Маркировка алюминиевых электролитических SMD конденсаторов для поверхностного монтажа
Система маркировки электролитических конденсаторов очень разнообразна. Электролитические алюминиевые конденсаторы каждый производитель маркирует по-своему. Кроме того, каждая серия конденсаторов одного и того же производителя может имеет разную систему маркировки. Ниже привожу небольшой перечень тех, с которыми приходилось сталкиваться или когда-то интересовался. Информация собрана отовсюду, поэтому присутствует и в текстовом и в графическом виде и в PDF файлах.
Маркировка электролитических SMD конденсаторов Yageo серий CA и CB
Серия CA | Серия CB |
Габаритные размеры (мм)
Серия CA
Код | ФD | L | A | H | I | W | P | K |
A | 3,0 | 5,4 | 3,3 | 4,5 max | 1,5 | 0,55±0,1 | 0,6 | 0,35+0,15 (-0,20) |
B | 4,0 | 5,4 | 4,3 | 5,5 max | 1,8 | 0,65±0,1 | 1,0 | 0,35+0,15 (-0,20) |
C | 5,0 | 5,4 | 5,3 | 6,5 max | 2,2 | 0,65±0,1 | 1,5 | 0,35+0,15 (-0,20) |
D | 6,3 | 5,4 | 6,6 | 7,8 max | 2,6 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
E | 8,0 | 6,2 | 8,3 | 9,4 max | 3,4 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
F | 8,0 | 10,2 | 8,3 | 10,0 max | 3,4 | 0,90±0,2 | 3,1 | 0,70±0,20 |
G | 10,0 | 10,2 | 10,3 | 12,0 max | 3,5 | 0,90±0,2 | 4,6 | 0,70±0,20 |
Серия CB
Код | ФD | L | A | H | I | W | P | K |
B | 4,0 | 5,4 | 4,3 | 5,5 max | 1,8 | 0,65±0,1 | 1,0 | 0,35+0,15 (-0,20) |
C | 5,0 | 5,4 | 5,3 | 6,5 max | 2,2 | 0,65±0,1 | 1,5 | 0,35+0,15 (-0,20) |
D | 6,3 | 5,4 | 6,6 | 7,8 max | 2,6 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
E | 8,0 | 6,2 | 8,3 | 9,5 max | 3,4 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
F | 8,0 | 10,2 | 8,3 | 10,0 max | 3,4 | 0,90±0,2 | 3,1 | 0,70±0,20 |
G | 10,0 | 10,2 | 10,3 | 12,0 max | 3,5 | 0,90±0,2 | 4,6 | 0,70±0,20 |
Электрические характеристики
Серия CA
- Диапазон рабочих напряжений: 4 ~ 100 V.D.C.
- Диапазон рабочих температур: -40°C ~ +85°C
- Допустимое отклонение емкости: ±20% (120 Гц/+25°C)
- Ток утечки (мкА): 1<=0,01 CV + 3, где:I – ток утечки (мкА)С – номинальная емкость (мкФ)V – рабочее напряжение (В)(2 мин. после работы при нормальном рабочем напряжении)
- Диэлектрические потери: (120 Гц, 25°C)
W V (B) 4 6,3 10 16 25 35 50 63 100 D. F. (%) Ф3 0,37 0,280,37 0,22 0, 18 0, 16 0, 14 0, 14 – – Ф4 ~ Ф6 0,35 0,260,35 0,200,30 0, 160, 26 0, 140, 16 0, 120, 14 0, 120, 14 – – Ф8 ~ Ф10 0,40 0,35 0,26 0, 20 0, 16 0, 14 0, 12 0, 18 0, 18 - Низкая температурная стабильность (120 Гц):
W*V(B) 4 6,3 10 16 25 35 50 63 100 -25/ +15°C 7 4 3 3 2 2 2 3 3 -40/ +20°C 15 8 6 4 4 3 3 4 4 - Срок службы: 2000 часов 85°C
- При максимальном значении тока:
- Изменение емкости: в пределах 20% от начального значения
- Диэлектрические потери: не превышают 200% от начального значения
- Ток утечки: не превышает начального значения.
