев + не нужно покупать/средняя стоимость (наличие дома/покупка в магазе) + регулировка сопротивления, т.е. можно плавно изменять ток в широких пределах (только некоторые резюки, либо небольшая доработка) Минусы: — нужно припаивать штекер и провода — большие размеры — невозможность крепления радиатора (на большинстве) — нет переключателя (можно переделать, нужен второй резистор) — не имеет корпуса, токоведущие/нагревающиеся части также открыты (можно обжечься/прожечь что-нибудь) Я не имею таких резисторов в наличие, поэтому выбор за вами.
3) покупка резисторов 25-100 Вт в металлическом корпусе для отвода тепла и сборка своего модуля с кожухом
Плюсы: + средний нагрев (могут без опаски работать без доп. радиаторов) + средняя стоимость + возможность крепления дополнительного радиатора Минусы: — нужно припаивать штекер и провода — большие размеры — нет переключателя (можно переделать, нужен второй резистор) При этом они могут работать и без дополнительного охлаждения, но при этом неплохо греются, в пределах нормы, конечно. Я включал 25W резюки на полную разрядку моего ПБ — выдержали, но сильно грелись. Я рекомендую купить 100W резисторы, тогда дополнительный радиатор может совсем не пригодиться.
Итак, если решили собрать самодельный стенд из похожих резисторов, то приступим. Необходимые компоненты:
1) два резистора 25-100W по 4,7 Ом каждый. Как на зло, цены поднялись и многих номиналов уже не стало в продаже. Но наебайке есть 25W, 100W. Ищем по «Power resistor». 2) выключатель, я покупал тут 3) разборный USB штекер «папа», к примеру тут или тут 4) небольшой кусок медного многожильного провода большого сечения, к примеру, акустический провод 5) небольшой алюминиевый радиатор (по желанию) 6) пластиковая коробка
Номиналы резисторов рассчитываются по знакомой всем формуле закона Ома — I=U/R или R=U/I, где R – сопротивление (Ом), I –ток (А) и U – напряжение (V). К примеру, нам нужен ток 2А, поэтому для нагрузки 5V адаптеров нам нужен резюк 2,5Ома, т.к. 5/2=2,5 Ом.
Для 1А рассчитываем аналогично — 5/1=5 Ом. Так как большинство адаптеров/БП снижают напряжение под нагрузкой, то необходимо делать поправку на это и считать в среднем от 4,8V. Тогда на ток 2А нужен будет резюк R= U/I=4,8V/2А=2,4Ома, а для 1А — R= U/I=4,8V/1А=4,8Ома.
Также нужно помнить, что соединительные провода, выключатель и USB штекер также имеют некоторое сопротивление. Напомню одну хитрость, что при последовательном соединении резисторов общее сопротивление складывается, а при параллельном – будет чуть меньше самого маленького резистора.
Общее сопротивление нескольких резисторов можно посчитать здесь.
Чтобы не искать подходящие номиналы и не мудрить со схемой, я рекомендую сделать по моему варианту, правда с другими номиналами – 2 резистора по 4,7 Ом и небольшой выключатель. Для 1А будет задействован один резистор, для 2А – два в параллель. При этом, если мощность резистора или сопротивление не подходят, можете группировать несколько по указанным выше формулам. В своем нагрузочном модуле я использовал 2 резистора: 5,1Ом и 6Ом, т.к. я их выиграл на аукционе наEbay’ки за копейки, на другие номиналы тогда аукционов не было. При соединении параллельно, я получаю 2,7Ома для тока в 2А (в действительности 1,75А), а для тока в 1А (0,95А)задействую 1 резюк на 5,1 Ом. Они чуток не подходят, идеальный вариант был бы при использовании двух резюков по 4,7Ома, но таких лотов на аукционе не было.
Непосредственная сборка:
До этого пользовался вот таким простеньким модулем, он годился даже для длительных нагрузок, хотя при длительной работе он сильно нагревался, но не вонял и не перегорал (доставать, правда, его не удобно, можно было обжечься). Как только приехал второй резюк на 6 Ом, начал собирать стенд. Вот размеры типичных 25W резисторов в алюминиевом корпусе: Обратная сторона неровная и покрыта лаком, к тому же проушины для крепления имеют заусенцы, поэтому резисторы могут неплотно прилегать к радиатору, я рекомендую пройтись нулевой наждачкой: Сам радиатор я взял из старых запасов. Это распиленный пополам радиатор от бюджетных кулеров GlacialTech для процессоров на Socket A. В сервис центрах по ремонту компьютеров и бытовой техники за 50-100р вам отдадут целую пачку, на любой вкус и цвет. Можно использовать цельный радиатор, температура нагрева будет еще меньше. Мой нагрузочный стенд на 2А (точнее 1,75А) выше 70гр не нагревается. К тому же, к цельному радиатору можно приспособить небольшой вентилятор, тогда можно гонять модуль на высоких токах. При использовании 100Вт резисторов радиатор может вообще не понадобиться. Вот тот самый радиатор: Подошва у радиатора неровная, лучше отшлифовать. Можно оставить и так, теплообмен будет чуть похуже. Размеры моего радиатора: Вот что нам понадобится для изготовления модуля (наждачная бумага/шкурка на 1000/2000, стекло, в качестве идеально ровной поверхности, дрель, сверла, метчики для нарезки резьбы и машинное масло): Идеально полировать с пастой ГОИ не имеет особого смысла, хватит и 2000 наждачки. Затем сверлим отверстия и метчиком нарезаем резьбу (как это делать рассказывать не буду, см. в интернете). Если нет подходящего инструмента, то используйте термоклей/термоскотч/термопрокладки (ссылки внизу), сверлить ничего не придется. От себя добавлю, чтобы не сломать инструмент, капайте масло и через два полных оборота метчика, делайте пол оборота назад. Так вы 100% не сломаете метчик. По возможности пройдите чистовым метчиком (смотрите по количеству рисок на нем). Получается в итоге что-то вроде этого: В качестве кожуха я использовал защитный экран от старого холодильника. Можно использовать что угодно: от органики до любых пластиковых штуковин. Оргстекло небольшой толщины легко гнется при нагреве, я как-то гнул его над жалом мощного паяльника, только потом края придется немного подровнять. В общем, используем все, что есть под рукой. Перед окончательной сборкой пройдитесь по отверстиям сверлом большего диаметра, чтобы убрать заусенцы, иначе резюки плотно прилегать не будут (раззенковать): Далее намазываем тонкий слой термопасты на резисторы, можно просто выдавить каплю пасты, при затяжке она сама расползется. Я использовал российскую «народную» термопасту КПТ-8 (покупается в магазинах электрики): У нее средняя эффективность, со временем она подсыхает, но зато стоит копейки и продается в любых магазинах радиоэлектроники, для нашего модуля сгодится. Прикручиваем винты и загибаем вывода резисторов (можно до крепежа): Как видите, излишки термопасты вылезли наружу, они мешать не будут: Берем штекер USB «папа», желательно с позолоченными контактами (см. предыдущие пункты) и акустический провод с медными (не омедненными!) жилами толстого сечения. Для защиты от термического и механического воздействия я натянул термоусадку. Так как провод толстый, ножиком раздраконьте выходное отверстие: Берем выключатель, он будет вкл/выкл режим «2А». Подойдет любой силовой. Я использовал простенький KCD11, рассчитанный на 220V и 3А. В качестве окантовки использовал старый кабель-канал, немного срезав края. В одном из них вырезаем окошко под выключатель. Затем припаиваем выключатель к выводам резисторов: Сам провод припаиваем к резистору, который будет работать на 1А «по умолчанию». В моем случае это резистор 5,1 Ома. Если вы используете два одинаковых резюка по 4,7Ом, то припаиваем к любому: Одна сторона выводов будет соединена через выключатель, т.е. в положении «выкл» ток – 1А, в положении «вкл» — 2А, т.к. включается второй резюк в параллель. Получается вот такая простая схема: Далее прикручиваем кожух: Ставим верхнюю планку из того же кабель-канала или чего-нибудь похожего на место проема. Получается довольно неплохо: Ну и подклеиваем режимы работы, бумага и скотч в помощь: В итоге при хорошем адаптере имеем следующее (0,95А и 1,75А): Температура радиатора при токе 2А (1,75А) ни разу не поднималась выше 70°С, при 0,95А в районе 60°С: Итого: устройство работает, сильно не нагревается, не воняет, свои функции выполняет на 100%. Да, с номиналами чуток не повезло, но ничего страшного. Все мои обзоры ПБ протестированы именно с этой нагрузкой, при желании можно расширить диапазон токов, к примеру, на 0,5А/1А/1,5А/2А/2,5А…
Кисулька:
Мощность при параллельном соединении формула
О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.
Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!
Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.
Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно.
Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.
Последовательное соединение резисторов
В жизни последовательное соединение резисторов имеет вид:
Принципиальная схема последовательного соединения выглядит так:
На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.
Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.
- Общее номинальное сопротивление составного резистора обозначено как Rобщ.
- Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.
- Применяя последовательное соединение, стоит помнить одно простое правило:
Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.
Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом.
Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом.
Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.
Параллельное соединение резисторов
Можно соединять резисторы и параллельно:
Принципиальная схема параллельного соединения выглядит следующим образом:
Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:
Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:
Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.
Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.
Акб обратная полярность что это
Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:
Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.
Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.
Проверим справедливость показанных здесь формул на простом эксперименте.
Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.
- Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.
- Измерение сопротивления при параллельном соединении
- Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:
- При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.
Что ещё нужно учитывать при соединении резисторов?
Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?
Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.
Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.
Подробнее о мощности рассеивания резистора читайте тут.
Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.
Резистор – это элемент электрической схемы, который обладает сопротивлением электрическому току. Классифицируют два типа резисторов: постоянные и переменные (подстроечные). При моделировании той или иной электрической схемы, а также при ремонте электронных изделий, возникает необходимость использовать резистор определенного номинала.
Хотя и существует множество различных номиналов постоянных резисторов, в данный момент под рукой может не оказаться требуемого, либо резистора с таким номиналом не существует. Чтобы выйти из такой ситуации, можно использовать как последовательное так и параллельное соединение резисторов.
О том, как правильно произвести расчет и подбор различных номиналов сопротивлений, будет рассказано в этой статье.
Последовательное соединение резисторов – это самая элементарная схема сборки радиодеталей, оно применяется для увеличения общего сопротивления цепи.
При последовательном соединении, сопротивление используемых резисторов просто складывается, а вот при параллельном соединении необходимо производить расчет по нижеописанным формулам.
Параллельное соединение необходимо для снижения результирующего сопротивления, а также для увеличения мощности, несколько параллельно подключенных резисторов имеют большую мощность, чем у одного.
Температура плавления клея для клеевого пистолета
- На фотографии можно увидеть параллельное подключение резисторов.
- Общее номинальное сопротивление необходимо рассчитывать по следующей схеме:
- — R(общ) – общее сопротивление;
- — R1, R2, R3 и Rn – параллельно подключенные резисторы.
- Когда параллельное соединение резисторов состоит всего из двух элементов, в таком случае общее номинальное сопротивление можно высчитать по следующей формуле:
- — R(общ) – общее сопротивление;
- — R1, R2 – параллельно подключенные резисторы.
- В радиотехнике существует следующее правило: если параллельное подключение резисторов состоит из элементов одного номинала, то результирующее сопротивление можно высчитать, разделив номинал резистора на количество соединенных резисторов:
- — R(общ) – общее сопротивление;
- — R – номинал параллельно подключенного резистора;
- — n – количество соединенных элементов.
- Важно учитывать, что при параллельном соединении результирующее сопротивление всегда будет ниже, чем сопротивление самого малого по номиналу резистора.
- Приведем практический пример: возьмем три резистора, со следующими значениями номинального сопротивления: 100 Ом, 150 Ом и 30 Ом. Проведем расчет общего сопротивления, по первой формуле:
- После расчета формулы мы видим, что параллельное соединение резисторов, состоящее из трех элементов, с наименьшим номиналом 30 Ом, в результате дает общее сопротивление в электрической цепи 21,28 Ом, что ниже наименьшего номинального сопротивления в цепи почти на 30 процентов.
Параллельное соединение резисторов чаще всего используют в тех случаях, когда необходимо получить сопротивление с большей мощностью.
В таком случае необходимо взять резисторы одинаковой мощности и с одинаковым сопротивлением.
Результирующая мощность в таком случае рассчитывается путем умножения мощности одного элемента сопротивления на общее количество параллельно подключенных резисторов в цепи.
Например: пять резисторов с номиналом в 100 Ом и с мощностью 1 Вт в каждом, подключенные параллельно, имеют общее сопротивление 20 Ом и мощность 5 Вт.
При последовательном подключении тех же резисторов (мощность так же складывается), получим результирующую мощность 5 Вт, общее сопротивление составит 500 Ом.
Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.
Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:
Формула параллельного соединения резисторов
- Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
- Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:
Параллельное соединение резисторов — расчет
Пример №1
При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.
Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:
Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:
Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.
Пример расчета №2
Найти общее сопротивление R из трех параллельно соединенных резисторов:
Как открутить болт с фиксатором резьбы
- Общее сопротивление R рассчитывается по формуле:
- Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.
Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора
Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора
Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.
В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.
Характеристики резисторов
1. Основной параметр резистора – это номинальное сопротивление.
2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.
3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.
4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.
5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.
6. Шумовые характеристики.
7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.
8. Влаго- и термоустойчивость.
Есть еще две характеристики, о которых начинающие чаще всего не знают, это:
1. Паразитная индуктивность.
2. Паразитная ёмкость.
Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.
На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.
- Мощность резистора
- Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I
- Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:
- I=U/R
- Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:
- I=U/R
- Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.
У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.
В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).
На картинке пример кристаллической решетки, для наглядности.
Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?
То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.
Но как это относится к резисторам?
Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:
P=U*I
Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.2/1=144/1=144 Вт.
Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.
Какие бывают резисторы и как они обозначаются на схеме
Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5
Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.
Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.
Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.
Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).
Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).
Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.
В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента.
Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е.
охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.
Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.
Что делать, если нет резистора нужной мощности?
Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.
На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.
1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3
2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.
На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.
Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I
Мощность, выделяемая на каждом из них, снизится соответствующим образом.
Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.
Я не просто так написал «ПОЧТИ ВСЕГДА».
Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.
Заключение
Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.
При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.
Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.
Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%.
Компания также разработала модуль мощностью 469,3 Вт.
Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.
Резистор
Радиоэлектроника для начинающих
Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.
Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).
Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.
На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.
Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах.
Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом).
Про множители и приставки «кило», «мега» можете почитать здесь.
Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.
Основные параметры резисторов
- Номинальное сопротивление.
Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик. - Рассеиваемая мощность.
Более подробно о мощности резистора я уже писал здесь.
При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.
На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.
К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.
Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт. - Допуск.
При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах. Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.
Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.
Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.
Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.
Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%. - Температурный коэффициент сопротивления (ТКС).
Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.
В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.
Первые три параметра основные, их надо знать!
Перечислим их ещё раз:
- Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)
- Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)
- Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).
Так же стоит отметить конструктивное исполнение резисторов.
Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах.
Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.
В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента.
Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт.
Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.
Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.
Таблица цветового кодирования
Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.
Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом.
Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм).
Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.
На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.
Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?
Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.
Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).
В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Простой способ определить Vf светодиода, чтобы выбрать подходящий резистор
Вы неправильно понимаете, как работает светодиод, так как Vf — это не напряжение, которое вы кладете на светодиод, чтобы заставить его работать, а напряжение, которое появляется (падает) на светодиод, когда ток пропускается через него.
Если вы посмотрите на соответствующий лист данных, вы увидите Vf (min), Vf и Vf (max), заданные для определенного тока, и это означает, что, если вы подадите указанный ток через светодиод, вы можете ожидать Vf падать где-нибудь между Vf (мин) и Vf (макс.), причем Vf является типичным значением.
Итак, ответ на ваш вопрос:
- Источником питания является любой источник переменного напряжения, R обеспечивает балласт для светодиода, снижая его чувствительность к изменениям источника питания.
- Это не даст светодиоду испускать свой волшебный дым, если вы случайно запустите источник питания слишком далеко, и его значение [R] не критично, в разумных пределах.
- Например, если вы используете резистор 1000 Ом и пытаетесь протолкнуть 20 мА через светодиод, эти 20 мА также должны пройти через R, поэтому R будет падать:
- E = IR = 0,02 A × 1000 Ом = 20 вольт, E = IRзнак равно0.02A×1000Ωзнак равно20 вольт,
- и вам понадобится запас для светодиодов.
- «A» — это амперметр, используемый для измерения тока через светодиод, а «V» — вольтметр, используемый для измерения напряжения на светодиоде.
При использовании, то, что вам нужно сделать, это запустить источник питания с нуля вольт, а затем провернуть его до тех пор, пока амперметр не покажет 20 миллиампер, тогда напряжение, отображаемое на вольтметре, будет Vf для этого конкретного диода при данном конкретном токе и температуре окружающей среды. температура.
