Номинальные токи автоматических выключателей . Электропара
При выборе автоматического выключателя следует обратить внимание на величину номинального тока, который еще называют током срабатывания. При превышении величины номинального тока происходит срабатывание автомата, включаются защитные свойства, электрическая сеть размыкается. Данные о номинальном токе автоматического выключателя всегда присутствуют на маркировке прибора. Помимо этой характеристике на корпусе указываются рабочее напряжение, тип тока, тип расцепителя и др.
Номинальные токи автоматов
В зависимости от номиналов автоматы могут использоваться в сетях с различной токовой нагрузкой, по типу применения их условно разделяют на три основные группы – слаботочные, средней и высокой мощности. В таблице автоматических выключателей указаны номинальные токи для однофазной и трехфазной сети при наличии медной проводки. Эти данные соответствуют номинальному значению при температуре не выше +30 градусов, при увеличении температуры номинальный ток понижается.
Сечение кабеля, мм2 при медной проводке | Номинальный ток автомата, Ампер | Мощность, кВт однофазной нагрузки в сети 220 В | Мощность, кВт трехфазной нагрузки, в сети 380 В |
1 | 6 | 1,3 | 3,2 |
1,5 | 10 | 2,2 | 5,3 |
1,5 | 16 | 3,5 | 8,4 |
2,5 | 20 | 4,4 | 10,5 |
4 | 25 | 5,5 | 13,2 |
6 | 32 | 7,0 | 16,8 |
10 | 40 | 8,8 | 21,1 |
10 | 50 | 11,0 | 26,3 |
16 | 63 | 13,9 | 33,2 |
Автоматические выключатели слабого тока
Условно к этой группе относят выключатели малого тока с номиналом до 3 Ампер. Эти автоматы не используются ни в бытовых, ни в промышленных целях, а лишь для специализированного применения на некоторых устройствах с маленькой токовой нагрузкой. Для примера: мощность прибора, который можно было бы защитить автоматическим выключателем в 3 А, составила бы всего 0,66 кВт в однофазной сети.
Автоматические выключатели среднего тока
Это самые распространенные в быту автоматы с номинальным током до 32 Ампер. Они способны защитить электрическую сеть с общей мощностью всех приборов до 7 кВт, то есть обычную квартиру или даже частный дом с увеличенным энергопотреблением. Нужно помнить, что номинальный ток автоматического выключателя рассчитывается исходя из общей мощности всех приборов, бытовой техники и электрооборудования, одновременно подключаемых к электрической сети. Так, при номинальном токе автомата в 32 А можно одномоментно пользоваться отопительными приборами, водонагревателем, крупной и мелкой техникой, если их общая мощность не превышает 7 кВт. Особняком стоят электроплиты и варочные панели, обычно их потребляемая мощность довольно высока, к тому же эти приборы очень часто используются на полную нагрузку, то есть работают сразу все комфорки.
На группы осветительных приборов можно устанавливать автоматы от 6 Ампер, но опять же – следует исходить из сечения проводки. Чаще всего распределительные боксы выглядят вот так:
Здесь автомат 32 А отвечает только за электроплиту, три автомата по 25 А отвечают за группы приборов по зонам – первый этаж частного дома, второй этаж частного дома, на баню также идет отдельный автомат.
Автоматические выключатели высокого тока
Условно автоматические выключатели с номинальными токами от 40 Ампер относят к группе автоматов высокого тока. Это хороший выбор для загородных домов, если в доме полно электроприборов большой мощности – водонагреватели, обогреватели, системы газового и водного отопления, электропечи и электрокамины, теплые полы. При выборе мощных автоматов нужно внимательно делать расчеты, поскольку даже небольшие отклонения могут привести к перегреву проводки.
Номиналы автоматических выключателей по току
Номинальный ток автомата
Пришло время разобраться с тем, что на деле означает номинальный ток автомата и какой при этом будет ток срабатывания защиты. Для тех, кто понимает разницу между действующим и мгновенным значениями, уточняю, что все параметры автоматов, связанные с током или напряжением — это действующие значения, если это особо не оговорено. Согласно ГОСТ Р 50345-2010 (п.3.5.1), Номинальный ток автоматического выключателя есть значение тока, определяющее рабочие условия, для которых он спроектирован и построен. Кратко и точно.
Распространенная ошибка — часто люди считают, что номинальный ток и есть ток срабатывания. На самом деле, исправный автоматический выключатель никогда при номинальном токе не сработает. Более того, он не сработает даже при 10% перегрузке. При большей перегрузке автомат отключится, но это не значит, что он отключится быстро. Обычный модульный автомат имеет 2 расцепителя: медленный тепловой и быстро реагирующий электромагнитный.
Тепловой расцепитель в своей основе содержит биметаллическую пластину, которая нагревается от проходящего через нее тока. От нагрева пластина изгибается, и при определенном положении воздействует на защелку, и выключатель отключается. Электромагнитный расцепитель представляет собой катушку со втягивающимся сердечником, который при большом токе также воздействует на защелку, отключающую автомат. Если назначение теплового расцепителя — отключать автомат при перегрузках, то задача электромагнитного — быстрое отключение при коротких замыканиях, когда значение тока в разы превышает номинальное.
Ряд значений номинальных токов
Мне приходилось устанавливать автоматические выключатели номиналом от 0.2А. Вообще, мне встречались модульные автоматы следующих номиналов: 0.2, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5, 3, 3.15, 4, 5, 6, 6.3, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 Ампер. Максимальный номинал автомата, предназначенного для работы в сетях 0.4 кВ, который я видел — 6300А.
При этом, в обоснованных случаях, допускается некоторое округление (например 3.2 вместо 3.15 или 6 вместо 6.3). Думаю, нет нужды расписывать стандарт более подробно, каждый желающий может его найти и почитать.
Но и это еще не все. В том же ГОСТ Р 50345-2010 есть глава 5.3 под названием «Стандартные и предпочтительные значения». Согласно ей, предпочтительными значениями номинального тока модульных автоматов являются: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.
Разновидности защитных устройств
Существует несколько видов АВ, которые подключаются в сеть с целью контроля состояния проводки и, в случае необходимости, прекращения подачи тока. Они могут быть следующими:
- Мини-модели (маленьких габаритов).
- Воздушные (открытого типа).
- Устройства защитного отключения (сокращенное наименование — УЗО).
- Закрытые (элементы устройств размещены в литом корпусе).
- Дифференциальные (автоматические выключатели, совмещенные с УЗО).
Мини-модели
Эти аппараты предназначены для работы в цепях, нагрузка в которых невысока. Функцией дополнительной регулировки они обычно не обладают. В этом ряду представлены устройства, которые могут выдерживать ток осечки величиной 4,5 – 15А. Для заводскихх мощностей они не подходят, поскольку сила тока на предприятиях значительно выше их номинала. Поэтому подключают их, как правило, в бытовую проводку.
Большой популярностью пользуются автоматы, входящие в производственную линейку французской фирмы Schneider Electric. Номиналы АВ, выпускаемых этой компанией, могут составлять 2 – 125А, поэтому можно выбрать пакетник для домашних линий различной мощности.
Воздушные (открытые) устройства
Если суммарная мощность приборов, подключенных в сеть, велика, и номиналы автоматов, о которых говорилось выше, недостаточны, следует выбирать воздушные защитные устройства. Номинальный ток отсечки пакетников открытого типа на порядок превышает аналогичный показатель мини-моделей. Чаще всего они бывают трехполюсными, но в последнее время многие компании наладили производство четырехполюсных автоматов.
Защитные устройства открытого типа следует устанавливать в распределительных шкафах, оснащенных изнутри специальными DIN-рейками.
Если класс защиты шкафа – от IP55, то его можно размещать вне здания. Корпус этого оборудования сделан из тугоплавкого металла и надежно защищен от проникновения влаги, что позволяет обеспечить высокий уровень безопасности автоматов, расположенных внутри него.
Воздушные АВ имеют большое преимущество перед миниатюрными. Оно заключается в возможности настройки их номинальных характеристик с помощью специальных вставок, которые ставятся на активный контакт.
Закрытые автоматические выключатели
Корпус этих устройств отливается из тугоплавкого металла, что обеспечивает их идеальную герметичность и делает пригодными для эксплуатации в тяжелых условиях. Максимальный показатель напряжения, который могут выдерживать такие автоматы, составляет 750В, а тока – 200А. Закрытые АВ классифицируются по типу действия на следующие группы:
- Регулируемые.
- Тепловые.
- Электромагнитные.
Выбирать оптимальный тип следует, исходя из решаемых задач.
Наиболее высокой точностью обладают электромагнитные закрытые автоматы, определяющие с минимальной погрешностью среднеквадратичный показатель активного электротока и моментально обесточивающие сеть в случае КЗ, не допуская серьезных последствий.