- Изменение параметров со временем: 1000 часов 85°C. Остальные изменения – см. п. 7
0,1 | B | ||||||
0,22 | B | ||||||
0,33 | B | ||||||
0,47 | B | ||||||
1,0 | B | ||||||
2,2 | B | ||||||
3,3 | B | ||||||
4,7 | B | B | B | ||||
6,8 | B | B | |||||
10 | B | B | B | D | |||
22 | B | B | B | D | D | D | |
33 | B | B | B | D | D | ||
47 | B | B | D | D | D | ||
68 | D | ||||||
100 | D | D | |||||
150 | D | ||||||
220 | D | D |
Серия CB
- Диапазон рабочих напряжений: 4 ~ 100 V.D.C.
- Диапазон рабочих температур: -40°C ~ +105°C
- Допустимое отклонение емкости: ±20% (120 Гц/+25°C)
- Ток утечки (мкА): 1<=0,01 CV + 3, гдеI – ток утечки (мкА)С – номинальная емкость (мкФ)V – рабочее напряжение (В)(2 мин. после работы при нормальном рабочем напряжении)
- Диэлектрические потери: (120 Гц, 25°C)
W V (B) 6,3 10 16 25 35 50 63 100 D. F. (%) Ф4 ~ Ф6,3 0,300,35 0,220,30 0,160,26 0,140,18 0,120,14 0, 12 0, 12 0, 12 Ф8 ~ Ф10 0,35 0,26 0,20 0,16 0,14 0, 12 0, 18 0, 18 - Низкая температурная стабильность (120 Гц)
W*V(B) 6,3 10 16 25 35 50 63 100 -25/ +15°C 4 3 2 2 2 2 3 3 -40/ +20°C 8 6 4 4 3 3 4 4 - Срок службы: 1000 часов 105°C при максимальном значении тока
- Изменение емкости: в пределах 20% от начального значения
- Диэлектрические потери: не превышают 200% от начального значения
- Ток утечки: не превышает начального значения.
- Изменение параметров со временем: 1000 часов 105°C. Остальные изменения – см. п. 7
0,1 | B | |||||
0,22 | B | |||||
0,33 | B | |||||
0,47 | B | |||||
1,0 | B | |||||
2,2 | B | |||||
3,3 | B | |||||
4,7 | B | B | B | |||
10 | B | B | B | |||
22 | B | D | D | D | ||
33 | B | D | D | |||
47 | B | D | D | |||
68 | D | |||||
100 | D | D | D |
Маркировка электролитических SMD конденсаторов Johanson
Маркировка электролитических SMD конденсаторов Temex Ceramics
Маркировка электролитических конденсаторов различних фирм в PDF формате
Rubycon
Panasonic
KEMET_A700Series
EPCOS
Yageo
см. также:
www.avislab.com
Маркировка SMD конденсаторов (керамических, электролитических, танталовых)
Маркировка Керамических SMD конденсаторов
Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код зготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 – 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.
Letter | Mantissa | Letter | Mantissa | Letter | Mantissa | Letter | Mantissa |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.
| В общем случае керамические конденсаторы на основе диэлектрика с высокой проницаемостью обозначаются согласно EIA тремя символами, первые два из которых указывают на нижнюю и верхнюю границы рабочего диапазона температур, а третий – допустимое изменение емкости в этом диапазоне. Расшифровка символов кода приведена в таблице. Примеры: Z5U – конденсатор с точностью +22, -56% в диапазоне температур от +10 до +85°C.X7R – конденсатор с точностью ±15% в диапазоне температур от -55 до +125°C. |
Маркировка Электролитических SMD конденсаторов
Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V – 10 µ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.
Срез или полоса указывает положительный вывод.
Символ | Напряжение |
e | 2.5 |
G | 4 |
J | 6.3 |
A | 10 |
C | 16 |
D | 20 |
E | 25 |
V | 35 |
H | 50 |
Например, конденсатор маркирован A475 – 4. 7mF 10V
475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.
A. Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
В. Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — емкость в пикофарадах (пф), а последняя цифра — количество нулей.
Возможны 2 варианта кодировки емкости:
а) первые две цифры указывают номинал в пФ, третья — количество нулей;
б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.
Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
О маркировке алюминиевых электролитических SMD конденсаторов для поверхностного монтажа в корпусах типа “боченок” читайте в отдельной статье: “Маркировка алюминиевых электролитических SMD конденсаторов для поверхностного монтажа”
Маркировка Танталовых SMD конденсаторов
Маркировка танталовых конденсаторов размеров A и B состоит из буквенного кода номинального напряжения в соответствии со следующей таблицей:
Буква | G | J | A | C | D | E | V | T |
Напряжение, В | 4 | 6.3 | 10 | 16 | 20 | 25 | 35 | 50 |
За ним следует трехзначный код номинала емкости в pF, в которомпоследняя цифра обозначает количество нулей в номинале. Например, маркировка E105 обозначает конденсатор емкостью 1 000 000pF = 1.0uF с рабочим напряжением 25V.
Емкость и рабочее напряжение танталовых SMD-конденсаторов размеров C, D, E обозначаются их прямой записью, например 47 6V – 47uF 6V.
см. также:
www.avislab.com
Алюминиевые электролитические конденсаторы до 220мкфАлюминиевые электролитические конденсаторы до 470мкфАлюминиевые электролитические конденсаторы до 1000мкфУпаковка: В блистр-ленте на катушке диаметром 330 мм по 1000 штук конденсаторов диаметром 5 мм и 6мм, по 500 штук конденсаторов диаметром 8 мм и 10 мм и по 200 штук конденсаторов диаметром 12,5 мм и 16 мм.Размеры электролитических алюминиевых SMD конденсаторов
Типовые технические характеристики алюминиевых конденсаторовДиапазон номинальных емкостей ……10 мкФ … 1000 мкФ, ряд E6 Допустимое отклонение номинала ……± 20% Диапазон рабочих температур, °C……. -55 … +85/105 Тангенс угла диэлектрических потерь ……0,12 … 0,35 Ток утечки ……..(0,01*CV, но не менее 3 мкА) Технические характеристики алюминиевых электролитических конденсаторов Lelon Технические характеристики алюминиевых электролитических конденсаторов PANASONIC (MATSUSHITA ELECTRIC INDUSTRIL) Технические характеристики алюминиевых электролитических конденсаторов Jianghai (совместное производство с HITACHI AIC) Технические характеристики алюминиевых электролитических конденсаторов VISHAY Технические характеристики алюминиевых электролитических конденсаторов SANYO Технические характеристики алюминиевых электролитических конденсаторов ELNA Алюминиевые электролитические конденсаторы для поверхностного монтажа состоят из анодной и катодной алюминиевой фольги разделенной электротехнической бумагой пропитанной жидким электролитом. Эффективная площадь фольги обкладок электролитического конденсатора увеличена за счет электрохимического травления, этим достигается высокая удельная емкость конденсатора. В качестве диэлектрика используются оксид алюминия сформированный на поверхности анода алюминиевой обкладки конденсатора. Представленные электролиты — самый дешевый тип полярных электролитических smd конденсаторов для поверхностного монтажа. Электролитические конденсаторы этого типа имеют большое покрытие по номиналу емкости и напряжениям, однако обладают небольшой долговечностью, ухудшают свои свойства на частотах свыше 100 КГц и при высоких температурах. Различают 85 и 105 градусные чип конденсаторы, температура указывает на значение при котором рассчитывается срок службы smd конденсатора. В корпусах типоразмеров алюминиевых чип конденсаторов для поверхностного монтажа выпускают твердотельные алюминиевые чип конденсаторы с твердым электролитом. Эти конденсаторы имеют лучшие характеристики, как и танталовые чип конденсаторы. Производитель — LELON, HITACHI, PANASONIC, NEC, SAMSUNG, SANYO, VISHAY. | Электронный каталог
Корзина Корзина пуста |
www.smd.ru
Набор электролитических SMD конденсаторов
Всем привет!!! Случилось то, чего все так долго ждали, обзор на конденсаторы)), написанный в продолжение темы о «сундучке радиолюбителя». Итак, речь пойдет об электролитических алюминиевых smd конденсаторах.Как я уже говорил, большинство своих схем в «готовом решении» стараюсь делать в SMD исполнении, где это позволяет схемотехника. Преимущества очевидны:
2. Минимизация паразитных емкостей и индуктивностей, что резко снижает наводимые помехи (актуально в высокочастотных узлах).