- Возвращаясь к вашему вопросу, способ определить, какое значение последовательного сопротивления является «правильным» для вашего светодиода, состоит в том, чтобы сначала определить его Vf при желаемом прямом токе (если), а затем использовать закон Ома для определения значения сопротивления, так:
- R = Vс — VеяеR = Вs-Веяе
- Если предположить, что Vs (напряжение питания) составляет 12 вольт, то Vf равно 2 вольтам, а If — 20 мА, мы получим
- R = 12 В- 2 В0,02 А= 500 ОмR = 12В-2В0.02Aзнак равно500 Ом
- Затем, чтобы определить мощность рассеиваемого резистора, мы можем написать:
- Pd = (Vs — Vf) × If = 10 В × 0,02 А = 0,2 Вт Pd = (Vs — Vf)×Если знак равно 10V×0.02Aзнак равно0,2 Вт
- 510 Ом — это самое близкое значение E24 (+/- 5%), которое будет сохраняться, если на консервативной стороне 20 мА, и резистор 1/4 Вт должен быть в порядке.
- Утиный суп, а? 😉
ВСЕ О РЕЗИСТОРАХ — символы с низким энергопотреблением, маркировка, цветные полосы, коды, допуск на множитель, цилиндрические плоские потенциометры в омах, триммер, переменный резистор, нелинейная мощность, температура, фотографии, фотоэффект, положительный, отрицательный, NTC, LDR, VDR, напряжение, светозависимый, SMD, R K E M, Вт, ток, мощность рассеивания тепла,
1. Резисторы
Резисторы есть наиболее часто используемый компонент в электронике, и их цель — создать заданные значения тока и напряжения в цепи.А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b — некоторые высокая мощность резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).
Символ резистора показан на следующая диаграмма (верхний: американский символ, нижний: европейский символ.)
Блок для Измерительное сопротивление — Ом . (греческая буква Ω — называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом отображается как 120 кОм, а 1 200 000 Ом — как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом. Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.
Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский
ПРИМЕЧАНИЯ:
Вышеуказанные резисторы имеют «общее значение» 5%. типы.
Четвертая полоса называется полосой «допуска». Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.
РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третья полоса золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = «разделите на 10», чтобы получить значения 1R0. до 8R2
Примеры см. в 1-й колонке выше.
Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на
100.
(Помните: в слове «серебро» больше букв, значит делитель
«больше»)
Silver = «разделить на 100», чтобы получить
значения 0R1 (одна десятая ома) от
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше. Примеры.
Буквы «R, k и M» заменяют десятичную дробь.
точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2
точка 2 Ом 22 R = 22 Ом
2 k 2 =
2200 Ом 100 к = 100000
Ом
2 M 2 = 2200000 Ом
Общие резисторы имеют 4 группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса — это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.
Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая — множитель, пятая — допуск.
Для SMD (поверхностный монтаж Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.
Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип — плоский. Цилиндрические резисторы SMD помечены шестью полосами — первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.
Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры — это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.
Само собой разумеется, что существует массовое производство всех
типы резисторов. Чаще всего используются резисторы E12.
серии и имеют значение допуска 5%. Общие значения для первых двух
цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24
серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30,
36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что
резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д.
(0R39,
3R9,
39R,
390R,
3к9,
39к)
Для некоторых электрических цепей допуск резистора не важен и не указывается. В этом случае можно использовать резисторы с допуском 5%.Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.
1,2 Резистор Рассеивание
Если поток
ток через резистор увеличивается, он нагревается, а если
температура превышает определенное критическое значение, он может выйти из строя. В
номинальная мощность резистора — это мощность, которую он может рассеивать в течение длительного времени.
промежуток времени.
Номинальная мощность резисторов малой мощности не указана.На следующих диаграммах показаны размер и номинальная мощность:
Чаще всего используется
резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт.
Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт,
так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью,
можно использовать другой с таким же сопротивлением и более высоким рейтингом, но
его большие размеры увеличивают пространство, занимаемое на печатной плате
а также добавленная стоимость.
Мощность (в ваттах) можно рассчитать по одному из следующие формулы, где U — символ напряжения на резистор (в вольтах), I — ток в амперах, а R — сопротивление в Ом:
Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:
Резистор 1/4 Вт может использоваться.
Во многих случаях это
Непросто определить ток или напряжение на резисторе.В этом
в случае, когда мощность, рассеиваемая резистором, определяется для «худшего»
кейс. Мы должны принять максимально возможное напряжение на резисторе,
т.е. полное напряжение источника питания (аккумулятор и т. д.).
Если обозначить
это напряжение как В B , максимальное рассеивание
это:
Например, если В В = 9В, рассеиваемая мощность 220Вт резистор есть:
Резистор мощностью 0,5 Вт или выше должен использоваться
1.3 Нелинейных резистора
Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.
Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: NTC Резисторы (рисунок а) (отрицательный температурный коэффициент) — их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) — их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) — их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) — их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.
1.4 Практические примеры с резисторами
На рисунке 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.
На рисунке 1.5a показан RC-усилитель напряжения, который можно использовать для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление.Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо «установить» рабочая точка транзистора. Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и gnd должны составлять примерно половину батареи (источника питания) Напряжение. Так как напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.
Подключить вольтметр между узел C и земля.Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт. Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.
Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление — более высокое усиление , более низкое сопротивление — нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).
Резистор R3 и конденсатор 100 мкФ
сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется
«Моторная лодка», как это звучит как шум моторной лодки. Этот
шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в
форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала
доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад
производит очень слабый фоновый шум, называемый «шипением». Это происходит из-за
ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны
поступил на вход первого транзистора и, таким образом, мы получили
петля для «генерации шума». Скорость прохождения сигнала
вокруг цепи определяет частоту нестабильности.К
добавление резистора и электролита к каждому каскаду, фильтр низких частот
производится, и это «убивает» или снижает амплитуду нарушения
сигнал. При необходимости значение R3 можно увеличить.
Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.
Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на рисунок 1.5b. Без триммера TP и нелинейного резистора NTC это аудио осциллятор.Частоту звука можно рассчитать по следующей формуле:
В нашем случае R = 47кВт и C = 47nF, а частота равна: Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается. При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны при 2 ° C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный.Если температура падает, сопротивление увеличивается и при 2 ° C осциллятор активирован.Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом. Естественно резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.
Если вместо резистора NTC используется резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение.Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6 ° C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.
Вместо NTC мы могли бы использовать резистор LDR. — осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую систему сигнализации для помещений, где свет должен быть всегда включен.
LDR может быть соединен с резистором R. в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для охотников и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная. Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор.Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.
Подрезной горшок с рисунка 1.5b используется. для точной настройки. Таким образом, TP с рисунка 1.5b может использоваться для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).
1,5 Потенциометры
Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.
С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Существует проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.
с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора. По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.
Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Самый распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения — радиоприемники, усилители звука и аналогичные устройства где горшки используются для регулировки громкости, тона, баланса, и т.п.
Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.
Сопротивление потенциометра обычно равно E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).
Потенциометрыбывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.
Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, пр.
Слева внизу находится так называемый ползунок потенциометр.
Внизу справа — горшок с проволочной обмоткой мощностью
20 Вт, обычно используется как реостат (для регулирования тока при зарядке
аккумулятор и т. д.).
Для схем, требующих очень точной
значения напряжения и тока, подстроечные потенциометры (или просто обрезные горшки ). Это небольшие потенциометры с ползунком, который
регулируется отверткой.
Кастрюли также бывают различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.
Корректировки сопротивления сделано отверткой.Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина). Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.
1,6 Практический примеры с потенциометрами
Как было сказано ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства.Они используются для регулировки громкости, тон, баланс и т. д.
В качестве примера разберем общая схема регулировки тембра в аудиоусилителе. В нем два горшка и показан на рисунке 1.8a.
Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), тогда как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.
Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, звуковой сигнал, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.
На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.
Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.
Третий банк на диаграмме — регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда и отметка log )
Чип резистора Технические характеристики | Основы электроники
Размеры микросхем резистора
Внешние размеры чип-резисторов обычно обозначаются с использованием обозначений компании и указываются как в миллиметрах, так и в дюймах.
Номер детали ROHM | Размер микросхемы (длина x ширина) | мм | дюймов |
---|---|---|---|
*** 004 | 0.4 мм × 0,2 мм | 0402 | 01005 |
*** 006 | 0,6 мм × 0,3 мм | 0603 | 0201 |
*** 01 | 1,0 мм × 0,5 мм | 1005 | 0402 |
*** 03 | 1,6 мм × 0,8 мм | 1608 | 0603 |
*** 10 | 2,0 мм × 1,2 мм | 2012 г. | 0805 |
*** 18 | 3.2 мм × 1,6 мм | 3216 | 1206 |
*** 25 | 3,2 мм × 2,5 мм | 3225 | 1210 |
*** 50 | 5,0 мм × 2,5 мм | 5025 | 2010 |
*** 100 | 6,4 мм × 3,2 мм | 6432 | 2512 |
*** Обозначает номера деталей (за исключением сетей микросхем)
Что такое «номинальная мощность»?
