ток или напряжение, и почему это происходит?
Опасность электричества не миф, хуже того, несмотря на всеобщую осведомленность об этом факте, практически каждый человек может сказать, что ему доводилось при каких-то обстоятельствах ощутить на собственной шкуре электрический удар. Исход подобного воздействия не обязательно плачевен, однако, опасность летального исхода – это неотъемлемый спутник халатного обращения с электричеством.
Именно поэтому на электроустановках устанавливают предупреждающие плакаты, например, «Высокое напряжение! Опасно для жизни!» или «Не влезай! Убьет!». В связи с чем у многих возникает путаница, что убивает ток или напряжение, чего же им стоит опасаться.
В чем отличие между током и напряжением?
Если рассмотреть физический процесс, то электрическая энергия имеет множество различных характеристик, среди которых наиболее часто рассматриваются напряжение и ток. Сразу заметим, что это не одно и то же, но обе они взаимосвязаны.
В каждом веществе присутствует несчетное количество мельчайших атомов, в которых происходит электромагнитное взаимодействие между положительно заряженным ядром и отрицательно заряженными электронами, вращающимися вокруг ядра. В нормальном состоянии элементарные частицы находятся в балансе – заряд ядра полностью скомпенсирован зарядами электронов. Но, воздействие электромагнитного поля на атомы приводит наиболее удаленные электроны в движение, и атомы выходят из равновесия – получают определенный заряд.
Рис. 1. Строение атомаПод напряжением следует понимать разницу между двумя зарядами – в одной точке энергии больше, а в другой меньше. Можно провести аналогию с сообщающимися сосудами, если воды в одной трубке больше, а во второй меньше, то при их соединении вода из первой будет перетекать во вторую. Так же и с напряжением – потенциально в каждой точке имеется определенный заряд энергии, созданный электромагнитным полем, но до тех пор, пока эти точки не соединятся электрической цепью, заряженные частицы не начнут направленного движения.
Но, с появлением связующей цепи, напряжение между двумя точками приведет к направленному движению заряженных частиц. Это явление получило название электрического тока.
В зависимости от особенностей источника электрической энергии напряжение и ток могут носить:
- постоянный характер – не зависимо от наличия или отсутствия нагрузки, величина напряжения не меняется, относится к источникам неограниченной мощности;
- изменяться в зависимости от величины нагрузки – относятся к источника с ограниченной мощностью, где величина питающего напряжения снижается при замыкании цепи;
- временный – при подключении нагрузки к источнику питания заряд полностью рассеивается через короткий промежуток времени, это конденсаторы, в некоторых ситуациях наведенное напряжение.
Поэтому ток не может протекать без наличия напряжения на участке цепи, но именно ток определяет интенсивность воздействия электрической энергии на человека.
Воздействие тока и напряжения на организм
Чтобы определить степень воздействия на человека, следует отметить, что тело представляет собой проводник электрической энергии, через который может свободно протекать электрический ток. Однако, согласно закону Ома, сила тока на любом участке электрической цепи прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна сопротивлению:
I = U/R;
где
- I – сила тока;
- U – величина приложенного напряжения;
- R – сопротивление тела человека.
Как можно судить из вышеприведенного выражения, чем больше омическое сопротивление, тем меньше ток, протекающий через человека. Напряжение электрической сети – величина постоянная и мало зависящая от того, что к ней подключено.
А вот на сопротивление человека влияют многие факторы:
- состояние кожных покровов в местах прикосновения к токоведущим частям;
- увлажненность кожи;
- общее физиологическое состояние организма;
- состав крови.
Помимо этого прохождение тока будет зависеть и от состава напольного покрытия, если цепь замкнется через ноги. В среднем, сопротивление человека принимается равным 1000 Ом, сухая кожа может иметь сопротивление в 100 000 Ом, но рассчитывать на такой показатель не стоит. Если рассмотреть ситуацию, когда 220 вольт приложено к человеку с сопротивлением 1000 Ом, то удар током достигнет 0,22А или 220 мА, а это опасная величина.
Чтобы представлять себе всю картину, нужно знать следующее:
- при 1 – 10 мА удар электрическим током не ощущается, человек свободно отпустит токоведущий элемент без угрозы для собственной жизни;
- от 15 – 50 мА воздействие электричества вызывает сокращения мышц и болезненные ощущения, самостоятельное освобождение человека может оказаться затруднительным;
- от 50 – 100 мА воздействие электрического тока затрагивает сердце, поэтому становится опасным для жизни;
- от 100 – 200 мА поражение электрической энергией может нанести летальный урон организму.
Вышеприведенные данные справедливы для переменного тока частотой 50 Гц, это обуславливается наличием амплитудных составляющих и пикового значения, как в положительную, так и в отрицательную сторону. При постоянном токе опасное для жизни значение считается от 300 мА и выше.
Более детально о воздействии электрического тока на организм человека было изложено в нашей статье: https://www.asutpp.ru/dejstvie-elektricheskogo-toka-na-organizm-cheloveka.html
Подводя итоги
Как видите, токовая составляющая, воздействующая на человека, и определяет, какие ситуации считаются опасными, а какие нет. Но, в то же время, без разности потенциалов электрический ток вообще протекать через человека не будет. Прямой тому пример – выполнение работ под напряжением, когда человек свободно касается проводов, а смертельно опасное электричество его не бьет. Проблема решается изолирующей вставкой между землей и ногами человека, которая разрывает электрическую цепь.