Электромагнитные автоматы успешно используются для контроля функционирования моторов заводских станков, а также другого мощного оборудования, поскольку они могут выдерживать силу тока величиной до 70 кА. Цифра, обозначающая номинал автомата по току, нанесена на его корпус.
Все типы закрытых выключателей могут иметь от двух до четырех полюсов. Благодаря этому они могут быть использованы для защиты электросетей любых зданий и сооружений жилого и нежилого типа.
Устройства защитного отключения
В качестве самостоятельных защитных аппаратов использовать устройства защитного отключения не следует, поскольку их основной задачей является защита человека от внезапного поражения электричеством. Поэтому устанавливать их рекомендуется вместе с АВ, или приобретать дифференциальный автомат, в составе которого УЗО уже имеется. В первом случае нужно учесть, что в первую очередь должно устанавливаться устройство защитного отключения, а после него автоматы.
Если изменить порядок монтажа, то короткое замыкание приведет к выходу УЗО из строя в результате слишком высокой нагрузки.
ТОП-5 моделей автомата на рынке в текущем году
Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.
Самые лучшие автоматы (точнее, их производители) на сегодняшний день:
- Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
- General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
- Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
- Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.
Коротко принцип работы и предназначение защитных автоматов
Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.
Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.
Внешний вид трех полюсного автоматического выключателя
Провода должны соответствовать нагрузке
Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.
Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .
Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.
Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.
кабель силовой NYM
Защитить самое слабое звено электропроводки
Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.
Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.
При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.
Расплавленная изоляция проводов
Расчет номинала автомата
Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:
где Р – суммарная мощность электроприборов.
Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.
Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.
Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.
Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:
Таблица выбора автомата по току
Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода
Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.
Таблица подбор сечения провода по мощности
Какое сечение провода нужно для 3 квт
Формула как найти мощность тока
Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором
Новогодние поздравления с юмором
Что такое номинальный ток автомата
Номинальный ток – это максимально допустимое значение электрического тока, который пропускает автоматический выключатель без отключения сети.
Чтобы понять и сделать выбор автомата по току, нужно исходить из двух факторов:
- 1. Сечение электрического кабеля – площадь поперечного сечения кабеля электропроводки, который способен без нагрева выдерживать определенную мощность нагрузки.
- 2. Максимальной нагрузке – мощности всех электроприборов, подключённых к данной линии на максимальном режиме работы.
При выборе автоматического выключателя нельзя ставить защитное устройство номиналом по току выше, чем может выдержать смонтированный силовой кабель. Такой автомат не защитит электропроводку и сработает уже поле перегрева линии.
В любом случае сечение электрического кабеля, номинал автомата и мощность нагрузки между собой очень сильно связаны. Силовой кабель может пропускать ограниченную его сечением величину тока.
Поэтому идеальным вариантом для устройства электрической сети будет такая последовательность: расчет мощности всех потребителей на силовой линии, расчет площади поперечного сечения, монтируемого кабеля по максимальной мощности всех устройств, расчет автоматического выключателя исходя из выбранного кабеля.
Номиналы автоматических выключателей по току
Предельное значение номинала определяют по формуле Iном ≤ Iпр/1,45, где Iпр – допустимый в длительном режиме ток для определенной проводки. Если планируется монтаж сети, действуют следующим образом:
- уточняют схему подключения потребителей;
- собирают паспортные данные техники, измеряют напряжение;
- по представленной схеме рассчитывают отдельно, суммируют токи в отдельных цепях;
- для каждой группы надо подобрать автомат, который будет выдерживать соответствующую нагрузку;
- определяют кабельную продукцию с подходящим сечением проводника.
Правила выбора номинала
Пример выбора номинала автомата для каждой линии
Для корректных выводов надо учитывать особенности подключаемого оборудования. Если по расчету суммарный ток составляет 19 ампер, пользователи предпочитают покупать аппарат на 25А. Это решение предполагает возможность применения дополнительных нагрузок без существенных ограничений.
Однако в некоторых ситуациях лучше выбрать автоматический выключатель на 20А. Этим обеспечивают относительно меньшее время на отключения питания при росте тока (повышении температуры) биметаллическим разъединителем
Такая предосторожность поможет сохранить в целостности обмотки электродвигателя при блокировке вращения ротора заклинившим приводом
Разное время срабатывания пригодится для обеспечения селективной работы средств защиты. На линиях устанавливают устройства с меньшей задержкой. При аварийной ситуации отсоединяется от электричества только поврежденная часть. Вводной автомат не успеет отключиться. Питание по другим цепям пригодится для поддержания в работоспособном состоянии освещения, сигнализации, других инженерных систем.
Как работает автоматический выключатель
Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание
Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей
Поэтому главной функцией автоматического выключателя, является:
- Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
- Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.
Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.
Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.
Автоматы «В» и «С» — в чем разница, категории автоматических выключателей
Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.
Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:
А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.
В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.
С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.
Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.
Мощность рассеивания автоматических выключателей
Рассеивание — это потери электроэнергии, которые в виде тепла уходят в окружающую среду. Для примера приведу паспортные значения рассеиваемой мощности для автоматов ВА 47-63 (для новых автоматов при значениях тока, равных номинальному):
Номинальный ток In, A | Мощность рассеивания, Вт | |||
1-полюсные | 2-полюсные | 3-полюсные | 4-полюсные | |
1 | 1,2 | 2,4 | 3,6 | 4,8 |
2 | 1,3 | 2,6 | 3,9 | 5,2 |
3 | 1,3 | 2,6 | 3,9 | 5,2 |
4 | 1,4 | 2,8 | 4,2 | 5,6 |
5 | 1,6 | 3,2 | 4,8 | 6,4 |
6 | 1,8 | 3,6 | 5,5 | 7,2 |
8 | 1,8 | 3,6 | 5,5 | 7,33 |
10 | 1,9 | 3,9 | 5,9 | 7,9 |
13 | 2,5 | 5,3 | 7,8 | 10,3 |
16 | 2,7 | 5,6 | 8,1 | 11,4 |
20 | 3,0 | 6,4 | 9,4 | 13,6 |
25 | 3,2 | 6,6 | 9,8 | 13,4 |
32 | 3,4 | 7,5 | 11,2 | 13,8 |
35 | 3,8 | 7,6 | 11,4 | 15,3 |
40 | 3,7 | 8,1 | 12,1 | 15,5 |
50 | 4,5 | 9,9 | 14,9 | 20,5 |
63 | 5,2 | 11,5 | 17,2 | 21,4 |
Как видим, автоматический выключатель тоже хочет есть. Поэтому не стоит увлекаться и втыкать автоматы везде, где это возможно. Где же происходят потери? Основная часть приходится на тепловой расцепитель. Но не надо излишне драматизировать ситуацию. Эти потери пропорциональны протекающему току. Поэтому, если например нагрузка в 2 раза меньше номинальной, то и потери будут соответственно в 4 раза меньше, а при отсутствии нагрузки не будет и потерь. Если их представить в процентном виде, то будут величины порядка 0,05-0.5%, причем наименьший процент у самых мощных автоматов. В самих контактах, пока автомат новый, потери незначительны. Но в процессе эксплуатации контакты будут подгорать, переходное сопротивление будет расти, а с ним будут расти и потери. Поэтому у старого автомата потери могут быть заметно больше. Как измерить потери —
Класс токоограничения
Движемся дальше. Электромагнитный расцепитель, хоть и называется мгновенным, но тоже имеет определенное время срабатывания, которое отражает такой параметр, как класс ограничения. Он обозначается одной цифрой и у многих моделей эту цифру можно найти на корпусе аппарата. В основном сейчас выпускаются автоматы с классом токоограничения 3 — это значит, что со времени достижения током значения срабатывания до полного разрыва цепи пройдет время не более чем 1/3 полупериода. При стандартной у нас частоте 50 Герц это получается около 3,3 миллисекунд. Класс 2 соответствует значению 1/2 (порядка 5 мс). По некоторым источникам, отсутствие маркировки этого параметра равносильно классу 1. Самый высокий класс, который мне попадался — это 4-й у автоматов OptiDin производства КЭАЗ.
Недопустимые ошибки при покупке
Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.
Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку
Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.
Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!
Рекомендуем прочитать:
{SOURCE}
Виды автоматов
Классификация автоматических выключателей происходит по следующим параметрам:
- количество полюсов;
- номинальный и предельный токи;
- применяемый тип электромагнитного расцепителя;
- максимальная мощность отключаемой способности.
Рассмотрим по порядку.
Количество полюсов
Количество полюсов — такое количество фаз, которое способен защищать автомат. По количеству полюсов автоматы могут быть:
- Однополюсные.
Обеспечивается защита одного выходящего провода, одной фазы. - Двухполюсные.
Как правило, это два совмещенных однополюсных автомата с одной общей ручкой управления. В ситуации, когда ток одного из автоматов превышает разрешенную нагрузку происходит отключение обоих устройств. Используются двухполюсные автоматы для полного отключения нагрузки (одна фаза), отключая рабочую фазу и рабочий нуль. - Трехполюсные.