Номинальная мощность — это максимальная мощность, которая может использоваться в непрерывном режиме при указанной температуре окружающей среды.Когда ток подается на резистор микросхемы, выделяется тепло. Поскольку верхний предел рабочей температуры чип-резистора определен, необходимо снизить мощность в соответствии с кривой снижения номинальных характеристик для температур выше Ta = 70 ° C.
Что такое температурный коэффициент сопротивления?
В любом материале сопротивление этого материала будет изменяться при изменении температуры. Это также относится к резисторам. Скорость изменения сопротивления в зависимости от температуры называется температурным коэффициентом сопротивления.Он указывается в единицах ppm / C и определяется по изменению сопротивления от эталонной температуры и изменению температуры.
РезисторыОбозначение стойкости по цвету. Обозначения и маркировка резистора
Любой, кто работает с электроникой или когда-либо видел электронную схему, знает, что почти ни одно электронное устройство не обходится без резисторов.
Функция резистора в цепи может быть совершенно разной: ограничение тока, деление напряжения, рассеиваемая мощность, ограничение времени заряда или разряда конденсатора в RC-цепочке и т. Д.В любом случае, каждая из этих функций резистора выполнима благодаря главному свойству резистора — его активному сопротивлению.
Само слово «резистор» — это русскоязычное прочтение английского слова «резистор», которое, в свою очередь, происходит от латинского «resisto» — я сопротивляюсь. В электрических схемах применяются постоянные и переменные резисторы, а предметом данной статьи будет обзор основных типов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и их схемах.
Первые фиксированные резисторы, классифицируемые по максимальной мощности, рассеиваемой компонентом: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и более, до 1 кВт (резисторы для специальных применений).
Данная классификация не случайна, поскольку в зависимости от назначения резистора в цепи и от условий, в которых резистор должен работать, рассеиваемая на нем мощность не должна приводить к разрушению самого компонента и компонентов, расположенных рядом, что В крайнем случае резистор должен нагреваться от проходящего через него тока и уметь рассеивать тепло.
Например, керамический резистор SQP-5 с цементным наполнителем (5 Вт) При номинальном значении 100 Ом уже при постоянном напряжении 22 В, постоянно приложенном к его клеммам, он нагревается до температуры более 200 ° C. , и это необходимо учитывать.
Итак, лучше выбрать резистор необходимого номинала, скажем на те же 100 Ом, но с запасом на максимальную рассеиваемую мощность, скажем, 10 Вт, который в условиях нормального охлаждения не нагревается выше 100 °. C — это будет менее опасно для электронного устройства.
Резисторы SMDдля поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 Вт — сегодня также можно встретить на печатных платах. Такие резисторы, как и выходные, всегда берутся с запасом мощности. Например, в цепи на 12 В вы можете использовать резистор SMD 100 кОм размером 0402, чтобы поднять потенциал на отрицательную шину. Или на выходе 0,125 Вт, так как рассеиваемая мощность будет в десять раз дальше от максимально допустимой.
Резисторы проволочные и непроволочные, прецизионные
Резисторы разного назначения используют разные.Нежелательно например проволочный резистор вставлять в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения тоже достаточно провода.
Проволочные резисторы, изготовленные путем намотки проволоки из манганина, нихрома или константана на керамическую или порошковую основу.
Изготовлены не из проволоки, а из токопроводящих пленок и смесей на основе связующего диэлектрика. Итак, они излучают тонкие слои (на основе металлов, сплавов, оксидов, металл-диэлектрик, углерод и бор-углерод) и композит (пленка с неорганическим диэлектриком, объемная и пленка с органическим диэлектриком).
Непроволочные резисторы часто представляют собой высокоточные резисторы, которые характеризуются высокой стабильностью параметров, способны работать на высоких частотах, в цепях высокого напряжения и внутри цепей.
в принципе делятся на резисторы общего и специального назначения. Резисторы общего назначения доступны с номинальными значениями от Ом до 10 МОм. Резисторы специального назначения могут иметь номинал от десятков мегаом до тераом и способны работать при напряжении 600 вольт и более.
Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, потому что у них крайне малы собственные емкости и индуктивности. Прецизионность и сверхточность отличает точность номинальных значений от 0,001% до 1%.
Номинальные характеристики и маркировка резисторов
Резисторыдоступны в различных номиналах, и есть так называемые серии резисторов, такие как широко распространенная серия E24.В общем, существует шесть стандартизованных рядов резисторов: E6, E12, E24, E48, E96 и E192. Число после буквы «E» в названии серии отражает количество значений номиналов на десятичный интервал, а в E24 эти значения равны 24.
Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — отрицательное или положительное целое число. Каждый ряд отличается своей терпимостью.
Цветовая маркировка выходных резисторов в виде четырех или пяти полос давно стала традиционной.Чем больше полос — тем выше точность. На рисунке показан принцип цветовой маркировки резисторов четырьмя и пятью полосами.
Резисторы для поверхностного монтажа (SMD — резисторы) с допуском 2%, 5% и 10% обозначены цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичном формате вместо нее ставим букву R. Маркировка 473 означает 47, умноженное на 10 в степени 3, то есть 47х1000 = 47 кОм.
Резисторы SMD, начиная с типоразмера 0805, с допуском 1%, маркируются четырьмя цифрами, где первые три — мантисса (число, которое нужно умножить), а четвертая — степень числа 10, на которое мантисса должно приумножаться. Итак, 4701 означает 470×10 = 4,7 кОм. Чтобы обозначить десятичную точку, вместо нее поставьте букву R.
Две цифры и одна буква используются в маркировке sMD резисторов типоразмера 0603. Цифры — это код для определения мантиссы, а буквы — это код для показателя степени числа 10 — второго множителя.12D означает 130×1000 = 130 кОм.
На схемах резисторы обозначены белым прямоугольником с надписью, причем надпись иногда содержит как информацию о номинале резистора, так и информацию о его максимальной рассеиваемой мощности (если это критично для данного электронного устройства). Вместо точки в десятичной системе обычно ставят буквы R, K, M — если они означают Ом, кОм и МОм соответственно. 1R0 — 1 Ом; 4K7 — 4,7 кОм; 2M2 — 2,2 МОм и т. Д.
Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. Д., а в сопроводительной документации на схему или плату под этими номерами указан список компонентов.
Что касается мощности резистора, то она буквально может быть указана на схеме, например 470 / 5W — значит — 470 Ом, резистор 5 ватт? или символ в прямоугольнике. Если прямоугольник пустой, значит резистор берется не очень мощный, то есть 0,125 — 0,25 Вт, если речь идет о выходном резисторе или максимум 1210 размера, если выбран SMD резистор.
Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току.
В соответствии с классификацией резисторов по функциональным характеристикам, резисторы можно разделить на постоянные и переменные. Резисторы, сопротивление которых не может быть изменено в процессе настройки и во время работы оборудования, относятся к группе постоянных резисторов. Резисторы, сопротивление которых можно изменять при наладке и настройке оборудования (обычно с помощью инструментов), составляют довольно большую группу ЭРЭ, называемых подстроечными резисторами.По типу токопроводящего материала, из которого изготовлены резисторы, они делятся на проволочные и непроволочные. В свою очередь непроволочные резисторы делятся на пленочные и насыпные. В пленочных резисторах используется металлический сплав или другой проводящий материал с высоким удельным сопротивлением, который наносится тонким слоем на поверхность корпуса резистора, который обычно изготавливается из керамического материала или другого термостойкого материала.
Пленочные резисторы имеют малые габаритные размеры, незначительную массу, минимальную собственную индуктивность, высокое постоянство сопротивления в широком диапазоне частот, проверенные технологии изготовления и относительно невысокую стоимость.Токопроводящая часть объемных непроволочных резисторов представляет собой стержень из материала с высоким удельным сопротивлением, покрытый слоем влагостойкой эмали.
Особую классификационную группу резисторов составляют непроволочные резисторы нелинейные — варисторы. Сопротивление этих резисторов широко варьируется в зависимости от величины приложенного к ним напряжения.
Особую группу непроволочных резисторов составляют фоторезисторы , сопротивление которых изменяется под действием световых лучей.
Проволочные резисторы представляют собой керамическую фарфоровую трубку, на которую намотана проволока с высоким сопротивлением.