Помимо этого существует целый разряд электроустановок, которые относятся к безопасным за счет питания низким напряжением. Так, потенциально безопасными можно назвать уровни не более 42 В переменного и 100 В постоянного, а все остальные относятся к опасному или высокому напряжению. Но не испытывайте судьбу, лучше перестраховаться и воспользоваться средствами индивидуальной защиты, а в любой непонятной ситуации воздержаться от взаимодействия с электроустановкой, оборванными проводами или корпусом поломанного бытового прибора, включенного в сеть.
Видео пояснение
youtube.com/embed/S0trBxmQqok?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Электрическое напряжение: объяснение простыми словами
Электрическое напряжение: объяснение простыми словами
Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.
Что такое разность потенциалов?
Для начала проанализируем рисунок:
В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.
Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?
Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.
Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.
Что такое электродвижущая сила?
Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.
Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.
При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.
На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.
Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта.
Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.
Мощность=Напряжение*ток (Р=U*I)
Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.
Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0. 2 Вольта были направлены именно сюда.
Резюме
Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.
Рассмотрим еще один пример
Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.
Ток зависит от напряжения
Закон Ома:
Исходя из приведенной формулы следует: ток является прямо пропорциональным напряжению и обратно пропорциональным сопротивлению. Иными словами, чем больше величина электрического тока, тем больше напряжение, и наоборот.
Формула напряжения тока. Найти электрическое напряжение, разность потенциалов.
Как известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.
Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).
Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.
Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.
Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.
Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».
В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.
P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.
разница между током и напряжением
Ток и напряжение два основных элемента электричества, необходимые для того, чтобы электроэнергия обеспечивала работу какой-либо системы и превращалась в другую форму, о которых все думают, что им все известно, хотя можно сказать, никому ничего не известно и являющиеся незаменимыми частями нашей жизни.
Разница между током и напряжением;
ЧТО ТАКОЕ ТОК?
Электрический ток как технический термин — число электронов, проходящих через проводник в единицу времени. Чем больше электронов тока проходит через единицу во времени, тем интенсивнее ток. Один ампер соответствует примерно 6,24 × 1018 электронов.
ЧТО ТАКОЕ НАПРЯЖЕНИЕ?
Напряжение как технический термин, представляет собой разность потенциалов между двумя концами проводника. Чтобы иметь возможность использовать определенное значение тока, генерируемое электронами в качестве электрической энергии, необходимо задать им направление, в противном случае они будут фиксированно вращаться вокруг атомов, и не будут превращаться в энергию. Напряжение — это электродвижущая сила, необходимая для перетаскивания электронов из одного места в другое.
Для того, чтобы более четко понять, рассмотрим водопровод; вода внутри водопровода выражает ток, а для перетекания воды из одного направления в другое требуется потенциальная разница высоты или мощность двигателя, что и выражает напряжение.
Хотя мировые производители распределительных устройств приняли ряд мер, связанных с током, они не смогли принять четкие меры в отношении напряжения. Что касается ситуаций, в которых ток наносит вред, были изготовлены термомагнитные выключатели, ограничители остаточного тока, разрядники и многие другие устройства.
В мире эти пробелы пытаются заполнять реле защиты фазы, регуляторы и источники питания . Реле защиты фазы для моторизованных систем образовали серьезный уровень защиты, отключая энергию в фазах, таких как чередование фаз, падение ниже заданного уровня фазного напряжения или повышение выше заданного уровня фазного напряжения.
Регуляторы обеспечили нормальный уровень напряжения, не прерывая энергии в случае, если напряжение выше или ниже определенного уровня.
В дополнение к регуляторам источники питания стали незаменимыми при внезапных сбоях питания и для систем жизнеобеспечения, компьютерных данных и высокопроизводительных систем безопасности, особенно в больницах, путем генерирования энергии в течение определенного периода времени.
В дополнение ко всем этим мерам необходимо предотвращать повреждение таких защитных устройств, как регулятор, источник питания и реле защиты фазы, а также устройства системы от мгновенных перенапряжений. Это обеспечивает Trimbox .
| Навигация по справочнику TehTab. ru: главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.
| |||||||||||
Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу. | ||||||||||||
TehTab.ru Реклама, сотрудничество: [email protected] | Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями. |
Напряжение, ток, сопротивление и закон Ома
Добавлено в избранное Любимый 116Напряжение
Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциальной энергии между двумя точками, которая будет передавать один джоуль энергии на каждый кулон заряда, который проходит через нее (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».
При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:
- Вода = Заряд
- Давление = Напряжение
- Расход = Текущий
Рассмотрим резервуар для воды на определенной высоте над землей.Внизу этого бака есть шланг.
Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.
Мы можем рассматривать этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет из-за разряда батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.
← Предыдущая страница
Зарядка
Напряжение, ток, сопротивление и закон Ома
Добавлено в избранное Любимый 116Текущий
Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».
Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.
Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более узким шлангом. более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряд) в резервуаре с помощью более узкого шланга.
Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.
Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга — это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:
.- Вода = заряд (измеряется в кулонах)
- Давление = напряжение (измеряется в вольтах)
- Расход = ток (измеряется в амперах, или, для краткости, «амперах»)
- Ширина шланга = сопротивление
Что такое напряжение? | Fluke
Напряжение — это давление от источника питания электрической цепи, которое проталкивает заряженные электроны (ток) через проводящую петлю, позволяя им выполнять такую работу, как включение света.
Короче говоря, напряжение = давление , и оно измеряется в вольтах (В). Этим термином признан итальянский физик Алессандро Вольта (1745-1827), изобретатель гальванической батареи — предшественника современной бытовой батареи.
В первые дни развития электричества напряжение было известно как электродвижущая сила (ЭДС). Вот почему в уравнениях, таких как закон Ома, напряжение обозначается символом E .
Пример напряжения в простой цепи постоянного тока:
- В этой цепи постоянного тока переключатель замкнут (включен).
- Напряжение в источнике питания — «разность потенциалов» между двумя полюсами батареи — активируется, создавая давление, которое заставляет электроны течь в виде тока через отрицательную клемму батареи.
- Ток достигает света, заставляя его светиться.
- Ток возвращается к источнику питания.
Напряжение — это напряжение переменного тока или напряжение постоянного тока . Способы, которыми они различаются:
Напряжение переменного тока (представленное на цифровом мультиметре цифрой):
- Течение равномерно волнообразными волнами, как показано ниже:
- Меняет направление на регулярные интервалы.
- Обычно производится коммунальными предприятиями с помощью генераторов , в которых механическая энергия — вращательное движение, приводимое в движение проточной водой, паром, ветром или теплом — преобразуется в электрическую энергию.
- Чаще, чем напряжение постоянного тока. Коммунальные предприятия поставляют переменное напряжение в дома и на предприятия, где большинство устройств используют переменное напряжение.
- Источники первичного напряжения зависят от страны. В США, например, 120 вольт.
- Некоторые бытовые устройства, например телевизоры и компьютеры, работают от постоянного напряжения.Они используют выпрямители (например, этот толстый блок в шнуре портативного компьютера) для преобразования переменного напряжения и тока в постоянный.
Напряжение постоянного тока (обозначено на цифровом мультиметре значком и):
- Перемещается по прямой линии и только в одном направлении.
- Обычно производится из источников накопленной энергии, таких как батареи .
- Источники постоянного напряжения имеют положительную и отрицательную клеммы. Клеммы устанавливают полярность в цепи, и полярность может использоваться, чтобы определить, является ли цепь постоянным или переменным током.
- Обычно используется в портативном оборудовании с батарейным питанием (автомобили, фонарики, фотоаппараты).
Какая разница потенциалов?
Термин «напряжение» и термин «разность потенциалов» часто используются как синонимы. Разницу потенциалов можно было бы лучше определить как разность потенциальной энергии между двумя точками в цепи.Величина разницы (выраженная в вольтах) определяет, сколько существует потенциальной энергии для перемещения электронов из одной конкретной точки в другую. Количество определяет, сколько работы потенциально может быть выполнено через схему.
Бытовая щелочная батарея AA, например, имеет напряжение 1,5 В. Обычные бытовые электрические розетки имеют напряжение 120 В. Чем больше напряжение в цепи, тем выше ее способность «выталкивать» больше электронов и выполнять работу.
Напряжение / разность потенциалов можно сравнить с водой, хранящейся в резервуаре.Чем больше резервуар и чем больше его высота (и, следовательно, его потенциальная скорость), тем больше способность воды создавать удар, когда клапан открывается и вода (как электроны) может течь.
Почему полезно измерение напряжения
Техники подходят к большинству ситуаций устранения неисправностей, зная, как обычно должна работать схема.
Цепи используются для передачи энергии нагрузке — от небольшого устройства до бытовой техники и промышленного двигателя. Нагрузки часто имеют паспортную табличку, на которой указаны их стандартные электрические эталонные значения, включая напряжение и ток.Вместо паспортной таблички некоторые производители предоставляют подробную схему (техническую схему) схемы нагрузки. Руководства могут включать стандартные значения.
Эти числа говорят технику, какие показания следует ожидать при нормальной работе нагрузки. Показания цифрового мультиметра позволяют объективно определить отклонения от нормы. Даже в этом случае технический специалист должен использовать знания и опыт, чтобы определить факторы, вызывающие такие отклонения.
Ссылка: Принципы цифрового мультиметра Глен А.Мазур, американское техническое издательство.
ЗаконОма … взаимосвязь между напряжением, током и сопротивлением
Время чтения: 5 минутТеоретические термины и определения
Следующие определения относятся к основной теории электричества. Важно, чтобы установщики и инспекторы обладали практическими знаниями теории электричества. Такие знания часто имеют жизненно важное значение для определения правильного сечения проводов для цепей с различной нагрузкой.
Вольт — единица электрического давления — это давление, необходимое для того, чтобы протолкнуть один ампер через сопротивление в один ом; сокращенно «E», первая буква термина электродвигатель сила .
Ампер — единица измерения электрического тока, который протекает через один Ом под давлением в один вольт за одну секунду; сокращенно «I», первая буква термина сила тока .