Используются с трехфазными цепями, при превышении нагрузки происходит отключение трех фаз одновременно. Такие автоматы так же имеют один общий размыкатель цепи. - Четырехполюсные.
Аналогичны двухполюсным, но предназначены для работы с трехфазными цепями. При превышении нагрузки происходит размыкание трех фаз и рабочего нуля одновременно.
Номинальный и предельный токи
Тут все просто — такая сила тока, при которой автомат будет размыкать цепь. При номинальном токе и даже немного больше заявленного будет осуществляться работа, однако только при превышении предельного тока на 10–15% произойдет отключение. Обусловлено это тем, что достаточно часто стартовые токи превышают предельно возможные токи на небольшой промежуток времени, поэтому в автомате есть определенный запас времени, по истечению которого произойдет размыкание цепи.
Тип электромагнитного расцепителя
Эта деталь автомата, которая позволяет размыкать цепь при коротком замыкании, а так же в случае повышения тока (перегрузки) на определенное количество раз. Расцепители разделяются на несколько категорий, рассмотрим самые популярные:
- B — размыкание при превышении номинального тока в 3–5 раз;
- C — при превышении в 5–10 раз;
- D — при превышении в 10–20 раз.
Максимальная мощность отключаемой способности. Такое значение тока короткого замыкания (определяется в тысячах ампер), при котором автомат останется рабочим после размыкания цепи из-за короткого замыкания.
Подбор оптимального сечения кабеля
Каждый кабель, как и автомат, имеет определенный разрешенный ток нагрузки. В зависимости от сечения и материала кабеля варьируется и ток нагрузки. Для выбора автомата по сечению кабеля следует использовать таблицу.
Необходимо заметить, что допускается выбирать кабель с небольшим запасом, но никак не пакетный выключатель! Автомат должен соответствовать планируемой нагрузке! В соответствии с правилами устройств электроустановок 3.1.4 — токи уставок автоматов следует выбирать такие, которые будут меньше расчетных токов выбираемых зон.
Рассмотрим на примере, на определенном участке электропроводка проложена кабелем сечением 2.5 мм квадратных, а нагрузка составляет 12 кВт, в данном случае при монтаже автомата (по минимальному току) на 50 А произойдет возгорание проводки, так как провод с данным сечением рассчитан на разрешенный ток в 27 А, а через него проходит значительно больше. В данном случае разрыва цепи не происходит, так как автомат адаптирован под данные токи, а провод — нет, автоматика отключит автомат только в случае короткого замыкания.
Пренебрежение данным правилом грозит серьезными последствиями!
Именно благодаря такому принципу проводка никогда не перегреется и, следовательно, не произойдет возгорания.
Выбор автоматического выключателя по характеристикам.
Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика — это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.
Принцип работы автоматического выключателя
Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.
Категории (типы) автоматических выключателей
Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.
Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.
Автоматические выключатели типа K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.
Автоматические выключатели типа Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.
Количество полюсов автоматических выключателей
Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.
Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.
В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.
4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.
Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.
Номинальный ток автоматический выключатель
Токи автоматических выключателей
Автоматический выключатель (АВ), являясь устройством защиты от различных электрических токов в цепи, обладает характеристиками, которые описывают параметры токовой защиты. Такими характеристиками являются токи, протекающие через автоматический выключатель, а именно, ток предельной коммутационной способности автомата, номинальный ток автоматического выключателя, который вместе с кривой отключения определяет ток срабатывания электромагнитного расцепителя автомата и ток срабатывания теплового расцепителя АВ. Описание указанных токов автоматических выключателей указывается на передней панели прибора и является обязательной частью маркировки электрического автомата.
Номинальный ток автоматического выключателя
Номинальный ток автоматического выключателя указывается на передней, доступной и хорошо видной при эксплуатации, части автомата. Обозначение номинального тока автоматического выключателя производится числом, обычно следующим за латинской буквой, обозначающей время-токовую характеристику автомата. Число, обозначающее номинальный ток автоматического выключателя обозначает, что автомат предназначен для защиты электропроводки, рабочий ток которой больше или равен номинальному току автоматического выключателя.
Ток теплового расцепителя автоматического выключателя
Номинальный ток автомата является параметром определяющим ток срабатывания теплового расцепителя автоматического выключателя. До тех пор, пока ток, протекающий в проводке и через защищающий ее автомат меньше, чем номинал автомата, ничего не происходит, однако, при превышении значения протекающего тока над значением номинального тока автомата, произойдет отключение автомата. Скорость срабатывания автоматического выключателя, то есть время, через которое автомат разомкнет силовой контакт, разорвет цепь и отключит напряжение, зависит от времени протекания превышенного тока и характеристической кривой автоматического выключателя. Например, для автомата С16, номинальный ток которого равен 16А, а характеристическая кривая соответствует графику C, отключение автомата при токе в проводке равному 32 ампера, произойдет в период времени от 18 секунд до 150 секунд, а трехкратное превышение номинала, то есть протекающий ток равен 48 Амп. автоматический выключатель выключится в диапазоне времени от 4 до 50 секунд, а десятикратное превышение номинального тока для автоматического выключателя C16 приведет к его отключению за время меньшее 10 секунд. Для каждого значения тока можно рассчитать время отключения теплового расцепителя используя график время-токовой характеристики рассматриваемого автомата.
Ток электромагнитного расцепителя автомата
Ток, протекающий через электромагнитный расцепитель автоматического выключателя приводит к выключению автомата при быстром и значительном превышении над номинальным током автоматического выключателя, что обычно происходит при коротком замыкании в защищаемой проводке. Короткому замыканию соответствует очень быстро нарастающий высокий ток, что и учитывает устройство электромагнитного расцепителя, позволяющего практически мнгновенно воздействовать на механизм расцепления автоматического выключателя при быстром возрастании тока, протекающего по катушке соленоида расцепителя. Скорость срабатывания электромагнитного расцепителя составляет менее 0,05 секунд.
Предельный ток автоматического выключателя
Предельным током автоматического выключателя называется максимальный электрический ток, который может быть отключен автоматическим выключателем. Предельный ток автоматического выключателя так же называется ПКС и указывается в маркировке на передней поверхности. Маркировка предельного тока автоматического выключателя может указываться в амперах, обозначаясь как 3000, 4500, 6000 или 10000, при этом, цифра предельного тока автоматического выключателя указывается в прямоугольнике, без указания размерности.
В связи с отсутствием размерности, цифра в прямоугольнике иногда воспринимается неверно и трактуется как например: допустимое количество включений и выключений автомата, гарантированное количество срабатываний и другие неверные варианты.
Предельный ток автоматического выключателя определяет применение такого автомата в зависимости от максимально возможного тока короткого замыкания, который может возникнуть в защищаемой электропроводке. Для большинства бытовых электроустановок вполне достаточно ПКС 4500 Ампер, так как состояние бытовых электросетей не позволяет току короткого замыканяи превысить значение в 3000 — 4000 ампер, однако в некоторых случаях коротких замыканий, через автоматический выключатель может протекать ток, превышающий 4500 ампер. В случае применения 4,5kA автомата, при таком превышении тока, автоматический выключатель не сможет отключить питание, так как контактная группа, под действием столь высокого тока перегреется и сварится — пригорит. Механической силы, запасенной в механизме расцепления не хватит для того что бы оторвать сварившиеся контакты друг от друга и автомат не выключит питание, поддерживая ток КЗ, что приведет, в лучшем случае к расплавлению и порче проводки, а в худшем — пожару.
Ток, проходящий через автоматический выключатель, определяется по известному закону Ома величиной приложенного напряжения, отнесенного к сопротивлению подключенной цепи. Это теоретическое положение электротехники заложено в основу работы любого автомата.
На практике напряжение сети, например, 220 вольт поддерживается автоматическими устройствами энергоснабжающей организации в пределах нормативов, оговоренных государственными стандартами, меняется внутри этого диапазона незначительно. Выход его за пределы ГОСТ считается неисправностью, аварией.
Автоматический выключатель врезается в фазный провод электропитания светильников, розеток и других потребителей. Когда от розетки запитывают вначале электробритву, а затем моющий пылесос, то в обоих случаях через автомат протекает ток по замкнутому контуру между фазой и нулем.
Но, в первом случае он будет сравнительно небольшим, а во втором — значительным: эти приборы отличаются сопротивлением. Они создают разную нагрузку. Ее величину постоянно отслеживают защиты автомата, осуществляя ее отключения при отклонениях от нормы.
Как проходит ток через автоматический выключатель
Конструктивно автомат создан так, что ток воздействует на последовательно расположенные элементы. К ним относятся:
клеммы подключения проводов с зажимными винтами;
силовые контакты с подвижной и стационарной частью;
биметаллическая пластина теплового расцепителя;
электромагнит отсечки токов коротких замыканий;
Путь тока через автоматический выключатель показан на картинке условными стрелками красного цвета.