Как правило, буквенные и цифровые коды, используемые для обозначения постоянных резисторов, могут указывать на тип и размер резистора; показать марку материала, из которого изготовлен корпус резистора, и его токопроводящий слой; обозначить конструктивные и конструктивные особенности; значения сопротивления и максимально возможные отклонения от номинала; номинальная рассеиваемая мощность; максимальные шумы ЭДС; дата изготовления резистора; товарный знак производителя и вид приемки резисторов заказчиком или ОТК.
В соответствии с требованиями государственных стандартов буквенные и цифровые коды могут состоять из трех, четырех и пяти знаков. Эти коды обычно включают две буквы и цифру, три цифры и букву или четыре цифры и букву. В этом случае буквы заменяют десятичную запятую.
и допуски, нанесенные на корпус резистора, определяют его качественные показатели. Номинальное сопротивление резисторов стандартизировано и определяется математическими рядами, имеющими следующие условные обозначения: Е6, Е12, Е24, Е96, Е192.Число в обозначении серии Е определяет качество значащих цифр — номиналов в каждом десятичном интервале. Например, в строке Е6 шесть номиналов сопротивления в разряде Ом, десятки и сотни в следующих цифрах.
Номинальное значение сопротивления обозначается, как правило, цифрами, обозначающими основные единицы измерения, а символы Ом и Ом обозначают заглавными буквами латинского алфавита К и М. Таким образом, резистор с сопротивлением 2.2 Ом можно обозначить: 2.2; 2,2 Ом; 2,2 Ом; 2.2E; 2E2. Резистор сопротивлением 220 Ом может иметь маркировку: 220; 220 Ом; 220 E; К220.
Допуски Номинальные значения сопротивления указываются цифрами и рассчитываются в процентах. Например, ± 2%; ± 5% или всего 2; пять; 10.
Как упоминалось ранее, в некоторых обозначениях вы можете встретить букву или цифру дополнительного кода, который ставится после буквы, обозначающей допуск, и размещается так, чтобы не было путаницы между кодами, указывающими значение сопротивления и терпимость.Значения сопротивления, выраженные в омах, умножаются на соответствующие множители, которые кодируются буквами латинского алфавита R K M T и соответствуют 1; 10 3, 10 6, 10 9.
Номинальная мощность резистора — наибольшая мощность постоянного или переменного тока, при которой резистор может длительное время надежно работать, если его температура не превышает номинальную температуру t н.
Табл. 1. Примеры обозначений номиналов сопротивлений резисторов
Таблица 2 Маркировка допустимых отклонений сопротивлений резисторов
Отклонения, ±,% | ||||||||||
Буквенные символы | ||||||||||
Латиница |
Табл.3. Буквенное обозначение года выпуска постоянных резисторов по международным правилам
.Табл. 4. Буквенно-цифровое кодирование месяца выпуска
Например, март 1999 года обозначен L3; Декабрь 1999 г. — К.Д.
Табл. 5. примеры полной буквенно-цифровой маркировки резисторов
Обозначение на резисторе | Характеристика резистора |
Постоянный резистор Номинальное сопротивление резистора 1.5 Ом Допустимое отклонение сопротивления от номинала ± 1% Год выпуска — 1986 | |
Резистор постоянный. Сопротивление резистора 5,1 МОм Отклонение от номинала ± 20% (I — русская буква, M — латинская буква) Дата изготовления — 1996 ᴓ — Код производителя | |
СП-1 680 5-89 | Переменный экранированный резистор Максимальное сопротивление резистора 680 Ом Допустимое отклонение от номинального значения сопротивления ± 20% Резистор имеет обратно-логарифмическую характеристику функциональной зависимости изменения сопротивления (В) Резистор номинальной мощности 0.5 W Дата изготовления — май 1989 г. ᴓ — Код производителя. |
Цветовая маркировка резисторов. Постоянные резисторы, изготовленные на основе углеродной или металлооксидной пленки небольшого размера, могут иметь маркировку цветовым кодом, обозначающим их номинальное сопротивление и предельно допустимое отклонение. Такая маркировка наносится на поверхность резистора в виде концентрических поясов (колец) краской разного цвета, количества и размеров, которые обозначаются определенными цифрами, соответствующими значениям закодированных значений.
Для облегчения считывания цветовой маркировки первый ремень расположен ближе к краю резистора, либо последний ремень сделан намного шире, чем все остальные.
Первые два цвета на ремнях показывают два значимых числа сопротивления резистора, выраженные в омах, в полном соответствии с установленным параметрическим рядом E6, E12 или E24.
Пояс третьего цвета означает градус с множителем 10, пояс четвертого цвета определяет величину допуска от номинального значения резистора.Отсутствие пояса четвертого цвета на резисторе означает симметричное значение допуска ± 20%.
Иногда на резисторах можно встретить дополнительные цветные кольца, которые можно использовать, например, для обозначения температурного коэффициента. Затем наносят полоску пыльцы в качестве шестой более широкой полоски или наносят спиральную линию. В этом случае цветовое кодирование температурного коэффициента сопротивления применяется только к значениям с тремя значащими цифрами.
Рис. 1. Цветовая маркировка постоянных резисторов отечественного производства с сопротивлением: а — 510 кОм, ± 2%; б — 9.1 Ом, ± 5%; в — 680 кОм, ± 20%
Таблица 6 Цветовая маркировка значений номинальных сопротивлений и допусков отечественных резисторов.
Большинство людей приходят на радиолюбительство из-за желания сделать что-то своими руками, что-то уникальное, что несомненно принесет пользу и себе, и окружающим … Но выбор конструкции для самостоятельной сборки часто вызывает массу проблем, связанных с плохой запас знаний в области радиоэлектроники. Конечно, обычное чтение книг по соответствующей тематике и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и других устройств начинается немедленно.Когда много чего прочитано, уже есть представление об условном графическом отображении элементов на схеме, и есть некоторые представления о принципе действия, возникает проблема переноса схемы с бумаги в реальность, а именно: поиск компонентов схемы. Сейчас не проблема составить список, чтобы пойти и купить радиодетали, но у многих по-прежнему нет возможности закупить запчасти, и на помощь приходит старое сломанное радиооборудование. О том, как найти нужные радиодетали в старой технике и пойдет речь в этой статье.Я специально не буду описывать какую-либо конкретную схему, так как в одном устройстве невозможно охватить все разнообразие электронных компонентов. Также я не буду описывать принцип работы элементов, все это вы уже должны знать.
Пассивные компоненты
Резисторы
Самым распространенным элементом является резистор , без него невозможно построить любую схему. Встретить его можно практически в любом электронном устройстве, резистор представляет собой цилиндр с двумя диаметрально противоположными выводами.Он служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Ом. Обозначается прямоугольником с двумя черточками на противоположных сторонах, внутри прямоугольника обычно указывается мощность (рис. 1).
В бытовой технике используются резисторы с номиналами, расположенными по ряду Е24, это означает, что в диапазоне от 1 до 10 имеется 24 значения сопротивления. Типов резисторов много, вот самые распространенные:
Рис. 1. Обозначение резисторов. Тип MLT
Резисторы типа МЛТ (жаростойкий металл с лакированным покрытием) — часто встречаются в ламповом оборудовании (обычно не менее 0.12).
18 — 18 Ом, при обозначении единиц Ом букву иногда не ставят, в том числе на схемах.
Если номинальное сопротивление выражается целым числом с дробью, то единица измерения указывается через запятую.
1М5-1,5 МВт.
К51- 510 Ом, если перед цифрой стоит буква, значит сопротивление меньше килоом (мегаома), следующая цифра показывает сопротивление.
Далее в обозначении буква, обозначающая допуск в процентах: (Е = ± 0.001; L = ± 0,002; R = ± 0,005; Р = ± 0,01; U = ± 0,02; В (Ж) = ± 0,1; С (Y) = ± 0,25; D (D) = ± 0,5; F (P) = ± 1; G (L) = ± 2; J (U) = ± 5; К (С) = ± 10; M (B) = ± 20; N (Ф) = ± 30. Значение допуска может применяться к номинальному сопротивлению во второй строке и будет выражаться в процентах.
Резисторы типа ВС (водонепроницаемые) можно встретить в ламповой аппаратуре 60-70-х годов (рис. 2). А именно в радио и в черно-белых телевизорах. Практической ценности в настоящее время не несет. Маркировка аналогична МЛТ, имеет несколько габаритов в зависимости от мощности.
Рис. 2. Тип ВС
В середине 80-х годов появилась цветовая маркировка резисторов (рис. 3, рис. 4), которая существует и сегодня, что позволило быстро определить номинал без пайки из схемы (тоже под рукой, ищем желаемый резистор сильно разгонялся). Резисторы с такой маркировкой производятся многими отечественными и зарубежными компаниями, поэтому определить конкретный тип резистора очень сложно, а зачастую и не нужно.
