+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

2.4. Нагрузки в цепях переменного тока

Активное сопротивление ( r) – нагрузка, аналогичная той, которая использовалась в цепях постоянного тока.

Реактивные сопротивления (X) – нагрузки, которые не использовались в цепях постоянного тока. Они используются только в цепях переменного тока и не потребляют активную мощность.

Индуктивность

Индуктивность (первый вариант определения) – это свойство физического объекта (катушки) запасать в себе энергию магнитного поля и отдавать её при следующих условиях: если ток и напряжение катушки одного знака, энергия запасается, если же разного знака, то энергия катушкой отдается.

Индуктивность (второй вариант определения) – это коэффициент пропорциональности между потокосцеплением и током, вызвавшем это потокосцепление.

Индуктивность на схемах обозначается буквой L и измеряется в генри (Гн).

Пусть дана катушка (рис. 2.5). Если контур интегрирования (k) направить по силовой линии так, чтобы он охватывал все витки катушки, то закон полного тока при Н = const, можно записать: H k = w i

Магнитная индукция связана с напряженностью: В = m m0Н, где m – относительная величина, показывающая, во сколько раз проницаемость данной среды больше магнитной проницаемости вакуума; m0 – магнитная проницаемость вакуума.

Потокосцепление (y) определяется потоком: , где .

Если Н = const, то, и индуктивность, как коэффициент пропорциональности между потокосцеплением и током, равна:

Тогда становится очевидным, что L – это параметр, зависящий от числа витков, геометрических размеров катушки и магнитной проницаемости среды.

Электрическая ёмкость

Этот элемент так же, как и индуктивность не потребляет активной мощности, его мгновенная мощность лишь колеблется: то запасается, то отдается.

Аналогично индуктивности емкость также имеет два определения:

1) электрическая ёмкость – это свойство физического объекта (в данном случае конденсатора) запасать в себе энергию электрического поля и отдавать её во внешнюю цепь при определенных соотношениях напряжения и тока. Если мгновенное напряжение (u) и мгновенный ток (i) конденсатора одного знака, энергия им запасается, если u и i разных знаков, энергия отдается;

2) электрическая ёмкость – это коэффициент пропорциональности между зарядом (q) и напряжением (u) на обкладках конденсатора, вызвавшем этот заряд.

Это определение вытекает из формулы: q = Cu.

Ток (i) через конденсатор возникает тогда, когда изменяется заряд на его обкладках во времени: , и аналогичен возникновению напряжения на индуктивности:.

Запишем основные величины и формулы для определения ёмкости конденсатора (рис. 2.6):

диэлектрическая проницаемость:

;

теорема Гаусса:

;

формула связи электрического смещения с напряженностью электрического поля:

.

Если напряженность магнитного поля неизменна во всем объеме конденсатора, то . Напряжение на обкладках с учетом поставленных условий равно:

,

тогда , а емкость конденсатора:

В рассматриваемых выводах: D – электрическое смещение; H- напряженность электрического поля; e- диэлектрическая проницаемость среды; S – площадь пластин конденсатора; d – расстояние между пластинами.

Таким образом, ёмкость линейного конденсатора не зависит от заряда, от напряжения, а определяется геометрическими размерами и средой между его обкладками.

ВИДЫ НАГРУЗОК В ЦЕПИ ПЕРЕМЕННОГО ТОКА

 

а)Активное сопротивление в цепи переменного тока.

Рассмотрим цепь переменного тока, в которую включен только резистор сопротивлением R не обладающий ни индуктивностью, ни ёмкостью (рис.5а). Такая нагрузка принято называть активной. Единственным результатом прохождения тока в данном случае будет превращение в резисторе энергии электрического тока в тепловую энергию. В этом случае ток через резистор будет определяться законом Ома i = I0sinωt, а напряжение на резисторе – u = I

0R·sinωt = U0sinωt. Т.е. ток и напряжение совпадают по фазе. График тока и напряжения, а также векторная диаграмма амплитуд тока и напряжения показаны на рис. 5б и 5в.

б)Индуктивное сопротивление в цепи переменного тока.

Рассмотрим случай, когда цепь переменного тока содержит только катушку индуктивностью L, ёмкостью С = 0 и с активным сопротивлением R = 0 (рис.6а). Переменное напряжение u = U0cosωt, поданное на концы катушки, вызовет переменный ток. В результате этого возникнет ЭДС самоиндукции , которая в любой момент времени противоположна по направлению и равна по величинœе, приложенному к катушке напряжению u

L = U0cosωt: . Теперь закон Ома, для рассматриваемого участка примет вид:

U0cosωt= 0, откуда = U0cosωt и di = cosωt×dt. После интегрирования для тока получим: i = ×sinωt + const. Очевидно, что постоянная составляющая тока отсутствует, ᴛ.ᴇ. const = 0. Теперь i = ×sinωt = ×cos(ωt – 900) = I0 cos(ωt – 900). Откуда следует, что , где — индуктивное сопротивление катушки. Оно увеличивается с ростом частоты переменного тока. .

Как видно из волновой и векторной диаграмм (рис.

6 б,в), в цепи с чисто индуктивным сопротивлением, ток в катушке отстаёт по фазе от напряжения на π/2 радиан.

в) Емкостное сопротивление в цепи переменного тока.

Рассмотрим случай, когда в цепь включен только конденсатор С (рис.7а) Сопротивление и индуктивность подводящих проводов примем равными нулю. Мгновенное значение напряжения на конденсаторе можно выразить формулой uс = q / C, где q – величина заряда на обкладках конденсатора в данный момент времени. Так как всё внешнее напряжение u = U0cosωt приложено к конденсатору то uс = = U0

×cosωt. Откуда q = C×U0×cosωt. Производная от q по t даёт силу тока i в цепи: i = = – ωCU0 sinωt = I0 cos(ωt + 900), где I0 = ωCU0 = – амплитудное значение силы тока в цепи. Отсюда видно, что выражение определяет сопротивление, ĸᴏᴛᴏᴩᴏᴇ оказывает переменному току конденсатор.
Размещено на реф. рф
Ёмкостное сопротивление уменьшается с ростом частоты. [ХC] = Ом.

В цепи с чисто емкостным сопротивлением напряжение, приложенное к обкладкам конденсатора, отстаёт по фазе от тока на π/2 радиан. Это показано на волновой и векторной диаграммах (рис.7 б, в).

Как бороться с реактивной мощностю

Реактивная мощность представляет собой часть полной мощности, которая не производит работы, но необходима для создания электромагнитных полей в сердечниках магнитопроводов.

Физика процесса и практика применения установок компенсации реактивной мощности

Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени.

Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

Физика процесса

В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Активная и реактивная мощности

Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется 

активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии.

Действительно, чем выше cos φ, тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

Реактивная мощность бытовых потребителей

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Способы компенсации реактивной мощности

Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Выводы

Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Ранее ЭлектроВести писали, что в Ямпольском районе Винницкой области восстановят работу двух гидроэлектростанций. «Вторую жизнь» получат Мироновская и Клембовская ГЭС в рамках национальной программы стимулирования развития возобновляемой энергетики.

По материалам: electrik.info.

Реактивная мощность. Расчёт

Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию.

Eмкостная нагрузка в цепи переменного тока за время половины периода накапливает заряд в обкладках конденсаторов и отдаёт его обратно в источник.
Индуктивная нагрузка накапливает магнитную энергию в катушках и возвращает её в источник питания в виде электрической энергии.

Напряжение на выводах реактивного элемента будет достигать максимального значения во время смены направления тока, следовательно, расхождение во времени между напряжением и током в пределах элемента составит четверть периода (сдвиг фаз 90°).

Угол сдвига фаз φ в цепи нагрузки определяется соотношением активного и реактивного сопротивлений нагрузки.