Силовые подвижные контакты прижимаются к неподвижным, создавая непрерывную электрическую цепь только после поворота рычага управления вручную оператором. Обязательным условием включения является отсутствие аварийных ситуаций в коммутируемой схеме. Если они появятся, то сразу начинают работать защиты на автоматическое отключение. Другого способа включить автомат не существует.
А вот разорвать эти контакты, обесточив подачу потенциала фазы к потребителям, можно двумя способами:
вручную, возвратив в исходное положение рычаг управления;
автоматически от срабатывания защит.
Как создаются и работают конструктивные элементы автоматического выключателя
Они, как и вся конструкция автоматического выключателя, рассчитаны на передачу строго ограниченной мощности. Превышать ее нельзя, ибо в противной случае автомат выйдет из строя — сгорит.
Технической характеристикой, ограничивающей максимальную мощность, проходящую через силовые контакты, является показатель, называемый «Предельная отключающая способность». Его обозначают индексом «Icu».
Значение предельной отключающей способности автоматического выключателя задается при его проектировании из стандартного ряда токов, измеряемого обычно в килоамперах. Например, Icu может быть равно 4 или 6 либо даже 100 или более кА.
Эта величина указывается прямо на лицевой стороне корпуса автомата, как и другие характеристики настроек значений токов.
Итак, через силовые контакты показанного на картинке автомата может безопасно проходить электрический ток от нуля до 4000 ампер. Сам АВ его нормально выдержит и отключит при возникновении аварийной ситуации внутри подключенной электропроводки с потребителями.
С этой целью введено разграничение протекающих через силовые контакты токов на:
1. номинальные и рабочие;
2. аварийные, включающие перегрузку и короткие замыкания.
Что такое номинальный ток автоматического выключателя
Любой автомат создается для работы при определенных технических условиях. Он должен надежно обеспечивать прохождение рабочего тока нагрузки, протекающего как по электрической проводке, так и по подключенным потребителям.
При выборе автомата для бытовой сети пользователи часто учитывают токопроводящие свойства проводки или только мощность электрических приборов, совершая ошибку: необходимо комплексно анализировать оба этих вопроса. Ибо, выключатель — это автоматическое устройство, которое уже налажено под срабатывание при достижении определённых значений тока.
Когда эти условия еще не наступили, а рабочий ток через автомат меньше. чем нижняя граница отключения, то силовые контакты надежно замкнуты. Верхний предел этого рабочего диапазона принято называть номинальным током, обозначая In.
Показанная на картинке цифра «16» обозначает, что проходящие через силовые контакты токи включительно до 16 ампер будут надежно передаваться автоматическим выключателем к подключённым потребителям через электрические провода.
Это функция самого автомата. А у владельца электроустановки и обслуживающего электрика задача совсем другая — подобрать правильно автоматический выключатель под нагрузку и проводку в комплексе. Ведь при превышении этих 16 ампер будут происходить отключения от защит, которые настраиваются на срабатывание от различных токов, “привязанных” электрическими алгоритмами к номинальному значению. Подробнее об этом читайте здесь — Выбор автоматических выключателей для квартиры, дома, гаража
Как работают защиты
Все токи, большие чем номинальное значение, приводят к срабатыванию защит. Их называют токами срабатывания, обозначают Iср.
Для автоматического отключения внутри корпуса автомата смонтировано два вида устройств, работающих по разным принципам отключения:
1. нагрева и изгиба биметалла с выводом механической защелки из зацепления;
2. выбиванием защелки механическим ударом сердечником электромагнита.
Он работает за счет изгиба биметаллической составной пластины при нагреве от проходящего через нее тока, а охлаждается за счет отвода тепла в окружающую среду.
К этому расцепителю прикладывается тепловая энергия, создаваемая электрическим током по проходящему биметаллу. Ее величина, как нам известно из закона Джоуля-Ленца, зависит от:
1. электрического сопротивления цепи;
2. силы протекающего тока;
3. и времени его воздействия.
Из этих трех параметров электрическое сопротивление в установившемся процессе практически не меняется. Его учитывают только при теоретических расчетах. При коммутациях нагрузки резко изменяется ток. Поэтому важнее два других параметра:
1. величина электрического тока;
2. время его протекания.
Их учитывают специальными характеристиками. которые называют по этим составляющим — времятоковыми.
По силе протекающего тока через автомат и времени его действия определяют не только зону работы теплового расцепителя, но и электромагнитной отсечки.
За основу расчетов принимают величину номинального тока, выбранного для конструкции выключателя. Срабатывание защит привязывают к его кратности — отношению проходящего действующего тока к номинальному.
Поскольку токовые защиты автоматического выключателя работают на превышение номинального тока, то всегда кратность токов I/In>1.
Работа защиты основана на постоянном учете токов, проходящих по виткам обмоток электромагнита. При величине нагрузок, не превышающих расчетное номинальное значение, токи, протекающие в каждом витке, создают суммарное магнитное поле, не способное преодолеть силу удержания механического штока внутри корпуса соленоида.
Головка подвижного толкателя втянута внутрь, а подвижный силовой контакт автоматического выключателя надежно прижат к стационарной части.
Когда сила проходящего тока превысит номинальный ток уставки, то суммарное магнитное поле, образованное внутри катушки, резко преодолеет силу удержания штока. Он выстреливает и резким ударом бьет по защелке, выдергивает ее из зацепления.
В результате нанесенного удара подвижный силовой контакт автоматического выключателя резко отбрасывается механической энергией от стационарного — электрическая цепь разрывается, а питающее напряжение снимается с подключенной схемы.
Как настраиваются защиты автоматического выключателя
Чтобы автомат четко выдерживал номинальный ток, не создавая ложных срабатываний, его защиты отстраивают на расчетные величины.
При выборе нормативной уставки тока учитывают характер подключенной нагрузки и рассчитывают по формуле Iуст=kр∙kн∙In, где kр=1,1, а kн учитывает условия эксплуатации. Его устанавливают в пределах:
1,1÷1,3 для цепей с кратковременными перегрузками от запуска электродвигателей или подобных устройств;
1,1 — у резистивных схем без перегрузки или для работы схем постоянного тока.
В качестве примера рассмотрим защитную характеристику теплового расцепителя старого автоматического выключателя А3120.
На участке тока от 1,3 до 10 крат In характеристика представлена кривой «а», срабатывание производится с выдержкой времени, создающей резерв работы подключенных электроприборов. С увеличением нагрузки время их отключения сокращается от нескольких минут до одной секунды.
При десятикратный нагрузке тепловой расцепитель А3120 выводит из работы силовые контакты со временем порядка 0,01 секунды с небольшим разбросом параметров, показанным на графике зоной светло-красного цвета. Бо́льшие десяти крат возрастания рабочих токов не могут ускорить срабатывание защиты из-за механических свойств конструкции выключателя.
Параметры времятоковой характеристики для электромагнитного органа отсечки тоже настраиваются по номинальному току. У бытовых автоматов ток мгновенного расцепления разделяют на три класса:
1. В, лежащий в пределах 3÷5 In;
2. С — 5÷10 In;
3. D — 10÷20 In.
Для производственных технических устройств создаются автоматические выключатели с классами:
А, срабатывающими при меньших токах, чем 3In;
E и F — при больших кратностях, чем 20In в различных пределах.
Описанный класс работы отечественных автоматов узаконен требованиями ГОСТа Р 50345—2010. У иностранных производителей тоже применяется подобное деление мгновенных отсечек, но, стандарты токов и времена отключения могут отличаться, оговариваться нормативами своих стран или МЭК 60947—2.
Учет класса токоограничения
Скорость работы мгновенных токовых защит автоматического выключателя привязывают к частоте синусоидальной гармоники промышленной сети и обозначают одной из цифр: 1, 2 или 3. Эта цифра показывает часть полуволны стандартной гармоники, во время которой должно произойти отключение.
Автомат с токоограничением 3 самый быстрый — он отработает за 1/3 полупериода. Характеристика 2 свидетельствует о его половине, а 1 — полной длине полуволны.
Условия ограничения токов, проходящих через автоматический выключатель
Важным моментом при эксплуатации защит автоматов, работающих по токам нагрузок, является учет подключенной к ним схемы, обладающей уже каким-то определённым сопротивлением. Его величина будет ограничивать работу отсечки в аварийном режиме, а в какой-то момент не позволит своевременно снять напряжение питания с повреждаемого оборудования.
Примером такого участка является активное сопротивление обмотки источника питающего трансформатора со всеми подключенными жилами кабелей и проводами электрической сети, собранными на клеммниках и зажимах распределительных коробок и щитков вплоть до контактов квартирной розетки. Ее специалисты называют петлей фаза-ноль .
Для учета его величины при правильной настройке и работе автоматического выключателя используют специальные приборы — измерители сопротивления этой петли.