Рис. 3. Резисторы с цветовой кодировкой
Рис. 4. Расшифровка цветовой маркировки резисторов
В таблице показан метод определения номинала резистора и класса точности. Класс точности показывает, на сколько процентов сопротивление может отличаться от заявленного номинального значения.
Для определения сопротивления цветных полосок можно использовать :.
В последнее время появилась тенденция к минимизации, и начали появляться SMD-компоненты. Вот так называемые чип-резисторы (рис.3 = 12000 Ом = 12 кОм. Часто встречаются чип-резисторы с обозначением 0, это резистор нулевого сопротивления или просто перемычка.
Для построения усилителей, а точнее их выходных каскадов часто требуются силовые резисторы более 2 Вт с сопротивлением не более 1 Ом. Обычно это резисторы марки PE или PEV — проволочные резисторы мощностью от 1 до нескольких сотен ватт (рис. 7). Также самые современные из различных производителей (рис. 8). Можно встретить в старинных ламповых телевизорах, магнитолах и устройствах промышленной автоматики.При отсутствии необходимого резистора его можно изготовить самостоятельно из спирали от электронагревателя, отрезав необходимую длину, подобрав сопротивление омметром.
Рис. 7. Резисторы шить
Фиг. Восемь
Особое место среди постоянных резисторов занимают резисторные сборки (рис. 9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.
Рис. 9. Резисторные сборки дип и smd
Сборки имеют два типа подключения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом.Можно встретить во многих цифровых устройствах, где они обычно используются в качестве подтягиваний.
В электронных устройствах часто используются резисторы с переменным сопротивлением, их можно разделить на переменных — используется для быстрого изменения параметров устройства во время работы, таких как громкость, тембр, яркость, контрастность, подстроечных резисторов — используется для настроить устройство при сборке и вводе в эксплуатацию.
Переменные резисторы:
Фиг.10. Переменные резисторы
Резисторы переменные рис.10:
1. Со встроенным тумблером можно встретить в ламповых телевизорах и в магнитоле 70-х.
2. Резистор типа СП3-30а можно было встретить в телевизорах, ресиверах, абонентских громкоговорителях до 90-х годов выпуска.
3. Резистор Сп-04, встречающийся в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а в всей технике конца 80-х — начала 90-х годов.
5. Специализированный квадроцикл с тумблером СП3-33-30, обычно встречается в различных типах магнитол.
Рис. 11. Ползунковые переменные резисторы
Ползунковые резисторы (рис.11) часто встречаются в магнитофонах 80-90-х годов в качестве регуляторов звука и тона.
Рис. 12. Современные переменные резисторы
Более современные резисторы (рис. 12) можно найти в любой импортной технике начала 90-х, от кассетных плееров и автомагнитол до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу на двух каналах (стерео).Очень интересен последний резистор (на картинке), так называемый 3D резистор или джойстик. Он состоит из нескольких сочлененных резисторов и отслеживает движение ручки влево-вправо, вверх-вниз и вращение вокруг своей оси. Вы можете встретить такой экземпляр в джойстиках игровых приставок.
Для всех переменных резисторов, помимо сопротивления, есть очень важный параметр — зависимость сопротивления от угла поворота вала (линейное смещение), обозначаемая буквой после значения сопротивления:
Советский:
A — линейная зависимость
B — логарифмическая зависимость
B — обратная логарифмическая зависимость
Импортировано:
A — логарифм
B — линейный
C — обратный логарифм
Для регулировки громкости обычно используют резисторы с логарифмической зависимостью.
Подстроечные резисторы :
Рис. 13. Подстроечные резисторы СССР
Подстроечные резисторы Рис.13:
1,2,3 — обычно встречаются в старых ламповых телевизорах.
4.7 (РП1-64Б), 8 (СП3-29А) — в полупроводниковых цветных телевизорах
5 — во всей советской технике 80-х годов
6 — СП5-50МА — мощный проволочный резистор, в цветных ламповых телевизорах.
9 — многооборотный подстроечный резистор СП3-36, обычно встречается в тюнере телеканала.
Фиг.14
Рис. 15. Резисторы многооборотные
Многооборотный подстроечный резистор, используемый в усилительном оборудовании для установки тока покоя и во всех системах, где требуется точная настройка.
Все переменные и подстроечные резисторы также различаются по мощности, которая обычно указывается на корпусе или в документации на элемент. Практически любые из перечисленных могут быть применены к их конструкциям исходя из требуемых габаритов и мощности.
Со временем как подстроечный резистор, так и переменные резисторы выходят из строя, и возникает нежелательное явление, называемое шорохом.Это явление вызвано недостаточным прижатием (контактом) ползуна или износом подложки, как правило, нет смысла ремонтировать резисторы, хотя иногда встречаются очень редкие и уникальные (например, в большинстве микшерных пультов), которых нет. можно найти замену. В этом случае резистор нужно аккуратно разобрать, загнуть контакт, твердым карандашом восстановить графитовое покрытие и заново собрать силиконовой смазкой. Резистор после такой реанимации еще может служить.
Есть еще резисторы, которые реагируют на изменения окружающей среды, в любительских конструкциях мало используются, но все же стоит упомянуть: термисторы
Рис. 16. Термисторы
Применяются для термостабилизации схемы, встречаются очень часто, а в самодельных устройствах используются очень мало.
Рис. 17. Фоторезистор
Изменяет свое сопротивление в зависимости от света. Могут сниматься с любительских фотоаппаратов, где они используются как светочувствительный элемент.
Тензодатчики
Рис.18. Тензодатчики
Они меняют свое сопротивление в зависимости от деформации, очень редко встречаются в бытовых приборах и обычно используются в виде датчиков в устройствах автоматики.
Варистор — это полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, увеличивается.
Рис. 19. Варисторы
Применяются как устройство защиты в импульсных блоках питания бытовой техники от перенапряжения.Встретить можно в любом современном устройстве.
Привет. Сегодня статья будет посвящена такому радиоэлементу, как резистор, или, как раньше его называли, сопротивление.
Основная задача резисторов — создание сопротивления электрическому току. Для большей наглядности представим себе электрический ток, как вода, текущая по трубе. В конце этой трубы установлен кран, который полностью откручивается, и он просто пропускает воду через себя. Как только мы начнем закрывать кран, мы сразу увидим, что поток слабее до того момента, когда поток воды полностью прекратится.
По этому принципу работают резисторы, только вместо трубы у нас электрический провод, вместо воды — ток, а вместо крана — резистор. Чем выше номинал резистора, тем больше сопротивление электрическому току. Сопротивление резистора измеряется единицей измерения, например ом.
Поскольку в схемах могут использоваться очень большие резисторы, номинальное значение которых может составлять около 1000-1000000 Ом, для упрощения расчетов используются производные единицы, такие как кОм , мМ и гом .
Для лучшего понимания этих единиц, вот следующая расшифровка:
1 кОм = 1000 Ом;
1 мОм = 1000 кОм;
1 гОм = 1000 мОм;
На практике все очень просто. Если ударить резистор с надписью 1.8 кОм, то, не сложив расчетов, увидим, что номинал в Ом будет 1800 Ом.
По принципу действия резисторы делятся на постоянных и переменных .
Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные резисторы могут изменять свое номинальное значение во время работы и используются для выполнения какой-то настройки. Примером использования переменных резисторов могут быть ручки регулировки громкости, тембра на магнитофонах.
Постоянные резисторы
Поговорим подробнее о постоянных резисторах. На практике обозначение номинальных резисторов наносят на корпус.Это может быть буквенно-цифровой код или цветные полосы (). Как узнать номинал по цветовой маркировке резистора, можно узнать из этого.
Что касается буквенно-цифрового обозначения, то его обычно обозначают так:
- Letter R Omah . Положение этого письма очень важно. Если резистор типа надит 12 R , тогда резистор будет 12Ом . Если буква в начале R 12 , тогда сопротивление будет 0.12 Ом . Также возможно обозначение типа. 12 R1 , что означает 12,1 Ом.
- Буква К — означает, что резистор будет мерять от до Ом . Применяются те же правила, что и в предыдущем примере. 12 K = 12кОм K 12 = 0,12 кОм и 12К1 = 12,1кОм.
- Буква М — означает, что резистор будет мерять м Ом . 12 M = 12 мОм, M 12 = 0,12 мОм и 12M1 = 12,1 мОм.
