Руководство по перезаряжаемым литиевым аккумуляторам для начинающих / Хабр
Когда-то аккумуляторы были тяжёлыми и неуклюжими предметами, выдававшими смехотворно мало энергии для своего размера и веса. К счастью, со временем технологии улучшаются, и в 2020 году у нас есть прекрасные мощные литий-полимерные аккумуляторы, выдающие столько энергии, сколько может понадобиться вашему мобильному проекту. Однако при их использовании нужно учесть некоторые моменты – поэтому предлагаю вам прочесть руководство для начинающих о том, как правильно использовать LiPo в своём проекте.
Так много типов!
Первые коммерческие литий-ионные аккумуляторы вышли на рынок в 1991 году, и за прошедшие с тех пор почти 30 лет мы наблюдали быстрый их прогресс. В итоге у нас появилось множество различных технологий и типов аккумуляторов, делящихся по типу конструкции и используемых материалов. Чтобы правильно обращаться с аккумуляторами, важно знать, какой именно тип попал к вам в руки, и очень важно обратить на это внимание.
Литий-ионные элементы форм-фактора 18650 из ноутбука. Подобные наборы обычно соединяются точечной сваркой никелевых полосок.
Обычно литий-ионными, или Li-ion аккумуляторами называют всю технологию перезаряжаемых литиевых батареек целиком, однако часто так называют традиционные элементы с цилиндрическим металлическим корпусом. Один из вариантов – многоуважаемые 18650, однако вообще их существует множество вариантов и размеров. Их крепкие корпуса сделали их популярными для использования в средствах передвижения, так как последние испытывают значительные физические нагрузки.
Литий-полимерными, или Li-Po называют литий-ионные батарейки, использующие полимерный электролит вместо жидкого. Благодаря этому их можно делать в виде ёмкостей различной формы. Такая гибкость делает их полезными для таких применений, как смартфоны и планшеты, где требуется аккумулятор большой ёмкости и плоской формы. Также их часто используют в радиоуправляемых моделях, поскольку их небольшой вес даёт существенное преимущество летающим аппаратам.
Литий-полимерные пакетные аккумуляторы для использования в радиоуправляемых моделях.
Lithium-HV, или литиевые аккумуляторы высокого напряжения – это литий-полимерные батарейки, использующие специальную кремний-графеновую добавку на плюсовой клемме, благодаря которой она не повреждается высоким напряжением. Если заряжать большинство литиевых аккумуляторов до напряжения выше 4,2 В, они значительно потеряют в ёмкости, а их срок службы будет заметно уменьшаться. Используя эту добавку, можно заряжать элементы до 4,32 В без подобных негативных последствий. Повышение напряжения даёт примерно 10% прибавку к плотности энергии по сравнению с обычными литий-полимерными аккумуляторами.
Литий-железо-фосфатные аккумуляторы , или LiFePO4, используют немного изменённую химию, благодаря чему они могут выносить больше циклов заряда/разряда за счёт немного меньшей энергетической ёмкости. Лучше всего они работают в диапазоне от 3,0 В до 3,65 В, а не в типичном для стандартной химии литий-ионов диапазоне 3,0-4,2. Благодаря этому и очень плоской кривой разряда делает их идеальными для замены 12 В свинцовых батарей во многих случаях, а вместо оригинальных шести элементов используются четыре. Обычно они более стабильными, меньше подвержены саморазряду и потере ёмкости со временем.
Уважайте границы
Ошибка может привести к неприятным результатам
По сравнению с большинством типов аккумуляторов, литиевые элементы плохо переносят неправильное обращение. Разряд ниже нижнего предела приводит к формированию медных дендритов, из-за чего у них уменьшается ёмкость и может произойти короткое замыкание. Перезаряд может привести к повреждению анода отложениями лития, из-за чего могут образоваться литиевые дендриты, что часто приводит к короткому замыканию или самоподдерживающейся реакции с выделением тепла – аккумулятор начинает дымиться и гореть. Также каждый элемент в группе нужно поддерживать на том же уровне напряжения, что и все его соседи, чтобы элементы не слишком быстро деградировали.
Важно не заряжать литиевые элементы слишком быстро. Также на эффективность работы аккумуляторов сильно влияет окружающая температура. Литиевые аккумуляторы не любят температур ниже нуля, особенно при полном заряде. Их нельзя заряжать при отрицательной температуре. Поскольку металлический литий может отложиться на минусовом электроде, что может повредить элемент или вызвать короткое замыкание. В принципе, их можно заряжать при температуре до -5°C, однако это нужно делать очень медленно. Кроме того, аккумуляторы могут повредиться, если заряжать их при температурах выше 45°C.
При выходе за указанные пределы в лучшем случае вы просто убьёте аккумулятор, в худшем случае он загорится и взорвётся. Кроме того, эти элементы подвержены раздуванию, выделению газа, да и вообще кажутся не очень удобными в работе. Может показаться, что иметь с ними дело чересчур сложно. К счастью, современная электроника научилась справляться с их проблемами. Правильное оборудование и меры предосторожности дают возможность использовать литиевые аккумуляторы безопасно и эффективно. Однако все, кто работает с ними, должны уяснить себе потенциальные опасности. Боб Бэддели в прошлом ноябре опубликовал отличную статью на эту тему.
Работа с аккумуляторами
В случае использования отдельных элементов или их групп, к примеру, при использовании LiPo аккумуляторов в радиоуправляемых моделях, достаточно просто использовать специальное зарядное устройство для литиевых аккумуляторов. При зарядке нужно подключать провода для проверки балансировки [позволяют измерять напряжение на каждом из элементов по отдельности / прим. перев.], особенно если батарея разрядилась полностью. Наибольшей эффективности в работе батарей можно добиться при использовании умных зарядных устройств (особенно в случаях с LiFePO
Подобные модули отлично подходят для интеграции литиевых аккумуляторов в прототип
Если вашему устройству требуется интегрированный аккумулятор, вам подойдут специальные платы защиты и заряда. Существуют готовые модули и интегральные схемы, позволяющие без проблем контролировать работу литий-ионных батарей. В принципе их множество – от тех, которые просто разрывают контур при понижении напряжения, до комплексных решений по зарядке и защите. Такие компании, как Adafruit, продают модули, которые отлично подойдут для начинающих любителей электроники, желающих интегрировать удобное решение по заряду и контролю аккумуляторов без необходимости проектировать платы самостоятельно. Однако существуют открытые решения, которые будет легко интегрировать в собственную плату в будущем.
Система управления батареей (BMS) для аккумуляторов из 12 элементов, способного выдавать до 60 А.
Для более крупных проектов с самостоятельно собранными батареями хорошо подойдут системы управления батареей (BMS). BMS, по сути, не сильно отличается от микросхемы защиты, она просто разработана для более крупных задач. BMS обычно используется для аккумуляторов, состоящих из десятка или более элементов, и часто в таких проектах, как электровелосипеды и другие средства передвижения. BMS паяется непосредственно к аккумуляторам, и подсоединяется к каждому элементу в отдельности [к группе элементов, соединённых параллельно / прим. перев.]. Её задача – балансировка элементов, ограничение тока разрядки для безопасности, управление процессом зарядки. Опытные сборщики батарей часто интегрируют BMS в корпус или кожух самого аккумулятора, оставляя снаружи только коннектор. Это позволяет пользователю просто добавить готовый аккумулятор в свой проект, не беспокоясь о защите.
Если вашему проекту необходима особая устойчивость к воздействию окружающей среды, вам также придётся отслеживать температуру аккумулятора. Отслеживать температуру ячеек, в особенности во время зарядки – отличный способ защитить аккумулятор от повреждения. У лучших чипов и BMS есть функция отслеживания температуры. На таком уровне сборки вы уже будете делать батарею самостоятельно, внедряя термопары в нужные места во время сборки. Для аккумуляторов, выдающих большие токи, температуры нужно отслеживать в обязательном порядке. Практически во всех электровелосипедах и электромобилях есть оборудование для отслеживания температуры аккумуляторов и управляющих систем.
Итог
Литий-ионные батарейки могут быть опасными, но при правильном использовании они достаточно безопасны для большинства проектов. Главное – использовать правильное оборудование, чтобы убедиться, что вы не выйдете за пределы диапазонов напряжения и температуры, иначе может случиться беда. Надеюсь, что данная инструкция поможет вам в поисках информации по включению литиевых аккумуляторов в свой проект.
См. также:
как правильно заряжать, виды и рекомендации
Современный человек не может представить своей жизни без мобильного телефона, планшета, ноутбука, портативной дрели, шуруповерта, фонарика и прочих устройств, которые могут работать как от электросети, так и от аккумулятора. Зачастую в таких приспособлениях используются литий-ионные источники питания.