3. Позволяет значительно удешевить себестоимость изделия.
4. Да и просто мне нравится паять именно smd компоненты.
В каких же узлах применяются электролиты
Применение на постоянном напряжении:— Высоковольтные емкостные накопители энергии с быстрым разрядом, используемые в электрофизике, импульсных источниках света, для намагничивания магнитотвердых материалов, в импульсных генераторах для испытания мощных электрических машин на стойкость к ударным нагрузкам и в других установках при длительности разрядных импульсов от десятков микросекунд до десятков миллисекунд.
— Для постоянного тока высокого напряжения: вместе с выпрямителем, электролитический конденсатор образует источник постоянного напряжения для использования в устройствах силовой электроники, частотно-регулируемых электроприводах и источниках питания.
— В схемах интеграторов и устройствах выборки-хранения: для любой схемы аналоговой памяти или схем аналоговой развертки.
— В полосовых фильтрах: в комбинации с резисторами и катушками индуктивности образуют фильтры для выделения из сигнала определенной полосы частот, фильтрации постоянной составляющей и т.п. задач.
— Для шунтирования компонентов электронных схем по переменному току.
— Для связи участков цепи по переменному току с отделением постоянной составляющей.
— В релаксационных генераторах: вместе с резисторами и активными компонентами для генерации пилообразного и прямоугольного напряжения.
Для переменного напряжения:
— Для улучшения качества энергии, потребляемой из сети переменного тока, и коэффициента мощности оборудования: запасая и отдавая электрическую энергию, алюминиевый электролитический конденсатор развязывает нагрузку и питающую сеть по мгновенной и реактивной мощности. Это улучшает качество питания нагрузки и, одновременно, создает предпосылки для получения коэффициента мощности оборудования, близкого к 1.0.
— Для силовых LC-фильтров низких частот: улучшает электромагнитную обстановку в схемах, использующих тиристорные выпрямители и инверторы.
— В качестве пускового конденсатора: для улучшения пусковой характеристики асинхронного двигателя, питаемого от однофазной сети переменного тока.
Как видно, область применения просто огромна, иными словами, применяется практически в любом устройстве.
Немного теории о конструкции.
Две ленты из конденсаторной бумаги проложены между двумя лентами из специальным образом обработанной алюминиевой фольги, эта комбинация из четырех лент свернута в рулон. Бумага, служащая разделителем для алюминиевых электродов, пропитана электропроводящим раствором. К электродам присоединены выводы, образуя активный элемент конденсатора. Он помещается в цилиндрический алюминиевый корпус с торцевым уплотнением выводов.
В разрезе это выглядит вот так
Давайте проверим так ли это, расчленим один из конденсаторов. Снимаем пластмассовую подкладку.
Кстати, сам корпус из алюминия, но обтянут диэлектрической пленкой.
Курочим дальше.
Внутри действительно рулон алюминиевой фольги с диэлектриком. Только цвет какой-то серый после обработки.
Кстати говоря, именно этот рулончик образует «плохую» индуктивность, которая в большинстве случаев нежелательна.
Номинал и маркировка таких конденсаторов определяются следующим образом:
*Маркировка для 6,3V: «6V»
**Для размера 6,3х7,7 допуск L=0,3; для D= 8, 10 мм допуск L=0,5
Данные емкости продаются в наборе, который состоит из 13 номиналов по 10 шт. Поставляются в таких лентах.
Дополнительное фото с сайта
Номиналы и технические характеристики:
Диапазон рабочих напряжений: 10-50 В
Диапазон рабочих температур: -40 … +85°С
Допуск погрешности: Тут интересно, на сайте указано ±10%, но судя по маркировке разные номиналы имеют разные допуски вплоть до ±20%. Некоторые вообще не удалось идентифицировать. Скорей всего большинство из них — ноунэйм и произведены на территории Китая.
Время наработки: Установить не удалось, т.к. производитель не известен. Но думаю, будет не менее 2000 ч.
Приступим к тестам.
Измерения емкости производил прибором Е7-22, для определения ESR использовал «желтоплатый Т4». Результаты в таблице.