Их замер позволяет учесть поправку, вносимую дополнительным сопротивлением проводов, а значит — точно учитывать токи, проходящие в аварийном режиме через силовые контакты и защиты автоматического выключателя.
Как автоматический выключатель проверяется на проходящие через него токи
После изготовления на производстве до момента установки в электрическую схему продукция любого производителя может транспортироваться на большие расстояния или длительно храниться на складах. За это время возможно снижение ее качества, связанное с нарушением технических характеристик.
Поэтому автоматические выключатели при монтаже в схему до ввода ее в работу должны подвергаться проверке на исправность, которую принято называть прогрузкой.
Для этого в электролаборатории собирается специальная схема прогрузки автомата или используется одна из многочисленных конструкций стационарных или переносных стендов.
Автоматический выключатель проверяется по номинальному току, указанному на корпусе. Он должен длительно выдерживать его величину.
Затем автомат подвергают перегрузкам и токам коротких замыканий, которые он должен выдерживать при эксплуатации. При этом четко замеряются и фиксируются:
1. токи срабатывания защит теплового расцепителя и токовой отсечки;
2. времена отключения автомата от момента имитации аварийной ситуации.
Некоторые конструкции автоматов позволяют регулировать выходные параметры при прогрузке. Например, отдельные виды тепловых расцепителей имеют винтовое крепление, позволяющее корректировать уставку срабатывания биметаллической пластины в определенных пределах.
Все замеренные характеристики фиксируются с высокой точностью измерительными приборами и заносятся в протокол проверки, сравниваются с требованиями ГОСТ. После их анализа выдается свидетельство с заключением о пригодности.
Прогрузка автомата под нагрузкой позволяет выявить брак, предотвращает случаи возможных пожаров и электрических травм.
Таким образом, токи, проходящие через автоматические выключатели, учитываются при проектировании, производстве, испытаниях и эксплуатации. Для этого введены термины, учитываемые требованиями ГОСТ:
ток короткого замыкания;
ток срабатывания защиты;
Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.
Информация и обучающие материалы для начинающих электриков.
Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.
Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+
Перепечатка материалов сайта запрещена.
Токовые характеристики автоматических выключателей
Здравствуйте, уважаемые читатели сайта
В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.
Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.
Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.
Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь. При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.
Ряд значений номинального тока автоматических выключателей стандартизован и составляет:
6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.
Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.
Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.
Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.
Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье Почему в жару срабатывает автоматический выключатель.
В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.
Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.
Таким образом, следующая основная характеристика:
время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.
Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,
Рассмотрим типы время-токовых характеристик:
— Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.
— Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.
— Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.
— Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.
— Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.
— Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.
В быту обычно используются автоматические выключатели с характеристиками B ,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.
Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.
Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.
Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).
На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).
Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.
При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.
При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).
В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.
В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей.
Источники:
Здравствуйте, уважаемые читатели сайта
В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.
Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.
Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.
Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь. При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.
Ряд значений номинального тока автоматических выключателей стандартизован и составляет:
6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.
Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.
Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.
Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.
Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье Почему в жару срабатывает автоматический выключатель.
В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.
Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.
Таким образом, следующая основная характеристика:
время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.
Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,
Рассмотрим типы время-токовых характеристик:
— Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.
— Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.
— Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.
— Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.
— Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.
— Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.
В быту обычно используются автоматические выключатели с характеристиками B,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.
Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.
Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.
Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).
На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).
Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.
При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.
При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).
В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.
В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей:
Рекомендую прочитать:
Автоматические выключатели УЗО дифавтоматы — подробное руководство.
Как выбирать автоматические выключатели, УЗО, дифавтоматы?
Автоматические выключатели — конструкция и принцип работы.
Номиналы групповых автоматов превышают номинал вводного?
Почему в жару срабатывает автоматический выключатель?
Менять ли автоматический выключатель, если его «выбивает»?
Конструкция (устройство) УЗО.
Устройство УЗО и принцип действия.
Работа УЗО при обрыве нуля.
Как проверить тип УЗО?
Почему УЗО выбирают на ступень выше?
Устройства для отключения электричества при перегрузках и коротких замыканиях устанавливают на входе в любую домашнюю сеть.
Необходимо правильно рассчитать номиналы автоматических выключателей по току, иначе их работа будет неэффективной: либо они не защитят линии и бытовые приборы, либо будет часто происходить ложное срабатывание.
Параметры автоматических выключателей
Для обеспечения правильного выбора номинала устройств отключения необходимо понимание принципов их работы, условий и времени срабатывания.
Рабочие параметры автоматических выключателей стандартизированы российскими и международными нормативными документами.
Основные элементы и маркировка
В конструкцию выключателя входят два элемента, которые реагируют на превышение силой тока установленного диапазона значений:
- Биметаллическая пластина под воздействием проходящего тока нагревается и, изгибаясь, надавливает на толкатель, который разъединяет контакты. Это «тепловая защита» от перегрузки.
- Соленоид под воздействием сильного тока в обмотке генерирует магнитное поле, которое давит сердечник, а тот уже воздействует на толкатель. Это «токовая защита» от короткого замыкания, которая реагирует на такое событие значительно быстрее, чем пластина.
Типы устройств электрической защиты обладают маркировкой, по которой можно определить их основные параметры.
На каждом автоматическом выключателе обозначены его основные характеристики. Это позволяет не перепутать устройства, когда они установлены в щитке
Тип времятоковой характеристики зависит от диапазона уставки (величины силы тока при которой происходит срабатывание) соленоида. Для защиты проводки и приборов в квартирах, домах и офисах используют выключатели типа «C» или, значительно менее распространенные – «B». Особенной разницы между ними при бытовом применении нет.
Тип «D» используют в подсобных помещениях или столярках при наличии оборудования с электродвигателями, которые имеют большие показатели пусковой мощности.
Существует два стандарта для устройств отключения: жилой (EN 60898-1 или ГОСТ Р 50345) и более строгий промышленный (EN 60947-2 или ГОСТ Р 50030.2). Они отличаются незначительно и автоматы обоих стандартов можно использовать для жилых помещений.
По номинальному току стандартный ряд автоматов для использования в бытовых условиях содержит приборы со следующими значениями: 6, 8, 10, 13 (редко встречается), 16, 20, 25, 32, 40, 50 и 63 A.
Время-токовые характеристики срабатывания
Для того чтобы определить быстроту срабатывания автомата при перегрузке существуют специальные таблицы зависимости времени отключения от коэффициента превышения номинала, который равен отношению существующей силы тока к номинальной K = I / In.
График показывает зависимость диапазона времени срабатывания автоматов типа «C» от отношения силы тока к значению, которое установлено для этого выключателя
Резкий обрыв вниз графика при достижении значения коэффициента диапазона от 5 до 10 единиц, обусловлен срабатыванием электромагнитного расцепителя. Для выключателей типа «B» это происходит при значении от 3 до 5 единиц, а для типа «D» – от 10 до 20.
При K = 1,13 автомат гарантированно не отключит линию в течение 1 часа, а при K = 1,45 – гарантированно отключит за это же время. Эти величины утверждены в п. 8.6.2. ГОСТ Р 50345-2010.
Чтобы понять, за какое время сработает защита, например, при K = 2, необходимо провести вертикальную линию от этого значения. В результате получим, что согласно приведенному графику, отключение произойдет в диапазоне от 12 до 100 секунд. Столь большой разброс времени обусловлен тем, что нагрев пластины зависит не только от мощности проходящего через нее тока, но и параметров внешней среды. Чем выше температура, тем быстрее срабатывает автомат.
Правила выбора номинала
Геометрия внутриквартирных и домовых электрических сетей индивидуальна, поэтому типовых решений по установке выключателей определенного номинала не существует. Общие правила расчета допустимых параметров автоматов достаточно сложны и зависят от многих факторов. Необходимо учесть их все, иначе возможно создание аварийной ситуации.
Принцип устройства внутриквартирной разводки
Внутренние электрические сети имеют разветвленную структуру в виде «дерева» – графа без циклов. Это улучшает устойчивость системы при возникновении аварийной ситуации и упрощает работы по ее устранению. Также гораздо легче происходит распределение нагрузки, подключение энергоемких приборов и изменение конфигурации проводки.
У основания графа находится вводной автомат, а сразу после разветвления для каждой отдельной электрической цепи размещают групповые выключатели. Это проверенная годами стандартная схема
В функции вводного автомата входит контроль общей перегрузки – недопущение превышения силой тока разрешенного значения для объекта. Если это произойдет, то существует риск повреждения наружной проводки. Кроме того, вероятно срабатывание защитных устройств за пределами квартиры, которые уже относится к общедомовой собственности или принадлежит местным энергосетям.
В функции групповых автоматов входит контроль силы тока по отдельным линиям. Они защищают от перегрузки кабель на выделенном участке и подключенную к нему группу потребителей электроэнергии. Если при коротком замыкании такое устройство не срабатывает, то его страхует вводной автомат.