Многие спросят, почему именно такой тип накопителей энергии используется чаще всего в электрических приборах. Ответ достаточно прост и очевиден – литий-ионные аккумуляторы имеют небольшие размеры, а также у них достаточно большой срок эксплуатации — от 300 до 2000 циклов заряд-разряд. Именно потому, что вокруг нас находится очень много источников питания такого типа, каждый человек должен знать, как зарядить литий-ионный аккумулятор.Что такое Li-ion аккумулятор
Несмотря на то что каждый человек сталкивался с таким источником питания, далеко не все понимают, что это за батарея и как она устроена. Наиболее простым и распространенным вариантом является литий-ионный источник питания для мобильных телефонов. Он имеет такую конструкцию: сверху находится контролер для управления зарядом-разрядом, а ниже аккумуляторный элемент (банка).
В 99% батарей для сотовых телефонов используется только один аккумуляторный элемент, специалисты на своем жаргоне достаточно часто называют его банкой. Номинальное напряжение данного источника питания составляет 3.7 вольта.
Устройство также имеет специальный контроллер (обычная плата с микросхемой), благодаря которому не случается перезарядки аккумулятора. Потому производитель со своей стороны сделал все возможное, чтобы не случилось внештатных ситуаций, которые привели бы к быстрой поломке источника питания.
Как заряжать первый раз
Многие, наверное, помнят, как все говорили, что новую батарею необходимо довести до полного разряда, а затем полностью зарядить, и так сделать три раза. Такой процесс первых зарядок действительно есть, он на самом деле необходим, но для батарей Ni-Cd и Ni-MH. Такие элементы питания ставили еще в достаточно древние телефоны, которые сейчас практически не выпускаются.Как правильно заряжать литий-ионный аккумулятор в первый раз, знает далеко не каждый и начинает проводить процедуру полной разрядки. Элементы питания такого типа устроены совершенно по-другому, и процесс глубокого разряда им очень сильно вредит. Именно поэтому такие устройства продаются с зарядом на 2/3 от емкости, а не для того, чтобы человек мог проверить телефон или другое приспособление.
К сожалению, достаточно часто потребители, перед тем как первый раз зарядить литий-ионный аккумулятор, помня старые времена, начинают полностью его разряжать, тем самым практически сразу же у них отбирая половину срока службы. Поэтому будьте внимательны и не допускайте распространенных ошибок, приводящих к поломке АКБ.
Как правильно заряжать литий-ионный аккумулятор?
Наиболее оптимальной средой работы для обычного Li-ion источника питания является уровень заряда на уровне 20-80%. Данные устройства очень не любят перезаряд, и хоть на батарее находится специальный контроллер, который не допустит этого, но есть некоторые потребители, которые сутками держат батарею на зарядке. Это совершенно ни к чему, и таким образом не продлить работу устройства, а наоборот.
Литий-ионный аккумулятор 18650
Такой АКБ имеет цилиндрическую форму и по внешнему виду полностью напоминает обычную батарейку. Стоит отметить, что недобросовестные производители, всячески пытаясь увеличить продажи, начинают указывать завышенные характеристики. На сегодняшний день нет более энергоемких Li-ion аккумуляторов типа 18650, чем 3400 мАч. Если на элементе питания указывается цифра большей этой, то следует понимать, что изготовитель преднамеренно завышает характеристики своего товара. При этом существует большая вероятность, что на самом деле аккумулятор будет иметь не более 2200 мАч.Как заряжать литий-ионный аккумулятор 18650
Заряжать такие элементы питания можно только при помощи специального зарядного устройства, которое продается практически в любом магазине с электротоварами. Для зарядки литий-ионных батарей необходимо зарядное устройство, где минимальное напряжение будет не менее 2.2 В, а максимальное — не более 4.35. Ток разряда не должен быть больше, чем двойная емкость АКБ. То есть если аккумулятор имеет 2000 мАч, то ток на зарядном устройстве не должен быть больше 4000 мАч.
Чем опасен перезаряд и глубокий разряд?
Из-за того, что люди не знают, как заряжать литий-ионный аккумулятор, они часто допускают ошибки и могут его слишком долго держать на зарядке или же, наоборот, забыть про него на длительное время. Чем же опасна неправильная эксплуатация батареи? Все дело в том, что в данном случае ионы лития передвигаются от одного к другому электроду. Материал изготовления самих электродов может быть разным, но в данной теме эти подробности не столь важны.
Проще говоря, чем больше заряжена батарея, тем больше ионов лития находится в электроде. Если их значение постоянно находится на максимуме, то в таком случае происходит достаточно быстрая изнашиваемость устройства.
Чем заряжать аккумуляторы
Li-ion аккумуляторы получили большую популярность также и потому, что существует достаточно большое количество вариантов, чем можно их зарядить.
Наиболее логичный и правильный способ, как заряжать литий-ионный аккумулятор – это штатное зарядное устройство. Благодаря специальному устройству батарея получит максимальный заряд в кратчайшие сроки. Более того, это полностью безопасно для элемента питания.
Тем, кто не знает, как заряжать литий-ионный аккумулятор, если под рукой не оказалось штатного зарядного устройства, сообщаем, что сделать это можно и при помощи компьютера и шнура USB. Однако в таком случае ток будет достигать лишь 0.5 ампера.
Также возможно зарядить Li-ion батарею через прикуриватель в автомобиле. На сегодняшний день во многих магазинах продаются специальные USB-переходники, которые выдают различную силу тока. Каким током заряжать литий-ионные аккумуляторы, лучше всего узнать в документации, которая предоставляется вместе с телефоном, ноутбуком или другим устройством. Основная масса батарей заряжается от 3.7 до 19 вольт. Однако существуют модели батарей, которым необходимо больше или меньше напряжения. В любом случае не стоит рисковать, а лучше лишний раз заглянуть в инструкцию по эксплуатации.
Если ни один из предыдущих способов зарядки не подошел, можно воспользоваться старым, но все же актуальным и по сегодняшний день устройством, которое получило в народе название «лягушка». Такие приспособления в большей мере предназначены для батарей из сотовых телефонов. Конструкция «лягушки» достаточно простая: здесь есть один док, куда устанавливается литий-ионный аккумулятор, а также контакты, регулирующийся по ширине. Таким образом, эта зарядка подойдет практически под любую батарею данного типа.
Как видите, способов зарядки элемента питания достаточно много. Но перед тем как зарядить литий-ионный аккумулятор, следует убедиться, что действительно нет возможности воспользоваться штатной зарядкой. Остальные методы используются в случае необходимости. Они не приносят вред батарее, но все же оригинальная зарядка должна быть в приоритете в сравнении с остальными.
Если человек не знает, как зарядить литий-ионный аккумулятор шуруповерта, то сообщаем, что делать это нужно только специализированной зарядкой, которая поставляется в комплекте с устройством. Стоит отметить, если зарядка выходит из строя, а приобрести новую нет возможности, к примеру, больше данная модель не производится, то в таком случае можно соединить между собой несколько аккумуляторов типа 18650 и вставить в короб с оригинальной зарядкой. Сколько нужно АКБ типа 18650, сказать невозможно, все зависит от вольтажа шуруповерта.
Калибровка
Примерно один раз в три месяца необходимо производить калибровку. Для этого следует допустить полную разрядку аккумулятора. В таком случае контролер элемента питания сможет самостоятельно откалибровать границы полного заряда и разряда приспособления. Это необходимо для того, чтобы на устройстве, в котором установлена Li-ion батарея, отображалась актуальная информация о ее заряде. Если долго не было полной разрядки, может показываться недостоверная информация о процентном заряде батареи.После того как АКБ будет полностью разряжена, ее нужно зарядить полностью до 100% при выключенном устройстве. Посмотреть время зарядки аккумулятора можно в инструкции. Если по окончании этого времени вы включили устройство, а заряд показывает менее 100%, то нужно его снова выключить и продолжить зарядку до тех пор, пока не будет полного уровня заряда.
Хранение
Если на протяжении долгого периода времени не планируется использование АКБ, то следует обратить особое внимание на то, как его необходимо хранить. Оптимальным зарядом считается 30-60% от емкости. Аккумулятор должен находиться в достаточно прохладном помещении, где температура воздуха сохраняется около 15 градусов. Если же элемент питания хранится в полностью заряженном состоянии, то при последующем включении вы обнаружите, что его емкость значительно снизилась.
Когда устройство оставляют полностью разряженным, то это еще хуже. С большой долей вероятности через полгода его нужно будет сдавать на утилизацию. Литий-ионные аккумуляторы запрещается хранить длительное время в глубокой разрядке.