Выводы:
В целом данные конденсаторы пригодны для схем общего применения, работать будут. Но ставить в ответственные узлы, а так же в прецизионных схемах – не рекомендую (т.к. производитель не известен и нет даташита). Для этого есть «брендовые» емкости с улучшенными характеристиками.
Количество и номиналы — соответствуют описанию продавца.
Бонус для тех, кому сейчас очень жарко
Местные барханыСнято 12 февраля ))
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru
Маркировка SMD конденсаторов — электролиты на поверхность платы
Маркировка SMD конденсаторов — электролитические конденсаторы для поверхностного монтажа
Маркировка SMD конденсаторов — показанные далее по тексту способы декодирования кодов, нанесенных на корпуса компонентов для поверхностного монтажа, широко используются мировыми брендами Панасоник, Хитачи многими другими. Существует 3 главных метода кодирования.
А. Кодовое обозначение заключает в себе буквенные и цифровые значения, два либо три символа, указывающие рабочее напряжение и емкость. При этом буквенные знаки показывают величину напряжения и емкости, а цифра показывает множитель. Если в маркировке будут указаны двухзначные символы, то тогда зашифрованное значение номинального напряжения не указывается.
В. Кодовое обозначение имеющее четыре символа в виде цифры и буквы, указывают емкость конденсатора и напряжение. Буква, расположенная вначале кода, указывает напряжение, при котором элемент будет корректно работать, следующие за буквой символы обозначают величину емкости в пикофарадах, последняя цифра — количество нулей.
Существуют две версии кодирования конденсатора:
а) две цифры в самом начале определяют номинальное значение в пФ, а третья — число нулей;
б) номинальную емкость конденсатора определяют в микрофарадах, символ р исполняет роль десятичной запятой.
Далее, в качестве примера показано как маркируется конденсатор имеющий емкость 4.7 F и номинальное напряжение 10v.
С. В случае если корпус имеет увеличенные габариты, тогда код может быть нанесен в две строчки. Таким образом в верхней строке указывают значение емкости, а ниже — номинальное напряжение. Величина емкости конденсатора указывается только в микрофарадах либо в пикофарадах и в конце прописываются число нулей. Для примера, в первой строчке — 15, во второй строчке — 35v указывает, что емкость конденсатора имеет 15 F с номинальным напряжением 35v.
usilitelstabo.ru
Конденсаторы электролитические SMD — Конденсаторы SMD — Продукция — КазЭкспорт Новосибирск
SMD (чип) конденсаторы электролитические – накопительное устройство постоянной ёмкости для поверхностного монтажа, диапазон накапливаемого заряда от 1мкФ до 1500мкФ при напряжении от 4В до 100В. Допустимое отклонение ёмкости составляет ±20%.
Конденсаторы выполнены в виде алюминиевого цилиндрического корпуса, установленного в монтажный вывод. Имеют полярный тип конструкции, что подразумевает соблюдение полярности при подключении конденсаторов в схему.
Полярность выводов, краткие технические данные, а также маркировка конденсатора указаны на торцевой части корпуса. Отрицательный вывод определяется закрашенной областью крышки конденсатора.
Конструктивно электролитические SMD конденсаторы в зависимости от габаритных размеров корпуса подразделяются на несколько типоразмерных групп: B (4×5,4), C (5×5,4), D (6,3×5,4), E (8×6,5), F (8×10,5), G (10×10,5), H (6,3×7,7).
Конденсаторы снабжаются предохранительным клапаном, что представляет собой крестообразные надсечки на верхней крышке корпуса (также могут быть в форме буквы К или Т), которые дают возможность предотвращения характерного взрыва конденсатора и сопутствующих повреждений других элементов схемы.
Перегрев, пробой или переполюсовка электролитического SMD конденсатора сопровождается накапливанием излишнего давления паров газа электролита. Срабатывание предохранительного клапана происходит при вздутии корпуса по надсечкам и выбросе накопленного давления.
Установка конденсаторов на печатную плату выполняется методом оплавления припоя с помощью инфракрасного нагрева или струи горячего газа. Не рекомендуется производить пайку в паровой фазе. Процесс пайки при этом производится однократно.
Следует отметить, что для эффективного срабатывания предохранительного клапана необходимо обеспечить вокруг него пространство в радиусе не менее 3 мм.