Ом — единица электрического сопротивления — это сопротивление, через которое один вольт заставит один ампер; сокращенно «R», первая буква термина сопротивление .
Вт — это единица измерения энергии, протекающей в электрической цепи в любой данный момент.Это также объем работы, выполняемой в электрической цепи. Термины ватт, или киловатт, чаще использовались для обозначения объема работы, выполняемой в электрической цепи, а не для обозначения джоулей . Ватты — это произведение вольт и ампер, которое иногда называют вольт-ампер. Одна тысяча вольт-ампер упоминается как один киловольт-ампер или одна кВА.
Закон Ома
Джордж Саймон Ом обнаружил взаимосвязь между током, напряжением и сопротивлением в электрической цепи в 1826 году.Он обнаружил экспериментальным путем, что давление равно произведению силы тока и сопротивления; это соотношение называется законом Ома. Этот закон является практической основой большинства электрических расчетов. Формула может быть выражена в различных формах и ее использовании, как в трех примерах, показанных на рисунке 1.
Рисунок 1. Основные примеры и применение закона Ома
Если известны любые два значения, третье можно найти с помощью формулы. Например, если известны сопротивление и напряжение, ток можно определить, разделив напряжение на сопротивление.Это может быть полезно при определении величины тока, который будет протекать в цепи, для правильного определения размеров проводников, а также устройств перегрузки по току.
лошадиных сил. Механическая мощность обычно выражается в лошадиных силах, а электрическая мощность — в ваттах. Термин лошадиных сил возник как объем работы, которую сильная лондонская тягловая лошадь могла выполнять за короткий промежуток времени. Он также использовался для измерения мощности паровых двигателей. Одна лошадиная сила, сокращенно «HP», равна работе, необходимой для поднятия 33 000 фунтов на один фут (33 000 фут-фунтов) за одну минуту.Это то же самое, что поднимать один фут на 550 фунтов за секунду.
Часто необходимо преобразовать мощность от одного устройства к другому, и уравнение на рисунке 2 используется для преобразования мощности в ватты или ваттов в лошадиные силы.
Рисунок 2. Базовая формула HP
Формула л.с. применима к лабораторным условиям, поскольку двигатели потребляют больше мощности, чем доставляют. Это связано с тем, что мощность, потребляемая двигателем в виде тепла, преодолевает трение в подшипниках, сопротивление ветру и другие факторы.Например, двигатель мощностью 1 л.с. (746 Вт) может потреблять почти 1000 Вт, причем разница расходуется на преодоление уже указанных факторов. Для определения истинной мощности однофазных двигателей необходимо учитывать коэффициент полезного действия двигателя (см. Рисунок 3).
Рисунок 3. Основные формулы коэффициента мощности
Колесо Ватт
Колесо Ватта было разработано и опубликовано во многих руководствах и в нескольких вариантах для иллюстрации ватт или мощности и их связи с элементами закона Ома.Как показано в этом тексте, это верно для цепей постоянного тока и для резистивных нагрузок цепей переменного тока, где коэффициент мощности близок к 100 процентам или единице (см. Рисунок 4). Не пытайтесь использовать его для нагрузки двигателя, так как в формуле необходимо учитывать как коэффициент мощности, так и КПД двигателя (см. Рисунок 3).
Рисунок 4. Колесо Ватта и закон Ома
В цепях переменного тока мы используем термин импеданс , а не Ом для обозначения сопротивления цепи. Импеданс — это полное сопротивление току в цепи переменного тока; он измеряется в омах.Импеданс включает сопротивление, емкостное реактивное сопротивление и индуктивное реактивное сопротивление. Последние два фактора уникальны для цепей переменного тока и обычно могут игнорироваться в цепях, таких как лампы накаливания и цепи нагревателя, состоящие из резистивных нагрузок. Подробное объяснение емкостного реактивного сопротивления и индуктивного реактивного сопротивления выходит за рамки этого текста, но его можно найти во многих прекрасных текстах по теории электричества.
Закон Ома и основная электрическая теория
Электрический ток, протекающий через любую электрическую цепь, можно сравнить с водой под давлением, протекающей через пожарный шланг.Вода, протекающая через пожарный шланг, измеряется в галлонах в минуту (GPM), а электричество, протекающее через контур, измеряется в амперах (A).
Вода течет по шлангу, когда на него оказывается давление и открывается клапан. Давление воды измеряется в фунтах на квадратный дюйм (psi). Электрический ток течет по электрическому проводнику, когда к нему прикладывается электрическое давление, и создается путь для прохождения тока. Точно так же, как «фунты на квадратный дюйм» (давление) вызывают поток галлонов в минуту, так «вольт» (давление) заставляет течь «амперы» (ток).
Чтобы пропустить такое же количество воды через маленький шланг, требуется большее давление, чем через шланг большего размера. Маленький шланг, к которому приложено такое же давление, по сравнению с большим шлангом, будет пропускать гораздо меньше воды за определенный период. Отсюда следует, что маленький шланг оказывает большее сопротивление потоку воды.