Внешний перегрев
Еще один злейший враг Li-ion аккумуляторов – высокая температура, которую они категорически не переносят. Владельцу такого типа АКБ следует не допускать попадания на него солнечных лучей, не класть возле батареи или других источников излучения тепла. Максимально допустимая температура использования аккумулятора — +50 градусов. Если пренебречь температурным режимом, то вероятно, уже через несколько месяцев новый элемент питания превратится в испорченный.
Заключение
Теперь вы знаете, можно ли заряжать литий-ионные аккумуляторы и как правильно это можно сделать. Подытоживая все вышесказанное, можно выделить такие основные моменты:
- По возможности АКБ всегда нужно заряжать оригинальными зарядками.
- Правильней всего заряжать батареи до 80%, при этом не опускать значение разряда ниже 20%.
- Не держать аккумулятор постоянно на зарядном устройстве, а также не рекомендуется полный разряд.
При соблюдении нескольких нехитрых правил аккумулятор типа Li-ion может прослужить достаточно длительный период времени, при этом энергоемкость будет оставаться на высоком уровне.
Нужна ли тренировка литиевых аккумуляторов? / Хабр
Прошло уже достаточно времени с тех времен, когда Ni-Cd и Ni-Mh аккумуляторы безраздельно властвовали в мобильных устройствах, но с самого начала эпохи Li-ion и Li-pol все не утихают споры по поводу того, надо ли «тренировать» эти аккумуляторы сразу после покупки.Доходит до смешного, в теме обсуждения ZP100 на china-iphone всем новичкам рекомендовали в приказном тоне пройти 10 циклов зарядки-разряда, а только потом приходить с вопросами о аккумуляторах.
Давайте попробуем разобраться, имеет ли такая рекомендация право на жизнь, или это рефлексы спинного мозга (за отсутствием головного, наверное) некоторых индивидуумов, у которых они остались со времен никелевых батарей.
Текст может и наверняка содержит орфографические, пунктуационные, грамматические и другие виды ошибок, включая смысловые. Автор будет благодарен за сведения о них (конечно, в приват, а еще лучше с помощью вот этого замечательного расширения), но не гарантирует их устранение.
О терминологии
- А (Ампер(A), или миллиампер — мА, микроампер — мкА) — значение силы тока в проводни
ке. Может быть как большим, так и маленьким. Ток в 100А может сваривать листы железа, но взяв в руки провода от БП 5В 100А, вы ничего не почувствуете, потому что никаких 100А через вашу кожу не пройдет — сопротивление тела слишком большое для прохождения тока. - В (Вольт(V), или милливольт — мВ, микровольт — мкВ) — значение напряжения. Большое напряжение создаст длинную искру, но при маленьком токе источника вас только треснет, но никак не превратит в горстку пепла. Пример — статическое электричество, напряжения составляет до 10кВ, а токи мизерные.
- Ом (Омы(Ohm), или килоом — кОм, мегаом — МОм) — значение сопротивление. Именно высокое сопротивление вашего тела (приблизительно 15 кОм) позволяет вам держать провода из первого пункта. Проходя по проводу, имеющему сопротивление (а все провода имеют сопротивление, и чем провод
дальше из провинции китаятоньше, тем оно выше), напряжение падает на определенную величину, которая зависит от силы тока. Поэтому для обогревателя нужен толстый провод, а для лампочки — тонкий, хоть напряжение в обоих случаях 220В. Применительно к аккумуляторам и батареям (да и вообще ко всем источникам тока), можно говорить о внутреннем сопротивлении. Это сопротивление не даст вам получить большой ток за малое время, хотя аккумулятор при коротком замыкании очень к этому стремится — возникающая искра при замыкании клемм — это как раз несколько ампер тока при напряжении меньше вольта. Связано это с тем, что скорость ионов внутри аккумулятора не очень велика.Вязнут, бедняжки, по колено в полимере - Вт (Ватт(W), или милливатт — мВт, дальше вы поняли, да?) — в простейшем представлении, это мощность постоянного тока, вычисляемая умножением вольт на амперы. К примеру, БП ноутбука, который выдает 3А при напряжении в 20В, и лабораторный блок питания, выдающий 3В, при токе в 20А, отдадут в нагрузку одинаковую мощность в 60Вт. Потребят из сети они больше, из-за того, что их КПД не 100% — часть энергии перейдет в тепло.
- Вт·ч (Ватт-час) — мера энергии. Из названия должно быть понятно, что 1 Вт·ч — это энергия, которую кто-то получит (или отдаст), принимая (или отдавая) мощность в 1Вт в течении часа. Или 60Вт в течении минуты. Вот тот БП выше, он как раз отдает каждый час 60Вт·ч. Вот это «правильная» емкость, которая не дает информации о самом аккумуляторе, но дает полное представление о его емкости.
Еще есть киловатт-часы, кВт·ч — их пишут в квитанциях. Если оставить БП включенным, он выжрет энергии за месяц на 60Вт·ч*24*30 т.е. примерно на 43кВт·ч, или на 73 рубля. Разумеется, то, что выдает блок питания на выходе(те 20В и 3А) должен кто-то потреблять, ну и о КПД не забываем, это я упростил.
- А·ч (ампер-часы) — Заряд. Общепринято, хоть и ошибочно называется емкостью. Почему ошибочно? Потому что без напряжения, по одной цифре 5А·ч нельзя ничего понять — это говорит лишь о том, что например аккумулятор может выдать ток в 5 ампер в течении часа. Или один ампер в течении 5 часов. А вот сколько будет выдано энергии в течении этого часа — зависит от напряжения питания и от прожорливости потребителя. Проще говоря, А·ч это Вт·ч, из которых выдрали вольты(Вт — В*А, если В убрать, останется А). Казалось бы, что может быть проще — на аккумуляторе написано 2А·ч, 3.7В, умножай 2 на 3.7, получай 7.4Вт·ч и радуйся. Но есть нюанс(с). Вот он:
Это график разряда литиевого аккумулятора, на котором видно, что напряжение снижается к концу разряда. А это означает, что простое умножение А·ч на В (которое сработало бы в случае с блоком питания, выдающим стабильное напряжение), дает значение энергии с очень большой погрешностью. Для того, чтоб узнать, сколько ватт-часов в аккумуляторе, можно, например, построить график мощности (которую можно получить умножением мгновенных значений тока и напряжения) а потом найти площадь под кривой этого графика:
Это сложнее, но зато в результате мы получаем ватт-часы. - xC — просто удобное обозначения тока заряда или разряда аккумулятора. Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2*емкость аккумулятора)/h или (0.1*емкость аккумулятора)/h.
К примеру, аккумулятор емкостью 720mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5*720mAh/h = 360мА
О чтении даташитов
В гугле был найден даташит на аккумулятор, состоящий из одной странички:
Расшифрую, что там написано.
Думаю, что такое Nominal capacity и Minimum capacity всем понятно — обычная емкость, и минимальная емкость. Обозначение 0,2 С означает что такой емкости он достигает, только если его разряжать током в 0.2 от его емкости — 720*0.2=144мА.
Charding voltage и Nominal Voltage — Напряжение зарядки и напряжение работы тоже просто и понятно.
А вот следующий пункт уже сложнее — Зарядка.
Method: CC/CV — Означает, что первую половину процесса зарядки надо поддерживать постоянный ток(он указан ниже, 0.5С стандартно — т.е. 350мА, и 1С максимально — 700мА). А после достижения напряжения на аккумуляторе 4.2в, надо установить постоянное напряжение, те же самые 4.2в.
Пункт ниже — Standart Discharge, Разряд. Предлагают разряжать током от 0.5С — 350мА и до 2С — 1400мА до напряжения 3в. Производители лукавят — на таких токах емкость будет ниже заявленной.
Максимальный ток разряда как раз и определяется внутренним сопротивлением. Но надо различать максимальный ток разряда и максимально-допустимый. Если первый может составлять 5А, и даже более, то второй жестко оговорен — не более 1,4А. Связано это с тем, что при таких больших токах разряда аккумулятор начинает необратимо разрушаться.
Дальше идет информация о весе и температуре работы: зарядка от 0 до 45 градусов, разрядка от -20 до 60. Температура хранения: от -20 до 45 градусов, обычно при заряде 40%-50%.
Время жизни обещают не менее 300 циклов(полный разряд-заряд током 1С) при температуре 23 градуса. Это не означает, что после 300 цикла аккумулятор выключится и больше не включится, нет. Просто производитель гарантирует, что 300 циклов емкость аккумулятора падать не будет. А дальше — как повезет, зависит от токов, температуры, условий работы, партии, положения луны и так далее.
О зарядке
Стандартный метод, которым заряжаются все литиевые аккумуляторы(li-pol, li-ion, lifepo, только токи и напряжения отличаются) это СС-CV, упоминавшийся выше.