Также на корпусе резистора обозначить такую величину, как отклонение от номинала . В случае массового производства резисторов из-за несовершенства технологий производства сопротивления могут иметь некоторые отклонения от заявленного значения. Это возможное отклонение указано на корпусе резистора как ± 0,7% или ± 5%. Цифры могут быть разными, в зависимости от способа производства.
В процессе работы при высоких нагрузках резистор выделяет тепло. Если в цепь питания больших нагрузок поместить маломощный резистор, то он быстро нагреется и сгорит. Чем больше резистор, тем больше его мощность. На рисунке ниже показано обозначение силовых резисторов на схемах.
Обозначение силовых резисторов на схеме
Переменные резисторы
Как упоминалось ранее, переменные резисторы используются для плавной регулировки тока и напряжения в пределах номинала резистора.Переменные резисторы строение и регулировочное . Через подстроечные резисторы осуществляются постоянные нестандартные настройки оборудования (регулировка звука, яркости тембра и др.), А строительная техника используется для настройки оборудования в режиме настройки при сборке оборудования. Для регулировки резисторов допустимо наличие удобной ручки, а вот строительные обычно регулируются отверткой.
Если переменный резистор говорит, что он имеет номинал 10 кОм , то это означает, что он выполняет регулировки в диапазоне от 0 до 10 кОм .В среднем положении ручки ее номинал будет примерно 5 кОм , крайний или 0 10 кОм .
Продолжаем серию справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах , они присутствуют в любой электронной схеме, даже самой простой. Они делятся на два типа: переменные и константы. Обычные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0,125 до 2 Вт. Если быть более точным, это серия из 0.125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт. Конечно, есть более мощные резисторы, например проволочные, но в электронных схемах они используются редко. На рисунке ниже показан внешний вид и размеры резисторов, а также их обозначения на принципиальных схемах. Из них наиболее часто используются в электронике резисторы мощностью от 0,125 до 0,5 Вт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0,1-1%. Есть более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется.Если резистор может изменять сопротивление — это называется переменным (или подстроечным). Фото переменных резисторов:
Переменные резисторы тоже встречаются. Wire и nonwire Wire Wire обычно рассчитаны на большую мощность. Непроволочное устройство переменного резистора можно увидеть на картинке:
Резистор устроен следующим образом, на основе гетинакса наносится слой сажи, смешанный с лаком, в виде дуги.Этот резистор между первым и вторым контактами (на рисунке), другими словами, между крайними выводами, сопротивление постоянное, а между средним и крайним выводами изменяется при повороте ручки резистора. К этому слою с сопротивлением прикреплен подвижный контакт, который подключен к центральному выводу. Очень часто при интенсивном использовании регулятора этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора резко изменяется, иногда даже становясь больше максимального установленного значения.Из-за этого износа и из динамиков появляется шорох и треск, а иногда при сильном износе звук пропадает полностью. Переменные резисторы бывают как одинарными, так и сдвоенными, сдвоенные обычно используются в устройствах со стереозвуком. Также к переменным резисторам относятся подстроечные резисторы:
Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отверткой. Также переменные резисторы бывают однооборотные и многооборотные.Схематическое изображение переменного и подстроечного резистора на рисунке ниже:
На советских резисторах МЛТ номинал резистора был написан, на импортных резисторах маркировка нанесена цветными кольцами, первые два кольца кодировали номинал , третье кольцо — умножитель, четвертое кольцо — допуск резистора (для обычных неточных резисторов).
Имеется маркировка с более чем четырьмя кольцами, расшифровать маркировку поможет следующий рисунок:
Иногда возникает необходимость узнать номинал резистора, и по цветовым причинам. по каким-то причинам это сделать сложно.В этом случае нужно обратиться к концепции устройства. В таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы не указаны), 100 К означает 100 кОм, 2 МОм означает 2 МОм. Иногда при сборке какой-либо схемы желаемого номинала нет под рукой, но есть много резисторов других номиналов, в этом случае резисторы последовательного или параллельного включения. Формулы счета всем известны из учебников физики, но если кто забыл, приведу здесь:
При последовательном подключении
При параллельном подключении
В последнее время многие переходят на SMD-детали, из которых наиболее распространены резисторы типоразмеров 0805 и 1206.Определить номинал резистора SMD очень просто, первые две цифры показывают сопротивление резистора, третья цифра — количество нулей. Пример : маркировка 332 , значит 33 плюс два нуля, получается 3300, то есть 3,3 кОм. Реже встречается в электронике, но все же используются термисторы и фоторезисторы. На рисунке ниже показана схема термисторов:
В термисторах сопротивление зависит от температуры.Если сопротивление термистора увеличивается с повышением температуры, температурный коэффициент сопротивления TKS положительный, но если сопротивление уменьшается с повышением температуры, TKS отрицательный. Термистор изображен ниже:
На следующем рисунке показан фоторезистор, как он изображен на схемах:
Это полупроводниковый прибор, сопротивление которого изменяется под действием света.
Фоторезисторы особенно широко используются в устройствах автоматизации.Приведу типичную схему включения полупроводникового фотоприемника:
Обсудить статью РЕЗИСТОРЫ
Стандартные значения резисторов, описания резисторов Стандартные значения резисторов
, описания резисторов [ Резистор Военный
Технические характеристики ] [ Словарь резисторов ]
[ Снижение номинальных характеристик резистора ] [ Данные потенциометра ]
[ Резистор
Производители ]
Проектирование с резисторами | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Стандартные размеры для поверхностного монтажа
Номиналы стандартных резисторов предпочтительных номиналов резисторов; которые также будут стандартными значениями резистора, показаны ниже.
Возможны другие номиналы резисторов. Однако любое другое значение резистора будет нестандартным и нежелательным. Десятилетние столы Как использовать декадные таблицы резисторов ;
Цветовые коды резисторов Хотя эта страница действительно касается резисторов для поверхностного монтажа.
Примечания по цветовой кодировке
Рекомендации по конструкции резистора Как правило, чем больше физический размер резистора, тем больше рассеиваемая мощность. Типы фиксированных резисторов [Термины, определенные в словаре резисторов] На этой странице перечислены стандартные номиналы резисторов для 1% и 5%.
толерантность. Изменено 29.02.12 Авторские права © 1998 — 2016 Все права защищены Ларри Дэвис RG Резисторы с внутренним шестигранникомRG ALLEN Силовые резисторыРезисторы, необходимые для рассеивания значительного количества энергии, особенно используемые в источниках питания, схемах преобразования мощности и усилителях мощности, обычно называются силовыми резисторами; это обозначение свободно применяется к резисторам с номинальной мощностью 1 Вт или выше.Резисторы мощности физически больше и могут не использовать предпочтительные значения, цветовые коды и внешние пакеты. Силовой резистор — хорошее решение для многих типов приложений питания и управления. Типичные области применения включают в себя средства управления небольшими электродвигателями, промышленное оборудование, источники питания, сварочное оборудование, плазменные резаки, системы и средства контроля и подачи жидкости, наружное и подводное освещение, громкоговорители и усилители звука. Характеристики
Мы стремимся поставлять силовые резисторы, отвечающие требованиям и спецификациям наших клиентов. Благодаря широкому ассортименту продукции мы стремимся быть вашим предпочтительным поставщиком силовых резисторов. Резистор обнаруженияРезистор цепи безопасности
Силовой резистор »ЭлектроникаРезистор с проволочной обмоткой часто используется в резисторах большой мощности или в некоторых других областях, где необходимы его свойства низкого шума и рассеивания мощности.Resistor Tutorial: Resistors Обзор Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E Резистор с проволочной обмоткой используется в различных приложениях и, в частности, в качестве силового резистора, где необходимо рассеивать большую мощность. Как видно из названия, проволочный резистор состоит из резистивного провода, намотанного на каркас из непроводящего материала. Обычно резистивный провод изолирован, чтобы смежные провода не закорачивались. Резисторы с проволочной обмоткой были одними из первых типов резисторов, которые были произведены на заре развития электротехники, а затем и беспроводной связи. На смену им во многих приложениях пришли углеродные резисторы, а затем металлооксидные и металлопленочные резисторы.Тем не менее, сегодня проволочные резисторы по-прежнему используются в качестве предпочтительного резистора во многих приложениях. Резистор с проволочной обмоткойЧто такое резистор с проволочной обмоткой?Резистор с проволочной обмоткой был одним из первых использованных резисторов. Основная структура резистора с проволочной обмоткой мало изменилась с годами. Резистор изготовлен из резистивного провода, намотанного на центральный сердечник или каркас, обычно сделанный из керамики. Основная концепция конструкции проволочного резистораПосле намотки торцевые крышки прижимаются к сердечнику, и проволока сопротивления приваривается к ним для обеспечения надлежащего контакта.Наконец, сборка инкапсулируется для защиты от влаги и физических повреждений. Конструкция резисторов с проволочной обмоткой означает, что они могут выдерживать высокие температуры, и в результате они используются в качестве резисторов большой мощности во многих случаях — но проверьте номинальные характеристики, чтобы убедиться, что они достаточно высокой мощности для применения. Сопротивление проволочных резисторов определяется рядом факторов:
Чтобы дать представление о фигурах, 30-метровый медный провод малого диаметра может иметь сопротивление всего несколько Ом.В отличие от этого, используя проволоку с сопротивлением — популярным типом является хромоникелевый — проволоку можно сделать длиной всего 30 см. Это делает возможным намотку на типичном каркасе, который может использоваться в электронной схеме. Если требуются резисторы с проволочной обмоткой с жесткими допусками, то выбранный резистивный провод может иметь меньшее сопротивление, что делает его более длинным и позволяет более точно обрезать его длину в пропорции от общей длины. При необходимости сопротивление можно уменьшить в индивидуальном порядке. Резисторы с проволочной обмоткой выпускаются в различных корпусах, и многие из них особенно подходят для применения в силовых резисторах — некоторые из них находятся в керамических корпусах, а другие доступны в металлических корпусах, которые могут быть прикреплены болтами к металлическому шасси или другим формам радиатора. Свойства проволочного резистораХотя проволочные резисторы не так широко используются, как резисторы других типов, такие как резисторы для поверхностного монтажа и резисторы с металлической пленкой, они являются важным компонентом для некоторых конкретных областей электроники, где другие типы совершенно не подходят или не могут работать так же хорошо. В результате проволочные резисторы из-за своих свойств используются в ряде ключевых областей:
Типы резисторов с проволочной обмоткойРезисторыWirewould могут использоваться во множестве различных приложений, и обычно они попадают в некоторые основные категории, для которых конструкция резистора может измениться.