Даже для квартир с небольшим количеством электропотребителей желательно выполнить отдельную линию на освещение. При отключении автомата другой цепи, свет не погаснет, что позволит в более комфортных условиях устранить возникшую проблему. Практически в каждом щитке значение номинала вводного автомата меньше чем сумма на групповых.
Суммарная мощность электроприборов
Максимальная нагрузка на цепь возникает при одновременном включении всех электроприборов. Поэтому, обычно, суммарную мощность вычисляют простым сложением. Однако в ряде случаев этот показатель будет меньше.
Для некоторых линий, одновременная работа всех подключенных к ней электроприборов маловероятна, а порой и невозможна. В домах иногда специально устанавливают ограничения на работу мощных устройств. Для этого нужно помнить о недопущении их одновременного включения или использовать ограниченное число розеток.
Вероятность одновременной работы всей офисной оргтехники, освещения и вспомогательного оборудования (чайники, холодильники, вентиляторы, обогреватели и т.д.) очень низка, поэтому при расчете максимальной мощности используют поправочный коэффициент
При электрификации офисных зданий для расчетов часто используют эмпирический коэффициент одновременности, значение которого берут в диапазоне от 0,6 до 0,8. Максимальная нагрузка вычисляется умножением суммы мощностей всех электроприборов на коэффициент.
При расчетах существует одна тонкость – необходимо учитывать разницу между номинальной (полной) мощностью и потребляемой (активной), которые связаны коэффициентом (cos (f)). Это означает, что для работы устройства необходим ток мощности равной потребляемой деленной на этот коэффициент:
Ip = I / cos (f)
Где:
- Ip – сила номинального тока, которую применяют в расчетах нагрузки;
- I – сила потребляемого прибором тока;
- cos (f)
Калькулятор расчёта тока нагрузки для выбора автоматического выключателя
С помощью данного калькулятора Вы можете рассчитать номинальный ток автоматического выключателя по мощности подключаемых через него электроприборов.
Введите значения в форму ниже: суммарную мощность электрооборудования, тип потребителя и параметры сети (фазность и напряжение).
*Примерные значения коэффициента мощности представлены в таблице:
Бытовые электроприборы | Мощность, Вт | cos φ |
---|---|---|
Электроплита | 1200 — 6000 | 1 |
Обогреватель | 500 — 2000 | 1 |
Пылесос | 500-2000 | 0,9 |
Утюг | 1000 — 2000 | 1 |
Фен | 600 — 2000 | 1 |
Телевизор | 100 — 400 | 1 |
Холодильник | 150 — 600 | 0,95 |
СВЧ-печь | 700 — 2000 | 1 |
Электрочайник | 1500 — 2000 | 1 |
Лампы накаливания | 60 — 250 | 1 |
Люминесцентные лампы | 20 — 400 | 0,95 |
Бойлер | 1500 — 2000 | 1 |
Компьютер | 350 — 700 | 0,95 |
Кофеварка | 650 — 1500 | 1 |
Стиральная машина | 1500 — 2500 | 0,9 |
Электроинструмент | Мощность, Вт | cos φ |
Электродрель | 400 — 1000 | 0,85 |
Болгарка | 600 — 3000 | 0,8 |
Перфоратор | 500 — 1200 | 0,85 |
Компрессор | 700 — 2500 | 0,7 |
Электромоторы | 250 — 3000 | 0,7 — 0,8 |
Вакуумный насос | 1000 — 2500 | 0,85 |
Электросварка (дуговая) | 1800 — 2500 | 0,3 — 0,6 |
Автоматический выключатель ВА в Санкт-Петербурге, ООО М-Энерго
Данные специализированные коммутационные аппараты служат для защиты электрического оборудования и устройств от перегрузки, критических снижений напряжения, коротких замыканий. Компания «М-Энерго» реализует выключатель автоматический ВА в ассортименте; производитель продукции — Курский ЭАЗ, крупнейший в России.
Каждый электроаппарат, представленный в каталоге, проходит обязательную предпродажную проверку в нашей технической лаборатории. Мы ручаемся за образцовое качество электротехнической продукции, предлагаем лучшие цены и оперативную доставку товара на Ваш объект.
В активе нашей фирмы — многолетний опыт работы в качестве поставщика электротехники, отличное знание спроса и предложения, безукоризненный клиентский сервис. К Вашим услугам лучшие комплексные решения на отечественном рынке электротехники!
Автоматы ВА давно приобрели популярность во всех отраслях деятельности, в силу надежности и оптимальных технических характеристик. Выключатель автоматического типа:
Установка прибора осуществляется на монтажную панель. Вариант исполнения — климатический УХЛЗ (для помещений в зонах холодного/умеренного климата). Уровень защиты оболочки IP20.
Наша компания работает на условиях прямого контакта с заводом-производителем автоматов ВА, поэтому мы можем гарантировать фирменное качество изделий и адекватность установленных расценок. Обращение в «М-Энерго» с целью приобретения электротехнических устройств — оптимальный шаг для заказчиков, нацеленных на экономию финансов без потерь в качественных характеристиках товара.
Назначение и общие характеристики ВА57 (57-35, 57Ф-35)
Выключатели серии ВА57 предназначены для проведения тока в нормальных режимах и его отключения в случаях короткого замыкания, перегрузки, значительного падения напряжения. Допускается до 30 оперативных включений/отключений в течение суток. Устройства устанавливаются в сетях трехфазного переменного напряжения 380/660 В с частотой 50 и 60 Гц или в сетях с постоянным напряжением 220/440 В. Уставка по току: от 16 до 250 А. Имеют тепловой и электромагнитный расцепитель.
Соответствие нормативным документам
Автоматы соответствуют требованиям ГОСТ 17516.1 (механическое исполнение – МЗ), ГОСТ Р 50030.2 (категория применения А) и І-го раздела ГОСТ 12.1.004 (пожарная безопасность). Климатическое исполнение по ГОСТ 15150:
- УХЛ3 (от – 60 до + 40 оС),
- Т3 (от – 10 до + 50 оС).
Расшифровка условного обозначения
Если изделие имеет расширенную маркировку, то его основные характеристики можно узнать без технического паспорта. В качестве примера рассмотрим ВА57-35-340010-100А-500-690AC-УХЛ3. Цифры обозначают следующее:
- 57 – серия;
- 35 – диапазон номинального тока – до 250 А;
- 34 – 3 полюса с защитой от токовой перегрузки и КЗ;
- 00 – дополнительных сборочных единиц нет;
- 1 – ручной привод;
- 0 – дополнительных механизмов нет.
Далее указано, что автомат рассчитан на 100 А, электромагнитный расцепитель реагирует на токи от 500 А, рабочее переменное напряжение – 690 В.
Автоматические выключатели типа ВА51-35
ВА51-35 – трехполюсные автоматические выключатели с естественным воздушным охлаждением. Применяются в электрических цепях трехфазного переменного тока частотой 50/60 Гц с напряжением до 690 В. Допускается установка в цепях постоянного напряжения до 440 В. Выпускаются в 3 модификациях:
- М1 – на токи 16-100 А;
- М2 – на токи 125-250 А;
- М3 – на токи 320-400 А.
Предназначены для нечастых оперативных переключений (не более 3 в час). Износостойкость: 8000 циклов (по ГОСТ 300311.5.1). Эксплуатируются в диапазоне температур от – 60 до + 40 оС (ГОСТ 15150).
Внутри корпуса может быть один расцепитель (защита от токов КЗ) или два чувствительных элемента (защита от КЗ и тепловых перегрузок по току).
Автоматические выключатели типа ВА04-36
Автоматы ВА04-36 служат для проведения тока в стационарных режимах работы, нечастых оперативных включений/отключений (до 6 раз в сутки) и защиты от аварийных режимов (короткие замыкания, токовые перегрузки). Рассчитаны на переменное напряжение до 660 В, при частоте 50 и 60 Гц, или на постоянное напряжение до 220 В.
Изделия имеют независящую от рода тока и величины напряжения коммутационную способность: до 40 кА. В части сейсмостойкости отвечают требованиям ГОСТ 17516.1. Степень защиты от воздействия окружающей среды – по ГОСТ 14255.
Автоматические выключатели типа ВА52-37
Аппараты ВА52-37 предназначены для нечастых коммутаций (до 6 в сутки), защиты электрических цепей от токовых перегрузок, КЗ и недопустимых снижений напряжения. Оснащаются термомагнитными или электромагнитными расцепителями, которые могут дополняться независимыми расцепителями. Есть модификации со свободными контактами.
Аппараты рассчитаны на номинальное напряжение до 660 В (переменное, частотой 50 и 60 Гц) или 440 В (постоянное). Номиналы тока: 160, 250, 320 и 400 А. Износостойкость: 10000 циклов без нагрузки, 2000 циклов под нагрузкой. Виды климатического исполнения: УХЛ 3, УХЛ 3.1, ТЗ.