В электрической цепи большее электрическое давление (вольт) заставит заданное количество тока (в амперах) проходить через небольшой проводник (сопротивление), чем то, которое требуется для протекания того же количества тока (в амперах) через проводник большего размера (сопротивление). .Проводник меньшего размера позволит проходить меньшему току (в амперах), чем проводник большего размера, если одинаковое электрическое давление (вольт) будет приложено к каждому проводнику в течение того же периода времени. Можно предположить, что меньший проводник имеет большее сопротивление (Ом), чем провод большего размера. Таким образом, мы можем определить сопротивление как «свойство тела, которое сопротивляется или ограничивает поток электричества через него». Сопротивление измеряется в Ом — термин, аналогичный трению в шланге или трубе.
Выдержка из Электрические системы для одно- и двухквартирных домов , 8 -е издание . Эта книга доступна по адресу www.iaei.org/web/shop или Amazon.com .
Как измерить напряжение, ток и мощность
Трансформаторы тока (ТТ)
Трансформаторы тока (ТТ) — это датчики, используемые для линейного понижения тока, проходящего через датчик, до более низкого уровня, совместимого с измерительными приборами.Сердечник трансформатора тока имеет тороидальную или кольцевую форму с отверстием в центре. Проволока оборачивается вокруг сердечника, образуя вторичную обмотку, и покрывается кожухом или пластиковым кожухом. Количество витков провода вокруг сердечника определяет коэффициент понижения, или коэффициент ТТ, между током в измеряемой линии (первичной) и токовым выходом, подключенным к приборам (вторичным). Нагрузочный провод, который необходимо измерить, пропускают через отверстие в центре трансформатора тока.Пример: CT с соотношением 500: 5 означает, что нагрузка 500 ARMS на главной линии приведет к выходу 5 ARMS на вторичной цепи CT. Прибор будет измерять 5 ARMS на терминалах и может применять коэффициент масштабирования, введенный пользователем, для отображения полных 500 ARMS. Для трансформаторов тока указано номинальное значение, но часто указывается точность, превышающая 100% от номинала. ТТ могут быть с разделенным сердечником или сплошным сердечником. ТТ с разъемным сердечником открываются на петлях или имеют съемную секцию, чтобы установщик мог подключить ТТ вокруг провода нагрузки без физического отсоединения измеряемого провода нагрузки.
Предупреждение о безопасности: хотя ТТ может физически подключаться к установленной линии, перед установкой ТТ необходимо безопасно отключить питание. Открытые вторичные соединения при включенном питании первичной обмотки могут привести к возникновению чрезвычайно опасного напряжения.
ОпцииCT при покупке включают номинальный диапазон, диаметр отверстия, разъемный / сплошной сердечник, тип выхода (напряжение / ток) и выходной диапазон (0,333 В RMS, ± 10 В, 1 ARMS, 5 ARMS и т. Д.). Поставщики ТТ часто могут настроить датчик под конкретные нужды, такие как диапазон входного или выходного сигнала.
Рис. 5. ТТ с разъемным сердечником обычно имеют шарнир или съемную секцию для установки вокруг линии без физической разборки, хотя питание все равно следует отключать. (Изображение любезно предоставлено Magnelab)
Рисунок 6. ТТ с твердым сердечником дешевле, но может потребовать больше труда для установки в уже работающих цепях.
(Изображение любезно предоставлено Magnelab)
Полоса пропускания измерения ТТ
Полоса пропускания от 1 кГц до 2 кГц достаточна для большинства приложений контроля качества электроэнергии в цепях переменного тока.Для высокочастотных приложений подключайтесь напрямую к NI 9246 или NI 9247 для полосы пропускания до 24 кГц или выбирайте более дорогие трансформаторы тока с более высокой частотой. Все модули, перечисленные в таблице выше, имеют полосу пропускания приблизительно 24 кГц для сигналов, подключенных напрямую. Высокочастотные трансформаторы тока более специализированы и имеют характеристики полосы пропускания в диапазоне сотен МГц. Измерительные модули NI 9215, NI 9222 и NI 9223 имеют диапазон частот дискретизации от 100kS / s / ch до 1MS / s / ch при разрешении 16 бит для более высокочастотных измерений.
Для высокочастотных измерений, выходящих за рамки возможностей NI 9223, NI рекомендует осциллограф или дигитайзер для PXI, предназначенный для лабораторных, исследовательских и испытательных систем.
Измерение постоянного тока
ТТне измеряют ток постоянного тока или компонент смещения постоянного тока в сигнале переменного тока. Для большинства приложений питания переменного тока в этом нет необходимости. Когда необходимо измерение постоянного тока, NI 9227 имеет встроенные калиброванные шунты и может измерять постоянный ток до 5 ампер. Для измерения постоянного тока более 5 ампер используется шунт для измерения тока большой мощности (см. Ниже) или датчик Холла (см. Ниже), подключенный к соответствующему измерительному модулю.