Проволока обмотка резистора ПроволокаКак и следовало ожидать, провод, используемый в проволочных резисторах, определяет многие из его свойств. Использование разных материалов для проволоки обеспечивает разные электрические свойства: удельное сопротивление, температурный коэффициент сопротивления, долговременную стабильность, максимальную рабочую температуру и тому подобное. Выбор материала важен, так как правильный провод резистора позволит получить оптимальные характеристики резистора в данной роли. Многие материалы проводов имеют знакомые названия, поскольку они много лет использовались в качестве форм резистивных проводов и, следовательно, использовались в резисторах с проволочной обмоткой. Используемые проволоки обычно представляют собой медные сплавы, различные сплавы железа, никель-хромовые сплавы, сплавы серебра и вольфрам. Индуктивность и емкость резистора с проволочной обмоткойРезисторы с проволочной обмоткой очень хороши для работы на низких частотах и постоянном токе, но по мере увеличения рабочей частоты влияние индуктивности и емкости становится более заметным. Индуктивность возникает из-за того, что резистор фактически представляет собой катушку из резистивного провода и действует на катушку индуктивности. Емкость возникает между разными витками катушки и т. Д. Когда рабочая частота поднимается выше 100 кГц или около того, это влияние может стать значительным и изменить работу схемы. Обычно резистор с проволочной обмоткой наматывается как обычная катушка на керамический каркас, и этого более чем достаточно для большинства типов операций.Однако, если необходимы низкие индуктивность и емкость, есть другие методы, которые можно использовать для уменьшения, но не для устранения индуктивности и емкости. Есть методы, которые можно использовать для уменьшения индуктивности:
Самостоятельная индуктивность и емкость всегда будут проблемой для резисторов с проволочной обмоткой. В результате они редко используются в приложениях, где они используются на высоких или радиочастотах. Они будут использоваться только тогда, когда они используются в секции цепи, не несущей RF. Специализированные методы намотки обычно используются только в крайнем случае.Гораздо лучше использовать другую технологию резистора, если на резисторе присутствуют высокие частоты. Резисторы с проволочной обмоткой используются довольно широко. В частности, они используются в качестве резисторов большой мощности, где необходимо рассеивать большие уровни мощности. Они широко используются во многих энергетических приложениях; Они не только физически больше, чем многие другие типы резисторов, но и имеют проволочный проводник и керамический каркас, они больше подходят для использования в качестве резисторов большой мощности, чем другие типы, более широко распространенные. К сожалению, их конструкция означает, что они намного дороже, чем обычно используемые резисторы гораздо меньшего размера. Резисторыс проволочной обмоткой также используются там, где требуются очень жесткие допуски и высокая температурная стабильность. Проволока обычно имеет лучший температурный коэффициент сопротивления, чем многие другие типы резисторов, хотя в наши дни многие из них очень хороши. Другие электронные компоненты: Резисторы большой мощности в корпусе — Krah Group — Каталоги в формате PDF | Техническая документацияHochleistungswiderstände im Gehäuse Резисторы большой мощности в корпусе Résistance de très forte puissance dans boîtier KRAH-RWI ELEKTRONISCHE BAUELEMENTE GMBH, Märkische Straße 4, 57489 Drolshagen 1 / 701-1 027 Тел. Стенд 09/2009 HWG 100–500 Hochleistungswiderstände der Baureihe HWG sind Widerstandsbaugruppen, die sich durch eine sehr große Impulsfestigkeit auszeichnen.Sie enthalten bis zu 4 Stück der drahtgewickelten Hochlastwiderstände VHPR, die speziell für ihre Funktion as Bremswiderstand entwickelt wurden. Der Berührungsschutz wird durch ein Gehäuse aus sendzimirverzinktem Stahlblech mit innen liegenden Anschlussklemmen gewährleistet. Die Leitungszuführung erfolgt über eine metrische Kabelverschraubung. Die Schutzart IP 65 der einzelnen Widerstandselemente ermöglicht den Einsatz auch unter schwierigen klimatischen Verhältnissen.Optional ist eine Temperaturüberwachung verfügbar.Резисторы большой мощности серии HWG представляют собой подузлы резисторов, которые характеризуются высокой импульсной прочностью. Они включают в себя до 4 штук резисторов большой мощности VHPR с проволочной обмоткой, которые были разработаны для их функции в качестве тормозных резисторов. Защиту от случайного прикосновения обеспечивает корпус из стального листа с оцинковкой по методу Сендзимира с внутренними соединительными клеммами. Питание линии обеспечивается резьбовым кабельным вводом с метрической резьбой. Система защиты IP 65 отдельных резистивных элементов позволяет использовать их даже в сложных климатических условиях.По запросу предоставляется контроль температуры. Les résistances de haute puissance de la série HWG sont des ensembles de résistances caractérisées par leur stabilité aux impulsions. Elles comprennent jusqu’à 4 bobinées de haute power VHPR qui ont été développées spécialement для leur fonction en tant que résistances de freinage. La protection contre un contact accidentel est assurée par un boîtier en tôle d’acier zingué Sendzimir avec desbornes de connexion à l’intérieur. L’alimentation de ligne est assurée par un pass-câble à vis.Система защиты IP 65 обеспечивает защиту элементов, позволяющих использовать в сложных климатических условиях. Uncontrôle de température est à disposition sur demande. Модель Bauform Style HWG 100 HWG 200 HWG 300 HWG 400 HWG 500 Nennbelastbarkeit P40 Номинальная мощность P40 Номинальная мощность P40 100 Вт 200 Вт 400 Вт 600 Вт 800 Вт 300 Вт 600 Вт 900 Вт 1200 Вт 400 Вт 800 Вт 1200 Вт 1600 Вт 500 Вт 1000 W 1500 W 2000 W Anzahl der Einzelwiderstände Количество одиночных резисторов Номинальное сопротивление отдельных 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Abmessungen (мм) Размеры (мм) Размеры (мм) ABCDEF 245 207 70 95 228 50 295 257 95 95 278 70 295 257140120 278120 295 257 230120 278210 295 257300 120 278 280 345 307 95 953 328 70 345 307140120 328 120 345 307230120328 210 345 307300 120 328 280 395 357 95 95 378 70 395 357140120 378120 395 357 230120 378210 395 357 300 120 378 280 445 407 95 95 428 70 445 407140120 428 120 445 407 230 120 428 210 445 407300 120 428 280 Metrische Verschraubung Метрическое резьбовое соединение Raccord á vis métrique M16 + M16 M16 + M20 Einbaulage Место установки Место установки Kundenspezifische Wünsche (Anschlüsse, Anzapfung / Netzwerk, Induktivität, Kapazität, thermische Überwachung u. Разное |