В самом начале заряда поддерживаем постоянный ток. Обычно это делают схемой с обратной связью в зарядном устройстве — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому.
Как только это напряжение становится равно 4.2 вольтам(для описываемого аккумулятора), больше поддерживать такой ток нельзя — напряжение на аккумуляторе возрастет слишком сильно(мы помним, что нельзя превышать рабочее напряжение у литиевых аккумуляторов), и он может нагреться и даже взорваться.
Но сейчас аккумулятор заряжен не полностью — обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток надо снизить.
Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим. При снижении этого тока до 30-10мА аккумулятор считается заряженным.
Для иллюстрации всего вышеописанного я
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7А, в то время как напряжение постепенно поднимается с 3.8В до 4.2В. Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%
О технологии тестирования
В качестве подопытного был выбран вот такой аккумулятор:
К нему был подключен Imax B6(я писал про него вот тут):
Который сливал на компьютер информацию о заряде-разряде. Графики строились в LogView.
Потом я просто подходил раз в несколько часов и попеременно включал заряд-разряд.
О результатах
В результате кропотливой работы(а вы сами попробуйте тыкать зарядку на протяжении 2 недель) были получены два графика:
Как понятно из его названия, он показывает изменение емкости аккумулятора на протяжении первых 10 циклов. Она немного плавает, но колебания составляют около 5% и не имеют тенденции. В целом, емкость аккумулятора не изменяется. Все точки сняты при разряде током 1С(0.7А), что соответствует активной работе смартфона.
Две из трех точек в конце графика — показывают, как изменяется емкость при низкой температуре аккумулятора. Последняя — как изменяется емкость при разряде большим током. Об этом следующий график:
Показывает, что чем больше ток разряда — тем меньше энергии можно получить с аккумулятора. Хотя, вот хохма, даже на самом мизерном токе в 100мА аккумулятор по емкости не соответствует даташиту. Все врут.
Хотя нет, тест аккумулятора от Mugen Power на 1900mAh для Zopo ZP100 показал вполне честные почти-два-ампера:
А вот китайский аккумулятор на 5000mAh набрал всего 3000:
О выводах
- Тренировка литиевых аккумуляторов, состоящих из одной банки, бессмысленна. Не вредна, но тратит циклы работы аккумуляторов. В мобильных устройствах тренировку нельзя даже оправдать работой контроллера — параметры аккумулятора одинаковы, не меняются в зависимости от модели и времени. Единственное, на что может влиять недостаточный разряд — на точность показаний индикатора заряда (но не на время работы), но для этого достаточно одной полной разрядки раз в полгода.
Еще раз. Если у вас плеер, телефон, рация, кпк, планшет, дозиметр, мультиметр, часы или любой другой мобильный девайс, использующий аккумулятор Li-Ion или Li-Pol(если он съемный, на нем будет написано, если он не съемный — то 99% это литий) — «тренировка» длиннее одного цикла бесполезна. Один цикл тоже, скорее всего, бесполезен.
Если у вас аккумулятор для управляемых моделей, то первые несколько циклов надо разряжать малыми токами(малыми, хе-хе. Для них малые — это 3-5С. Это вообще-то полтора ампера на 11 вольтах. А рабочие токи там до 20С). Ну, кто пользуется этими аккумуляторами, тот знает. А всем остальным это не пригодится, разве что для общего развития. - В некоторых случаях, при использовании батарей с несколькими банками полный разряд-заряд может увеличить емкость. В батареях ноутбуков, если производитель поскупился на умный контроллер батареи, который не балансирует банки в последовательном соединении при каждом заряде, полный цикл может увеличить емкость на следующую пару циклов. Происходит это за счет выравнивания напряжения на всех банках, что приводит к их полному заряду. Несколько лет назад мне попадались ноутбуки с такими контроллерами. Сейчас не знаю.
- Не верьте надписям на этикетках. Особенно китайским. В прошлом топике я приводил ссылку, в которой огромный тест китайских батарей не выявил ни одной, емкость которой соответствовала надписи. НИ ОДНОЙ! Всегда завышают. А если не завышают, гарантируют емкость только в тепличных условиях и при разряде малым током.
- Держите аккумулятор в тепле. Смарт в кармане джинс будет работать немного дольше, чем в наружном кармане куртки. Разница может составлять 30%, а зимой и того больше.
- Подписывайтесь на меня. Сделать это можно в моем профиле(кнопка «подписаться»).
Li-ion и Li-polymer аккумуляторы в наших конструкциях
Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше — 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.
Рассмотрим далее характеристики, зарядные устройства и схемы защиты для литиевых аккумуляторов.
Содержание / Contents
Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду. Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.
Рис. 1. При температуре +20°C
Рис. 2. При разных температурах эксплуатации
Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.
Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.
Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!
Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.
Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.
Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.
Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.
В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.
Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:
Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.
А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.
Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).
Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.
LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.
Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).
Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»
Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.
Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.
Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более. Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.
Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.
Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.
Для не очень больших токов подходят старые аккумуляторы от сотовых.
Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!
Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.
Ставлю в светодиодные фонарики.
В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.
Вообще ставлю везде, где получается, вместо батареек.
Продаются батареи всех видов, ёмкостей и форм-факторов в Китае. По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.На счёт ёмкости китайцы обычно врут и она меньше написанной.
Честные Sanyo 18650
А вот аккумуляторы Sanyo 18650 подороже, зато и ёмкость честная и качество на высоте — менял в ноутбуке.
Контроллеры заряда на TP4056 с USB-разъёмом настолько малы, что можно встраивать их непосредственно в устройство и заряжать от USB ПК или от USB-зарядки для телефона.
А есть отдельно чипы-контроллеры TP4056 SO-8 для встраивания на свою плату.
Малогабаритные литий-полимерные аккумуляторы, разной ёмкости и размеров. Выводы сделаны проводами, что для нас очень удобно. Обычно есть защита. В архиве даташиты на некоторые аккумуляторы и чип LTC4054.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
Евгений (EVA)
МО, г. Долгопрудный
Инженер-электроник, практика в электронике c 1986г.Предпочитаю аналоговую технику, цифровую не люблю, но работаю с ней, ибо сейчас везде цифра.
Рисую платы только вручную в графических редакторах потому что не всегда использую стандартные компоненты и их стандартную установку.
Предпочитаю рок музыку, а также классическую.
Зарядное устройство для литиевых своими руками. Литий-ионный аккумулятор — как правильно заряжать, устройство, особенности. Схемы зарядок li-ion аккумуляторов
Цель этой статьи — научиться использовать обычные лабораторные блоки питания для зарядки литий-ионных аккумуляторных батарей, когда нет специального зарядного устройства. Такие АКБ очень распространены, вот только купить ЗУ для его грамотной зарядки может (или хочет) не каждый, часто заряжая их обычными регулируемыми БП. Давайте рассмотрим как это нужно делать.
Возьмём для примера литий-ионный аккумулятор от Panasonic ncr18650b на 3.6 V 3400 mah. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно. Некоторые образцы издевательства выдерживают, а некоторые китайские «сверхэкономные» не обладают защитами и могут взорваться.
АКБ с протекцией
Защищенный аккумулятор должен иметь следующие элементы защиты:
- PTC , защита от перегрева и, косвенно, по току.
- CID , клапан давления, отключит ячейку, если давление высокое внутри, что может возникнуть из-за слишком мощной зарядки.
- PCB , плата защиты от чрезмерной разрядки, сброс выполняется автоматически или при помещении в зарядное устройство.
На приведенном выше рисунке показано, как устроена защита банки. Эта конструкция используется для любого типа современных защищённых литий-ионных батарей. PTC и клапан давления не будет видно, так как он является частью оригинальной батареи, но все остальные части защиты можно разглядеть. Ниже показаны варианты исполнения электронных защитных модулей, которые встречаются в стандартных круглых Li-Ion АКБ наиболее часто.
Зарядка лития
Вы можете найти типовую схему и принцип зарядки на ncr18650b батареи в даташите. Согласно документации, ток зарядки 1600 мA и напряжение 4.2 вольт.
Сам процесс состоит из двух этапов, первый — это постоянный ток, где необходимо задать значение в 1600 мA постоянного тока, а когда напряжение батареи достигает 4.20 V, начнется вторая стадия — постоянное напряжение. На этой стадии ток будет немного падать, и от ЗУ будет поступать около 10% от зарядного тока — это около 170 мА. Данное руководство относится ко всем литий-ионным и литий-полимерным аккумуляторам не только 18650 типа.
Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда (схемы смотрите в этом разделе). Как крайний случай, можно заряжать стабильным током в 30-40% полной (паспортной) ёмкости АКБ, пропустив второй этап, но это несколько уменьшит ресурс элемента.