Повышенная рабочая температура среды составляет не более +105°С, рабочая пониженная температура – не ниже -40°С. Предельный тангенс угла потерь не выше 0,26, максимальный ток утечки – 3мкА. Наработка при максимальной температуре составляет не менее 2000 ч.
Применяются электролитические SMD конденсаторы с высокой ёмкостью в мониторах теле-, аудио-, видео- и компьютерной электроники, коммуникационных устройствах, бытовой технике и другой радиоэлектронной аппаратуре.
Подробные характеристики, расшифровка маркировки, габаритные и установочные размеры электролитических SMD конденсаторов указаны ниже. Наша компания гарантирует качество и работу конденсаторов в течение 2 лет с момента их приобретения; предоставляются паспорта качества.
Окончательная цена на алюминиевые электролитические SMD зависит от количества, сроков поставки и формы оплаты.
kazexport.com
Электролитические конденсаторы типы и маркировка
Электролитические конденсаторы
В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.
Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор. Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.
В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.
Радиальный электролитический конденсатор
У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.
Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS
В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.
Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.
Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).
Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.
Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.
Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.
Перед повторным применением стоит тщательно проверить конденсатор, ранее бывший в употреблении.
Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.
В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.
Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD — привода
Также существуют миниатюрные танталовые конденсаторы. Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.
Танталовые электролитические конденсаторы на печатной плате MP-3 плеера
Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.
Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода
В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.
Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода. Плюсовым выводом – анодом — в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.
На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.
Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.
Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.
Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт
Среди электролитических конденсаторов есть и неполярные. Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Многие интересуются, имеют ли конденсаторы типы? Конденсаторов в электронике существует множество. Такие показатели, как емкость, рабочее напряжение и допуск, являются основными. Не менее важен тип диэлектрика, из которого они состоят. В этой статье будет рассмотрено подробнее, какие типы конденсаторов бывают по виду диэлектрика.
Классификации конденсаторов
Конденсаторы являются распространенными компонентами в радиоэлектронике. Они классифицируются по множеству показателей. Важно знать, какими моделями, в зависимости от характера изменения величины, представлены разные конденсаторы. Типы конденсаторов:
- Устройства с постоянной емкостью.
- Приборы с переменным видом емкости.
- Подстроечные модели.
Тип диэлектрика конденсатора может быть разным:
- бумага;
- металлическая бумага;
- слюда;
- тефлон;
- поликарбонат;
- электролит.
По способу установки данные приборы предназначены для печатного и навесного монтажа. При этом типы корпусов конденсаторов SMD-модификации бывают:
- керамическими;
- пластиковыми;
- металлическими (алюминиевыми).
Следует знать, что приборы из керамики, пленки и неполярные виды не обладают маркировкой. Показатель их емкости колеблется от 1 пф до 10 мкф. А электролитные типы имеют форму бочонков в корпусе из алюминия и маркируются.
Танталовый же тип производится в корпусах прямоугольной формы. Такие устройства бывают разного размера и расцветки: черные, желтые и оранжевые. На них также присутствует кодовая маркировка.
Электролитические конденсаторы из алюминия
Основой электролитических конденсаторов из алюминия являются две тонкие скрученные алюминиевые полоски. Между ними расположена бумага, содержащая электролит. Показатель емкости этого прибора равен 0,1-100 000 uF. Кстати, в этом и заключается его основное преимущество перед другими видами. Максимальное напряжение равно 500 V.
К минусам относятся повышенная утечка тока и уменьшение емкости с возрастанием частоты. Поэтому в платах часто вместе с электролитическим конденсатором используется и керамический.
Также следует отметить, что данный тип отличается полярностью. Это означает, что вывод устройства с минусовым показателем находится под отрицательным напряжением, в отличие от противоположного вывода. Если не придерживаться этого правила, то скорее всего, приспособление выйдет из строя. Поэтому рекомендуется применять его в цепях с наличием постоянного или пульсирующего тока, но ни в коем случае не переменного.
Электролитические конденсаторы: типы и предназначение
Типы электролитических конденсаторов представлены широким рядом. Они бывают:
- полимерными;
- полимерными радиальными;
- с низким уровнем утечки тока;
- стандартной конфигурации;
- с широким диапазоном температур;
- миниатюрными;
- неполярными;
- с наличием жесткого вывода;
- низкоимпедансными.
Где применяются электролитические конденсаторы? Типы конденсаторов из алюминия используются в разных радиотехнических устройствах, деталях компьютера, периферийных приборах типа принтеров, графических устройствах и сканерах. Также они применяются в строительном оборудовании, промышленных приборах для измерения, в сфере вооружения и космоса.
Конденсаторы КМ
Существуют и глиняные конденсаторы типа КМ. Они используются:
- в промышленном оборудовании;
- при создании приборов для измерения, отличающихся высокоточными показателями;
- в радиоэлектронике;
- в сфере военной индустрии.
Устройства подобного типа отличаются высоким уровнем стабильности. Основу их функциональности составляют импульсные режимы в цепях с переменным и неизменным током. Их характеризует высокий уровень сцепления обкладок из керамики и долгая служба. Это обеспечивается низким значением коэффициента емкостного непостоянства температур.
Конденсаторы КМ при маленьких размерах имеют высокий показатель емкости, достигающий 2,2 мкФ. Изменение ее значения в интервале рабочей температуры у данного вида составляет от 10 до 90%.
Типы керамических конденсаторов группы Н, как правило, применяются как переходники или же блокирующие устройства и т. п. Современные приборы из глины изготавливаются при помощи прессовки под давлением в целостный блок тончайших металлизированных керамических пластинок.
Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.
Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.
Конденсаторы на основе керамики
Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.
К плюсам данного типа можно отнести:
- малые потери тока;
- небольшой размер;
- низкий показатель индукции;
- способность функционировать при высоких частотах;
- высокий уровень температурной стабильности емкости;
- возможность работы в цепях с постоянным, переменным и пульсирующим током.
Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.
Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.
Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.
Плюсом высоковольных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.
Могут функционировать в цепях с постоянным, переменным и пульсирующим током.
Танталовые устройства
Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.
Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:
- небольшой размер;
- показатель максимального рабочего напряжения составляет до 100 V;
- повышенный уровень надежности при долгом употреблении;
- низкий показатель утечки тока;
- широкий спектр рабочих температур;
- показатель емкости может колебаться от 47 nF до 1000 uF;
- устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.
Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.
Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.
Разновидности корпусов
Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.
- SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.
- При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка
Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:
- в машиностроении;
- компьютерах и вычислительной технике;
- оборудовании для телевизионного вещания;
- электрических приборах бытового назначения;
- разнообразных блоках питания для материнских плат, процессоров и т.д.
Поиск новых решений
На сегодняшний день танталовые конденсаторы являются самыми востребованными. Современные производители находятся в поисках новых методов повышения уровня прочности изделия, оптимизации его технических характеристик, а также существенного понижения цены и унификации производственного процесса.
С этой целью пытаются снизить стоимость на основе составляющих компонентов. Последующая роботизация всего процесса производства также способствует падению цены на изделие.
Важным вопросом считается и уменьшение корпуса устройства при сохранении высоких технических параметров. Уже проводятся эксперименты на новых типах корпусов в уменьшенном исполнении.
Конденсаторы из полиэстера
Показатель емкости этого типа устройства может колебаться от 1 nF до 15 uF. Спектром рабочего напряжения является показатель от 50 до 1500 V.
Существуют устройства с разной степенью допуска (допустимое отклонение емкости составляет 5%, 10% и 20%).
Это вид обладает стабильностью температуры, высоким уровнем емкости и низкой стоимостью, что и объясняет их широкое применение.
Конденсаторы с переменной емкостью
Типы переменных конденсаторов обладают определенным принципом работы, который заключается в накоплении заряда на пластинах-электродах, изолированных посредством диэлектрика. Пластины эти отличаются подвижностью. Они могут перемещаться.
Подвижная пластина называется ротором, а неподвижная — статором. При изменении их положения изменятся и площадь пересечения, и, как следствие, показатель емкости конденсатора.
Конденсаторы бывают с двумя типами диэлектриков: воздушным и твердым.
В первом случае в роли диэлектрика выступает обыкновенный воздух. Во втором случае применяют керамику, слюду и др. материалы. