+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Неполярный конденсатор из двух полярных или как сделать пусковой конденсатор | Электронные схемы

неполярный конденсатор из двух неполярных

неполярный конденсатор из двух неполярных

Из двух полярных электролитических конденсаторов большой емкости можно сделать один неполярный конденсатор.

В сети есть несколько схем,испытал две популярные схемы.Для проверки взял три электролитических конденсатора емкостью по 470 мкФ и на напряжение 10 В.Источником переменного тока является трансформатор напряжением 6.3В действующего или около 10 В амплитудного значения напряжения.

Для начала испытал один электролитический конденсатор на переменном токе.Подключил к выводам конденсатора источник тока и через пять секунд конденсатор взорвался, испустив при этом электролит в виде пара через предохранительный клапан.Полярный конденсатор нельзя подключать к переменному току.Далее собрал неполярный конденсатор по схеме с двумя диодами.Конденсаторы чуть теплые,амплитуда напряжения на каждом из них около 5 В при подключении к выводам 10 В,то есть напряжение делится наполовину.

неполярный конденсатор из двух полярных электролитических

неполярный конденсатор из двух полярных электролитических

Емкость такого конденсатора равняется емкости одного конденсатора из двух.Каждый полярный конденсатор по 470 мкФ,а общая емкость неполярного конденсатора 225 мкФ.

неполярный конденсатор для запуска трехфазного электродвигателя

неполярный конденсатор для запуска трехфазного электродвигателя

Потом сделал неполярный конденсатор без диодов.Два полярных конденсатора подключаются минус к минусу.Все осциллограммы и характеристики почти соответствуют конденсатору,который был сделан с диодами.Выходит так,что две разные схемы идентичны,но диоды должны защищать конденсаторы,возможно схема с диодами будет лучше работать.Надо еще учитывать,что напряжение на полярном конденсаторе указано для постоянного тока,при работе на переменном токе и при работе с пульсациями рабочее напряжение конденсатора выбирают больше уровня пульсации.

подключение конденсаторов последовательно

подключение конденсаторов последовательно

Конденсатор электролитический неполярный 10 мкФ 160V 105°C d10 h26 (10шт)

Описание товара Конденсатор электролитический неполярный 10 мкФ 160V 105°C d10 h26 (10шт)

Конденсатор электролитический неполярный 10µF 160V 105°C d10 h26 обладает емкостью — 10µF, что позволяет его разместить на печатной плате при максимальном уровне напряжения до 16 Вольт и при этом положительно отличается возможностью подключения без учета полярности.

Технические характеристики 10µF 160V 105°C d10 h26
  • Емкость: 10µF
  • Максимальное напряжение: 160V
  • Допустимая температура: до 105°C
  • Размеры:
    • диаметр: d10
    • длина: h26
  • Материал диэлектрика: фольга;
  • Количество слоев диэлектрика: 2;
  • Допускает подключение без учета полярности: да;
  • Форма корпуса: цилиндрическая.
Отличительные особенности и преимущества Конденсатора электролитического неполярного 10µF 160V 105°C d10 h26

Рассматриваемый электролитический неполярный конденсатор в форме небольшого цилиндра органично впишется даже в ограниченное пространство на печатной плате.

Как и большинство электролитических конденсаторов (кроме аксиальных), конденсатор электролитический неполярный 10µF 160V 105°C устанавливается в вертикальном положении, поэтому при проектировании корпуса для печатной платы, учитывайте его высоту (с небольшим запасом).

Неполярный электролитический конденсатор используется в цепях постоянного и пульсирующего тока. Может устанавливаться на выходе диодного выпрямителя в блоке питания для эффективной фильтрации переменной составляющей.

Преимуществом неполярного конденсатора является возможность соединить довольно большую емкость электролитического конденсатора с возможностью не обращать внимание на полярность при пайке конденсатора.

Но ценой этого являются несколько большие размеры неполярного электролитического конденсатора. Кроме того, неполярные конденсаторы выпускаются с меньшим диапазоном емкостей, чем полярные электролитические конденсаторы.

Недостатки и причины выхода из строя электролитического неполярного конденсатора

Преимущество неполярного электролитического конденсатора в нечувствительности к полярности включения оборачивается увеличенными размерами.

Фактически в одном корпусе неполярного конденсатора находится два электролитических полярных конденсатора.

Яркий пример этого — сравнить два конденсатора (полярный и неполярный) одинаковой емкости и на одно и то же рабочее напряжение.

У неполярного конденсатора диаметр корпуса в среднем больше в 1,3 раза, а длина ориентировочно – в 1,5 раза.

Если на печатной плате критически мало места, возможно есть смысл устанавливать полярный конденсатор, как более компактный, при соблюдении полярности.

Как и для всех электролитических конденсаторов, неполярные конденсаторы традиционно подвержены эффекту высыхания электролита.

Дополнительно негативно на срок службы неполярного конденсатора влияет:

  • работа при предельных режимах напряжения и температуры;
  • повреждения корпуса.

Однозначно проверить емкость неполярного конденсатора можно мультиметром с функцией измерения емкости.

Чем заменить электролитический неполярный конденсатор при наличии двух полярных

Конденсатор электролитический неполярный 10µF 160V 105°C можно заменить двумя полярными электролитическими конденсаторами, включив их встречно-последовательно.

При этом емкость каждого из конденсаторов должна быть приблизительно в два раза больше емкости заменяемого, а рабочее напряжение не ниже исходного.

Купить электролитический неполярный конденсатор 10µF 160V 105°C Вы можете в Киеве, в Интернет-магазине Electronoff.

Автор на +google

Можете ли вы сделать неполярный электролитический конденсатор из двух обычных электролитических конденсаторов?

Резюме:

  • Да «поляризованные» алюминиевые «мокрые электролитические» конденсаторы могут законно соединяться «спина к спине» (то есть последовательно с противоположными полярностями), чтобы сформировать неполярный конденсатор.

  • C1 + C2 всегда равны по емкости и номинальному напряжению
    Ceffective = = C1 /2 = C2 /2

  • Величина = проницаемость C1 & amp; С2.

  • Посмотрите «Механизм» в конце, как это работает (возможно).


Общепризнано, что оба конденсатора имеют идентичную емкость, когда это делается.
 Результирующий конденсатор с половиной емкости каждого отдельного конденсатора.
 например, если два x 10 мкФ конденсатора помещаются последовательно, результирующая емкость будет составлять 5 мкФ.

Я заключаю, что результирующий конденсатор будет иметь тот же самый номинал напряжения, что и отдельные конденсаторы. (Возможно, я ошибаюсь).

Я видел этот метод, используемый во многих случаях в течение многих лет и, что более важно, видел метод, описанный в примечаниях к применению от ряда производителей конденсаторов. См. Конец для одной такой ссылки.

Понимание того, как индивидуальные конденсаторы становятся правильно заряженными, требует либо вероисповедания в заявках производителей конденсаторов («действовать так, как если бы они были обходились диодами», либо в случае дополнительной сложности). Но понимание того, как устроено устройство, когда-то было начато, проще.  Представьте себе две задние колпачки с Cl полностью заряженными и Cr полностью разряжен.
 Если теперь ток проходит через последовательную компоновку, так что Cl затем разряжается до нулевого заряда, тогда обратная полярность Cr приведет к тому, что он будет заряжен до полного напряжения. Попытки применить дополнительный ток и дальнейшую разрядку Cl, чтобы он допускал неправильную полярность, привел бы к тому, что заряд Cr превысит его номинальное напряжение. т. е. его можно было бы попытаться, но для обоих устройств это будет вне спецификации.

Учитывая вышеизложенное, можно ответить на конкретные вопросы:

  

Каковы некоторые причины для последовательного подключения конденсаторов?

Может создать биполярный колпачок из 2 х полярных шапок.

 ИЛИ может удвоить номинальное напряжение до тех пор, пока берется забота о балансе распределения напряжения. Параллельные резисторы иногда используются для достижения баланса.

  

«получается, что то, что может выглядеть как две обычные электролитики, фактически не являются двумя обычными электролитиками.»

Это можно сделать с помощью ординарной электролитики.

  

«Нет, не делайте этого, он будет действовать и как конденсатор, но как только вы пройдете несколько вольт, он выдует изолятор».

Работает нормально, если рейтинги не превышены.

  

«Как будто» вы не можете сделать BJT с двух диодов »

Причина сравнения отмечена, но не является допустимой. Каждая половина конденсатора по-прежнему подчиняется тем же правилам и требованиям, что и при одиночестве.

  

«это процесс, который tinkerer не может сделать»

Tinkerer может — полностью легитимный.

  

Итак, это неполярная (NP) электролитическая крышка, электрически идентичная двум электролитическим колпачкам в обратной последовательности или нет?

Это успокаивается, но производители обычно производят изменения, так что есть две анодные пленки, но результат тот же.

  

Не выдерживает ли такое же напряжение?

Номинальное напряжение — это одна крышка.

  

Что происходит с крышкой с обратным смещением, когда большое напряжение помещается через комбинацию?

При нормальной работе нет обратного смещенного колпачка. Каждая кепка обрабатывает полный цикл переменного тока, эффективно просматривая половину цикла. См. Мои объяснения выше.

  

Существуют ли практические ограничения, кроме физического?

Нет очевидных ограничений, о которых я могу думать.

  

Имеет ли значение, какая полярность находится снаружи?

Нет. Нарисуйте изображение того, что каждая кепка видит изолированно без ссылки на то, что «вне его». Теперь измените их порядок в схеме. То, что они видят, идентично.

  

Я не понимаю, в чем разница, но многие думают, что есть один.

Вы правы. Функционально с точки зрения «черного ящика» они одинаковы.


ПРИМЕР ПРОИЗВОДИТЕЛЯ:

В этом документе Руководство по применению, алюминиевые электролитические конденсаторы bY Корнелл Дубилье, компетентный и уважаемый изготовитель конденсатора, он говорит (в возрасте 2,143 и 2,184).

  • Если два, одно и то же, алюминиевые электролитические конденсаторы соединены последовательно, спина к спине с положительным клеммы или отрицательные клеммы, в результате одиночный конденсатор представляет собой неполярный конденсатор с половину емкости.

    Два конденсатора выпрямляют приложенное напряжение идействовать так, как если бы они были обойдены по диодам.

    Когда напряжение подается, конденсатор с правильной полярностью получает полное напряжение.

    В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах с электродвигателем вторая анодная фольга заменяет катодную фольгу для достижения неполярного конденсатора в одном случае.

Для понимания общего действия относится этот комментарий со страницы 2.183.

  • Пока может показаться, что емкость находится между две фольги, на самом деле емкость находится между анодной фольги и электролита.

    Положительная пластина — это анодная фольга;

    диэлектрик представляет собой изолирующий алюминий оксид на анодной фольге;

    истинная отрицательная пластина — это проводящий, жидкий электролит и катодная фольга просто соединяется с электролитом.

    Эта конструкция обеспечивает колоссальную емкость потому что травление фольги может увеличить площадь поверхности более 100 раз, а диэлектрик из оксида алюминия меньше толщины микрометра. Таким образом, конденсатор имеет очень большую площадь пластины и пластины ужасно близко друг к другу.


ДОБАВЛЕНО:

Я интуитивно чувствую, что Олин делает это, чтобы было необходимо обеспечить средство поддержания правильной полярности. На практике кажется, что конденсаторы хорошо справляются с «краевым условием запуска». Корнелл Дубильерс «действует как диод», нуждается в лучшем понимании.


МЕХАНИЗМ:

Я думаю, что следующее описывает, как работает система.

Как я описал выше, как только один конденсатор полностью заряжен на одной крайности формы переменного тока, а другой полностью разряжен, система будет работать правильно, причем заряд передается во внешнюю «пластину» одной крышки, изнутри тарелки этой крышки с другой крышкой и «с другого конца». т.е. блок переноса заряда в оба конденсатора и между ними и позволяет пропускать чистый заряд через двойную крышку. Пока нет проблем.

Правильно смещенный конденсатор имеет очень низкую утечку.
 Обратный смещенный конденсатор имеет более высокую утечку и, возможно, намного выше.
 При запуске один колпачок обратный смещен в каждом полупериоде, а ток утечки протекает.
 Поток заряда таков, чтобы привести конденсаторы в правильное сбалансированное состояние.
 Это «диодное действие», о котором идет речь, — не формальное выпрямление в расчете, а утечка при неправильном операционном смещении.
 После нескольких циклов баланс будет достигнут. «Протечка» колпачка находится в обратном направлении, а более быстрый баланс будет достигнут.
 Любые недостатки или неравенства будут компенсированы этим механизмом саморегулирования.  Очень аккуратно.

Что такое полярность конденсатора и как ее определить?


Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!


Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяетсяВ цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно➡ Чем отличаются параллельное и последовательное соединение конденсаторов

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.


Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.


Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно➡ Формула расчёта сопротивления конденсатора

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.


Полярный и неполярный конденсатор

Что такое полярность в химии

Полярность

– свойство, показывающее изменение распределения электронной плотности около ядер, если сравнивать с изначальным ее распределением в образующих данную связь нейтральных частицах.

Поляризуемость

— способность поляризоваться под воздействием электрического поля.

Мерой полярности

называется электрический момент диполя. В нейтральных соединениях он равен нулю. Его значение зависит от разности электроотрицательностей элементов.

Длина диполя

— расстояние между его полюсами. Данная характеристика также влияет на степень полярности.

Любое соединение состоит из ядра (положительные частицы) и электронов (отрицательные частицы). И положительные, и отрицательные частицы имеют свой электрический центр тяжести.

Если центры тяжести частиц совпадают, то соединение считается неполярным. Если же полюса не накладываются друг на друга, то в этом случае речь идет о дипольной связи.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Виды

Классификация конденсаторов может происходить по различным критериям.

По постоянству ёмкости:

  • Постоянные.
  • Переменные. Их ёмкость может изменяться либо вручную оператором (пользователем) устройства, либо под воздействием напряжения (как в варикапах и варикондах).

Советуем изучить Как устроить освещение участка

По полярности прикладываемого напряжения:

  • Неполярные – могут работать в цепях переменного тока.
  • Полярные – при подключении напряжения неправильной полярности выходят из строя.

В зависимости от того, где используются эти компоненты, различают разные варианты по материалу:

  • Бумажные и металлобумажные – это привычные многим, распространённые в советское время конденсаторы в виде прямоугольных кирпичиков с маркировкой наподобие «МБГЧ». Внешний вид этого вида конденсаторов вы видите ниже. Они неполярные.
  • Керамические – ими часто фильтруют высокочастотные помехи, а относительная диэлектрическая проницаемость позволяет делать многослойные компоненты с ёмкостью сопоставимой электролитам (дорого), не чувствительны к полярности.
  • Плёночные – распространены в виде коричневых подушечек, недорогие, используются повсеместно. Характерны малым током утечки, небольшой ёмкостью, высоким рабочим напряжением и нечувствительностью к полярности приложенного напряжения.
  • С воздушным диэлектриком. Лучший пример такого элемента – подстроечный конденсатор резонансного контура из радиоприёмника, ёмкость таких элементов невелика, но удобно реализовать её изменение.
  • Электролитические – это элементы в виде бочонков, их устанавливают чаще всего в качестве фильтра сетевых пульсаций в БП. Конструкция и принцип действия позволяют получить большую ёмкость при небольших размерах, но со временем могут высыхать, терять ёмкость или вздуваться. Как выглядят в исправном состоянии эти изделия вы видите ниже. В качестве диэлектрика используют тонкий слой оксида металла. Если в БП используют конденсаторы с диэлектриком из AL2O3 – т.н. «алюминиевые электролиты», то для работы в высокочастотных цепях – используют танталовые (Ta25 — они также относятся к электролитам) конденсаторы, потому что у них меньший ток утечки, большая устойчивость к внешним воздействиям в отличие от предыдущих, алюминиевых.
  • Полимерные – способны выдерживать большие импульсные токи, работать при низких температурах

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто — промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток — реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат;
  • полиамид;
  • поликарбонат;
  • полисульфон;
  • полипропилен;
  • полистирол;
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Советуем изучить Элегазовые выключатели

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых — даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип — не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств — ионисторы — содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Неполярные электролитические конденсаторы

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов температурные характеристики, тип корпуса и так далее , которые делают тот или иной тип конденсаторов электролитический, керамический и пр. В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника. Конденсаторы Рис.

Регистрация Вход.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Вам это будет интересно Особенности полупроводников

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

Будет интересно➡ Чем отличается пусковой конденсатор от рабочего?

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Работа электродвигателя без конденсатора

Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней. Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции.

Наиболее распространённые в России модели

Чаще всего можно встретить в продаже следующие марки:

  • Конденсаторы марки СВВ-60 с исполнением в металлизированном полипропиленовом варианте. Они отличаются сравнительно высокой ценой.
  • Плёночные марки HTC обладают достаточно высоким уровнем качества, но стоят немного меньше, чем СВВ-60.
  • Э92 представляют собой бюджетный вариант пусковых конденсаторов. Они имеют относительно невысокую цену, но в качестве и надёжности уступают предыдущим двум вариантам.

Существует также ряд других моделей, но они распространены в меньшей степени.

Процедура подключения конденсаторов Источник uk-parkovaya.ru

Пакет конденсаторов и библиотека схемных плат

Общие конденсаторы делятся на два типа: линейные и патч-ные, а линейные и патч-конденсаторы делятся на два типа: полярные и неполярные.

 

  1. В линию:

Корпус неполярного конденсатора имеет маркировку RAD, включая RAD-0,1, RAD-0,2, RAD-0,3 и т. Д. Число на задней панели представляет собой расстояние между центральными отверстиями контактной площадки в дюймах.

1in=1000mil        0.1in =100mil=0.254mm

Корпус обычного керамического конденсатора (104) представляет собой RAD-0,1, что выражается как неполярный конденсатор, а расстояние между двумя выводами составляет 0,254 (100 мил).

Пакеты полярных конденсаторов обозначены символом RB, в том числе RD.2 / .4 RB.3 / .6 RB.4 / .8 и т. Д.

Первое число представляет расстояние между центральными отверстиями колодки, а второе число представляет внешний размер. Дюйм

Ниже представлена ​​3d модель алюминиевого электролитического конденсатора RB.2 / .4, который может быть упакован в печатную плату.

 

Патч

Конденсаторы SMD — это обычные неполярные конденсаторы, танталовые электролитические конденсаторы и алюминиевые электролитические конденсаторы.

Стандарты размеров корпуса для неполярных конденсаторов SMD следующие:

 

Фактический размер корпуса чип-конденсатора

Component

Identifier

mm(in)

L

S

W

T

H

min

max

min

max

min

max

min

max

max

1005(0402)

0.90

1.10

0.30

0.65

0.40

0.60

0.10

0.30

0.60

1310(0504)

1.02

1.32

0.26

0.72

0.77

1.27

0.13

0.38

1.02

1608(0603)

1.45

1.75

0.45

0.97

0.65

0.95

0.20

0.50

0.85

2012(0805)

1.80

2.20

0.30

1.11

1.05

1.45

0.25

0.75

1.10

3216(1206)

3.00

3.40

1.50

2.31

1.40

1.80

0.25

0.75

1.35

3225(1210)

3.00

3.40

1.50

2.31

2.30

2.70

0.25

0.75

1.35

4532(1812)

4.20

4.80

2.30

3.46

3.00

3.40

0.25

0.95

1.35

4564(1825)

4.20

4.80

2.30

3.46

6.00

6.80

0.25

0.95

1.10

 

Обычно используются корпуса 0805 и 0603. Однако из-за ограничения объема емкость этого неполярного конденсатора микросхемы не очень велика, но есть и другие.

Конденсаторы SMD: танталовые электролитические конденсаторы SMD и алюминиевые электролитические конденсаторы SMD (электролитические конденсаторы SMD)

 

Танталовые электролитические конденсаторы: обычно используются 4 типа: A, B, C и D. Размеры корпуса: 3516 3528 6032 7343

. Одинаковые числа обозначают длину и ширину соответственно.

Его преимущества — небольшие размеры, небольшая погрешность емкости, стабильная работа и широкий диапазон рабочих температур.

Но есть и недостатки: малое выдерживаемое напряжение, малый ток, высокая цена.

На картинке ниже представлена ​​3д модель и упаковка Type B

 

 

Размеры корпуса алюминиевых электролитических конденсаторов SMD следующие:

 

 

 

Его 3d модель и печатная плата выглядят следующим образом

 

 

 

 

Полярные и неполярные конденсаторы — в чем отличие. Маркировка конденсаторов

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68 мкФ 1 мкФ до 16 мкФ
± 10 и ± 20 -10 и +50 ± 20
50 — 250 6,3 — 400 250 — 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 — 630 160 6,3 — 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М — 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора — 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Условные обозначения конденсаторов

Подстроечный конденсатор
Электролитический конденсатор
Два конденсатора в общей обкладкой в одном корпусе

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Для чего применяется последовательное соединение конденсаторов?