Реактивная мощность характеризует потери, созданные реактивными элементами в цепи переменного тока, и выражается формулой Q = UIsinφ.

Природу потерь в цепи с реактивными элементами можно рассмотреть с помощью графиков на рисунках.


      φ = 90°     sin90° = 1     cos90° = 0

При отсутствии активной составляющей в нагрузке, сдвиг фаз между напряжением и током составит 90°.
В начале периода, когда напряжение максимально – ток будет равен нулю, следовательно, мгновенное значение мощности UI в это время будет равно нулю.
В течении первой четверти периода, мощность можно видеть на графике, как произведение UI, которое станет равным нулю при максимуме тока и нулевом значении напряжения.

В следующую четверть периода на графике UI принимает отрицательное значение, следовательно, мощность возвращается обратно в источник питания. То же самое произойдёт и в отрицательном полупериоде тока. В результате средняя (активная) потребляемая мощность P avg за период будет равна нулю.

В таком случае:
Реактивная мощность Q = UIsin90° = UI
Потребляемая мощность P = UIcos90° = 0
Полная мощность S = UI = √(P² + Q²) будет равна реактивной мощности
Коэффициент мощности P/S = 0


При отсутствии реактивных элементов и сдвига фаз в нагрузках, мгновенная мощность в полупериоде Umax*Imax будет максимальной, и в следующем полупериоде произведение отрицательного напряжения с отрицательным током дадут положительный результат – полезную мощность в нагрузке.


      φ = 0°     sin90° = 0     cos90° = 1

В этом случае:
Реактивная мощность Q = UIsin0 = 0
Потребляемая мощность P = UIcos0 = UI
Полная мощность S = UI = √(P² + Q²) будет равна потребляемой мощности
Коэффициент мощности P/S = 1


Ниже представлен рисунок графиков со сдвигом фаз 45°, для случая равенства активного и реактивного сопротивлений в нагрузке.


   φ = 45°     sin45° = cos45° = √2/2 ≈ 0.71

Здесь:
Реактивная мощность Q = UIsin45° = 0.71UI
Потребляемая мощность P = UIcos45° = 0.71UI
Полная мощность S = √(P² + Q²) = UI
Коэффициент мощности P/S = 0.71

В примерах рассмотрены случаи с индуктивной нагрузкой, когда ток отстаёт от напряжения (положительный сдвиг фаз).
В случаях с ёмкостной нагрузкой, процессы и расчёты аналогичны, только напряжение будет отставать от тока (отрицательный сдвиг фаз).
Угол сдвига фаз в сети определится соотношением активного и реактивного сопротивлений нагрузок в параллельном соединении следующим образом:

XL и XС соответственно индуктивное и ёмкостное сопротивление нагрузок.
Преобладание индуктивных нагрузок будет уменьшать общее индуктивное сопротивление.
Из выражения видно, что угол в этом случае будет принимать положительный знак, а преобладание ёмкостных нагрузок будет уменьшать ёмкостное сопротивление и вызывать отрицательный сдвиг. При равенстве индуктивного и ёмкостного сопротивлений, угол сдвига будет равен нулю.
В бытовых и производственных потребителях индуктивное сопротивление обычно существенно преобладает над ёмкостным.

Подробнее о вычислениях общего угла сдвига φ для вариантов соединений активного и реактивного сопротивлений в нагрузках можно ознакомиться на страничке электрический импеданс.


Компенсация реактивной мощности

Огромное количество индуктивных нагрузок в сети суммарно обладает колоссальной реактивной мощностью, которая возвращается в генераторы и не совершает никакой полезной работы, расходуя энергию на нагрев кабелей и проводов ЛЭП, перегружает трансформаторы, снижая их КПД, тем самым уменьшая пропускную способность активных токов.

Если параллельно индуктивной нагрузке подключить конденсатор, фаза тока в цепи источника будет смещаться в противоположную сторону, компенсируя угол, созданный индуктивностью нагрузки. При определённом соотношении номиналов, можно добиться отсутствия сдвига фаз, следовательно, и отсутствия реактивных токов в цепи источника питания.
Ёмкость конденсатора определяется реактивным (индуктивным) сопротивлением нагрузки, которое необходимо компенсировать:
C = 1/(2πƒX),
X = U²/Q — реактивное сопротивление нагрузки,
Q — реактивная мощность нагрузки.

Компенсация реактивных токов в сети позволяет значительно уменьшить потери на активном сопротивлении проводов ЛЭП, кабелей и обмоток трансформаторов питающей сети.
В целях компенсации реактивной мощности на производственных предприятиях, где основными потребителями энергии являются асинхронные электродвигатели, индукционные печи, люминесцентное освещение, которые обладают индуктивным сопротивлением, часто применяют специальные конденсаторные установки, способные в ручном или автоматическом режиме поддерживать нулевой сдвиг фаз, тем самым минимизировать реактивные потери.

В масштабах энергосистемы компенсация происходит непосредственно на электростанциях путём контроля сдвига фаз и обеспечения соответствующего тока подмагничивания роторных обмоток синхронных генераторов станций.

Компенсация реактивной мощности — одна из составляющих комплекса мер по Коррекции Коэффициента Мощности (ККМ) в электросети (Power Factor Correction — PFC в англоязычной литературе). Применяется в целях уменьшения потерь электроэнергии, как на паразитную реактивную, так и нелинейную составляющую искажений тока в энергосистеме. Более подробно с материалом о ККМ (PFC) можно ознакомиться на странице — коэффициент мощности.



Онлайн-калькулятор расчёта реактивной мощности и её компенсации.

Достаточно вписать значения и кликнуть мышкой в таблице.

Реактивная мощность Q = √((UI)²-P²)
Реактивное сопротивление X = U²/Q
Компенсирующая ёмкость C = 1/(2πƒX)




Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать частоту резонанса колебательного контура LC.

Рассчитать реактивное сопротивление катушки индуктивности L и конденсатора C.

Альтернативные статьи:

Дизель-генератор.

Ошибка 404 | НПФ КонтрАвт. КИПиА для АСУ ТП

Выберите продукцию из спискаНормирующие преобразователи измерительные …НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-250/500-УВ1 нормирующий преобразователь сигналов термопар, термосопротивлений и потенциометров…НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров …НПСИ-200-ГРТП модули гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА. ..НПСИ-200-ГР1.2 модуль разветвления 1 в 2 и гальванической развязки сигнала (4…20) мА…НПСИ-ДНТВ нормирующий преобразователь действующих значений напряжения и тока…НПСИ-ДНТН нормирующий преобразователь действующих значений напряжения и тока …НПСИ-200-ДН/ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-МС1 преобразователь мощности, напряжения, тока, коэффициента мощности…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с RS-485 и USB …НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, IP65 …НПСИ-ЧВ/ЧС нормирующие преобразователи частоты, периода, длительности сигналов, частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений… ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искробезопасности (искрозащиты)…КА5004Ех одноканальные приёмники сигналов термопар, термосопротивлений и потенциометров…КА5011Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от пассивных или активных источников, HART …КА5022Ех барьеры искробезопасности активные двухканальные приёмники сигнала (4…20) мА от пассивных источников…КА5013Ех барьеры искробезопасности активные, разветвители сигнала 1 в 2, HART, шина питания …КА5031Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от активных источников, HART …КА5032Ех барьеры искробезопасности активные, двухканальные приёмники сигнала (4…20) мА от активных источников, HART . ..КА5131Ех барьеры искробезопасности активные, одноканальные передатчики сигнала (4…20) мА от активных источников, HART …КА5132Ех барьеры искробезопасности активные, двухканальные передатчики сигнала (4…20) мА от активных источников…КА5241Ех барьеры искробезопасности, приёмники дискретных сигналов, 1 канал…КА5242Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5262Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5232Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5234Ех барьеры искрозащиты, приёмники дискретных сигналов, 4 каналаКонтроллеры, модули ввода-вывода…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4/F1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов, 4 ПИД регулятора. ..MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами…MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические. ..МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485…МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/522/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические. ..ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных …ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства. ..PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт)…PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор……  История  версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей

Формулы для расчета электрических величин.