Схемы зарядных устройств
elwo.ru
Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)
Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.
И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.
Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.
Вариант №1
Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:
Разберем, как она работает.
Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.
Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.
Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.
Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.
Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.
Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:
Вариант №2
В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.
Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).
Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:
Для настройки схемы подключаем вместо батарей регулируемый блок питан
Несложный способ восстановления работоспособности Li-Ion аккумуляторов от портативных устройств
Привет всем юзерам хабра, сегодня я буду рассказывать про то, как я довольно таки простым методом, восстанавливаю нерабочие Li-Ion аккумуляторы от портативных устройств до того как обзавёлся таким замечательным устройством как Imax B6. Таким методом я восстановил работоспособность уже, наверное, трем десяткам аккумуляторов от разных гаджетов, от фотоаппаратов до MP3 плееров, но я замечу, только восстановил работоспособность, емкость таким образом вернуть не получится, да и лично я не встречал способов вернуть емкость для такого типа аккумуляторов. К слову, емкость, которая останется в аккумуляторе, очень сильно зависит от того сколько аккумулятор пробыл в такой «клинической смерти».
Скажу сразу, данный метод не претендует на что-то из разряда «Вау, это что-то новенькое» но, тем не менее, не все про него знают. Суть данного метода чтобы «толкнуть» аккумулятор.
Вот видео всего процесса:
(информация что ниже будет дублировать информацию, предоставленную в видео)
Для того чтобы попробовать вернуть в жизнь аккумулятору нам понадобиться:
— Блок питания который выдаёт постоянное напряжение от 5 до 12 Вольт;
— Резистор номиналом от 330 до 1000 Ом, рассчитан на мощность 0.5 Вт, а хорошо бы и по мощнее;
— Вольтметр для того чтобы контролировать напряжение (по желанию).
Как правило, большинство блоков питания от Wi-Fi роутеров, свичей и модемов идут с разъемом 2.5 мм, например такой как на фото:
Почти всегда центральный контакт разъема имеет плюс, а боковой минус, и еще, как правило, полярность изображают на самом корпусе блока питания:
Как видно на фото мой блок выдаёт постоянное напряжение 12 В об этом свидетельствует значок посредине между 12V и 2.0A.
Ток блока питания должен быть выше 0.1 А.
Отключаем блок питания от сети чтобы уберечься от короткого замыкания которое может вывести из строя блок, подключаем так, как показано на рисунке, а именно, плюс 12 В к одному концу резистора, а второй конец резистора к плюсу аккумулятора (как правило у аккумулятора указанная полярность, если нету, то нужно как-то узнать где плюс а где минус), минус блока питания подсоединяем к минусу нерабочего аккумулятора.
Смотрим на напряжение если есть такая возможность, оно должно начать потихоньку расти, как только поднимется до 3.3 В то заряжаем уже посредством самого устройства от которого аккумулятор, после этого обязательно нужно следить за температурой аккумулятора на протяжении всего процесса заряда, пробовать рукой не начинает ли он греется, если аккумулятор начнёт быть более чем тёплым или горячим, немедленно вынимаем аккумулятор из устройства, он восстановлению уже не подлежит.
Если же нету возможности смотреть за напряжением, то делаем такую зарядку минуту или две, и вставляем в наше устройство чтобы посмотреть принимает ли оно аккумулятор или нет.
Давайте рассчитаем ток зарядки аккумулятора по Закону Ома (I = U / R) для случая с 12 В блоком питания:
12 В / 330 Ом = 0,036 А(36мА), то есть ток заряда будет 36 мА или же если взять резистор на 1 КилоОм тогда будет 12 В / 1000 Ом = 0,012А (12 мА).
То есть, при 12 В напряжении источника питания, зарядный ток будет составлять 36 мА, это если использовать резистор на 330 Ом, а если резистор взять резистор на 1 КОм, то ток зарядки будет составлять 12 мА.
Для случая с 5-ти вольтовым блоком питания (как правило, это зарядки для смартфонов):
5 В / 330 Ом = 0,015 А(15 мА), то есть ток заряда будет 15 мА или же если взять резистор на 1 КОм тогда будет 12 В / 1000 Ом = 0,005А (5 мА).
Как видим в этом случае ток зарядки, а соответственно и скорость роста напряжения на аккумуляторе будет ниже, по этому для случая с 5 В блоком питания можно взять резистор от 100 Ом, 5 В / 100 Ом = 0,050 А(50мА).
Не советую злоупотреблять токами зарядки(50 мА более чем достаточно для «толчка» аккумулятора) и завышением напряжения выше 4.2 В, в сети есть достаточно видео с возгоранием литиевых аккумуляторов, например вот:
Так что весь процесс восстановления работоспособности аккумулятора должен, проводится только под наблюдением. Нам главное только вывести аккумулятор из того состояния при котором контроллер, что внутри батареи, отключает аккумулятор от нагрузки.
Почему это работает?
Дело в том, что в аккумуляторах от многих портативных устройств есть контроллер, который следит за напряжением на аккумуляторе, если аккумулятор не использовать или же он долго полежит в разряженном состоянии, то контроллер как бы отключает рубильник, который соединяет аккумулятор от контактных площадок к которым подключается устройство.
Делается это то ли для защиты устройства то ли для того чтобы потребитель через некоторое время покупал новую продукцию.
Все мои публикации.
PS Есть ещё один способ которым я давно пользовался, вместо резистора взять компьютерный вентилятор 80х80 мм, правда минимальное напряжение в таком случае будет от 8 В ну а максимальное 16 В, но способ с резистором более проще, да и не у каждого есть вентилятор.
PPS Как говорят люди в комментариях, риск возгорания восстановленного аккумулятора повышается, особенно в момент первой зарядки, ещё раз акцентирую внимание на этом, следите за температурой на аккумуляторе при первой зарядке.
PPPS Не рекомендую восстанавливать очень старые аккумуляторы, которые пролежали в мёртвом состоянии больше чем пол года, так как у них риск возгорания будет ещё выше.
Минутку …
Включите файлы cookie и перезагрузите страницу.
Этот процесс автоматический. Ваш браузер в ближайшее время перенаправит вас на запрошенный контент.
Подождите до 5 секунд…
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ [] + (!! []) — (! + [] — (!! []) []) +) + (+ [] + (!! [!]) +! ! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !!] [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] + (!! [!]) — []) + (! + [] + (!! []) + !! [])) / + ( (+ !! [] + []) + (+ [] + (!! []) — []) + (+ [] + (!! []) — []) + (+ []! + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [ ] + (!! []) + !! []) + + !! []) + (+ [] + (!! []!) (+ [] + (!! [!]) — []) )
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ [] + (!! [!]) + !! [] + !! []) + (+ !! []) + (+ [] — (!! [] )) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] +! ! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [ ] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [ ] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !!] [] ) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) +! ! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] — (!! [])) + ( ! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] +! ! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! [] ) + !! [] + !! [] + !! [] + !! [] + !! [])) / + ((! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ [] — (!! []!)) + (+ [] — (! ! [])) + (+ !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [ ] — (!! [])) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + ( ! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] — (!! []) (! + [] — (!! [])) +) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ [] + (!! [!]) — []) + (! + [] + (!! []) + !! [ ]) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [ ] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] +! ! [] + !! []) + (+ [] — (!! [])) + (+ [] — (!! [])) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [])) / + ((! + [] + (! ! []) + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [ ]) + (+ [] — (!! [])) + (+ [] — (!! [])) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (+ [] — (!! [])) + (! + [] — (!! [])) )
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + [] ) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] +! ! [] + !! [] + !! []) + (+ [] — (!! []) (! + [] + (!! [])) + + !! [] + !! [ ]) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [ ] + !! [])) / + ((! + [] + (!! []) + !! [] + []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [ ] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] — (!! [])) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + ( ! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ [] — (!! []!)) + (+ [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! [] ) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + ( !! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] — (! ! [])) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (+ [] — (!! [])) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !!] [] ) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! [] ) + !! [] + !! [] + !! []) + (+ [] -! (!! [])) + (+ [] + (!! []) + !! [] + !! []) + (+ [] + (!! [!]) — []) + (! + [] + (!! []) + !! [] + !! []) + (+ [] + (!! []) + !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [ ] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] +! ! [] + !! []) + (! + [] + (!! []) + !! [ ] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) +! ! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) — []) + (! + [] — (!! [])))
+ ((! + [] + (!! [] ) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) +! ! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + ( ! + [] — (!! [])) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [ ]) + (+ !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! [ ]) + (! + [] + (!! []) — []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (+ [] — (!! [])) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !!] [] ) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! [] + !! []))
+ ((! + [] + (!! []) + !! [ ] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ !! []) + (! + [] + (!! [] ) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (+ [] — (!! [])) + (+ [] + (!! [!]) + !! [] + !! []) + (+ []! + (!! []) — []) + (! + [] + (!! []) + !! [] + !! []) + (+ [] + (!! [!]) +! ! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [ ] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (! ! []) + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (+ !! []) + (! + [ ] — (!! [])))
+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [ ] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] +! ! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [!] — (! + [] — (!! []) (!! [])) + (! + [] + (!! [])!) + + !! []) + (+ [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [ ] + !! [] + !! [] + !! [] + !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + [ ]) + (+ [] + (!! [!]) + !! [] + !! []) + (+ [] + (!! [!]) — []) + (+ [] +! (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] + (!! [!]) — []) + (+ !! [] ) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! [] + !! []))
,Заряд в секундах, в последние месяцы
(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.
Крупные технологические и автомобильные компании слишком осведомлены об ограничениях литий-ионных аккумуляторов.В то время как чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона, прежде чем потребуется подзарядка.
Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.
Литий-ионная батарея без кобальта
Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт.Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт — наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», — сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уокера и директор Техасского института материалов. «И мы полностью устраняем это». Команда заявляет, что с помощью этого решения они преодолели общие проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.
SVOLT представляет батареи для электромобилей, не содержащие кобальта
Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт.Компания SVOLT, штаб-квартира которой расположена в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей. Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.
Тимо Иконен, Университет Восточной ФинляндииНа шаг ближе к кремниевым анодным литий-ионным батареям
Стремясь решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки. В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.
Университет МонашаЛитий-серные батареи могут превзойти литий-ионные, снизить воздействие на окружающую среду
Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные обеспечивать питание смартфона в течение 5 дней, превосходя литий-ионные. Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.
Утверждается, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая возможность питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.
Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный
IBM Research сообщает, что они обнаружили новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные. IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.
Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей — он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь как более высокую мощность. и плотности энергии.Все это доступно в батареях с низкой горючестью электролитов.
IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.
PanasonicСистема управления батареями Panasonic
В то время как литий-ионные батареи повсюду и их количество растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.
Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые можно найти в электромобиле. Panasonic сообщает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.
Асимметричная модуляция температуры
Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке — XFC — который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем при зарядке — это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальванику, но ограничивает это 10-минутными циклами, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод уменьшает деградацию батареи, позволяя заряжать XFC.
Pocket-lintПесочная батарея увеличивает время автономной работы в три раза
В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у нынешних графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.
Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро деградирует и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.
Silanano — стартап по производству аккумуляторов, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.
Захват энергии от Wi-Fi
Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.
Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток либо для подзарядки батареи, либо для непосредственного питания устройства.Это может позволить использовать медицинские таблетки с питанием без необходимости во внутренней батарее (более безопасно для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.
Энергия, полученная от владельца устройства
Вы можете стать источником энергии для вашего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор — это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.
Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эту технологию можно использовать для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.
Золотые нанопроволочные батареи
Великие умы Калифорнийского университета в Ирвине создали треснувшие нанопроволочные батареи, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.
Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для батарей будущего. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы этого избежать. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали вообще никакой деградации.
Твердотельные литий-ионные
Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.
В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до ста градусов Цельсия.
Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.
Графеновые батареи Grabat
Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.
Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.
Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.
Лазерные микроконденсаторы
Rice UniveristyУченые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но в них используются лазеры, которые вскоре могут измениться.
При использовании лазеров для выжигания электродов на листы пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.
Пенные аккумуляторы
Прието верит, что будущее аккумуляторов — за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.
Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.
Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но в нем говорится, что батареи можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.
Carphone WarehouseСкладной аккумулятор похож на бумагу, но прочный
Jenax J.Аккумулятор Flex был разработан, чтобы сделать гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.
Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.
Ник Билтон / The New York TimesuBeam по воздуху зарядка
uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем преобразуются обратно в энергию при достижении устройства.
С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто необходим тонкий приемник, чтобы принимать заряд.
StoreDotStoreDot заряжает мобильные телефоны за 30 секунд
StoreDot, стартап, созданный на базе факультета нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды — короткие цепочки аминокислот, которые являются строительными блоками белков.
В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.
Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и предлагает запас хода до 300 миль.
Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе — мы ожидали, что они появятся в 2017 году, — но когда они появятся, мы ожидаем, что они станут невероятно популярными.
Pocket-lintПрозрачное солнечное зарядное устройство
Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволяет пользователям заряжать свой телефон, просто поместив его на солнце.
Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.
PhienergyАлюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки
Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород из воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные батареи, что дает автомобилю гораздо больший запас хода.
Бристольская робототехническая лабораторияБатареи с питанием от мочи
Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?
Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.
Питание от звука
Исследователи из Великобритании создали телефон, способный заряжаться, используя окружающий звук в окружающей атмосфере.
Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.
Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой собственный телефон во время разговора.
Двойная угольная батарея Ryden заряжается в 20 раз быстрее.
Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевые, но его можно будет производить на тех же заводах, где производятся литиевые батареи.
В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, способными выдержать до 3000 циклов зарядки, а также более безопасными с меньшей вероятностью возгорания или взрыва.
Натрий-ионные аккумуляторы
Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.
Исследования натриево-ионных аккумуляторов ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие пять-десять лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.
UppЗарядное устройство для водородных топливных элементов Upp
Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам отвлекаться и оставаться экологически чистым.
Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт — это водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.
Аккумуляторы со встроенным огнетушителем
Литий-ионные аккумуляторы нередко перегреваются, загораются и даже взрываются.Аккумулятор в Samsung Galaxy Note 7 — яркий тому пример. Исследователи Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.
В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.
Майк ЦиммерманБатареи, защищенные от взрыва
Литий-ионные батареи имеют довольно летучий слой пористого материала из жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.
Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет попасть на рынок, но хорошо знать, что существуют более безопасные варианты.
Батареи Liquid Flow
Ученые Гарварда разработали батарею, которая накапливает свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.
Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.
Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения непостоянных источников энергии, таких как ветер или солнце, для быстрого выпуска в сеть по запросу.
IBM и ETH Zurich разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, способной производить 1,4 Вт мощности на квадратный сантиметр, при этом 1 Вт мощности зарезервирован для питания батареи.
Zap & Go Карбон-ионный аккумулятор
Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, готовую к использованию уже сейчас.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.
Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.
Цинково-воздушные батареи
Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, который намного дешевле, чем существующие методы.Воздушно-цинковые батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты.
Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а скорее с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!
Умная одежда
Исследователи из Университета Суррея разрабатывают способ, позволяющий использовать одежду в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.
Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ламп или в шинах автомобиля, чтобы может привести машину в действие.
Растяжимые батареи
Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что вырабатываемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды он сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.
Графеновая батарея Samsung.
Компания Samsung сумела разработать «графеновые шары», которые способны увеличить емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.
Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он выдерживает температуру до 60 градусов Цельсия.
Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов
Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы в пять раз быстрее, чем рекомендуемые текущие пределы. Технология постоянно измеряет температуру батареи намного точнее, чем существующие методы.
Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!
Написано Крисом Холлом.
,Балансировка ячеек и выравнивание батареи
В многоэлементных батареях, из-за большого количества используемых ячеек, мы можем ожидать, что они будут подвержены более высокой частоте отказов, чем одноэлементные батареи. Чем больше ячеек используется, тем больше вероятность отказа и тем хуже надежность.
Батареи, такие как те, которые используются для приложений EV и HEV, состоят из длинных цепочек последовательно соединенных ячеек для достижения более высоких рабочих напряжений от 200 до 300 В или более, особенно уязвимы.Проблемы могут быть усугублены, если для достижения желаемой емкости или уровней мощности требуются параллельные пакеты ячеек. С батареей, состоящей из n ячеек, частота отказов батареи будет в n раз больше, чем частота отказов отдельных ячеек.
Не все ячейки равны
Потенциальная интенсивность отказов еще хуже, чем эта, однако из-за возможности взаимодействий между ячейками.Из-за производственных допусков, неравномерного распределения температуры и различий в характеристиках старения отдельных ячеек, возможно, что отдельные ячейки в последовательной цепи могут оказаться перенапряженными, что приведет к преждевременному выходу из строя ячейки. Во время цикла зарядки, если в цепи имеется поврежденный элемент с уменьшенной емкостью, существует опасность того, что, как только он достигнет своего полного заряда, он будет подвергаться перезарядке, пока остальные элементы в цепи не достигнут своего полного заряда. ,Результатом является повышение температуры и давления и возможное повреждение ячейки. С каждым циклом зарядки-разрядки более слабые элементы будут становиться слабее, пока батарея не выйдет из строя. Во время разряда самый слабый элемент будет иметь наибольшую глубину разряда и будет иметь тенденцию выходить из строя раньше других. Возможно даже обратное изменение напряжения на более слабых элементах, поскольку они полностью разряжаются раньше, чем остальные элементы, что также приводит к преждевременному выходу элемента из строя. Для решения этой проблемы были разработаны различные методы балансировки ячеек путем выравнивания нагрузки на ячейки.