Последовательное соединении конденсаторов изменяет основные параметры вновь «созданного» конденсатора. Этими основными параметрами являются ёмкость и допустимое рабочее напряжение.

Результирующая ёмкость нового конденсатора будет всегда меньше того конденсатора последовательного соединения, который имеет наименьшую ёмкость.

Это следует из формулы 1/С(общ.) = 1/С1 + 1/С2 + 1/С3 + …..1/Сn.

Например, если цепь состоит из двух конденсаторов С1 и С2 с ёмкостями соответственно 0,5мкФ и 0,1мкФ, то результирующая ёмкость будет равна 0,083мкФ.

1/С(общ.) = 1/С1 + 1/С2

или в более удобном для расчётов виде С(общ.) = С1*C2/С1+С2.

С(общ.) = С1*C2/(С1+С2) = 0,5*01/(0,5+0,1) = 0,083мкФ.

Это бывает полезным, когда под руками не имеется конденсатора нужной малой ёмкости.А имеются с ёмкостью больше той, что требуется.

Например для трёх соединённых последовательно конденсаторов формула примет вид:

1/С(общ.) = 1/С1 + 1/С2 + 1/С3

или по другому

С(общ.) = С1*C2*C3/(С1*C2+C1*C­3+C2*C3).

Так-же, если под руками нет конденсатора на требуемое рабочее напряжение а имеются конденсаторы с более низким рабочим напряжение, то соединяя их последовательно можно получить конденсатор с рабочим напряжением равным сумме напряжений исходных конденсаторов.

Это свойство очень выручало радиолюбителей во времена массового использования радиоламп. Особенно тех, кто строил мощные передатчики радиохулиганов. Например на анод лампы ГК-71 необходимо было подавать напряжение 1500 вольт. Для фильтрации этого напряжения мы соединяли последовательно электролитические конденсаторы. Т.к. электролитов на такое высокое напряжение тогда не было да и сейчас наверное тоже нет.

Однако при изготовлении конденсаторов на большое напряжение из конденсаторов имеющих малое напряжение имеются подводные камни.

Так как заряд «q» в последовательной цепи имеет равные значения для каждого включенного в цепь отдельного конденсатора, то согласно формуле U = q/С1+q/С2+…q/Cn мы имеем следующее. На каждом конденсаторе будет напряжение зависящее от ёмкости этого конденсатора. Т.е. U = q/С.

И поэтому конденсатор в цепи, имеющий наименьшую ёмкость и наименьшее рабочее напряжение, может быть пробит.

Так-же, конденсаторы обладают таким поганым свойством ка «ток утечки». Это тоже может негативно сказаться на работе на постоянном токе цепи последовательно соединённых конденсаторов. Идеальный конденсатор не должен пропускать постоянный ток. Ведь его обкладки разделены диэлектриком. Но на практике такое не встречается. Через всякий диэлектрик всё-же проходит ток. Хотя и мизерный. И если в цепи постоянного тока, соединены конденсаторы один из которых имеет большой ток утечки а другой маленький,то произойдёт следующее. Через «текущий» конденсатор который будет разряжаться, другой конденсатор будет заряжен до полного питающего напряжения и произойдёт его пробой. Поэтому последовательное соединение конденсаторов не рекомендуется использовать для работы с постоянным напряжением.

Ещё один пример последовательного соединения.

Применяется он для использования полярных конденсаторов в цепи переменного напряжения.

Известно, что такие конденсаторы выходят из строя при работе их на переменном напряжении. Но если соединить их встречно-последовательно то из двух полярных мы получим один неполярный конденсатор.

Или в более совершенном виде схема примет следующий вид. Эту схему можно применять при пуске электродвигателей через пусковой конденсатор.

Неполяризованный конденсатор

: типы и функции

Неполяризованный конденсатор Одной из нескольких моделей конденсаторов является неполяризованный конденсатор. Конденсаторы можно разделить на два типа в зависимости от их полярности: неполяризованные конденсаторы и поляризованные конденсаторы. И вот что мы обсудим в этой статье: каково определение неполяризованного конденсатора? Какая у этого цель? Как выбрать неполяризованные конденсаторы? Чем поляризованные конденсаторы отличаются от неполяризованных конденсаторов? Давай посмотрим.

Что такое неполяризованный конденсатор?

Конденсаторы, не имеющие ни положительной, ни отрицательной полярности, называются неполяризованными конденсаторами. Два электрода неполяризованных конденсаторов могут быть включены в цепь произвольно и не протекают. Обычно они встречаются в цепях связи, развязки, компенсации, обратной связи и колебания.

Неполяризованные конденсаторы (Ссылка: apogeeweb.net )

В идеальном конденсаторе нет полярности.Однако на самом деле для достижения большой емкости используются уникальные материалы и конструкции, в результате чего фактические конденсаторы имеют умеренную поляризацию. Алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы являются примерами поляризованных конденсаторов. Электролитические конденсаторы в целом имеют большую емкость. Изготовить неполяризованный конденсатор большой емкости сложно, так как требуемый объем огромен. Вот почему настоящая схема содержит так много поляризованных конденсаторов.Поляризованные конденсаторы могут быть полезны в этой схеме, потому что напряжение только в одну сторону, а размер минимален.

Чтобы избежать недостатков и воспользоваться преимуществами, мы используем поляризованные конденсаторы. Вот как мы можем это интерпретировать: поляризованный конденсатор — это конденсатор, который может использоваться только в одном направлении напряжения. Оба направления напряжения могут использоваться с неполяризованными конденсаторами. В результате неполяризованные конденсаторы превосходят поляризованные конденсаторы с точки зрения направления напряжения.Неполяризованные конденсаторы могут полностью заменить поляризованные конденсаторы при соблюдении емкости, рабочего напряжения, объема и других характеристик.

Принцип работы неполяризованного конденсатора

Неполяризованные конденсаторы используются в цепях чистого переменного тока, а также могут использоваться для фильтрации высоких частот из-за их небольшой емкости. Чтобы продемонстрировать, как можно использовать конденсатор, рассмотрим следующий сценарий:

В этом случае в основном используется RC-искровая цепь.Когда антенна принимает радио- или телевизионную программу, когда люминесцентная лампа включена и люминесцентная лампа мигает, вы услышите беспорядочный звук из динамика радио или телевизора. Высокочастотные помехи, создаваемые электрическими искрами, вызывают появление множества блестящих линий и ярких пятен на экране телевизора.

При разрыве цепей на основе индуктивности между контактами возникает искра. Выключатель S резко выключается, и ток быстро исчезает, как показано на схеме слева на следующем рисунке.Из-за значительного изменения тока на обоих концах катушки образуется большая самоиндукция. Эта электродвижущая сила может препятствовать изменению тока, и она имеет то же направление, что и приложенное напряжение. Когда они накладываются друг на друга, напряжение U1 на переключателе становится чрезвычайно высоким, а когда напряжение превышает определенный порог, «резкое» напряжение разрывает воздух и вызывает электрическую искру.

Искра может вызвать абляцию и окисление контактов, что приведет к выходу из строя.В результате очень важно избавиться от искры между контактами. Когда цепь выключена, до тех пор, пока ток управляющей катушки не падает слишком низко, напряжение на двух концах катушки не будет слишком высоким, и искра не возникнет. RC-цепочка искрогасителя подключается на обоих концах индуктора, как показано на схеме справа. i1 будет заряжать конденсатор при резком выключении переключателя. Цепь

с цепью индуктивности и искроопоглощения (Ссылка: apogeeweb.net )

Типы неполяризованных конденсаторов

Электронные устройства с двумя проводящими поверхностями (пластинами), разделенными изолятором, называются конденсаторами (диэлектриком). У них есть способность мгновенно накапливать электрический заряд. Электролитический конденсатор — единственная форма конденсатора, которая поляризована (работает по-разному в зависимости от того, в каком направлении течет ток). Хотя электролитические конденсаторы обладают большей емкостью, для большинства применений рекомендуются неполяризованные конденсаторы.Они менее дорогие, их можно направить в любом направлении и они имеют более длительный срок службы.

[/ su_box]

Керамические конденсаторы

Наиболее распространенным типом неполяризованных конденсаторов является керамический конденсатор. Это проверенная технология, которая также является самым дешевым типом конденсаторов. Самый старый стиль (с 1930-х годов) — дискообразный, современные — блочные. Они хорошо работают в радиочастотных цепях, а последние варианты также могут использоваться в микроволновых приложениях.Их размер колеблется от 10 пикофарад до 1 мкФ. Они имеют некоторую утечку диэлектрика, а их функции и температурная стабильность различаются в зависимости от производителя.

Полиэфирные конденсаторы

Майларовые конденсаторы — это еще одно название полиэфирных конденсаторов. Они недорогие, точные (имеют точный номинал, указанный на них) и герметичны. Они работают в диапазоне от 0,001 до 50 мкФ и используются, когда точность и стабильность не так важны.

Полистирольные конденсаторы

Майларовые конденсаторы — это еще одно название полиэфирных конденсаторов. Они недорогие, точные (имеют точный номинал, указанный на них) и герметичны. Они работают в диапазоне от 0,001 до 50 мкФ и используются, когда точность и стабильность не так важны.

Конденсаторы из поликарбоната

Конденсаторы из поликарбоната отличаются высокой ценой и отличным качеством, отличной точностью и низкой утечкой.К сожалению, они были прекращены, и сейчас их трудно найти. В диапазоне от 100 пикофарад до 20 микрофарад они хорошо работают в суровых и высокотемпературных условиях.

Полипропиленовые конденсаторы

Полипропиленовые конденсаторы в диапазоне от 100 пикофарад до 50 микрофарад — дорогие и высокопроизводительные конденсаторы. Они чрезвычайно точны, стабильны во времени и имеют очень небольшую утечку.

Конденсаторы тефлоновые

Эти конденсаторы являются самыми надежными на рынке.Они невероятно точны и почти не имеют утечек. Обычно они считаются лучшими универсальными конденсаторами на рынке. Стоит отметить, что они одинаково реагируют на самые разные частоты. Они работают в диапазоне от 100 пикофарад до 1 мкФ.

Стеклянные конденсаторы

Стеклянные конденсаторы чрезвычайно долговечны и являются предпочтительным выбором в экстремальных условиях. Они работают в диапазоне от 10 до 1000 пикофарад и надежны.К сожалению, это самый дорогой конденсатор.

Разница между неполяризованными конденсаторами и поляризованными конденсаторами

Принципы поляризованных и неполяризованных конденсаторов одинаковы: они выделяют и накапливают заряды; напряжение на пластине (электродвижущая сила накопления заряда здесь называется напряжением) не может резко измениться.