Проводя диагностику и ремонт холодильников Стинол, мастер периодически сталкивается с необходимостью проводить измерения электрических величин. По результатам измерения делаются выводы о работоспособности той или иной детали электрооборудования холодильника.
На практике, рассматривая какую-либо электрическую нагрузку, полезно заранее знать, какое сопротивление соответствует какой мощности и ток какой величины потечет через эту нагрузку при подаче на нее питающего напряжения 220 Вольт. Если немного упростить теорию, все это не сложно вычислить, пользуясь формулами, приведенными ниже.

Обозначения:

  • I — Сила тока в цепи, единицы измерения - Амперы (А)
  • U — Напряжение, единицы измерения - Вольты (В или V)
  • R — Сопротивление нагрузки, единицы измерения — Омы (Ом или Ohm)
  • P — Электрическая мощность нагрузки, единицы измерения — Ватты (Вт или W)

Эти электрические величины связаны друг с другом следующими формулами:

Электрооборудование холодильников Стинол рассчитано на питание от сети переменного тока напряжением 220 Вольт. Соответственно, вместо U в формулы можем смело подставлять число 220. Путем нехитрых перестановок получаем следующий набор формул на любой случай:

  • I=220/R
  • I=P/220
  • R=220/I
  • R=48400/P
  • P=220·I
  • P=48400/R

Важно! В цепях переменного тока данные формулы справедливы только для активной нагрузки, сопротивление которой переменному току не зависит от его частоты. Для реактивных потребителей (емкости и индуктивности) эти равенства выполняться уже не будут. А это значит, что, по большому счету, при ремонтах холодильников Стинол всю эту математику мы можем применять только к нагревателям системы No Frost. А различные электродвигатели (мотор-компрессор, вентилятор, микродвигатель таймера и т.п.), являясь нагрузкой реактивной (индуктивной), автоматически из подобных рассчетов выпадают.

Во время работы удобно иметь под рукой табличку для быстрого взаимного пересчета электрической мощности, сопротивления и силы тока. Такая табличка представлена ниже. В свое время она была составлена мной для быстрого ориентирования в параметрах нагревателей оттайки различных импортных холодильников. Специалисту по ремонту холодильников Стинол она тоже может оказаться полезной.

Пользоваться таблицей достаточно просто:

  • Измерив мультиметром сопротивление нагревателя, и найдя соответствующую строчку в таблице, сразу становится ясно, какой мощностью он обладает и какой ток потечет через него при подаче питающего напряжения 220 Вольт.
  • Узнав при помощи токовых клещей, какой ток потребляет нагреватель, по таблице можно выяснить его сопротивление и мощность.
  • Узнав по маркировке нагревателя его мощность, легко выяснить его сопротивление и ток.
Для напряжения 220 V
(если ток переменный, то справедливо только для активной нагрузки)
Сила тока, А Мощность, W Сопротивление, Ом
0.01 2.2 22k
0.05 11 4.4k
0.1 22 2.2k
0.2 44 1.1k
0.3 66 733
0.4 88 550
0. 5 110 440
0.6 132 366
0.7 154 314
0.8 176 275
0.9 198 244
1 220 220
1.1 242 200
1.2 264 183
1.3 286 169
1.4 308 157
1. 5 330 146
1.6 352 138
1.7 374 129
1.8 396 122
1.9 418 116
2 440 110
2.1 462 105
2.2 484 100
2.3 506 96
2.4 528 92
2. 5 550 88
2.6 572 85
2.7 594 81
2.8 616 79
2.9 638 76
3 660 73
3.1 682 71
3.2 704 69

Дополнительная информация по теме этой страницы есть в следующих статьях:


Запомнить эту страницу в:

Таблица расчета мощности по напряжению

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение — Р=U*I), то с вычислением мощности переменного тока — не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

  • S = √ P 2 +Q 2 , — для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ — для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √ 3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Емкостная нагрузка

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.

Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т. д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:

  1. обратившись к технической документации устройства;
  2. посмотрев это значение на наклейке задней панели; Потребляемая мощность прибора часто указывается на тыльной стороне
  3. воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.

Таблица значений средней потребляемой мощности

При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.

Это правило относиться и к выбору кабеля для электродвигателей.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина2000 – 25009,0 – 11,4
Джакузи2000 – 25009,0 – 11,4
Электроподогрев пола800 – 14003,6 – 6,4
Стационарная электрическая плита4500 – 850020,5 – 38,6
СВЧ печь900 – 13004,1 – 5,9
Посудомоечная машина2000 — 25009,0 – 11,4
Морозильники, холодильники140 — 3000,6 – 1,4
Мясорубка с электроприводом1100 — 12005,0 — 5,5
Электрочайник1850 – 20008,4 – 9,0
Электрическая кофеварка6з0 — 12003,0 – 5,5
Соковыжималка240 — 3601,1 – 1,6
Тостер640 — 11002,9 — 5,0
Миксер250 — 4001,1 – 1,8
Фен400 — 16001,8 – 7,3
Утюг900 — 17004,1 – 7,7
Пылесос680 — 14003,1 – 6,4
Вентилятор250 — 4001,0 – 1,8
Телевизор125 — 1800,6 – 0,8
Радиоаппаратура70 — 1000,3 – 0,5
Приборы освещения20 — 1000,1 – 0,4

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Сечение жилы провода, мм 2Диаметр жилы проводника, ммМедные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, кВт
0,500,8061300
0,750,98102200
1,001,13143100
1,501,38153300102200
2,001,60194200143100
2,501,78214600163500
4,002,26275900214600
6,002,76347500265700
10,003,575011000388400
16,004,5180176005512100
25,005,64100220006514300

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I =”” P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I =”” P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Сечение жилы провода, мм 2Диаметр жилы проводника, ммМедные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, кВт
0,500,8062250
0,750,98103800
1,001,13145300
1,501,38155700103800
2,001,60197200145300
2,501,78217900166000
4,002,262710000217900
6,002,763412000269800
10,003,5750190003814000
16,004,5180300005520000
25,005,64100380006524000

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

>

А при полной нагрузке — трехфазные двигатели переменного тока

Напряжения, перечисленные ниже, являются стандартными номинальными напряжениями двигателя. Это включает индукционный тип и синхронные трехфазные двигатели переменного тока.

Ампер полной нагрузки: трехфазные двигатели переменного тока


Источник: NFPA 70, Национальный электротехнический кодекс, таблица 430.250
Беличья клетка индукционного типа и намотанный ротор (амперы) Единичный коэффициент мощности синхронного типа (амперы)
л.с. 115 Вольт 200 Вольт 208 Вольт 230 Вольт 460 Вольт 575 Вольт 2300 Вольт 230 Вольт 460 Вольт 575 Вольт 2300 Вольт
½ 4. 4 2,5 2,4 2,2 1,1 0,9
¾ 6,4 3,7 3,5 3,2 1,6 1,3
1 8.4 4,8 4,6 4,2 2,1 1,7
12 6,9 6,6 6 3 2,4
2 13.6 7,8 7,5 6,8 3,4 2,7
3 11 10,6 9,6 4,8 3,9
5 17. 5 16,7 15,2 7,6 6,1
25,3 24,2 22 11 9
10 32.2 30,8 28 14 11
15 48,3 46,2 42 21 17
20 62.1 59,4 54 27 22
25 78,2 74,8 68 34 27 53 26 21
30 92 88 80 40 32 63 32 26
40 120 114 104 52 41 83 41 33
50 150 143 130 65 52 104 52 42
60 177 169 154 77 62 16 123 61 49 12
75 221 211 192 96 77 20 155 78 62 15
100 285 273 248 124 99 26 202 101 81 20
125 359 343 312 156 125 31 253 126 101 25
150 414 396 360 180 144 37 302 151 121 30
200 552 528 480 240 192 49 400 201 161 40
125 359 343 312 156 125 31 253 126 101 25
150 414 396 360 180 144 37 302 151 121 30
200 552 528 480 240 192 49 400 201 161 40
400 477 382 95
450 515 412 103
500 590 472 118

Примечание: для синхронных двигателей с 0. 9 и 0,8, там указанные в таблице амперы следует умножить на коэффициент 1.1 и 1.25 соответственно.