Катушки Роговского
КатушкиРоговского, иногда называемые «тросовыми трансформаторами тока», представляют собой еще один вариант датчика для измерения тока в линии. Катушки Роговского похожи в том, что они наматываются на провод нагрузки, но они гибкие, имеют гораздо большее отверстие, чем стандартные трансформаторы тока, и принцип измерения отличается. Катушки Роговского индуцируют напряжение, которое пропорционально скорости изменения тока и, следовательно, требуется в цепи интегратора для преобразования в пропорциональный ток.Интегратор представляет собой отдельный блок / компонент, который обычно устанавливается на панели или на DIN-рейке, требует источника питания постоянного тока и выводит сигналы низкого напряжения или тока на приборы. Размер и гибкость катушек Роговского делают их хорошо подходящими для обхода более крупных шин, используемых в коммерческих зданиях или на заводах, особенно когда они уже построены и измерение мощности добавлено в качестве модернизации, но они дороже, чем ТТ с сопоставимым входом. диапазон.
Рисунок 7.Катушки Роговского требуют внешнего источника питания, интегральной схемы (расположенной в черном монтажном блоке на изображении выше) и являются более дорогими, чем типичные трансформаторы тока с твердым / разъемным сердечником, но обеспечивают быструю фазовую характеристику и подходят для модернизации установок и измерений больших шин из-за к их большому гибкому открытию. (Изображение любезно предоставлено Magnelab)
Датчики на эффекте Холла
Датчикина эффекте Холла основаны на «эффекте Холла», названном в честь Эдвина Холла, когда ток, протекающий через полупроводник, расположенный перпендикулярно магнитному полю, создает потенциал напряжения на полупроводниковом материале.Для измерения тока схема на эффекте Холла размещается перпендикулярно сердечнику магнитного поля и выдает напряжение, которое масштабируется с учетом токовой нагрузки в измеряемой линии. ТТ на эффекте Холла обычно имеют лучшую частотную характеристику и могут измерять смещение постоянного тока, но они более дороги, требуют питания и могут подвергаться температурному дрейфу.
Рис. 8. Датчики на эффекте Холла имеют чувствительную цепь, перпендикулярную магнитному полю, и требуют питания.Датчики на эффекте Холла не подчиняются ограничениям насыщения, как ТТ, и могут измерять постоянный ток, но они более дорогостоящие.
Резисторы токового шунта
Токоизмерительные шунты или резисторы токового шунта — это резисторы, включенные в цепь с целью измерения тока, протекающего через шунт. Это довольно распространенные электрические компоненты, которые могут использоваться в самых разных областях. Размер шунта будет зависеть от диапазона измерения тока, выходного диапазона и мощности, протекающей по цепи.Для большей точности доступны более дорогие прецизионные резисторы. Шунты не наматываются на провод цепи и размещаются на линии как компонент. Это устраняет изолирующий барьер между измеряемой схемой и измерительным оборудованием и может сделать установку более сложной, чем ТТ или катушка Роговского. Однако шунты могут измерять постоянный ток, иметь лучшую частотную характеристику и лучшую фазовую характеристику. Модуль NI 9238 для CompactRIO и CompactDAQ был разработан с аналоговым интерфейсом низкого диапазона (± 0.5 В) специально для токовых шунтирующих резисторов. Кроме того, NI 9238 имеет межканальную изоляцию 250 В.
Закон Ома и соотношение V-I-R
В физике есть определенные формулы, которые настолько мощны и распространены, что достигают уровня общеизвестных знаний. Студент, изучающий физику, записывал такие формулы столько раз, что запоминал их, даже не пытаясь. Безусловно, для профессионалов в этой области такие формулы настолько важны, что остаются в их сознании.В области современной физики E = m • c 2 . В области ньютоновской механики существует F net = m • a. В области волновой механики v = f • λ. А в области текущего электричества ΔV = I • R.
Преобладающим уравнением, которое пронизывает изучение электрических цепей, является уравнение
ΔV = I • RДругими словами, разность электрических потенциалов между двумя точками в цепи ( ΔV ) эквивалентна произведению тока между этими двумя точками ( I ) и общего сопротивления всех электрических устройств, присутствующих между этими двумя точками ( R ).В остальной части этого раздела Физического класса это уравнение станет самым распространенным уравнением, которое мы видим. Это уравнение, часто называемое уравнением закона Ома , является мощным предсказателем взаимосвязи между разностью потенциалов, током и сопротивлением.
Закон Ома как предсказатель токаУравнение закона Ома можно переформулировать и выразить как
В качестве уравнения это служит алгебраическим рецептом для вычисления тока, если известны разность электрических потенциалов и сопротивление.Тем не менее, хотя это уравнение служит мощным рецептом решения проблем, это гораздо больше. Это уравнение указывает две переменные, которые могут повлиять на величину тока в цепи. Ток в цепи прямо пропорционален разности электрических потенциалов, приложенной к ее концам, и обратно пропорционален общему сопротивлению внешней цепи. Чем больше напряжение аккумулятора (то есть разность электрических потенциалов), тем больше ток. И чем больше сопротивление, тем меньше ток.Заряд идет с наибольшей скоростью, когда напряжение батареи увеличивается, а сопротивление уменьшается. Фактически, двукратное увеличение напряжения батареи привело бы к двукратному увеличению тока (если все остальные факторы остаются равными). А увеличение сопротивления нагрузки в два раза приведет к уменьшению тока в два раза до половины его первоначального значения.
Таблица ниже иллюстрирует эту взаимосвязь как качественно, так и количественно для нескольких цепей с различными напряжениями и сопротивлением батарей.