Автоматические выключатели серии ВА88
Назначение и общие характеристики
Автоматические выключатели серии ВА88 выполняют функцию проведения тока в нормальных режимах работы и отключения тока при перегрузках, КЗ и недопустимых снижениях уровня напряжения в трехфазных электрических сетях переменного тока частотой 50 Гц. Серийный ряд насчитывает 6 типоразмеров на номинальные токи от 12,5 до 1500 А. Климатическое исполнение: УХЛ3, УХЛ3.1 (ГОСТ 15150). Номинальное напряжение – до 400 В. Предельная отключающая способность: от 12,5 кА до 50 кА.
В зависимости от исполнения, автоматы комплектуются комбинированными (тепловой и электромагнитный) и электронными расцепителями. Последние обеспечивают надежность, широкий диапазон регулирования и возможность оперативной настройки в процессе эксплуатации.
Область применения ВА88 (88-32, 88-33, 88-35, 88-37, 88-40, 88-43)
Область использования зависит от характеристик, основными из которых являются номинальный ток и отключающая способность. Для разных моделей рекомендации такие:
- ВА88-32 (125 А), ВА88-33 (160 А):
- защита отходящих линий;
- в качестве вводных защитных устройств;
- защита электродвигателей.
- ВА88-35 (250 А), ВА88-37 (400 А), ВА88-40 (800 А):
- резервный ввод;
- в качестве вводных защитных устройств;
- защита отходящих линий в ЩР, ЩС, ГРЩ.
- ВА88-43 (1600 А):
- резервный ввод;
- защита отходящих линий со стороны НН трансформаторных подстанций 10/0,4 кВ;
- защита отходящих линий в ЩР, ЩС, ГРЩ.
Допускается использовать автоматы серии ВА88 для нечастых пусков асинхронных двигателей, а также для коммутаций и автоматического управления электрооборудованием в схемах АВР, диспетчеризации и энергосбережения.
Структура условного обозначения выключателей
ВА ХХ – ХХ – ХХ ХХ Х Х – ХХ ХХ | |
---|---|
ВА | — Обозначение вида аппарата |
ХХ | — Условное обозначение серии: |
ХХ | — Условное обозначение номинального тока: |
ХХ | — Условное обозначение числа полюсов и количества максимальных расцепителей тока в комбинации с исполнением максимальных расцепителей тока по зоне защиты:
|
ХХ | — Условное обозначение исполнения по дополнительным сборочным единицам:
|
Х | — Условное обозначение исполнения по виду привода и способа установки выключателя:
|
Х | — Условное обозначение исполнения по дополнительным механизмам:
|
ХХ | — Условное обозначение степени защиты выключателя: |
ХХ | — Условное обозначение климатического исполнения: |
Как не оконфузиться при выборе автоматического выключателя / Хабр
Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.
У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:
Определимся с целью
Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание. Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.
Номинальный ток
Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):
Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.
И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:
Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой окажется характеристика случайно взятого автоматического выключателя.
В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:
Думаю очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.
В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный. (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:
До тока в 1,13 от номинального, расцепления совсем не произойдет (16*1,13=18,08А)
При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)
При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)
При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.
Все это становится понятнее, если взглянуть на график:
Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.
Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.
А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.
Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.
Тип электромагнитного расцепителя
Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.
Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:
Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.
В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:
Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз
Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз
Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз
Вот они на графике:
Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.
Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.
Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:
4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники, где производитель не только не предусмотрел плавный старт, да даже пусковой ток не регламентирует!
Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто….
Ток короткого замыкания
Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.
А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:
Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:
В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?
Как же определить ток короткого замыкания? Для проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.
Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:
Щ41160, творение сумрачного советского гения. Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:
Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.
Ток короткого замыкания равен …Oh shi….
Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя. В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:
На автоматическом выключателе в прямоугольной рамке нанесена величина отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:
Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.
Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.
Коммутационная стойкость
При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:
Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:
Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.
Класс токоограничения
Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и говорит о быстродействии. Всего классов три:
Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты 🙂 В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.
Селективность
Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей к повреждению, без срабатывания вышестоящей. И у меня две новости.
Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы расцепителей:
Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.
В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.
Да скажи уже что ставить!?
Прежде всего то, что предусмотрено проектом.
Ну а если уж совсем среднестатистический случай с кучей оговорок, то:
Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А
Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А
Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.
Плюшки
Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:
Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.
Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились
Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами
Это дополнительное окошко у клемм для использования гребенки при подключении
и прочее и прочее.
Резюме
Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.
Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.
Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.
Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.
А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита
Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.
Выбор автоматического выключателя — Руководство по устройству электроустановок
Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.
Выбор выключателя
Выбор CB производится по:
- Электрические характеристики (переменный или постоянный ток, напряжение …) установки, для которой предназначен выключатель
- Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
- Предполагаемый ток короткого замыкания в месте установки
- Характеристики защищаемых кабелей, шин, шинопроводов и область применения (распределение, двигатель …)
- Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором …
- Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным с ними вспомогательным контактам, вспомогательным катушкам отключения, соединению
- Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
- Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения.
Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных системах.
Выбор номинального тока в зависимости от температуры окружающей среды
Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:
- 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
- 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.
Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).
Рис. H47 — Температура окружающей среды
Некомпенсированные термомагнитные расцепители
Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.
Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. h34, обычно устанавливаются в небольшом закрытом металлическом корпусе.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.
Пример
Какой рейтинг (In) следует выбрать для iC60 N?
- Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
- Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
- При температуре окружающей среды 60 ° C
Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.
A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.
Компенсированные термомагнитные расцепители
Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока отключения при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.
Например:
- В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C. Автоматические выключатели
- LV на номинальные значения ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от -5 ° C до + 40 ° C)
Примеры таблиц, в которых указаны значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями
Тепловые характеристики автоматического выключателяприведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.
iC60 (МЭК 60947-2)
Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды
Рейтинг | Температура окружающей среды (° C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(А) | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |
0,5 | 0,58 | 0,57 | 0.56 | 0,55 | 0,54 | 0,53 | 0,52 | 0,51 | 0,5 | 0,49 | 0,48 | 0,47 | 0,45 |
1 | 1,16 | 1,14 | 1,12 | 1,1 | 1,08 | 1,06 | 1,04 | 1,02 | 1 | 0,98 | 0,96 | 0,93 | 0,91 |
2 | 2.4 | 2,36 | 2,31 | 2,26 | 2,21 | 2,16 | 2,11 | 2,05 | 2 | 1,94 | 1,89 | 1,83 | 1,76 |
3 | 3,62 | 3,55 | 3,48 | 3,4 | 3,32 | 3,25 | 3,17 | 3,08 | 3 | 2,91 | 2,82 | 2,73 | 2,64 |
4 | 4.83 | 4,74 | 4,64 | 4,54 | 4,44 | 4,33 | 4,22 | 4,11 | 4 | 3,88 | 3,76 | 3,64 | 3,51 |
6 | 7,31 | 7,16 | 7,01 | 6,85 | 6,69 | 6,52 | 6,35 | 6,18 | 6 | 5,81 | 5,62 | 5,43 | 5,22 |
10 | 11.7 | 11,5 | 11,3 | 11,1 | 10,9 | 10,7 | 10,5 | 10,2 | 10 | 9,8 | 9,5 | 9,3 | 9 |
13 | 15,1 | 14,8 | 14,6 | 14,3 | 14,1 | 13,8 | 13,6 | 13,3 | 13 | 12,7 | 12,4 | 12,1 | 11,8 |
16 | 18.6 | 18,3 | 18 | 17,7 | 17,3 | 17 | 16,7 | 16,3 | 16 | 15,7 | 15,3 | 14,9 | 14,5 |
20 | 23 | 22,7 | 22,3 | 21,9 | 21,6 | 21,2 | 20,8 | 20,4 | 20 | 19,6 | 19,2 | 18,7 | 18,3 |
25 | 28.5 | 28,1 | 27,6 | 27,2 | 26,8 | 26,4 | 25,9 | 25,5 | 25 | 24,5 | 24,1 | 23,6 | 23,1 |
32 | 37,1 | 36,5 | 35,9 | 35,3 | 34,6 | 34 | 33,3 | 32,7 | 32 | 31,3 | 30,6 | 29,9 | 29,1 |
40 | 46.4 | 45,6 | 44,9 | 44,1 | 43,3 | 42,5 | 41,7 | 40,9 | 40 | 39,1 | 38,2 | 37,3 | 36,4 |
50 | 58,7 | 57,7 | 56,7 | 55,6 | 54,5 | 53,4 | 52,3 | 51,2 | 50 | 48,8 | 47,6 | 46,3 | 45 |
63 | 74.9 | 73,5 | 72,1 | 70,7 | 69,2 | 67,7 | 66,2 | 64,6 | 63 | 61,4 | 59,7 | 57,9 | 56,1 |
Compact NSX100-250 с расцепителями TM-D или TM-G
Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды
Рейтинг | Температура окружающей среды (° C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(А) | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |
16 | 18.4 | 18,7 | 18 | 18 | 17 | 16,6 | 16 | 15,6 | 15,2 | 14,8 | 14,5 | 14 | 13,8 |
25 | 28,8 | 28 | 27,5 | 25 | 26,3 | 25,6 | 25 | 24,5 | 24 | 23,5 | 23 | 22 | 21 |
32 | 36.8 | 36 | 35,2 | 34,4 | 33,6 | 32,8 | 32 | 31,3 | 30,5 | 30 | 29,5 | 29 | 28,5 |
40 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 |
50 | 57.5 | 56 | 55 | 54 | 52,5 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 |
63 | 72 | 71 | 69 | 68 | 66 | 65 | 63 | 61,5 | 60 | 58 | 57 | 55 | 54 |
80 | 92 | 90 | 88 | 86 | 84 | 82 | 80 | 78 | 76 | 74 | 72 | 70 | 68 |
100 | 115 | 113 | 110 | 108 | 105 | 103 | 100 | 97.5 | 95 | 92,5 | 90 | 87,5 | 85 |
125 | 144 | 141 | 138 | 134 | 131 | 128 | 125 | 122 | 119 | 116 | 113 | 109 | 106 |
160 | 184 | 180 | 176 | 172 | 168 | 164 | 160 | 156 | 152 | 148 | 144 | 140 | 136 |
200 | 230 | 225 | 220 | 215 | 210 | 205 | 200 | 195 | 190 | 185 | 180 | 175 | 170 |
250 | 288 | 281 | 277 | 269 | 263 | 256 | 250 | 244 | 238 | 231 | 225 | 219 | 213 |
Электронные расцепители
Электронные расцепители очень стабильны при изменении температурных уровней.
Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. Рис. h50).
Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.
Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры
Тип выдвижения Masterpact | МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20 | ||||||
---|---|---|---|---|---|---|---|
08 | 10 | 12 | 16 | 20 [а] | 20 [b] | ||
Температура окружающей среды (° C) | |||||||
Спереди или сзади по горизонтали | 40 | 800 | 1000 | 1250 | 1600 | 2000 | 2000 |
45 | |||||||
50 | |||||||
55 | |||||||
60 | 1900 | ||||||
65 | 1830 | 1950 | |||||
70 | 1520 | 1750 | 1900 | ||||
Задняя вертикальная | 40 | 800 | 1000 | 1250 | 1600 | 2000 | 2000 |
45 | |||||||
50 | |||||||
55 | |||||||
60 | |||||||
65 | |||||||
70 |
- ^ Тип: h2 / h3 / h4
- ^ Тип: L1
Выбор порога срабатывания мгновенного или кратковременного срабатывания
На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.
Рис. H51 — Различные расцепители мгновенного действия или с кратковременной задержкой
Тип | Расцепитель | Приложения |
---|---|---|
Низкое значение тип B |
| |
Стандартная настройка тип C |
| |
Высокая установка типа D или K |
| |
12 дюймов типа МА |
|
Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания
Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.
Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:
- Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
- Если это не так, быть связанным с другим устройством, которое расположено выше по потоку и которое имеет требуемую отключающую способность при коротком замыкании
Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без какого-либо повреждения.Этот метод с успехом применяется в:
- Объединения предохранителей и автоматических выключателей
- Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.
Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).
Автоматические выключатели для IT-систем
В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).
В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.
Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.
Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.
Регламент некоторых стран может вводить дополнительные требования.
Рис. H52 — Ситуация двойного замыкания на землю
Выбор автоматических выключателей в качестве главных вводов и фидеров
Установка с питанием от одного трансформатора
Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.
Пример
(см. рис. х53)
Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?
В трансформаторе = 360 А
Isc (3 фазы) = 9 кА
Compact NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 A и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.
Рис. H53 — Пример трансформатора на подстанции потребителя
Установка с питанием от нескольких трансформаторов параллельно
(см. рис. х54)
- Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
- Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на входной стороне CBM1.
Из этих соображений видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток
- Номинальные параметры CBM следует выбирать в соответствии с номинальными значениями кВА соответствующих трансформаторов.
Рис.h54 — Трансформаторы параллельно
Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:
1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым во всех параллельно включенных блоках.
2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.
3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.
Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА, имеющим Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.
На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, на рис. , рисунок h55). В его основе лежат следующие гипотезы:
- Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
- Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ в соответствии с перечнем
- Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
- Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
- Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C
Пример
(см. рисунок h55)
Выбор автоматического выключателя для режима CBM
Для трансформатора 800 кВА In = 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)
Выбор автоматического выключателя для режима CBP
С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. h56 как 56 кА.
Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.
Эти автоматические выключатели обладают следующими преимуществами:
- Полная селективность с выключателями на входе (CBM)
- Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах
Рис.h55 — Трансформаторы параллельно
Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно
Количество и номинальная мощность трансформаторов 20 / 0,4 кВ | Минимальная отключающая способность основных выключателей (Icu) кА | Главные автоматические выключатели (CBM), полная селективность с исходящими автоматическими выключателями (CBP) | Минимальная отключающая способность основных выключателей (Icu) кА | Номинальный ток In главного выключателя (CPB) 250A |
---|---|---|---|---|
2 х 400 | 14 | МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н | 28 | NSX100-630F |
3 х 400 | 28 | МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н | 42 | NSX100-630N |
2 х 630 | 22 | МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н | 44 | NSX100-630N |
3 х 630 | 44 | МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н | 66 | NSX100-630S |
2 х 800 | 19 | МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н | 38 | NSX100-630N |
3 х 800 | 38 | МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н | 57 | NSX100-630H |
2 х 1000 | 23 | МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н | 46 | NSX100-630N |
3 X 1000 | 46 | МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н | 69 | NSX100-630H |
2 х 1250 | 29 | МТЗ2 20Н1 / НС2000Н | 58 | NSX100-630H |
3 X 1250 | 58 | МТЗ2 20х2 / НС2000Н | 87 | NSX100-630S |
2 х 1600 | 36 | МТЗ2 25Н1 / НС2500Н | 72 | NSX100-630S |
3 х 1600 | 72 | МТЗ2 25х3 / НС2500Х | 108 | NSX100-630L |
2 х 2000 | 45 | МТЗ2 32х2 / НС3200Н | 90 | NSX100-630S |
3 X 2000 | 90 | МТЗ2 32х3 | 135 | NSX100-630L |
Выбор выключателей фидера и выключателей конечного контура
Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.
Использование таблицы G42
Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:
- Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
- Длина, гр.s.a., и состав проводников между двумя точками
Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.
Детальный расчет уровня тока короткого замыкания
Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .
Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом
Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:
- Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
- Номинальный ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
- Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для ИТ-схем
Основные характеристики выключателя
Основные характеристики автоматического выключателя:
- Его номинальное напряжение Ue
- Его номинальный ток В
- Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
- Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).
Номинальное рабочее напряжение (Ue)
Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.
Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».
Номинальный ток (In)
Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения установленных температурных пределов токоведущих частей.
Пример
Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.
Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).
Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.
Типоразмер корпуса
Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.
Пример
Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.
Уставка тока срабатывания реле перегрузки (Irth или Ir)
Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).
Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.
Пример
(см. рис. х37)
Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока срабатывания:
Ir = 400 x 0,9 = 360 А
Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,
Ir = In = 20 А.
Рис. H37 — Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A
Уставка тока срабатывания реле короткого замыкания (Im)
Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения автоматического выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:
- Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
- Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.
Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и Рис. h40).
Рис. H38 — Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения
Тип реле защиты | Защита от перегрузки | Защита от короткого замыкания | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Бытовые выключатели IEC 60898 | Термомагнитный | Ir = In | Низкое значение тип B 3 In ≤ Im ≤ 5 In | Стандартная настройка тип C 5 In ≤ Im ≤ 10 In | Цепь высокой уставки тип D 10 In ≤ Im ≤ 20 In [a] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Модульные промышленные автоматические выключатели [b] | Термомагнитный | Ir = In фиксированный | Низкое значение тип B или Z 3.2 In ≤ фиксированный ≤ 4,8 дюйма | Стандартная настройка тип C 7 In ≤ фиксированная ≤ 10 In | Высокая уставка тип D или K 10 In ≤ фиксированная ≤ 14 In | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Автоматические выключатели промышленные [b] IEC 60947-2 | Термомагнитный | Ir = фиксированный | Фиксированное: Im = от 7 до 10 дюймов | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Регулируемый: 0,7 In ≤ Ir ≤ In | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Регулируемый:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Электронный | Длительная задержка 0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные. Рис. H39 — Кривая отключения термомагнитного выключателя Ir : уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой) Рис. H40 — Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем Автоматический выключатель с изоляциейАвтоматический выключатель пригоден для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом. К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric. Номинальная отключающая способность при коротком замыкании (Icu или Icn)Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах. Номинальный ток отключения при коротком замыкании выключателя — это наивысшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение). Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя. Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:
На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов. На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.
Рис. H41 — Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)
|