Размер провода двигателя

Согласно требованиям NEC для цепей, питающих одиночные двигатели, номинальная допустимая токовая нагрузка должна быть больше или равна 125% от номинальной допустимой токовой нагрузки двигателя при полной нагрузке. Ответвительные цепи, содержащие два или более двигателей, должны иметь провод, допустимая токовая нагрузка которого должна составлять не менее 125% от тока полной нагрузки самого большого двигателя, плюс сумма токов полной нагрузки для остальных двигателей.Например, если в цепи три двигателя на 15 А, допустимая нагрузка номинал проволоки, питающей цепь, должен превышать 15 + 15 + (15 * 1,25) = 48,75 Ампер. Есть исключения из этого требования, которые включают блокировки двух или более двигателей для предотвращения их одновременной работы. Обычно номинальное напряжение системы для двигателя будет выше напряжения, указанного на паспортной табличке, чтобы компенсировать любое падение напряжения в цепи.

Напряжение на паспортной табличке двигателя в зависимости от номинального напряжения системы
Напряжение на паспортной табличке двигателя Номинальное напряжение системы
115 120
230 240
460 480
575 600
4 000 4,160
6 600 6 900
13 200 13 800

Для получения дополнительных сведений о выборе размеров проводов и устройств защиты цепи для двигателей см. Таблицу размеров проводов двигателя и защиты цепи и двигатель. Калькулятор размера провода.

Просмотрите таблицы размеров проводов в списке ниже.

Посетите Условия использования и Политику конфиденциальности этого сайта. Ваше мнение очень ценится. Сообщите нам, как мы можем улучшить.


Интернет-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курс. «

Рассел Бейли, П.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации «

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, а курс был очень информативным, особенно с учетом того, что я думал, что я уже знаком.

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P. E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Хесус Сьерра, П.Е.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину «

Арвин Свангер, П. Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курс.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

по «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

организация «

Иван Харлан, P.E.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П. E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

доступный и простой для

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает напечатанная викторина во время

обзор текстового материала. Я

также оценил просмотр

Предоставлено фактических случаев »

Жаклин Брукс, П.Е.

Флорида

«Очень полезен документ» Общие ошибки ADA при проектировании объектов «. Модель

Тест потребовал исследования в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

в транспортной инженерии, которая мне нужна

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курс со скидкой.»

Кристина Николас, П. Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курс. Процесс прост, и

намного эффективнее, чем

придется путешествовать. «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории »

Виктор Окампо, P. Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

пониженная цена

на 40% «

Конрадо Казем, П. E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правила. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация . «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P. E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материал был кратким и

хорошо организовано. «

Глен Шварц, П.Е.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку».

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую . «

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на номер

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

, и комплексное ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по телефону

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P. E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом возвращаться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

один час PDH в

один час «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея заплатить за

материал . «

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат . «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

своя специализация без

надо ехать. «

Гектор Герреро, П.Е.

Грузия

Расчет квартир

| EC&M

Благодарим вас за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей
Расчет нагрузки — часть 1 .

Жилая единица — это единая единица, которая обеспечивает полноценные и независимые жилые помещения в соответствии с определением NEC, приведенным в Ст.100 ( рис. 1 ).


Рис. 1. Определение жилой единицы, как описано выше, можно найти в Ст. 100.

К жилищным единицам предъявляются особые требования к расчету нагрузки. Хотя большинство требований к расчету фактической нагрузки содержится в Ст. 220, другие разбросаны по всему Кодексу и все еще используются при выполнении определенных расчетов (см. СТОРОНА: Где найти требования Кодекса жилищной единицы, кроме статьи 220 в конце статьи). При расчете квартир учитывайте следующие соображения:

  • Напряжение . Если не указаны другие напряжения, рассчитайте параллельную цепь, фидер и сервисную нагрузку, используя номинальное напряжение системы [220,5 (A)]. Для дома на одну семью номинальное напряжение обычно составляет 120/240 В.
  • Двигатель VA . Используйте значения напряжения и тока в таблице двигателя, например 115 В, 230 В или 460 В, а не 120, 240 или 480 В [430,248 и 430,250]. Гораздо более точное значение номинальной мощности в ВА можно получить, используя номинальное напряжение и ток двигателя, которые использовались при разработке кодовых таблиц.
  • Округление . Если в результате расчетов доля меньше 0,50 А, можно опустить дробь [220,5 (B)].
  • Емкости . Вы можете использовать розетки на 15 А или 20 А в цепях на 20 А, если в цепи больше одной розетки. Для этих целей дуплексный сосуд считается двумя сосудами [210.21 (B) (3)].
  • Постоянные нагрузки . Непрерывная нагрузка — это нагрузка, при которой ожидается, что максимальный ток будет продолжаться в течение 3 часов или более, в соответствии со ст.100 определение. Фиксированный электрический обогрев — один из примеров непрерывной нагрузки [424,3 (B)]. При выборе размеров проводов параллельной цепи и устройств максимального тока для продолжительной нагрузки умножьте нагрузку на 125% [210,19 (A) (1) и 210,20 (A)].
  • Прачечная . Требуется емкость для стирки [210,52 (F)], по крайней мере одна из которых должна находиться в пределах 6 футов от стиральной машины [210,50 (C)]. Любая емкость в пределах 6 футов от внешнего края раковины для стирки должна быть защищена GFCI [210,8 (A) (7)].

Необходимые схемы. В дополнение к цепям, требуемым для специализированных приборов, и тем, которые необходимы для обслуживания общего освещения и розетки нагрузки, в жилом доме должны быть следующие цепи:

  • Минимум две ответвительные цепи для малых устройств 20 А, 120 В для розеток на кухне, в столовой, в зале для завтраков, кладовой или в аналогичных обеденных зонах [220. 11 (C) (1)]. Эти цепи не должны использоваться для обслуживания других розеток, таких как розетки освещения или розетки из других областей [210.52 (B) (2) Пр.]. Эти цепи включены в расчет фидера / обслуживания при 1500 ВА для каждой цепи [220,52 (A)].
  • Одна ответвительная цепь на 20 А, 120 В для емкости (ей) для белья. Он не может обслуживать другие розетки, например, освещение, и может обслуживать только розетки в зоне стирки [210.52 (F) и 210.11 (C) (2)]. При расчете нагрузки питателя / обслуживания включите 1500 ВА для цепи розетки для белья на 20 А [220,52 (B)], как показано на рис. 2 .

Расчеты по питанию и обслуживанию. Жильцы не используют все нагрузки одновременно в нормальных условиях жизни, поэтому «коэффициенты спроса» могут быть применены ко многим нагрузкам на жилые единицы, чтобы определить размер услуги. Некоторые факторы спроса, указанные в Кодексе, предназначены только для использования в жилых помещениях; другие разрешены только в нежилых помещениях. Поэтому будьте осторожны и применяйте коэффициенты спроса только в том случае, если это разрешено NEC.


Рис. 2. За сек. 210.11 (C) (2), для розеток в зоне для стирки требуется одна ответвительная цепь на 20 А, 120 В.

NEC предоставляет два метода расчета эксплуатационной нагрузки жилого помещения: стандартный метод и дополнительный метод.

Стандартный метод расчета нагрузки питателя и сервисной нагрузки

Стандартный метод состоит из трех этапов расчета:

  1. Общее освещение, ВА нагрузка . При расчете ответвленных цепей и нагрузок фидера / обслуживания для жилых помещений необходимо учитывать минимум 3 ВА на квадратный фут для общего освещения и розеток общего пользования [220.12]. При определении площади используйте внешние размеры жилища. Не включайте открытые веранды, гаражи или пространства, которые нельзя приспособить для будущего использования.
  2. Малогабаритная бытовая техника и прачечные . Правило 3 ВА на квадратный фут включает в себя общее освещение и все розетки общего пользования на 15 А и 20 А, 125 В, но не включает розетки для небольших бытовых приборов или прачечных. Следовательно, вы должны рассчитать их при 1500 ВА на цепь. Подробнее см. 220.14 (J).
  3. Количество ответвлений .Определите количество ответвлений, необходимых для общего освещения и розеток общего пользования, исходя из общей осветительной нагрузки и номинальных характеристик цепей [210,11 (A)]. Хотя это объясняется в Приложении D, Пример D1 (a) NEC, давайте рассмотрим другой пример.

Рис. 3. Пример расчета, показывающий, как следовать правилам из разд. 220.12 относительно общего освещения и розеток для жилого помещения площадью 2000 кв. Футов.

Вопрос: Какова общая нагрузка на освещение и розетки для жилого дома площадью 2000 кв. Футов, который имеет 34 розетки и 12 светильников мощностью 100 Вт каждый ( рис.3)?

Расчет довольно прост.

2000 кв. Футов x 3 ВА = 6000 ВА.

Никакой дополнительной нагрузки для розеток общего пользования и осветительных розеток не требуется, поскольку они включены в нагрузку 3 ВА на квадратный фут, указанную в Таблице 220.12 для жилых домов. См. 220.14 (J).

Теперь давайте рассмотрим пример, чтобы определить количество необходимых цепей.

Вопрос : Сколько цепей 15 А требуется для жилого помещения площадью 2 000 кв. Футов?

Шаг 1: Общее освещение ВА = 2000 кв. Футов x 3 ВА = 6000 ВА

Шаг 2: Ампер общего освещения:
I = ВА ÷ E
I = 6000 ВА ÷ 120 В *
I = 50 А
* Используйте 120 В, однофазный, если не указано иное.

Шаг 3: Определите количество цепей:
Количество цепей = Амперы общего освещения ÷ Амперы цепи
Количество цепей = 50 А ÷ 15 А
Количество цепей = 3,30, или 4 цепи. Любая часть схемы должна быть округлена в большую сторону.

Дополнительный метод расчета нагрузки питателя и сервисной нагрузки

Вы можете использовать дополнительный метод [Art. 220, Часть IV] только для жилых домов, обслуживаемых одним трехпроводным комплектом служебных или питающих проводов на 120/240 В или 120/208 В с токовой нагрузкой 100 А или более [220.82]. Дополнительный метод состоит из трех этапов расчета:

  1. Общие нагрузки [220,82 (B)]
  2. Нагрузка на отопление и кондиционирование [220,82 (C)]
  3. Питающие / сервисные провода [310.15 (B) (6)]

Шаг 1: Общие нагрузки [220,82 (B)]

Общая расчетная нагрузка должна составлять не менее 100% для первых 10 кВА плюс 40% от оставшейся части следующих нагрузок:

  1. Общее освещение и розетки: 3 ВА на квадратный фут
  2. Ответвительные цепи для малых бытовых приборов и прачечных: 1500 ВА для каждой ответвленной цепи для малых устройств 20 А, 120 В и прачечных, указанных в 220.52.
  3. Приборы: Паспортная табличка, номинальная мощность в ВА всех приборов и двигателей, которые закреплены на месте (постоянно подключены) или расположены в определенной цепи, за исключением отопления или кондиционирования воздуха.

Обязательно рассчитайте диапазон и осушитель по их номинальным характеристикам на паспортной табличке .

Шаг 2: Нагрузка системы отопления и кондиционирования [220,82 (C)]

Включите большее из (1) — (6):

  1. Кондиционирование воздуха: 100%
  2. Компрессор теплового насоса без дополнительного отопления: 100%
  3. Компрессор теплового насоса и дополнительный обогрев: 100% от номинальной мощности компрессора теплового насоса, указанной на паспортной табличке, и 65% от дополнительного электрического обогрева для систем центрального электрического отопления помещений.Если схема управления спроектирована так, что компрессор теплового насоса не может работать одновременно с дополнительным источником тепла, исключите компрессор из расчета.
  4. Агрегаты для обогрева помещений (три или меньше отдельно управляемых агрегатов): 65%.
  5. Агрегаты для обогрева помещений (четыре или более отдельно управляемых агрегата): 40%.
  6. Тепловой накопительный нагрев: 100%.

Шаг 3: Питающие / сервисные провода [310,15 (B) (6)]

  • 400A и менее .Для индивидуальных жилых домов, состоящих из одной, двух и нескольких семей, используйте Таблицу 310.15 (B) (6) для определения размеров 3-проводных, однофазных, служебных или питающих проводов на 120/240 В (включая нейтральные проводники). которые служат в качестве основного источника питания. Фидерные проводники не обязательно должны иметь допустимую нагрузку выше, чем рабочие проводники [215,2 (A) (3)]. Подберите размер нейтрального проводника для несимметричной нагрузки в соответствии с Таблицей 310.15 (B) (6). Таблицу 310.15 (B) (6) нельзя использовать для определения размеров фидера или сервисных проводов, которые питают более одного жилого помещения.
  • Более 400А . Подберите размер незаземленных проводов и нейтрального проводника, используя таблицу 310.16 для фидеров / сетей более 400 А и тех, которые не удовлетворяют всем требованиям для использования таблицы 310.15 (B) (6). Давайте попробуем пример расчета.

Вопрос : Проводник какого размера требуется для жилого дома площадью 1500 кв. Футов, содержащего следующие нагрузки?
Варочная панель: 6000 ВА
Утилизация: 900 ВА
Посудомоечная машина: 1200 ВА
Сушильная машина: 4000 ВА
Духовки (по две): 3000 ВА
Водонагреватель: 4500 ВА
Кондиционер: 17 A, 230 В
Электрический нагрев (один блок управления) : 10кВА

Шаг 1: Общие нагрузки [220.82 (B)]
Общее освещение: 1500 кв. Футов x 3 ВА = 4500 ВА
Цепи для малых устройств: 1500 ВА x 2 цепи = 3000 ВА
Цепи прачечной: 1500 ВА
Приборы (паспортная табличка):
Варочная панель: 6000 ВА
Утилизация : 900 ВА
Посудомоечная машина: 1200 ВА
Сушильная машина: 4000 ВА
Духовки (каждая по 3 кВт): 6000 ВА
Водонагреватель: 4500 ВА

Общая подключенная нагрузка: 31 600 ВА

Первые 10 кВт при 100%: 10 000 ВА x 1,00 = 10 000 ВА

Остаток при 40%: 21 600 ВА x 0,40 = 8 640 ВА

Расчетная общая нагрузка: 10 000 ВА + 8 640 ВА

Расчетная общая нагрузка: 18,640 ВА

Шаг 2: Кондиционирование воздуха в сравнении с теплом [220.82 (C)]

Кондиционирование воздуха на 100% [220,82 (C) (1)] по сравнению с электрическим обогревом помещения при 65% [220,82 (C) (4)]

Кондиционер [Таблица 430.248]:
A / C VA = V x A
A / C VA = 230 В x 17 A
A / C VA = 3 910 ВА (пропустить)

Электрическое отопление помещений: 10 000 ВА x 0,65 = 6 500 ВА

Шаг 3: Питающие / сервисные провода [310,15 (B) (6)]

Расчетная общая нагрузка (Шаг 1): 18,640 ВА

Расчетная тепловая нагрузка (Шаг 2): 6 500 ВА

Общая расчетная нагрузка = 18 640 ВА + 6500 ВА = 25 140 ВА

I = ВА ÷ E

I = 25,140 ВА ÷ 240 В = 105 А

Следовательно, незаземленный провод фидера / обслуживания рассчитан на 110 А, 3 AWG [310.15 (В) (6)].