Самобалансирующийся
Несбалансированное старение — меньшая проблема с параллельными цепями, которые имеют тенденцию к самобалансировке, поскольку параллельное соединение удерживает все ячейки под одинаковым напряжением и в то же время позволяет заряду перемещаться между ячейками, независимо от того, приложено ли внешнее напряжение или нет. Однако могут возникнуть проблемы с этой конфигурацией ячеек, если в одной из ячеек произойдет короткое замыкание, поскольку остальные параллельные ячейки будут разряжаться через вышедший из строя элемент, что усугубит проблему.
См. «Взаимодействие между ячейками» для более подробной информации.
Проблемы, вызванные этими различиями между ячейками, преувеличиваются, когда ячейки подвергаются быстрым циклам заряда и разряда (микроциклам), характерным для приложений HEV.
Хотя литиевые батареи более устойчивы к микроциклам, они менее устойчивы к проблемам, вызванным различиями между ячейками.
Поскольку свинцово-кислотные и никель-металлгидридные элементы могут выдерживать уровень перенапряжения без необратимого повреждения, определенная степень балансировки элементов или выравнивания заряда может происходить естественным образом с помощью этих технологий, просто продлевая время зарядки, поскольку полностью заряженные элементы будут выделять энергию путем выделения газа. пока более слабые клетки не достигнут своего полного заряда. Это невозможно с литиевыми элементами, которые не переносят перенапряжения.Хотя проблема снижается с использованием свинцово-кислотных никель-металлгидридных аккумуляторов и некоторых других химических элементов, она не устранена полностью, и для большинства применений с несколькими ячейками необходимо найти решения.
В случае выхода из строя элемента необходимо заменить всю батарею, что требует больших затрат. Замена отдельных вышедших из строя ячеек не решает проблемы, так как характеристики свежих ячеек будут сильно отличаться от старых ячеек в цепи, и вскоре отказ произойдет снова.Некоторая степень восстановления возможна за счет разрушения батарей аналогичного возраста и использования, но никогда не сможет достичь уровня согласования ячеек и надежности, возможного с новыми элементами.
Выравнивание предназначено для предотвращения значительного долговременного дисбаланса, а не небольших краткосрочных отклонений.
Выбор ячейки
Первый подход к решению этой проблемы должен состоять в том, чтобы избежать , если это возможно, путем выбора соты.Батареи должны быть сконструированы из одинаковых элементов, предпочтительно из одной производственной партии. Тестирование может использоваться для классификации и отбора ячеек в группы с более узкими разбросами допусков, чтобы минимизировать изменчивость внутри групп.
Сравнение больших и малых ячеек
Высокая емкость накопления энергии, необходимая для тяговых и других аккумуляторных батарей большой мощности, может быть обеспечена за счет использования больших ячеек большой емкости или большого количества малых ячеек, соединенных параллельно, чтобы обеспечить такую же емкость, как и большие ячейки.В обоих случаях большие элементы или параллельные блоки маленьких элементов должны быть соединены последовательно, чтобы обеспечить необходимое высокое напряжение батареи.
- Использование больших ячеек сводит к минимуму взаимосвязи между ячейками, что упрощает контроль и управление электроникой и снижает затраты на сборку. До тех пор, пока электромобили не завоюют значительную часть рынка транспортных услуг, необходимые им большие элементы будут по-прежнему производиться в относительно небольших количествах, часто с использованием полуавтоматических или ручных методов производства, что приведет к высоким затратам, широкому разнообразию процессов и, как следствие, широким характеристикам. толерантность увеличивается.Когда ячейки используются в последовательной цепи, балансировка ячеек важна для выравнивания нагрузки на ячейки, вызванной этими производственными отклонениями, во избежание преждевременных отказов ячеек.
- Безопасность
- Использование малых ячеек , соединенных параллельно, для обеспечения того же напряжения и емкости, что и ячеек большего размера, приводит к большему количеству соединений, увеличению затрат на сборку и, возможно, более сложной управляющей электронике.Небольшие цилиндрические элементы емкостью 2 или 3 ампер-час, такие как промышленный стандарт 18650, используемый в приложениях бытовой электроники, тем не менее, производятся в объемах в сотни миллионов в год на гораздо лучше контролируемых производственных объектах без ручного вмешательства в высокоавтоматизированное оборудование. Положительным моментом является то, что стоимость единицы продукции, следовательно, очень низкая, а надежность намного выше. Когда большое количество ячеек соединено в параллельный блок, производительность блока будет стремиться к среднему процессу ячеек компонента, и эффект самобалансировки будет стремиться удерживать его на этом уровне.Параллельные блоки по-прежнему необходимо будет подключать последовательно, чтобы обеспечить более высокое напряжение батареи, но разброс допусков блоков в последовательной цепи будет меньше разброса допусков альтернативных ячеек большой емкости, в результате чего функция балансировки ячеек будет с меньшим трудом. делать.
- Безопасность
Есть также проблемы безопасности, связанные с ячейками большой емкости. Один литий-кобальтовый элемент на 200 ампер-час, обычно используемый в электромобилях, хранит 2664000 джоулей энергии. Если элемент выходит из строя, замыкается накоротко или повреждается в результате аварии, эта энергия внезапно высвобождается, что часто приводит к взрыву и интенсивному пожару, эвфемистически известному как «событие» в аккумуляторной промышленности.Когда такое событие происходит в аккумуляторном блоке, существует большая вероятность того, что пожар и повреждение под давлением в результате отказа элемента приведут к выходу из строя соседних элементов аналогичным образом, что в конечном итоге повлияет на все элементы в аккумуляторе с катастрофическими последствиями.
Что касается безопасности, то вероятность выхода из строя более надежных ячеек малой емкости гораздо меньше, и если отказ все-таки произойдет, запасенная энергия, выделяемая любым элементом, составляет лишь сотую часть энергии, выделяемой элементом на 200 ампер-час.Это меньшее выделение энергии намного легче сдержать, и вероятность распространения события через упаковку значительно снижается или исключается. Это, пожалуй, самое важное преимущество конструкций с использованием ячеек меньшей емкости.
См. Также На что способен джоуль
Пакет строительный
Еще одним важным действием по предотвращению является обеспечение постоянного равномерного распределения температуры по всем элементам батареи.Обратите внимание, что в легковых автомобилях EV или HEV температура окружающей среды в моторном отсеке, пассажирском салоне и багажнике или багажнике может значительно отличаться, и рассредоточение ячеек по всему транспортному средству для распределения механической нагрузки может вызвать несбалансированную тепловую работу. условия. С другой стороны, если ячейки сосредоточены в одном большом блоке, внешние ячейки, контактирующие с окружающим воздухом, могут работать холоднее, чем внутренние ячейки, которые окружены более теплыми ячейками, если не будут приняты меры для обеспечения потока воздуха (или другого хладагента). для отвода тепла от более горячих ячеек.После выбора элемента выравнивание температуры в аккумуляторной батарее должно быть первым соображением при проектировании, чтобы свести к минимуму необходимость балансировки элементов. См. Также Управление температурным режимом (равномерное распределение тепла)
Выравнивание ячеек
Чтобы обеспечить динамическое решение этой проблемы, которое учитывает старение и условия эксплуатации ячеек, BMS может включать схему балансировки ячеек для предотвращения перегрузки отдельных ячеек.Эти системы контролируют состояние заряда (SOC) каждой ячейки или, для менее важных и недорогих приложений, просто напряжение на каждой ячейке в цепи. Затем схемы переключения управляют зарядом, прикладываемым к каждой отдельной ячейке в цепи во время процесса зарядки, чтобы уравнять заряд на всех ячейках в батарее. В автомобильных приложениях система должна быть спроектирована так, чтобы справляться с повторяющимися импульсами зарядки высокой энергии, например, от рекуперативного торможения, а также с обычным процессом непрерывной зарядки.
Было предложено несколько схем балансировки ячеек, и существует компромисс между временем зарядки, потерей эффективности и стоимостью компонентов.
Активная балансировка
Активные методы балансировки ячеек снимают заряд с одной или нескольких ячеек с высоким уровнем заряда и доставляют заряд к одной или нескольким ячейкам с низким уровнем заряда.Поскольку нецелесообразно обеспечивать независимую зарядку для всех отдельных ячеек одновременно, балансирующая зарядка должна применяться последовательно. Принимая во внимание время зарядки для каждой ячейки, процесс выравнивания также занимает очень много времени, поскольку время зарядки измеряется часами. Некоторые схемы балансировки активных элементов предназначены для остановки зарядки полностью заряженных элементов и продолжения зарядки более слабых элементов до тех пор, пока они не достигнут полного заряда, таким образом увеличивая емкость заряда аккумулятора.