Различная среда, производительность, емкость и структура приводят к разным средам и видам использования.С развитием науки и технологий, а также с открытием новых материалов появятся более мощные и разнообразные конденсаторы.

Разница в диэлектрике

В большинстве конденсаторов полярности в качестве диэлектрика используются электролиты, что приводит к более высокой емкости, чем у обычных конденсаторов того же объема. Кроме того, емкость поляризованных конденсаторов, изготовленных из различных материалов и технологий электролита, будет варьироваться.

Напряжение, с другой стороны, в основном определяется материалом диэлектрика.Использование поляризованных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой, и существует множество неполяризованных материалов, включая наиболее широко используемые пленки оксида металла и полиэфир.

Неполяризованный конденсатор и поляризованный конденсатор (Ссылка: apogeeweb.net )

Разница в производительности

Требование использования — производительность и максимизация спроса. Боюсь, что внутри корпуса можно установить только блок питания, если в блоке питания телевизора используется металлооксидный пленочный конденсатор в качестве фильтра и если емкость и выдерживаемое напряжение необходимы для соответствия фильтру.

В результате в фильтре можно использовать только поляризованный конденсатор, а полярная емкость необратима. Электролитический конденсатор, который обеспечивает связь, развязку, фильтрацию источника питания и другие функции, обычно имеет более 1 МПа. Неполяризованные конденсаторы используются в резонансах, связях, выборе частоты, ограничении тока и других приложениях. Также доступны неполяризованные конденсаторы большой емкости и высокого напряжения, которые обычно используются для компенсации реактивной мощности, фазового сдвига двигателя, фазового сдвига мощности с преобразованием частоты и других приложений.Неполяризованные конденсаторы бывают разных форм и размеров.

Различие в емкости и структуре

Как было сказано ранее, конденсаторы одного объема имеют разную емкость при изменении диэлектрика.

Кроме того, в принципе, в окружающей среде можно использовать любой конденсатор любой формы без учета точечного разряда. Круглые электролитические конденсаторы являются наиболее распространенными, а квадратные электролитические конденсаторы встречаются редко.Конденсаторы бывают разных форм, включая трубчатые, деформированные прямоугольные, листовые, квадратные, круглые, комбинированные квадратные или круглые и т. Д., В зависимости от использования. Конечно, в устройствах высокой и промежуточной частоты есть также невидимые конденсаторы, называемые рассеянными конденсаторами, которые нельзя упускать из виду.

Различия в использовании в различных средах

Емкость полярных конденсаторов может быть относительно большой из-за внутреннего материала и конструкции.Однако из-за плохих высокочастотных свойств они лучше всего подходят для силовых фильтров и других приложений. Существуют также танталовые поляризованные конденсаторы для электролиза с хорошими высокочастотными свойствами, хотя они относительно дороги.

Эти неполяризованные конденсаторы, к которым относятся керамические конденсаторы, монолитные конденсаторы, полиэтиленовые (CBB) конденсаторы и другие, компактные по размеру, невысокой цене и обладают хорошими высокочастотными характеристиками, но не подходят для большой емкости. .В схемах высокочастотной фильтрации и генерации обычно используются керамические конденсаторы.

Различные типы конденсаторов (Ссылка: eeweb.com )

Мезон в магнитных диэлектрических конденсаторах является керамическим, а электрод представляет собой слой серебра на поверхности. Магнитные диэлектрические конденсаторы идеально подходят для высокочастотных и высоковольтных цепей из-за их стабильной работы и низкой утечки.

Материалы с большой диэлектрической проницаемостью (такие как сегнетоэлектрическая керамика и электролиты) идеально подходят для конденсаторов с большой емкостью и компактным объемом, но с высокими потерями.Керамика и другие материалы с низкой диэлектрической проницаемостью имеют минимальные потери и подходят для высокочастотных приложений.

Часто задаваемые вопросы

В чем разница между поляризованными и неполяризованными конденсаторами?

Неполяризованный («неполярный») конденсатор — это конденсатор, который не имеет неявной полярности и может использоваться в любом направлении в цепи. Поляризованный («полярный») конденсатор имеет внутреннюю полярность, что означает, что он может быть подключен только в одном направлении в цепи.

Какие бывают типы неполяризованных конденсаторов?

Типы неполяризованных конденсаторов:

  • Керамические конденсаторы
  • Серебряные слюдяные конденсаторы
  • Полистироловые конденсаторы
  • Полипропиленовые конденсаторы
  • Полиэфирные конденсаторы
  • Конденсаторы из поликарбоната
  • Стеклянные конденсаторы 9177 В чем разница между фиксированным и поляризованным конденсаторами?

    Электростатические конденсаторы неполярны, что означает, что они могут быть подключены с любой полярностью и не действуют.Электролитические конденсаторы по своей природе полярны. Их можно соединить только с фиксированной полярностью клемм. Были идентифицированы положительные и отрицательные клеммы.

    Какова функция поляризованного конденсатора?

    Они обеспечивают огромные значения емкости в крошечной и экономичной упаковке. Их основная функция — фильтровать источники питания (накопители). Они также используются для предотвращения постоянного тока в усилительных каскадах, когда они соединены вместе.Альтернативой является пленочный или керамический конденсатор, хотя они физически больше и не имеют высоких значений емкости.

    Как узнать, что конденсатор неполяризован?

    Отрицательный провод электролитических компонентов часто обозначается стрелками и знаками «-». Положительный результат отмечен на танталах. Колпачок не будет поляризован, если он керамический, монолитный, пленочный, полиэфирный или серебряная слюда.

    Почему предпочтительны неполяризованные конденсаторы?

    Хотя электролитические конденсаторы обладают большей емкостью, для большинства применений рекомендуются неполяризованные конденсаторы.Они менее дорогие, их можно направить в любом направлении и они имеют более длительный срок службы.

    Могу ли я заменить поляризованный конденсатор неполяризованным?

    Неполяризованные конденсаторы — это надмножества поляризованных конденсаторов. Как правило, поляризованный конденсатор можно заменить поляризованным или неполяризованным конденсатором с такой же емкостью и номинальным напряжением, равным или превышающим исходный.

    В чем разница между фиксированными и поляризованными конденсаторами?

    Электростатические конденсаторы неполярны, что означает, что они могут быть подключены с любой полярностью и не действуют.Электролитические конденсаторы по своей природе полярны. Их можно соединить только с фиксированной полярностью клемм. Были идентифицированы положительные и отрицательные клеммы.

    Для получения дополнительной информации о неполяризованных конденсаторах посмотрите это красивое видео.

    Что такое неполяризованный конденсатор

    Ⅰ I ntroduction

    Неполяризованный конденсатор является одним из многих конденсаторов. По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор.И эта статья подробно расскажет: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованными конденсаторами и неполяризованными конденсаторами? Давайте посмотрим.

    Поляризованный конденсатор против неполяризованного конденсатора

    Как проверить неполяризованный конденсатор?

    C atalog

    Ⅱ Conception

    Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности.Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в цепь и не будут протекать. В основном они используются в цепях связи, развязки, обратной связи, компенсации и колебания. На рисунке ниже показана справочная схема неполяризованного конденсатора.

    Рисунок 1. Конденсатор неполяризованный

    Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости используются некоторые специальные материалы и конструкции, что приводит к тому, что сами конденсаторы несколько поляризованы.Общие поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость. Сделать неполяризованный конденсатор большой емкости не так-то просто, потому что объем станет очень большим. Вот почему в реальной цепи так много поляризованных конденсаторов. Поскольку его размер невелик, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.

    Мы используем поляризованные конденсаторы, чтобы избежать их недостатков и использовать их преимущества.Мы можем понять это так: Поляризованный конденсатор на самом деле является конденсатором, который может использоваться только в одном направлении напряжения. Для неполяризованных конденсаторов можно использовать оба направления напряжения. Следовательно, с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Совершенно возможно заменить поляризованные конденсаторы неполяризованными конденсаторами, если емкость, рабочее напряжение, объем и т. Д. Могут соответствовать требованиям.


    Ⅲ Функция

    Неполяризованные конденсаторы применяются в цепях чистого переменного тока, и из-за их небольшой емкости их также можно применять для фильтрации высоких частот.Вот пример, иллюстрирующий применение конденсатора:

    В данном случае в основном используется RC-искрогаситель. Когда антенна принимает радио- и телепрограмму и в то же время включается люминесцентная лампа и мигает люминесцентная лампа, вы услышите нерегулярный звук радио или динамика телевизора. Многие сильные яркие линии и яркие пятна на экране телевизора — это высокочастотные помехи, вызванные электрическими искрами.

    При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рисунке 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах цепи возникает большая самоиндукция. катушка. Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U 1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение разрушит воздух и образует электрическую искру.

    Искра может вызвать абляцию и окисление контактов, что в конечном итоге приведет к неисправности. Поэтому важно исключить искру между контактами. При отключении цепи, пока ток управляющей катушки не падает, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет. Как показано на схеме справа внизу, RC-цепочка искрогасителя подключена к обоим концам индуктора. Когда переключатель внезапно выключается, i 1 заряжает конденсатор.Часть энергии магнитного поля в катушке индуктивности рассеивается на R и r, а часть преобразуется в энергию электрического поля в конденсаторе C, что вызывает повторный разряд конденсатора C, тем самым устраняя искру.

    Рисунок 2. Цепь с индуктивностью и цепью поглощения искры


    Ⅳ Как выбрать неполяризованные конденсаторы?

    Неполяризованные конденсаторы очень удобны в выборе и использовании.Вы можете напрямую выбрать конденсаторы той же модели и тех же технических характеристик. Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:

    1. Выберите конденсатор разумной точности. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость, примерно равную эталонной емкости. В колебательных схемах, схемах фильтрации, схемах задержки и схемах тонального сигнала абсолютное значение ошибки должно быть в пределах 0.3% -0,5%.

    2. Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для низкочастотной цепи байпаса переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях с высокой частотой или высоким напряжением.

    3. Конденсаторы могут быть выбраны с номинальным напряжением выше или равным фактическим потребностям.

    4. Конденсаторы высокой частоты нельзя заменить конденсаторами низкой частоты.

    5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

    6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но добавляемое к конденсатору напряжение должно быть меньше выдерживаемого напряжения конденсатора.


    Ⅴ Разница между неполяризованными конденсаторами и поляризованными конденсаторами

    Как поляризованные, так и неполяризованные конденсаторы имеют одинаковые принципы, то есть накопление и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться.

    Различные носители, разная производительность, разная емкость и разная структура приводят к разным условиям использования и использованию. И наоборот, с развитием науки и технологий и открытием новых материалов появятся более совершенные и разнообразные конденсаторы.

    Рисунок 3. Различные типы конденсаторов

    5.1 Другой диэлектрик

    Что такое диэлектрик? Другими словами, это вещество между двумя обкладками конденсатора.В большинстве конденсаторов полярности используются электролиты в качестве диэлектрика , благодаря чему конденсатор полярности имеет большую емкость, чем другие конденсаторы того же объема. Кроме того, поляризованные конденсаторы, произведенные из различных материалов и процессов электролита, будут иметь разную емкость.

    Между тем, выдерживаемое напряжение в основном связано с материалом диэлектрика. И есть также много неполяризованных материалов , включая наиболее широко используемые металлооксидные пленки и полиэстер, использование поляризованных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

    Рисунок 4. Неполяризованный конденсатор и поляризованный конденсатор

    5.2 Различная производительность

    Требованием использования являются производительность и максимизация спроса. Если в блоке питания телевизора используется металлооксидный пленочный конденсатор в качестве фильтра, и если для соответствия фильтру требуются емкость и выдерживаемое напряжение, я боюсь, что внутри корпуса можно установить только источник питания.

    Следовательно, в фильтре можно использовать только поляризованный конденсатор, а полярность емкости необратима.Как правило, электролитический конденсатор имеет емкость более 1 МФ, которая участвует в связи, развязке, фильтрации источника питания и т. Д. Неполяризованный конденсатор в основном имеет менее 1 MF, что участвует в резонансе, связи, выборе частоты, ограничении тока и т. Д. Конечно, существуют также неполяризованные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя, фазового сдвига мощности с преобразованием частоты и других целей. Есть много видов неполяризованных конденсаторов.

    Рисунок 5. Конденсаторы

    5.3 Различная емкость

    Как упоминалось ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.

    5.4 Другая конструкция

    В принципе, можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, а квадратные — редко. Конденсаторы имеют различную форму: трубчатые, деформированные прямоугольные, листовые, квадратные, круглые, комбинированные квадратные или круглые и т. Д., В зависимости от того, где они используются.Конечно, есть и невидимые конденсаторы, называемые распределенными конденсаторами, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.

    5.5 Различные условия использования и условия использования

    Из-за внутреннего материала и конструкции емкость полярных конденсаторов (таких как электролизный алюминий) может быть очень большой. Однако их высокочастотные характеристики не очень хороши, поэтому он хорошо подходит для силовых фильтров и других случаев. Есть также поляризованные конденсаторы с хорошими высокочастотными характеристиками — танталовые электролизеры, цена которых относительно высока.

    Включая керамические конденсаторы, монолитные конденсаторы, полиэтиленовые (CBB) конденсаторы и т. Д., Эти неполяризованные конденсаторы имеют небольшой размер, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. Керамические конденсаторы обычно используются в высокочастотной фильтрации и колебательном контуре.

    Рисунок 6. Конденсаторы разные

    Магнитные диэлектрические конденсаторы используют керамический материал в качестве мезона и используют слой серебра на поверхности в качестве электрода.Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для высокочастотных и высоковольтных цепей.

    Вообще говоря, по изоляционному материалу между двумя полюсами конденсатора. Материал с большой диэлектрической проницаемостью (например, сегнетоэлектрическая керамика, электролиты) подходит для конденсаторов большой емкости и небольшого объема, потери которых также велики. Материал с небольшой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

    Ⅵ FAQ

    1. Можно ли использовать неполяризованный конденсатор вместо поляризованного?

    Практически всегда можно заменить электролитический (полярный) конденсатор на электростатический (неполярный) того же номинала с необходимым номинальным напряжением. Однако обратное невозможно.

    2. В чем основное отличие полярного конденсатора от неполярного (кроме наличия или отсутствия полюсов)? Где мы их используем?

    Главное отличие в том, из чего они сделаны.Кстати, это также определяет, насколько они должны быть большими для данной емкости и сколько они стоят.

    Полярные конденсаторы также известны как электролитические конденсаторы, поскольку в качестве диэлектрика они используют электролит. Он обеспечивает чрезвычайно высокую емкость с небольшим током утечки в небольшом корпусе. Керамический конденсатор с эквивалентной емкостью должен быть очень и очень большим.

    Существует множество различных типов неполярных конденсаторов.Два самых распространенных из них, которые я видел, — это керамика и слюда. Керамика дешевая, слюда дороже, но я считаю, что слюдяные конденсаторы выдерживают более высокое напряжение. В целом они предлагают меньший ток утечки, чем электролитические, но также меньшую емкость в зависимости от размера. Основным преимуществом является то, что они сохраняют свою емкость при смещении в обоих направлениях.

    Электролитические конденсаторы полезны в местах, где напряжение никогда не изменит полярность на них при правильных условиях использования.Их высокая емкость означает, что их можно более эффективно использовать для фильтрации источника питания, уменьшения пульсаций в выпрямителе и смягчения включения / выключения.

    Но для развязки компонентов они не так хороши, потому что без очень хорошего смещения они получат обратное напряжение, а при обратном напряжении они ломаются, теряют свою емкость и утекают как сумасшедшие.

    Они также испускают «волшебный дым» при слишком высоком обратном смещении.Неполярные конденсаторы этого не делают.

    3. Что такое полярные и неполярные конденсаторы?

    Все электростатические конденсаторы могут быть подключены к цепям переменного или постоянного тока без привязки к любому соединению, маркированному для положительной или отрицательной полярности. Каким бы способом они ни были соединены, они обладают одинаковыми свойствами. Это неполярные конденсаторы.

    Электролитические конденсаторы имеют диэлектрик, сформированный в виде оксидного слоя на одном электроде за счет химического воздействия под действием тока в одном направлении.Пропускание тока в обратном направлении приведет к повреждению конденсатора.

    Поэтому клеммы электролитических конденсаторов имеют специальную маркировку с положительной и отрицательной полярностью (в большинстве случаев маркирована отрицательная клемма). Конденсаторы обязательно должны быть подключены в цепи с одинаковой соответствующей полярностью. Это полярные конденсаторы.

    4. Как узнать, что конденсатор неполяризован?

    В случае неполяризованного конденсатора подключите его в любом случае, поскольку они не имеют полярности.Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.

    5. Почему предпочтительны неполяризованные конденсаторы?

    Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

    6.Могу ли я заменить поляризованный конденсатор на неполяризованный?

    Неполяризованные конденсаторы — это надмножества поляризованных конденсаторов. … В общем, вы можете заменить поляризованный конденсатор поляризованным или неполяризованным конденсатором той же емкости и номинальным напряжением оригинала или выше.

    7. Можно ли подключить неполяризованный конденсатор к цепи постоянного тока?

    Неполяризованные конденсаторы можно подключать к цепям постоянного или переменного тока…. Ток может течь только во время зарядки или разрядки конденсатора.

    8. В чем разница между фиксированными и поляризованными конденсаторами?

    Электростатические конденсаторы неполярны, то есть их можно подключать с любой полярностью, и нет никакой разницы. Электролитические конденсаторы полярны по своей природе. Их можно подключать только с фиксированной полярностью клемм. Обозначены положительные и отрицательные клеммы.

    9.Какая польза от неполяризованного конденсатора?

    Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в схему и не будут протекать, в основном используются в схемах связи, развязки, обратной связи, компенсации и колебаний.

    10. Все ли электролитические конденсаторы поляризованы?

    Почти все электролитические конденсаторы поляризованы, а это означает, что напряжение на положительной клемме всегда должно быть больше, чем напряжение на отрицательной клемме…. Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока.


    Вам может понравиться:

    Как выбрать конденсатор

    Что такое коррекция коэффициента мощности (компенсация)

    Что такое технология распознавания лиц?

    Альтернативные модели

    Часть Сравнить Производителей Категория Описание
    ПроизводительНомер детали: Z0107MNT1G Сравнить: Текущая часть Производители: ON Semiconductor Категория: Триак диоды Описание: НА ПОЛУПРОВОДНИКЕ Z0107MNT1G Симистор, 600В, 1А, СОТ-223, 7мА, 1.3В, 1Вт
    Номер детали: BT134W-600D, 115 Сравнить: Z0107MNT1G VS BT134W-600D, 115 Изготовители: NXP Категория: Триак диоды Описание: NXP BT134W-600D, 115 симистор, 600 В, 1 А, SOT-223, 10 мА, 1.5В, 5Вт
    Номер детали для производителя: BT1308W-600D, 115 Сравнить: Z0107MNT1G VS BT1308W-600D, 115 Изготовители: NXP Категория: Триак диоды Описание: Тиристор TRIAC 600V 10A 4Pin (3 + Tab) SC-73 T / R
    ПроизводительНомер детали: L401E3 Сравнить: Z0107MNT1G VS L401E3 Производитель: Littelfuse Категория: Триак диоды Описание: Тиристор TRIAC 400V 20A 3Pin TO-92 Bulk Тиристор TRIAC 400V 20A 3Pin TO-92 Bulk

    Учебный курс Фрэнка

    Конденсаторы

    Конденсатор — это пассивный электронный компонент, который в основном состоит из двух параллельных металлических слоев, разделенных изолятор.Типы конденсаторов названы в честь этого диэлектрика. Мы используем конденсаторы с диэлектриками из керамика, слюда, полиэстер, тантал и др.
    Конденсаторы используются для блокировки или хранения напряжений и фильтрации сигналов.
    Конденсаторы всегда имеют два контакта. Некоторые биполярные, другие монополярные.
    Монополярные конденсаторы имеют два разных ведет, один положительный и один отрицательный.

    Конденсаторы разных форм и размеров.

    Монополярные конденсаторы обычно цилиндрические, а биполярные. имеют дисковую или прямоугольную форму.

    Единицы, значения и символы
    Буква формулы конденсаторов C.
    Обозначения конденсаторов на принципиальных схемах показаны ниже. Специально для электролитических конденсаторов несколько существуют разные символы.

    Неполярный конденсатор (слева) и три монополярных конденсатора.

    Конденсатор характеризуется емкостью, которая измеряется в фарадах (Ф).
    На практике это Ф, нФ, пФ.

    1,000 пФ = 1 нФ
    1,000 нФ = 1 Ф

    Неполяризованные конденсаторы
    Конденсаторы этого типа не имеют положительной и отрицательной клемм и могут устанавливаться в электронном блоке обоими способами. доска.
    Обычные неполяризованные конденсаторы изготавливаются из керамики, слюды или полипропилена. Керамические конденсаторы маленькие, дешевые и используются для высокочастотных приложений.
    Основная характеристика неполяризованных конденсаторов заключается в том, что они блокируют постоянный ток и пропускают переменный ток.Они также могут хранить напряжения на короткое время.
    Конденсаторы в электронике в основном используются в приложениях переменного тока, таких как фильтры сигналов и схемы синхронизации.
    В отличие от диэлектрика в поляризованных конденсаторах, диэлектрик в неполяризованных конденсаторах представляет собой твердый материал. что делает устройство прочным и надежным. Отказы такого типа случаются редко.

    Конденсаторы неполярные разные. Маленькие диски представляют собой керамические конденсаторы.

    Помимо конденсаторов постоянной емкости, существуют также конденсаторы переменной емкости.Но в больничном оборудовании они есть необычно.
    Поляризованные конденсаторы
    Некоторые конденсаторы, такие как электролитические и танталовые, поляризованы. У них есть два разных вывода, плюс (+) и минус (-). Это означает, что они должны быть правильно подключены. Отведения всегда четко обозначены.
    Поляризованные конденсаторы — это в основном электролитические конденсаторы. Конструкция цилиндрическая с присоединительным выводом на оба конца (осевые) для горизонтального монтажа или только с одной стороны (радиальные) для стоячего монтажного положения.
    Для меньших напряжений и емкостей часто используются поляризованные конденсаторы из тантала. Они меньше и Выглядит иначе. Они имеют каплевидную форму.

    Электролитические конденсаторы обладают очень высокой емкостью. Значение электролитических конденсаторов всегда составляет F.
    Электролитические конденсаторы всегда имеют маркировку с указанием их максимального рабочего напряжения. Напряжение на выводах никогда не должен превышать это значение.

    В отличие от неполяризованных конденсаторов электролит представляет собой жидкость. На практике этот факт является источником многих проблем.


    Всегда упоминается поляризация. Часто отмечается отрицательный (-) вывод. Конденсаторы

    доступны для вертикального и горизонтального монтажа.
    Вертикальный (или стоячий) монтаж еще называют радиальным.
    Горизонтальный (или прокладочный) монтаж еще называют осевым.

    Стандартные значения
    Как и в случае резисторов, доступные номиналы конденсаторов стандартизированы в серии E.Самая распространенная серия is E-12:

    10 12 15 18 22 27 33 39 47 56 68 82

    Пример: доступные конденсаторы: 33 пФ, 220 нФ, 0,68 Ф

    Электролитические конденсаторы имеют более высокий допуск. Они доступны только в градации E-6 или даже E-3.

    Пример: 10 Ф, 220 Ф, 4,700 Ф

    Напряжение
    Вторая важная характеристика конденсатора — это испытательное напряжение. Это максимальное напряжение конденсатора. может быть использован. Особенно это касается электролитических конденсаторов.

    Биполярные конденсаторы для электронных целей (низкое напряжение) часто не показывают испытательного напряжения, потому что напряжения для электронных плат намного меньше испытательного напряжения конденсаторов. Только для сетевого применения (например, 230 В) необходимо учитывать контрольное напряжение.


    Конденсатор сетевой. Здесь очень важно испытательное напряжение (275 В переменного тока).
    Допуск
    В дополнение к емкости и испытательному напряжению допустимое значение указано на корпусе прибора. конденсатор.Допуск обозначается одной буквой:

    Дж 5% K 10% M 20%

    Пример: конденсатор, на котором имеется следующий текст. корпус: 105 K 330 V
    имеет следующие характеристики:
    1 F (объяснение в следующей главе), допуск 10%, максимум напряжение 330 В.

    Обычно допуск электролитических конденсаторов выше, чем допуск неполярных конденсаторов. Допуски электролитических конденсаторов не важны, поэтому они не упоминаются на конденсаторах.Обычно допускаются 20% и более.

    Показания конденсатора
    Если вам повезет, на конденсаторе четко обозначены емкость и максимальное рабочее напряжение.

    47 означает 0,47 Ф или 470 нФ
    Дж означает допуск 5%
    63 — максимальное рабочее напряжение в В

    Часто чтение значений не очень четкое. Слишком много цифр и букв может сбить вас с толку. Всегда ищите числа из стандартных значений.

    Только цифра 10n наверху конденсатора указывает емкость: 10 нФ
    K означает допуск 10%, а 100, вероятно, означает испытательное напряжение.
    1829 или 93 или 30 не являются числами стандартных значений. Они могут означать все, но не ценность.

    Считывание значения часто бывает непростым, потому что блоки, специально предназначенные для биполярных конденсаторов, не работают. часто отсутствует. В принципе, тогда значение означает F.

    Значение 0,33 означает 0,33 F или 330 нФ

    Различаются только керамические (дисковые) конденсаторы. Поскольку их значение всегда очень мало, теперь это значение означает пФ.

    Керамический конденсатор без блока. 27 в данном случае означает 27 пФ.

    Чтобы сделать его более запутанным, иногда значение выражается в виде трехзначного цифрового кода, особенно на керамических изделиях. конденсаторы.Первые две цифры являются основанием значения, а третье число указывает множитель или проще говоря, количество нулей.

    Еще один керамический конденсатор без блока. Опять же, единица измерения должна быть пФ.
    47 выражает часть стоимости (серия E) а 3 — количество нулей значения.
    Этот конденсатор имеет емкость 47 000 пФ или 47 нФ.


    683 K означает
    68 (3x 0) = 68 -000- пФ или 68 нФ
    с допуском 10%

    Пример: 102 = 10 00 = 1000 пФ или 1 нФ
    224 = 22 0000 = 220 000 пФ или 220 нФ или 0.22 Ф
    471 = 47 0 = 470 пФ

    Упражнение: Каковы следующие характеристики конденсаторы имеются ввиду?
    (Чтобы увидеть ответ, просто пространство за значениями)

    104 K 50V 0,1F, 10%, 50 В
    473 M 100 В 47 нФ, 20%, 100 В
    68 К 50 В 68пФ, 10%, 50В

    Для электролитических конденсаторов нагляднее. Значение всегда F, и это также всегда упоминается.
    Поляризация также всегда четко указана.


    Емкость и напряжение четко указаны на электролитических конденсаторах.

    1000 F
    25 V
    (-) штифт опущен

    Комбинации
    Подобно резисторам, несколько конденсаторов могут быть подключены параллельно или последовательно. Но в отличие от резисторов мощность последовательно уменьшается, а мощность параллельна больше.

    Конденсаторы последовательно.Емкость становится меньше, но испытательное напряжение становится больше.

    Наиболее распространенная комбинация: конденсаторы, включенные параллельно. Емкость можно просто добавить. Емкость получает больше. Контрольное напряжение остается прежним.

    На практике иногда бывает полезна параллельная комбинация: необходимого вам конденсатора нет, кроме двух меньшая емкость. Емкости просто складываются.Испытательное напряжение каждого конденсатора должно быть таким же высоким (или выше), как оригинал.

    Пример: требуется конденсатор 1000 Ф / 25 В, но его нет в наличии. Но есть два конденсатора по
    470 Ф / 50В. Параллельно значение будет 940 F, что примерно на 6% на
    меньше оригинала. Поскольку допуски 20% обычно можно использовать эту комбинацию
    . Это решение даже лучше чем оригинал, из-за более высокого испытательного напряжения
    .

    Приложения
    Две основные характеристики конденсаторов — это хранение напряжений и фильтрация.
    DC-Applications: хранилище
    Хранение напряжения — типичное применение постоянного тока. В конденсаторе некоторое время сохраняется постоянное напряжение. Время Хранение зависит от емкости и может составлять миллисекунды или несколько секунд. Типичное применение — источники питания. где конденсаторы буферизируют напряжение постоянного тока, чтобы поддерживать его стабильность, и схемы таймера, где конденсаторы определяют переключение время.

    Для накопителей напряжения конденсатор заземлен (всегда вертикально). После при выключении постоянное напряжение медленно падает.

    Время хранения зависит от емкости. Чем больше емкость, тем дольше время. Для хранения или буферизации используются поляризованные электролитические конденсаторы большой емкости.

    После выключения светодиод медленно гаснет.Чем больше емкость, тем медленнее время.

    В источниках питания для буферизации и сглаживания напряжения используются электролиты с высокой емкостью. Конденсаторы очищают постоянное напряжение от колебаний и неровностей.

    Это часть источника питания пульсоксиметра.
    Устройство в центре — микросхема стабилизатора напряжения. Входное и выходное напряжение фильтруются конденсаторы.
    Применение переменного тока: фильтрация
    Конденсатор развязки — это конденсатор, используемый для отделения одной части электронного каскада от другой.То есть это важно, потому что разные (аналоговые) ступени работают от разных напряжений постоянного тока. Ступени должны быть разделены по постоянному току. Постоянный ток должен быть заблокирован, но сигнал переменного тока должен пройти. Конденсатор отфильтровывает переменную часть сигнала.
    На схемах развязывающие конденсаторы обычно рисуются горизонтально. Направление сигнала слева направо. (слева = вход, справа = выход).

    А конденсатор блокирует прохождение постоянного тока.
    Напряжение постоянного тока на одной стороне, поскольку на другой стороне конденсатора постоянное напряжение отсутствует.


    переменного тока может проходить через конденсатор. Потери (сопротивление переменному току) зависят от емкости и частоты. AC-сигнала.

    В электронике сигналы переменного тока (звуки, биения сердца, видеоизображения …) очень часто должны быть усилены или преобразованы. Электронным ступеням нужна мощность питание (постоянный ток) для работы. Во время процесса сигнал переменного тока и напряжение постоянного тока накладываются друг на друга.Конденсаторы нужны для разделить каскады по постоянному току и подключить каскады по переменному току.

    Это небольшой предварительный усилитель.
    Микрофону необходимо определенное напряжение постоянного тока, а также транзистор. Напряжения постоянного тока должны быть развязаны, но микрофонный сигнал (AC) должен пройти. C1 выполняет эту работу. Также конденсатор C2 выводит выходной сигнал на следующий этап без постоянного напряжения. Ступени связаны по переменному току и изолированы по постоянному току.
    Тестирование
    Измеритель емкости — это электронное испытательное оборудование, используемое для измерения конденсаторов.Элитный цифровой мультиметр часто содержат функцию измерения емкости. Но на практике функция измерения емкости не работает. действительно необходимо, потому что дефекты на конденсаторах обычно видны.
    При измерении электролитических конденсаторов имейте в виду, что они имеют плохие допуски.
    Допуски 20% являются общими.

    Если у вас нет измерителя емкости, работу электролитических конденсаторов можно проверить, подключив и отключение напряжения и измерение накопленного напряжения с помощью вольтметра.В зависимости от емкости напряжение упадет более-менее быстро.
    С помощью какого-нибудь мультиметра вы можете включить диапазон Ω для зарядки конденсатора (с помощью внутренней батареи), а затем переключитесь на диапазон V, чтобы увидеть падение напряжения.

    Устранение неисправностей
    Большинство проблем с конденсаторами происходит из-за электролитических конденсаторов. Биполярные конденсаторы в электронике доски обычно служат вечно.

    Причины неисправности электролитических конденсаторов — утечки, нагрев и низкое качество изготовления.Очень часто самое дешевое качество используется с испытательными напряжениями, очень близкими к рабочему напряжению. Через некоторое время работы над ограничить конденсаторы становятся поврежденными. Электролитические конденсаторы могут протечь, треснуть или даже взорваться. В большинстве случаев дефект виден. Необычно то, что электролитические конденсаторы теряют емкость без каких-либо признаков повреждения.

    Эту потерю емкости часто трудно обнаружить. Ток не становится больше, предохранители не срабатывают и ничего не греется.Оборудование вроде как-то работает, но не корректно. Напряжения не буферизуются, сигналы — нет. могут появиться фильтрованные и другие странные эффекты.

    Причина неисправности — электролит внутри конденсатора. Часто конденсатор не герметичен. и конденсатор протекает. Диэлектрическая жидкость также может испаряться при высокой температуре, может создавать давление. на корпусе конденсатора и заставляет конденсатор разбухать или даже взорваться.

    Утечка электролита также может вызвать коррозию печатной платы, на которой установлен конденсатор.Искать коррозии, очистите плату и замените места пайки.


    Дефекты электролитических конденсаторов обычно заметны. Здесь тело лопается и диэлектрик выходит наружу.


    Для предотвращения взрыва электролитические конденсаторы имеют перфорацию для выхода газов или диэлектрика. жидкость при выходе из строя.

    При замене конденсатора имейте в виду следующее:

    Убедитесь, что полярность правильная.
    Электролитические конденсаторы сохраняют напряжение в течение длительного времени. Разрядите электролитические конденсаторы.
    , коротко замкнув два клеммных провода. Конденсаторы высокого напряжения следует укоротить на резистор
    Ом (например, 1 кОм). Проверьте напряжение с помощью мультиметра.
    Выбирайте конденсаторы с максимально высоким испытательным напряжением. или лучше выше оригинала.

    Цены
    Дефекты неполяризованных конденсаторов встречаются редко. Нет необходимости иметь их на складе. Но немного электролитического конденсаторы должны быть в наличии в каждой мастерской.
    Вот типичные цены на конденсаторы в Европе:
    Керамика 0,10 €
    МКС 630В 0,20 €
    Конденсатор SMD 0,30 €
    Тантал 10 F / 25V 0,30 €
    Электролитический 10 F / 40 В 0,20 €
    Электролитический 1000 F / 40 В 0.80 €
    Электролитический 4700 F / 63 В 4.00 €
    Источники и дополнительная информация
    Конденсаторы: http://en.wikipedia.org/wiki/Конденсаторы
    Типы: http://en.wikipedia.org/wiki/Types_of_capacitor
    Электролитические конденсаторы: http://en.wikipedia.org/wiki/Electrolytic_capacitor
    Приложения: http://en.wikipedia.org/wiki/Applications_of_capacitors
    Дефекты: http://en.wikipedia.org/wiki/Capacitor_plague

    В чем разница между полярным и неполярным конденсатором? — Sluiceartfair.com

    В чем разница между полярным и неполярным конденсатором?

    Популярные ответы (1) Неполяризованный («неполярный») конденсатор — это тип конденсатора, который не имеет подразумеваемой полярности — он может быть подключен любым способом в цепи. Поляризованный («полярный») конденсатор — это тип конденсатора, который имеет неявную полярность — он может быть подключен только одним способом в цепи.

    Можно ли в цепи объяснить неполяризованный конденсатор поляризованным конденсатором?

    Для неполяризованных конденсаторов можно использовать оба направления напряжения.Следовательно, с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Совершенно возможно заменить поляризованные конденсаторы неполяризованными конденсаторами в зависимости от емкости, рабочего напряжения, объема и т. Д.

    Можно ли использовать неполярный конденсатор в полярном корпусе?

    При подаче напряжения конденсатор правильной полярности получает полное напряжение. В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателей вторая анодная фольга заменяет катодную фольгу, чтобы получить неполярный конденсатор в единственном случае.

    Полярность конденсатора положительная или отрицательная?

    Как и другие компоненты на печатной плате, полярность конденсатора будет иметь различную полярность, как положительную, так и отрицательную. Это помогает понять, как определить полярность конденсатора, даже если вы строите схему с нуля. Однако не все конденсаторы имеют полярность, а у тех, у которых есть одна хитрость в рукаве.

    Зачем нужен поляризованный конденсатор в звуковой цепи?

    Если вы используете поляризованный конденсатор, то знак + необходимо подключить к более положительному узлу в цепи.Если вы используете неполяризованный конденсатор, то полярность, очевидно, не имеет значения.

    Может ли электролитический конденсатор выдержать обратное смещение?

    Электролитик может выдерживать обратное смещение в течение короткого периода времени, но будет проводить значительный ток и не работать как очень хороший конденсатор. — Википедия: электролитический конденсатор Однако, когда у вас есть два соединенных спина к спине, конденсатор с прямым смещением предотвращает протекание длительного постоянного тока.

    Понимание полярности для бесшовной установки

    Как и другие компоненты на печатной плате, полярность конденсатора будет иметь различную полярность, как положительную, так и отрицательную.Это помогает понять, как определить полярность конденсатора, даже если вы строите схему с нуля. Однако не все конденсаторы имеют полярность, а у тех, у которых есть одна хитрость в рукаве.

    Прежде всего, полярность работает так, чтобы только одна клемма действовала на подаваемое напряжение. Чтобы иметь преимущество при подключении полярности конденсаторов, эта статья поможет вам больше узнать об этом. Дойдя до конца, вы должны лучше понять, почему так важно знать полярность конденсатора.

    1.Что такое полярность конденсатора?

    Конденсатор состоит из параллельных тонких металлических листов, разделенных диэлектрическим материалом. Два тонких металлических листа работают как электроды, а диэлектрик — изолятор. Изоляция жизненно важна, потому что она действует как перегородка между электродами. Стандартный символ конденсатора — четкое изображение этой внутренней структуры.

    Диэлектрик может быть резиновым, бумажным, керамическим или стеклянным. С другой стороны, тонкие металлические листы состоят из тантала, алюминия или серебра.Углеродные нанотрубки иногда являются лучшим вариантом из-за их лучшей проводимости. Изначально полярность конденсатора является доказательством симметрии конденсатора. Но сначала вы должны знать, как работает баланс.

    Неполяризованный конденсатор по-прежнему будет работать должным образом, независимо от того, как вы подключите его к своей цепи. Неважно, какой свинец куда идет. Это явный случай несимметрии. С другой стороны, полярный конденсатор очень чувствителен при его размещении на печатной плате. Часто конденсатор имеет две клеммы, хотя вы можете увидеть у некоторых и больше.

    Поляризованный конденсатор работает, только если размещение соответствует жизненно важным правилам контура. Это означает, что размещение элемента в цепи должно происходить в одном направлении. Неправильная установка конденсатора приведет к катастрофе.

    Конденсатор может перегореть или выйти из строя. Следовательно, конденсатор должен быть в вашем списке проблем при построении схемы. Если вы хотите выполнить сварку на печатных платах или схемах сборки макетов, этот метод является наиболее точным.

    2. Как определить полярность конденсатора

    Когда дело доходит до полярности конденсатора, есть много способов определить полярность. Довольно часто различия в отметках полярности зависят от того, из какого материала изготовлен корпус конденсатора. Например, электролитные конденсаторы имеют полосы, которые показывают катодный конец.

    С другой стороны, конденсаторы с осевыми выводами имеют стрелки, которые показывают вывод, где находится катодный конец.Другой способ определить полярность конденсатора — проанализировать выводы. В этом случае более длинный вывод — это конец анода, а короткий — конец катода. Однако с конденсаторами такого типа следует проявлять особую осторожность, особенно если они бывшие в употреблении.

    В любом случае выводы, вероятно, укорачиваются, и трудно различить полярность каждого конца. Некоторые конденсаторы, особенно танталовые, имеют знаки + и — для обозначения концов анода и катода. С другой стороны, другие будут иметь отметки «BP» и «NP», чтобы показать, что конденсатор неполярный.

    К этим типам конденсаторов относятся бумажные, керамические, пленочные и полистирольные конденсаторы. Перед установкой конденсатора на печатную плату крайне важно правильно определить полярность конденсатора. Если что-то пойдет не так, конденсатор может не работать и может взорваться, разрушив всю цепь.

    (электролитический конденсатор)

    Определение полярности диода

    Обычно существует три наиболее распространенных типа диодов; пластиковые, стеклянные и стержневые диоды.Отображение полярности на этих диодах отличается незначительно. В пластиковом диоде белая полоса на одном конце показывает противоречие диода. Для стеклянного диода полоса черная. В этом случае будущее, близкое к полосе, противоположное.

    Этот контур означает, что положительный ток будет течь на этот конец от положительного вывода, самого дальнего по полосе. Как и в случае с любым диодом, ветер не может двигаться в обратном направлении. На схематическом чертеже всегда будет буква «Т», обозначающая полосу. Он также может иметь маркировку «+» и «-» для обозначения концов анода и катода.

    Наконец, для диода-шпильки конец с отметками резьбы показывает катод или противоположный конец. Таким образом, припаянный конец является анодом. Диод часто имеет этикетку на корпусе, но иногда вам, возможно, придется использовать увеличительное стекло, чтобы увидеть его.

    (полупроводниковый диод)

    Идентификация полярности светодиода

    Знать полярность светодиода очень просто. Эти единицы могут быть красными, белыми или зелеными.Все зависит от того, что вы предпочитаете. Стандартный светодиод будет иметь два вывода, один из которых длиннее другого. Как и полярность конденсатора, более полная информация — это положительный конец, а это означает, что более короткая информация вредна.

    (красный светодиод)

    Идентификация транзистора

    Выбрать транзистор очень просто из-за его маркировки. У них будет номер модели, нанесенный на корпус, вместо ожидаемого значения.Самое главное, что очертание будет отличаться в зависимости от модели.

    Такой подход позволяет легко их идентифицировать, даже если у потенциальных клиентов другие имена. Форма транзистора всегда должна совпадать с формой на вашей печатной плате.

    Интегральные схемы (ИС)

    Точно так же номер модели присутствует на корпусе ИС, как и на транзисторе. У них также есть номер партии, который не всегда имеет какое-либо существенное значение при компоновке вашей схемы.Производитель может выбрать представление ориентации стандартной ИС несколькими способами.

    Во-первых, на ИС может быть точка рядом с первым выводом, обозначенная «1». Во-вторых, он может иметь выемку на одной из частей своей конструкции. Эта выемка может присутствовать между первым и восьмым штифтом. Вы также найдете эту выемку на своей печатной плате.

    (14-контактная ИС)

    3. Некоторые конденсаторы не имеют полярности

    В идеале есть два типа конденсаторов; полярные и неполярные конденсаторы.Полярные конденсаторы имеют один или оба отрицательных и положительных конца. Напротив, неполярные конденсаторы не имеют четкой партии. Вы можете произвольно вставлять эти конденсаторы в свою печатную плату, не учитывая, какая партия куда идет.

    Даже в этом случае не будет никакого неблагоприятного воздействия на вашу схему или выхода из строя ваших компонентов. Эти конструкции хорошо знакомы со схемами связи и развязки, колебательными схемами, компенсационными схемами и схемами обратной связи. В идеальном случае в конденсаторе не должно быть полярности.Однако это непрактично, в основном там, где важна большая емкость.

    В этом случае корпус устройства выполнен из уникальных материалов. В конечном счете, это причина того, что они имеют различную полярность конденсатора. Яркими примерами таких полярных конденсаторов являются танталовые электролитические конденсаторы, электролит и алюминиевые конденсаторы. Неполярные конденсаторы часто бывают небольшого размера, поскольку большие из них сложно изготовить.

    С одной стороны, полярные конденсаторы могут работать только в цепи, где напряжение действует в одном направлении, т.е.е., постоянное напряжение. Однако неполярные конденсаторы могут работать даже с переменным напряжением, когда напряжение работает с обеих сторон.

    По этой причине неполярные конденсаторы имеют лучший край из-за их способности работать с переменным напряжением. Поскольку полярность конденсатора не является проблемой, неполярные конденсаторы могут заменить полярные конденсаторы в цепи. Единственное правило здесь — убедиться, что значения рабочего напряжения и емкости совпадают.

    (неполяризованные конденсаторы)

    3.1 Типы неполяризованных конденсаторов

    Вот наиболее распространенные примеры неполяризованных конденсаторов:

    • Конденсаторы полиэфирные
    • Стеклянные конденсаторы
    • Пленочные конденсаторы
    • Конденсаторы полистирольные
    • Слюдяные серебряные конденсаторы
    • конденсаторы керамические

    3.2 Сравнение неполяризованных конденсаторов и поляризованных конденсаторов

    Идея работы как неполярных, так и полярных конденсаторов одинакова.Как правило, все они работают, чтобы накапливать и выделять электрическую энергию. Следовательно, уровни напряжения не могут внезапно измениться.

    При сравнении элементов с полярностью конденсатора и элементов, у которых нет полярности, заметны очевидные различия. Ниже приведены некоторые различия между неполярными и полярными конденсаторами.

    Конденсаторы

    Polar содержат электролиты в качестве первичного диэлектрика, что помогает достичь высокой емкости. Диэлектрик в структуре в основном определяет возможную емкость.

    Он также устанавливает уровень напряжения, которое выдерживает конденсатор. С другой стороны, те, у кого нет полярности, используют слой оксида металла в качестве диэлектрического вещества. Полиэстер — еще одно соединение, которое может работать как диэлектрик.

    Производительность любого электрического компонента — это то, что в конечном итоге показывает точность вашей схемы. Вы можете обнаружить, что некоторые блоки питания нуждаются в диэлектрическом конденсаторе из оксида металла в качестве фильтра. В таком случае лучшим вариантом будет полярный конденсатор, часто более 1 MF.

    Благодаря своим характеристикам он идеально подходит для фильтрации, связывания и развязки. Для сравнения, неполярный конденсатор обычно меньше 1 MF. Его характеристики делают его идеальным выбором для выбора частоты, резонанса и в качестве ограничителя тока. Таким образом, из-за отсутствия полярности конденсатора это устройство имеет ограничение, когда дело доходит до других функций схемы.

    Так как в неполярных и полярных конденсаторах используются разные диэлектрические структуры; их возможности не могут быть одинаковыми. Неважно, если у них одинаковые объемы.Следовательно, противоположный блок может иметь более высокую емкость, чем неполярный.

    Полярность конденсатора часто определяет форму конденсатора. Основным фактором здесь является точечный разряд элемента. Что касается полярных конденсаторов с электролитом, вы обнаружите, что большинство из них имеют круглую форму. Квадратные встречаются довольно редко. В зависимости от того, как вы собираетесь использовать его в цепи, конденсатор может быть прямоугольным, трубчатым, листовым или круглым.

    Как упоминалось ранее, полярные конденсаторы могут иметь высокую емкость и другие элементы, которые делают их непригодными для высокочастотных операций.Хотя некоторые из них могут работать с высокими частотами, например танталовые конденсаторы, они, в свою очередь, могут быть довольно дорогими.

    С другой стороны, неполярные конденсаторы имеют хорошие высокочастотные характеристики и намного меньше по размеру. Они относительно дешевы, но не идеальны для задач большой емкости.

    (конденсатор, установленный в гибридном фильтре нижних и верхних частот)

    4.Полярность электролитического конденсатора

    • Алюминиевые электролитические конденсаторы. Эти типы электролитических конденсаторов имеют алюминиевую структуру, действующую как клапан.После подачи положительного напряжения через жидкость-электролит образуется слой оксида металла. Этот оксидный слой теперь является изолятором, заменяющим диэлектрик.

    Поляризация происходит на оксидном слое, препятствуя прохождению электрического заряда. В алюминиевых электролитических конденсаторах в качестве катода используется диоксид марганца, а в качестве анода — алюминий.

    (алюминиевый электролитический конденсатор)

    • Ниобиевые и танталовые конденсаторы Танталовые электролитические конденсаторы идеально подходят для устройств поверхностного монтажа, более распространенных в медицине, военном деле и космосе.При использовании тантала в качестве анода окисление происходит относительно легко, как в случае с алюминиевыми электролитическими конденсаторами. Тантал обладает высокой проводимостью, особенно при контакте с проволокой. Как только на поверхности образуется оксид, появляется больше места для хранения заряда.

    Ниобиевые конденсаторы работают за счет окисления материала в проводе с образованием изолятора. Изолятор действует как диэлектрик с гораздо более высокой диэлектрической проницаемостью по сравнению с конденсаторами на основе тантала. Сейчас они довольно популярны, так как дешевле, чем их танталовые аналоги.

    4.1 Преимущества электролитических конденсаторов

    • Электролитические конденсаторы основаны на формировании оксидного слоя в зависимости от полярности конденсатора. Оксид — гораздо более надежный диэлектрик со стимулирующими эффектами. По этой причине эти блоки могут достигать более высокого уровня емкости, чем другие конденсаторы. Вот некоторые из других преимуществ.
    • Типоразмер
    • Танталовые конденсаторы — самые популярные конденсаторы. Остальные типы склонны к газовым пробоям.Возможная емкость выше по сравнению с устройствами без электролита. Неэлектролитные конденсаторы должны быть большего размера для достижения той же емкости.
    • Greater Capacitance — Что касается объема, электролитные конденсаторы могут обеспечить высокую емкость для небольших работ. Таким образом, существует очень мало неэлектролитных конденсаторов с емкостью более десяти MFD.

    4.2 Каковы недостатки?

    Когда дело доходит до электролитических конденсаторов, всегда существует риск утечки тока.Утечка иногда может быть относительно высокой. У них также гораздо более короткая продолжительность жизни.

    4.3 Применение электролитических конденсаторов

    Поскольку полярность конденсатора является решающим фактором в электролитических конденсаторах, их использование требует большой осторожности. Неправильное размещение означает, что вы не получите точных результатов и можете вызвать взрыв устройства. Они также довольно чувствительны к температуре, поэтому необходимо учитывать температурные условия.e

    Эти конденсаторы идеальны для уменьшения пульсаций напряжения от источника питания из-за их фильтрующих свойств. Они также наиболее предпочтительны в задачах, требующих большой емкости, таких как фильтрация высокочастотных сигналов.

    5. Что происходит после изменения полярности конденсатора?

    Полярность конденсатора показывает, что полярный конденсатор должен быть смещен в прямом направлении. На анодном выводе должно быть высокое напряжение, чтобы заряд протекал должным образом.Вы можете сначала проверить устройство, чтобы увидеть разные полярности перед подключением.

    Если вы случайно подключите блок из-за обратной полярности, диэлектрик сломается. В результате происходит короткое замыкание, вызывающее перегрев конденсатора и, в конечном итоге, утечку электролита.

    (обозначение цепи неполяризованного конденсатора)

    Резюме:

    В любом случае, вы должны знать, как показать полярность конденсатора, прежде чем размещать блок на печатной плате.В этом подходе есть разница между плохими результатами и функциональной надежной схемой.

    Вот почему полярность конденсатора играет огромную роль при производстве, сборке и проектировании печатной платы. Здесь, в OurPCB, мы всегда рады возможности пообщаться с вами, поскольку мы получаем больше знаний о печатных платах.

    НП-3.3 / 50-5 | Электролитический неполярный конденсатор 3,3 мкФ / 50 В

    Артикул: НП-3.3 / 50-5


    Для использования в кроссоверах динамиков.


    Стоимость

    1,40 долл. США цена
    1 канадский доллар.19 10–24 (скидка 15%)
    1,05 канадского доллара 25 + (скидка 25%)

    ORCA Неполярный конденсатор 1700uF 16V, 24,99 €

    ORCA Неполярный конденсатор 1700uF 16V

    24,99 €

    в том числе НДС 19%., плюс

    Рекомендуемая розничная цена : 24,99 €

    8 Есть в наличии

    Срок доставки : 2-3 рабочих дня

    Категория: Новые продукты 06-2021

    Другие покупатели также купили следующие товары

    Это лишь небольшая часть нашей продукции

    130 В наличии

    Срок доставки: 2-3 рабочих дня

    72 В наличии

    Срок доставки: 2-3 рабочих дня

    32 Есть в наличии

    Срок доставки: 2-3 рабочих дня

    13 Есть в наличии

    Срок доставки: 2-3 рабочих дня

    43 Есть в наличии

    Срок доставки: 2-3 рабочих дня

    .
Разное

Добавить комментарий

Ваш адрес email не будет опубликован.