Код Код не объясняет, как были получены факторы спроса, и вам не обязательно понимать это, чтобы правильно их применять. Обязательно поработайте над некоторыми практическими расчетами, чтобы понять, как применять различные факторы спроса к расчету жилой единицы.

В этой статье обсуждались стандартные и дополнительные методы расчета. Это два совершенно разных метода расчета, поэтому будьте осторожны, не смешивайте их.Помните, что стандартный метод есть в ч. III ст. 220, а необязательный метод содержится в части IV. Когда вы оцениваете необходимые нагрузки с помощью любого из методов расчета, следуйте требованиям для конкретных нагрузок, изложенным в других статьях, помимо Ст. 220. Какой метод лучше использовать? На экзамене вам, скорее всего, скажут, какой метод использовать для ответа на конкретный вопрос. Однако, если в вопросе не указан метод, используйте стандартный расчет. Дополнительный метод обычно быстрее и проще в применении, поэтому он имеет естественное преимущество для повседневного использования на работе.

БОКОВАЯ ПАНЕЛЬ: Где найти требования кода жилого помещения, не входящие в ст. 220

Ответвительные цепи — Art. 210

Площади, обслуживаемые малыми электрическими цепями — 210,52 (B) (1)

Кормушки — Art. 215

Услуги — Art. 230

Максимальная токовая защита — Арт. 240

Способы подключения — Art. 300

Дирижеры — Art. 310

Бытовая техника — Art. 422

Электрооборудование для обогрева помещений — Art. 424

Моторы — Art.430

Оборудование для кондиционирования воздуха — Art. 440

Определение размеров генератора для запуска кондиционера и двигателей

Моторным приборам (например, холодильникам и кондиционерам) для первоначального запуска требуется большее количество тока, чем во время их работы. Это связано с тем, что асинхронные двигатели изначально действуют как короткозамкнутый трансформатор. Максимальный пусковой ток обозначается как « Ампер заторможенного ротора » ( LRA ), потому что в первый момент, когда ротор остановлен, кажется, что он заблокирован.Этот ток значительно упадет, когда двигатель разгонится примерно до 75% от полной скорости. LRA обычно в 3-8 раз превышает непрерывный рабочий ток (называемый током полной нагрузки или FLA ). Обратите внимание, что это не соответствует 3-8-кратной реальной (активной) мощности, потому что коэффициент мощности пускового двигателя низкий (способность к скачку тока , . Между прочим, у холодильников может быть меньшее общее соотношение между LRA и FLA из-за резистивные нагреватели, которые периодически подключаются для размораживания морозильной камеры.

КАК НАЙТИ LRA


На паспортной табличке прибора обычно указывается либо пусковой ток, либо буквенное обозначение. Если вы знаете кодовую букву, вы можете получить приблизительное начальное соотношение кВА / л.с. из таблицы 430.7 (B) NEC 2020. После того, как вы рассчитали кВА, для однофазных катушек вы просто умножаете это на 1000 и делите на номинальное напряжение. Для получения дополнительной информации см. Наш калькулятор LRA. Если вы не можете найти ни паспортную табличку LRA, ни кодовую букву, можно измерить пусковой ток. Если вы технически подкованы, вы можете сделать это сами.Вам понадобится токоизмерительный прибор с функцией пикового (импульсного) тока. Чтобы использовать его, зажмите единственный провод в кабеле, который питает ваше устройство. Для устройства со шнуром и вилкой это можно сделать с помощью разветвителя линии переменного тока. В качестве альтернативы вы можете взять удлинитель, осторожно удалить несколько дюймов внешнего рукава и вытащить черный или белый провод из жгута. Для зашитого устройства это может быть немного сложнее — вам нужно будет выяснить, как добраться до одной строки. Скорее всего, ваше устройство с высокой мощностью подключено к отдельному выключателю.Вам нужно будет открыть переднюю панель главной монтажной коробки и найти провод, идущий к этому выключателю. Только, пожалуйста, не пытайтесь делать это самостоятельно, если у вас нет надлежащей подготовки по электричеству. Во всяком случае, вот основная процедура измерения. Прежде всего, выключите ваше устройство. Установите мультиметр на «Пиковое» показание, наденьте резиновые перчатки поточного работника и заключите провод в зажим. Наконец, включите устройство и снимите показания. Для определения размеров резервных и портативных генераторов, диаграммы типичных пусковых и рабочих токов однофазных центральных кондиционеров 240 В переменного тока в зависимости от их размера и многого другого, получите мою электронную книгу Home Generator.

РАЗМЕР ГЕНЕРАТОРА ДЛЯ ЗАПУСКА ДВИГАТЕЛЯ

Когда вы знаете LRA, вы можете выбрать генераторную установку. Однако есть одна менее известная деталь , которую вам необходимо знать. Большинство руководств посоветуют вам выбрать модель, в которой импульсный ток соответствует пусковому току вашего двигателя. Что ж, с таким советом вы можете получить генератор в два раза больше, чем вам действительно нужно. Дело в том, что заводская табличка LRA предназначена для запуска при полном напряжении. На самом деле, когда вы запускаете двигатель от генератора, скачок тока вызывает падение напряжения.При падении напряжения пропорционально уменьшается потребляемый ток. Большинство бытовых приборов могут запускаться при просадке напряжения до 30%, то есть при меньшем токе на 30%. В результате пусковой вольт-ампер может составить 0,7 * 0,7 = 0,49 номинального значения.

Например, типичный 5-тонный (5HP) кондиционер имеет 145 ампер LR при 240 В переменного тока. При падении напряжения на 30% для запуска потребуется (145 * 0,7) * (240 * 0,7) = 17 052 ​​ВА. Чтобы было ясно, это не означает, что вам нужно устройство мощностью 17 кВт — вам просто нужно устройство, которое может обеспечить такую ​​большую импульсную мощность.Обратите внимание, что коммерческие приложения обычно допускают падение только на 15%, и в этом случае вам нужно иметь дело с 0,85 * 0,85 = 0,72 номинальной пусковой кВА.

Между прочим, номера HP для кондиционеров могут кого-то сбить с толку. Действительно, технически 1 тонна охлаждения составляет 4,7 л.с. или 3,5 кВт. Однако в случае с кондиционерами электричество используется только для перекачки энергии из холодной зоны в горячую. При типичном КПД 1 кВт электроэнергии может передавать от 3 до 4 кВт охлаждения. Вот так 5-тонный кондиционер может иметь всего 5-сильный мотор.

Производители генераторных установок часто указывают способность своих моделей к импульсной мощности, но, к сожалению, они редко заявляют о возможности LRA. На диаграмме ниже показаны типичные данные для резервных генераторов.

Номинальная установившаяся мощность генератора (кВт) 7 10 13 14 16 17 18 20
Допустимый импульсный ток (240 В переменного тока, 1 фаза)
(Амперы при 30% провале напряжения)
46 63 95 102 117 125 133 145
Пример. Давайте подберем, какой генератор вам нужен для 5-тонного кондиционера. При номинальном напряжении такой кондиционер первоначально потреблял бы около 145 А. Но при напряжении 70% потребуется всего 145 * 0,7 = 101,5 А. Из приведенной выше диаграммы генераторной установки мы видим, что для обеспечения такого пускового тока вам потребуется система мощностью 14 кВт или выше. Такое устройство изначально могло обеспечить (240 * 0,7) * 102 = 17 136 ВА. Обратите внимание, что в установившемся режиме такой кондиционер будет потреблять всего около 6 кВт. Таким образом, у вас может быть до 8 кВт для запуска других устройств в вашем доме.
Если у вас есть несколько нагрузок с приводом от двигателя, расчет становится немного сложнее. Вам нужно будет найти нагрузку с наибольшей разницей между импульсным и рабочим током. Затем добавьте эту разницу к общему рабочему току всех устройств. Это обеспечит чистую потребность в импульсном токе вашей системы резервного копирования при условии, что несколько устройств редко запускаются в одно и то же время. См. Подробности в нашем руководстве по выбору размеров генератора. Если вы покупаете автоматическую систему без «интеллектуального» управления нагрузкой, имейте в виду, что после обнаружения прерывания обслуживания она может попытаться активировать все ваши двигатели одновременно.С такой системой вам понадобится генераторная установка, способная обеспечить полный пусковой ток. В противном случае двигатели могут отключить автоматический выключатель генераторной установки или могут перегреться и даже сгореть. В качестве альтернативы вы можете выбрать для своей резервной системы ручной режим. Тогда в аварийной ситуации вы можете сначала включить центральный кондиционер, а затем все остальные нагрузки последовательно.

Если мощность вашего генератора по импульсному току оказывается меньше, чем необходимо для запуска вашего центрального кондиционера, может потребоваться некоторая форма вспомогательного запуска.Возможно, вам потребуется установить комплект для «жесткого запуска», который стоит довольно дешево. По сути, это большой конденсатор, включенный последовательно с отключающей частью. Двухпроводное устройство должно быть подключено с помощью «дополнительных клемм» параллельно имеющемуся «рабочему конденсатору» (эти клеммы могут иметь маркировку RUN). Такое устройство обычно имеет твердотельное реле. Это в основном материал PTC, сопротивление которого быстро увеличивается по мере того, как он нагревается, когда через него проходит электрический ток. В результате он отключает пусковой конденсатор от цепи вскоре после подачи питания.В этом случае материал PTC остается горячим из-за «струйного тока», который продолжает течь через него, пока есть напряжение. Обратите внимание, что при отключении питания от двигателя твердотельный материал начинает охлаждаться, что занимает несколько минут. Если в течение периода охлаждения повторно подается переменный ток, конденсатор жесткого пуска может оказаться неэффективным, поскольку он все еще эффективно отключен. В других конструкциях используется реле напряжения с датчиком напряжения или тока, чтобы определить, когда отсоединять крышку. У них есть три провода, которые необходимо подключить к клеммам Common, Start и Run. Примечание. Обязательно отключите питание примерно на 10 минут, прежде чем подключать устройство с жестким запуском!

Приведенный выше анализ и примеры основаны на типичных числах. Они предоставляются только для справки, и не является профессиональной или юридической консультацией. — см. Полный отказ от ответственности по ссылке ниже. Обратитесь к спецификации вашего продукта и руководству по эксплуатации для принятия всех решений.

Расчет силы переменного тока в постоянный через инвертор

Итак, у вас есть электроприбор, который нужно запустить, но нет места для его подключения.Если вам нужно запустить обычное бытовое электрическое устройство в районе, где нет постоянного электроснабжения, этот калькулятор поможет вам выяснить, какой размер батарей и инвертор мощности вам нужен!

Добро пожаловать в наш инструмент преобразования постоянного тока в переменный (с инвертором). Этот калькулятор разработан, чтобы помочь вам определить количество потребляемой мощности при преобразовании одной формы мощности в другую с помощью инвертора постоянного тока в переменный.

Просто введите цифры мощности в поля ниже, и мы сделаем расчеты за вас, включая типичную неэффективность и все прочие технические характеристики, которые вы, возможно, не хотите вычислять.Если вы не уверены в своих числах, взгляните на иллюстрации с пошаговыми инструкциями ниже при вводе чисел.

Если вы хотите рассчитать аккумуляторную батарею инвертора, вам сначала нужно определить силу постоянного тока, которую вы будете выдавать из аккумуляторной батареи через инвертор. Этот калькулятор может помочь вам определить потребляемую мощность постоянного тока через инвертор, чтобы вы могли точно рассчитать размер аккумуляторной батареи инвертора.

Введите характеристики устройства переменного тока

Найдите аккумулятор Выберите свой инвертор

Прохождение

Пример
Напряжение переменного тока — Многие приложения имеют диапазон входного переменного напряжения.В США оно может составлять от 100 до 125 В переменного тока. В Европе обычно 200-240. В этом примере мы будем использовать стандарт США 120 вольт переменного тока.

Пример
AC Amperage — Входная сила тока — это сила тока, потребляемого приложением от сети переменного тока. Это число обычно измеряется в амперах. Если ток измеряется в миллиамперах (мАч), вы можете преобразовать его в амперы, разделив число на 1000. Например, наше примерное приложение потребляет 300 миллиампер, что совпадает с 0.3 ампера.

Пример
Мощность — это общая мощность, потребляемая приложением. Он рассчитывается путем умножения напряжения на силу тока. Следовательно, 120 В переменного тока x 0,3 А равны 36 Вт.

Пример
Напряжение постоянного тока — Выходное напряжение — это номинальное значение вашей аккумуляторной системы, обычно от одной 12-вольтовой батареи. Мы используем 12,5 вольт для 12-вольтовых аккумуляторных систем.

Пример
DC Amperage — Теперь мы знаем, что наше приложение потребляет 36 Вт общей мощности.Если вы возьмете эту мощность от источника постоянного тока 12,5 В, то общая требуемая сила тока увеличится до 3,31 А или 3310 мА. Поскольку у аккумуляторов ограниченная емкость или ампер-часы, важно, чтобы размер аккумулятора был достаточно большим, чтобы справиться с потребностью в силе тока для вашего приложения.

Найдите аккумулятор Выберите свой инвертор

Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

Написано 29 октября 2019 г. в 10:32

Расчет жилых помещений: оценка элементов электрической системы

Оценщик спросил, какой метод использовать для расчета вольт-ампер (ВА) жилища.Он надеялся использовать результаты в качестве руководства для оценки элементов электрической системы и хотел применить стандартный метод. Ниже я объясню свою интерпретацию этого метода для определения VA и использования его в качестве инструмента оценки.

Группировка грузов

Стандартный расчет требует, чтобы нагрузки были разделены следующим образом:

  • Нагрузка 1: Общее освещение, розетки и небольшие бытовые нагрузки
  • Загрузка 2: Загрузки оборудования для приготовления пищи
  • Нагрузка 3: Нагрузки специальных устройств
  • Загрузка 4: Загрузка сушилки
  • Нагрузка 5: Нагревание
  • Нагрузка 6: Самый большой двигатель

Общее освещение и розетки нагрузки

Таблица 220.12 в Национальном электротехническом кодексе считает жилое помещение занесенным в список из расчета 3 ВА на квадратный фут; поэтому общая световая нагрузка определяется путем умножения площади в квадратных футах. Например, 2800 квадратных футов умножить на 3 ВА — это 8400 ВА. Используйте эту сумму, чтобы определить количество розеток для освещения и розеток общего назначения. При установке 20-амперной схемы с питанием от 120 вольт, 8400 ВА, разделенные на 2400 ВА (20 А × 120 В = 2400 ВА), составляют 3,5, при округлении в большую сторону требуется четыре 20-амперных схемы.Пять 15-амперных схем — это минимум, необходимый для 15-амперной схемы.