Строки 1, 2 и 3 показывают, что удвоение и утроение напряжения батареи приводит к удвоению и утроению тока в цепи. Сравнение строк 1 и 4 или строк 2 и 5 показывает, что удвоение общего сопротивления служит для уменьшения вдвое тока в цепи.
Поскольку на ток в цепи влияет сопротивление, в цепях электроприборов часто используются резисторы, чтобы влиять на величину тока, присутствующего в ее различных компонентах.Увеличивая или уменьшая величину сопротивления в конкретной ветви схемы, производитель может увеличивать или уменьшать величину тока в этой ветви . Кухонные приборы, такие как электрические миксеры и переключатели света, работают, изменяя ток в нагрузке, увеличивая или уменьшая сопротивление цепи. Нажатие различных кнопок на электрическом микшере может изменить режим с микширования на взбивание, уменьшив сопротивление и позволив большему току присутствовать в миксере.Точно так же поворот ручки регулятора яркости может увеличить сопротивление его встроенного резистора и, таким образом, уменьшить ток.
На схеме ниже изображена пара цепей, содержащих источник напряжения (аккумуляторная батарея), резистор (лампочка) и амперметр (для измерения тока). В какой цепи у лампочки наибольшее сопротивление? Нажмите кнопку «Посмотреть ответ», чтобы убедиться, что вы правы.
Уравнение закона Ома часто исследуется в физических лабораториях с использованием резистора, аккумуляторной батареи, амперметра и вольтметра.Амперметр — это устройство, используемое для измерения силы тока в заданном месте. Вольтметр — это устройство, оснащенное датчиками, которых можно прикоснуться к двум точкам цепи, чтобы определить разность электрических потенциалов в этих местах. Изменяя количество ячеек в аккумуляторной батарее, можно изменять разность электрических потенциалов во внешней цепи. Вольтметр может использоваться для определения этой разности потенциалов, а амперметр может использоваться для определения тока, связанного с этим ΔV.К батарейному блоку можно добавить батарею, и процесс можно повторить несколько раз, чтобы получить набор данных I-ΔV. График зависимости I от ΔV даст линию с крутизной, эквивалентной обратной величине сопротивления резистора. Это значение можно сравнить с заявленным производителем значением, чтобы определить точность лабораторных данных и справедливость уравнения закона Ома.
Величины, символы, уравнения и единицы!Тенденция уделять внимание единицам — неотъемлемая черта любого хорошего студента-физика.Многие трудности, связанные с решением проблем, могут быть связаны с тем, что не уделялось внимания подразделениям. Поскольку все больше и больше электрических величин и их соответствующих метрических единиц вводится в этот раздел учебного пособия «Физический класс», становится все более важным систематизировать информацию в своей голове. В таблице ниже перечислены некоторые из введенных на данный момент количеств. Для каждой величины также указаны символ, уравнение и соответствующие метрические единицы.Было бы разумно часто обращаться к этому списку или даже делать свою копию и добавлять ее по мере развития модуля. Некоторые студенты считают полезным составить пятый столбец, в котором приводится определение каждой величины.
Кол. Акций | Символ | Уравнение (а) | Стандартная метрическая единица | Другие единицы |
Разность потенциалов (г.к.а. напряжение) | ΔV | ΔV = ΔPE / Q ΔV = I • R | Вольт (В) | J / C |
Текущий | я | I = Q / т I = ΔV / R | Амперы (А) | Усилитель или К / с или В / Ом |
Мощность | п | P = ΔPE / т (еще впереди) | Ватт (Вт) | Дж / с |
Сопротивление | р | R = ρ • L / A R = ΔV / I | Ом (Ом) | В / А |
Энергия | E или ΔPE | ΔPE = ΔV • Q ΔPE = P • t | Джоуль (Дж) | V • C или Вт • с |
(Обратите внимание, что символ C представляет собой кулоны.)
В следующем разделе Урока 3 мы еще раз рассмотрим количественную мощность. Новое уравнение мощности будет введено путем объединения двух (или более) уравнений в приведенной выше таблице.
Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие — это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Легко перетащите источник напряжения, резисторы и провода на рабочее место. Соедините их, и у вас будет схема. Добавьте амперметр для измерения тока и используйте датчики напряжения для определения падения напряжения. Это так просто. И не нужно беспокоиться о поражении электрическим током (если, конечно, вы не читаете это в ванной).
1. Что из перечисленного ниже приведет к уменьшению тока в электрической цепи? Выберите все, что подходит.
а. уменьшить напряжение
г. уменьшить сопротивление
г. увеличить напряжение
г.увеличить сопротивление
2. Определенная электрическая цепь содержит батарею из трех элементов, провода и лампочку. Что из перечисленного может привести к тому, что лампа будет светить менее ярко? Выберите все, что подходит.
а. увеличить напряжение АКБ (добавить еще одну ячейку)
г. уменьшить напряжение аккумулятора (удалить элемент)
г.уменьшить сопротивление цепи
г. увеличить сопротивление цепи
3. Вероятно, вас предупредили, чтобы вы не прикасались к электроприборам или даже к электрическим розеткам, когда ваши руки мокрые. Такой контакт более опасен, когда ваши руки мокрые (а не сухие), потому что мокрые руки вызывают ____.
а.напряжение цепи должно быть выше
г. напряжение в цепи должно быть ниже
г. ваше сопротивление будет выше
г. ваше сопротивление должно быть ниже
e. ток через тебя будет ниже
4. Если бы сопротивление цепи было утроено, то ток в цепи был бы ____.
а. треть от
г. втрое больше
г. без изменений
г. … бред какой то! Сделать такой прогноз невозможно.
5. Если напряжение в цепи увеличить в четыре раза, то ток в цепи будет ____.
а.четверть от
г. в четыре раза больше
г. без изменений
г. … бред какой то! Сделать такой прогноз невозможно.
6. Схема соединена с блоком питания, резистором и амперметром (для измерения тока). Амперметр показывает значение тока 24 мА (миллиАмпер). Определите новый ток, если напряжение источника питания было…
а. … увеличился в 2 раза, а сопротивление осталось постоянным.
г. … увеличилось в 3 раза, а сопротивление осталось постоянным.
г. … уменьшилось в 2 раза, а сопротивление осталось постоянным.
г. … оставалось постоянным, а сопротивление увеличивалось в 2 раза.
e. … оставалось постоянным, а сопротивление увеличивалось в 4 раза.
ф…. оставалось постоянным, а сопротивление уменьшалось в 2 раза.
г. … увеличилось в 2 раза, а сопротивление увеличилось в 2 раза.
ч. … увеличилось в 3 раза, а сопротивление уменьшилось в 2 раза.
и. … уменьшилось в 2 раза, а сопротивление увеличилось в 2 раза.
7.Используйте уравнение закона Ома, чтобы дать числовые ответы на следующие вопросы:
а. Электрическое устройство с сопротивлением 3,0 Ом позволит протекать через него току 4,0 А, если на устройстве наблюдается падение напряжения ________ Вольт.
г. Когда на электрический нагреватель подается напряжение 120 В, через нагреватель будет протекать ток 10,0 А, если сопротивление составляет ________ Ом.
г. Фонарик с питанием от 3 вольт и лампочкой с сопротивлением 60 Ом будет иметь ток ________ ампер.
8. Используйте уравнение закона Ома для определения недостающих значений в следующих схемах.
9. См. Вопрос 8 выше. В схемах схем A и B какой метод использовался для контроля тока в схемах? А в схемах схем C и D какой метод использовался для контроля тока в схемах?
Ток и напряжение
- Изучив этот раздел, вы должны уметь:
- Опишите распределение электрических потенциалов (напряжений) и токов в электрических цепях.
- • Последовательные резистивные цепи.
- • Параллельные резистивные цепи.
- Рассчитайте распределение напряжений в резистивном делителе потенциала.
Ток и напряжение в резисторных цепях
В поисках неизвестного
Помимо определения сопротивления, закон Ома можно использовать для расчета напряжений и токов в резисторных цепях. Перед тем, как попробовать это, было бы неплохо взглянуть на некоторые основные факты о сетях резисторов.
Рис.4.0.1 Простая последовательная схема
Рис.4.0.2 Простая параллельная схема
В простой цепи СЕРИИ , показанной на рис. 4.0.1, одинаковый ток течет через все компоненты. Однако каждый компонент будет иметь разное НАПРЯЖЕНИЕ (p.d.) на нем. Сумма этих отдельных напряжений (V R1 + V R2 + V R3 и т. Д.) В последовательной цепи равна напряжению питания (ЭДС).
Однако в простой ПАРАЛЛЕЛЬНОЙ ЦЕПИ , показанной на рис. 4.0.2, одинаковое напряжение присутствует на всех компонентах, но через каждый компонент может протекать разный ТОК. Сумма этих отдельных составляющих токов в параллельной цепи равна току питания. (I S = I R1 + I R2 + I R3 и т. Д.)
Правило разделителя потенциала
Рис. 4.0.3 Делитель потенциала
Если два или более резистора соединены последовательно через потенциал (например,грамм. Напряжение питания), напряжение на каждом резисторе будет пропорционально сопротивлению этого резистора. V R1 ∝ R 1 и V R2 ∝ R 2 и т. Д.
Чтобы рассчитать напряжение на любом резисторе в делителе потенциала, умножьте напряжение питания (E) на пропорцию этого резистора к общему сопротивлению всех резисторов.
Например, если R 2 вдвое больше, чем R 1 , то напряжение на R 2 будет вдвое больше, чем на R 1 .Следовательно, напряжение на R 1 будет составлять одну треть напряжения питания (E), а напряжение на R 2 будет составлять две трети напряжения питания (E). Таким образом, если напряжение питания и значения резистора известны, то напряжение на каждом резисторе может быть вычислено с помощью ПРОПОРЦИИ, и как только напряжение на каждом резисторе известно, можно рассчитать напряжение в любой точке цепи.
Используя эти несколько фактов, можно получить огромное количество информации о токах и напряжениях в цепи, если известны значения сопротивлений цепи.Попробуйте сами с помощью нашей викторины на странице «Сетевые расчеты модуля» 4.6 «Резисторы и схемы».
.