- Charge Shuttle (летающий конденсатор) Распределение заряда
- Распределение индуктивного челночного заряда
При использовании этого метода конденсатор подключается последовательно через каждую ячейку в последовательной цепи. Конденсатор усредняет уровень заряда ячеек, собирая заряд с ячеек с напряжением выше среднего и сбрасывая заряд в ячейки с напряжением ниже среднего. В качестве альтернативы процесс можно ускорить, запрограммировав конденсатор на многократную передачу заряда от ячейки с самым высоким напряжением к ячейке с самым низким напряжением.Эффективность снижается по мере уменьшения разницы напряжений ячеек. Метод довольно сложен с дорогой электроникой.
В этом методе используется трансформатор, первичная обмотка которого подключена к батарее, а вторичная обмотка может переключаться между отдельными элементами. Он используется для получения импульсов энергии по мере необходимости от полной батареи, а не для небольших разностей зарядов от одного элемента, для пополнения оставшихся элементов.Он усредняет уровень заряда, как и в случае с летающим конденсатором, но позволяет избежать проблемы небольших перепадов напряжения в напряжении элементов и, следовательно, работает намного быстрее. Эта система, очевидно, требует хорошо сбалансированных вторичных обмоток трансформатора, иначе это усугубит проблему.
Пассивная балансировка
Диссипативные методы находят ячейки с наибольшим зарядом в батарее, на что указывает более высокое напряжение ячейки, и удаляют избыточную энергию через байпасный резистор, пока напряжение или заряд не совпадут с напряжением на более слабых элементах.Некоторые схемы пассивной балансировки полностью прекращают зарядку, когда первая ячейка полностью заряжена, а затем разряжают полностью заряженные элементы в нагрузку, пока они не достигнут того же уровня заряда, что и более слабые элементы. Другие схемы предназначены для продолжения зарядки до тех пор, пока все элементы не будут полностью заряжены, но для ограничения напряжения, которое может быть приложено к отдельным элементам, и для обхода элементов, когда это напряжение будет достигнуто.
Этот метод нисходящего уровня, и поскольку он использует низкие токи байпаса, время выравнивания очень велико.Производительность блока определяется самым слабым элементом и характеризуется потерями из-за потери энергии в байпасных резисторах, которые могут разряжать аккумулятор при непрерывной эксплуатации. Однако это самый дешевый вариант.
Маневровая зарядка
Напряжение на всех элементах повышено до номинального напряжения исправного элемента. По достижении номинального напряжения на элементе полный ток обходит полностью заряженные элементы, пока более слабые элементы не достигнут полного напряжения.Это быстро и обеспечивает максимальное накопление энергии, однако для этого требуются дорогие сильноточные переключатели и резисторы, рассеивающие большую мощность.
Ограничение заряда
Грубый способ защиты батареи от влияния дисбаланса ячеек состоит в том, чтобы просто выключить зарядное устройство, когда первая ячейка достигает напряжения, которое представляет ее полностью заряженное состояние (4,2 В для большинства литиевых элементов), и отсоединить батарею при минимальном напряжении. Напряжение элемента достигает точки отсечки 2 В во время разряда.К сожалению, это приведет к прекращению зарядки до того, как все элементы достигнут своего полного заряда, или преждевременному отключению питания во время разряда, оставив неиспользованную емкость в исправных элементах. Таким образом, снижается эффективная емкость аккумулятора. Без преимуществ балансировки ячеек срок службы может также быть сокращен, однако для хорошо согласованных ячеек, работающих в равномерной температурной среде, эффект этих компромиссов может быть приемлемым.
Балансировка без потерь
Последние разработки позволили создать превосходный способ балансировки ячеек с помощью программного управления, который является одновременно более простым и без потерь, а также позволяет избежать различных проблем, связанных с каждым из вышеперечисленных методов.См. Программно-конфигурируемая батарея.
Все эти методы балансировки зависят от способности определять состояние заряда отдельных ячеек в цепи. На странице SOC описано несколько методов определения уровня заряда.
В простейшем из этих методов используется напряжение ячейки как индикатор состояния заряда. Основное преимущество этого метода заключается в том, что он предотвращает перезарядку отдельных ячеек, однако он может быть подвержен ошибкам.Ячейка может достичь предельного напряжения раньше других в цепи не потому, что она полностью заряжена, а потому, что ее внутренний импеданс выше, чем у других ячеек. В этом случае батарея фактически будет иметь меньший заряд, чем другие ячейки. Таким образом, он будет подвергаться большему напряжению во время разряда, и повторное включение в цикл в конечном итоге приведет к выходу элемента из строя.
Более точные методы используют кулоновский счет и учитывают температуру и возраст элемента, а также напряжение элемента.
Редокс-челнок (химическая балансировка ячеек)
В свинцово-кислотных аккумуляторах перезаряд вызывает выделение газов, которое по совпадению уравновешивает элементы. Redox Shuttle — это попытка обеспечить химическую защиту от перезаряда литиевых элементов с использованием эквивалентного метода, что позволяет избежать необходимости в электронной балансировке элементов. В электролит добавляется химическая добавка, которая подвергается обратимому химическому воздействию, поглощая избыточный заряд выше заданного напряжения.Химическая реакция меняется на противоположную, когда напряжение падает ниже заданного уровня.
Для батарей с количеством ячеек менее 10, где низкая начальная стоимость является основной целью или где стоимость замены вышедшей из строя батареи не считается чрезмерно высокой, балансировка ячеек иногда полностью отсутствует, а длительный срок службы достигается за счет ограничения разрешенного DOD , Это позволяет избежать стоимости и сложности электроники балансировки ячеек, но компромиссом является неэффективное использование емкости ячейки.
Независимо от того, использует ли батарея балансировку ячеек, она всегда должна включать отказоустойчивые схемы защиты ячеек.
,1A специальная зарядная плата для литиевой батареи модуль зарядки зарядное устройство для литиевой батареи Интерфейс мини-USB (H6A3) | зарядная плата | зарядное устройство для литиевой батареи плата для зарядки литиевой батареи
интерфейс needMicroUSB щелкните следующую ссылку: http://item.taobao.com/item.htm? Id = 37988991087
1A литиевая батарея специальная зарядная плата модуль зарядки
Основные атрибуты
Название модуля: Плата зарядки литиевой батареи Метод зарядки: линейная зарядка 1%
Ток зарядки: 1 А Точность зарядки: 1.5%
Входное напряжение: 4,5–5,5 В Напряжение полной зарядки: 4,2 В
Инструкции по зарядке: синий индикатор зарядки красный полный входной интерфейс зарядки: мини-USB
Рабочая температура: от -10 до +85 может реверсировать: не может реверсировать
Вес: 10 г Периферийный размер: 25 * 19 * 10 мм (минимальный размер Taobao)
Текущее положение | |
RPROG (К) | I BAT (MA) |
30 | 50 |
20 | 70 |
10 | 130 |
5 | 250 |
4 | 300 |
3 | 400 |
2 | 580 |
1.66 | 690 |
1,5 | 780 |
1,33 | 900 |
1,2 | 1000 |
Диапазон применения модуля
Этот модуль используется для одноэлементной литиевой или многосекционной параллельной литиевой зарядки, порт зарядки может получать питание от USB.
Инструкция по эксплуатации / меры предосторожности
1. Амперметр испытательного тока можно подключать только последовательно ко входу 5 В зарядной площадки.
2. Зарядный ток лучше всего емкость аккумулятора 0,37C, это в 0,37 раза больше емкости, например, ток заряда аккумулятора 1000 мАч 400 достаточно. Слишком быстро, чтобы зарядить эффект быстро, красный закончил напряжение аккумулятора больше!
3. Провод подключения зарядки не может быть слишком длинным. Так что сопротивление подключения большое.Слишком тонкие слова из напряжения аккумулятора из-за большего.
4. Хорошее соединение с аккумулятором. Или рвануло напряжение батареи из-за того.
5. Если входное напряжение 5 В высокое, например 5,2 или даже 5,5, ток зарядки будет меньше 1000 мА, что является нормальным. Нагрев микросхемы высокого напряжения автоматически снижает ток заряда, чтобы не сжечь микросхему. Чип в работе около 60 градусов тепла нормально. Ведь ток зарядки большой.
6. Входной реверс не влияет на микросхему, но выход (сторона батареи) сжигает чип обратно, обратите внимание на покупателей.