Малые нагрузки

Необходимо установить не менее двух контуров малых электроприборов на 210,52 (A) для питания розеток на кухне, в зале для завтраков, кладовой и столовой. Один нужен для прачечной по 210,52 (B). Цепи малых устройств рассчитаны на 1500 ВА каждая. Таким образом, к общей осветительной нагрузке добавляется 4500 ВА. Эти розетки не должны подключаться к цепям, питаемым от цепей общего или специального прибора.

К этим нагрузкам может применяться коэффициент потребности, разрешенный в таблице 220.42. В зависимости от ВА, первые 3000 ВА можно рассчитать на 100 процентов, а оставшуюся ВА — на 35 процентов.

Специальная загрузка прибора

Направленные цепи обычно питают цепи специальных устройств, которые не подключены к цепям общего назначения или малым устройствам. К таким нагрузкам относятся водонагреватели, нагревательные блоки, плиты, кондиционеры, кухонное оборудование, двигатели и т. Д.Например, 10 кВт преобразовывается в 10 000 ВА и используется в расчетах для определения общей нагрузки в ВА.

Фиксированные нагрузки бытовой техники, такие как посудомоечные машины, оборудование для утилизации, водонагреватели, уплотнители и т. Д., Могут иметь коэффициент потребности 75%, применяемый к их общей ВА.

Приборы, которые не учитываются при использовании этого коэффициента спроса, — это нагревательные блоки, кондиционеры, сушилки или кухонное оборудование. Когда эти устройства удаляются из расчета, все остальные устройства считаются фиксированными и соответствуют требованиям 75%.

Фактор спроса

Как уже упоминалось, в современном дизайне постоянно используется термин «коэффициент спроса», то есть отношение максимальной нагрузки системы (или части системы) к подключенной нагрузке на систему (или часть системы). Всегда меньше 1.

Применение факторов спроса

НАГРУЗКА 1:

Таблицы 220.12 и 220.42 могут применяться следующим образом:

Осветительные и розеточные нагрузки общего назначения — 2 800 кв.фут × 3 ВА = 8,400 ВА

Малая бытовая техника и нагрузка для стирки — 1500 ВА × 3 = 4500 ВА

ОТВЕТ : 8 400 ВА + 4500 ВА = 12 900 ВА

Применение факторов спроса

Первые 3000 ВА × 100% = 3000 ВА

Следующие 9 900 ВА × 35% = 3465 ВА

ОТВЕТ : 3000 ВА + 3465 ВА = 6465 ВА

НАГРУЗКА 2:

Таблица 220.55, столбец B (65 процентов) может применяться следующим образом:

Варочная панель на 8,500 ВА и духовой шкаф на 8000 ВА

Применение факторов спроса

ОТВЕТ : 8 500 ВА + 8 000 ВА × 65% = 10 725 ВА

НАГРУЗКА 3:

Раздел 220.53 (правило 75 процентов) может применяться следующим образом:

Фиксированная нагрузка устройства 13 200 ВА состоит из водонагревателя, водяного насоса, сливного устройства, уплотнителя, посудомоечной машины, микроволновой печи и двигателя вентилятора.

Применение факторов спроса

ОТВЕТ: 13 200 ВА × 75% = 9 900 ВА

НАГРУЗКА 4:

Таблица 220.54 позволяет рассчитать осушитель на 5000 ВА на 5000 ВА.

НАГРУЗКА 5:

Раздел 220.60 позволяет установить самый большой блок отопления на 10 000 ВА и кондиционер на 5 500 ВА при меньшей падающей нагрузке.

НАГРУЗКА 6:

Раздел 220.50 требует, чтобы 25% для самого большого двигателя (водяной насос 2600 ВА) было добавлено к расчету при 650 ВА (25% от 2600 ВА = 650 ВА).

ОПРЕДЕЛЕНИЕ ИТОГО VA

Добавьте VA, равное 6 465; 10,725; 9 900; 5000; 10,000; и 650 вместе, и получается 42 740 ВА.Общий ток 178 (42,740 А / 240 В = 178 А)

Эту процедуру можно использовать для получения ВА для определения ампер для выбора сервисных элементов и помощи в оценке методов подключения и оборудования.

Таблица энергопотребления бытовой техники

03

9200

1100 900 900

929 40

1100

1

Эспрессо-машина

04

45028

Лампа — эквивалент 40 Вт

9292 9297 9297 9297 9297 Incan Офис

0

Ватт

Устройство

Ватт

Устройство

Ватт

922

9702 9229

Инструменты

Блендер

500

Bluray Player

15

Ленточная пила — 14 ″

150

Кабельная коробка

35

Ленточный шлифовальный станок — 3 ″

1000

Кофеварка

1000

DVD-плеер Цепная пила — 12 ″

Посудомоечная машина

1200-1500

Телевизор — LCD

150

Циркулярная пила — 7-1 / 4 ″

800

TV — Plasma

200

Циркулярная пила 8-1 / 4 ″

1400

15 Морозильная камера — вертикальнаяфутов

1240 Вт · ч / день **

Спутниковая антенна

25

Дисковый шлифовальный станок — 9 ″

1200

Морозильник — Сундук — 15 куб. футов

1080 Вт · ч / день **

Стереоресивер

450

Дрель — 1/4 ″

250

Холодильник — 20 куб. футов (переменного тока)

1411 Вт · ч / день **

Игровая консоль

150

Дрель — 1/2 ″

750

Холодильник -16 куб. .футов (переменного тока)

1200 Вт · ч / день **

Освещение

Дрель — 1 ″

1000

Вывоз мусора

11

Триммер для живой изгороди

450

Чайник — электрический

1200 180003

CFL Лампа 910 9000

03 910 9000 9000

03

Weed Eater

500

Микроволновая печь

1000

Лампа CFL — эквивалент 75 Вт

20

Разное.
Духовка — электрическая

1200

Лампа CFL — эквивалент 100 Вт

30

Радиочасы

7

03 850 Toaster

Компактный флуоресцентный 20 Вт

22

Щипцы для завивки

150

Тостер-печь

1200

Компактный люминесцентный 25 Вт

03

280

Стационарный миксер

300

Галоген — 40 Вт

40

Электробритва

15

00

00

50

Электрический B lanket

200

200

Лампа накаливания 100 Вт

100

Фен для волос

1500

Потолочный вентилятор

5 Светодиодная лампа55

10

Увлажнитель

200

Центральный кондиционер — 24000 БТЕ Нет данных

3800

Светодиодная лампа — эквивалент 60 Вт

0

0 Телефон — Прием

5

Центральный кондиционер — 10 000 БТЕ нет данных

3250

Светодиодная лампа — эквивалент 75 Вт

18

0 Радиотелефон

75

Fu rnace Fan Blower

800

Светодиодная лампа — эквивалент 100 Вт

23

Швейная машина

100

Space Heater NA

000

Вакуум

1000

Бесконтактный водонагреватель — электрический

Настольный компьютер (стандартный)

200

Примечание , компьютеры и другие устройства оставленный подключенным, но не включенным, по-прежнему потребляет электроэнергию.

** Чтобы оценить количество часов, в течение которых холодильник фактически работает при максимальной мощности, разделите общее время, в течение которого холодильник включен на три. Холодильники, хотя и включены все время, на самом деле циклически включаются и выключаются по мере необходимости для поддержания внутренней температуры.

Водонагреватель — электрический 4500 Настольный компьютер (игровой) 500
Оконный кондиционер 10,000 BTU NA 900 Ноутбук 100

Оконный кондиционер 12,000 BTU NA

3250

Скважинный насос — 1/3 1HP

750

Прачечная

0002

Сушилка для одежды — электрическая

3000

Принтер

100

Сушилка для одежды — газовая

1800

Маршрутизатор

Стиральная машина

800

Смартфон — зарядка

6

Утюг

1200

Планшет — зарядка

8

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *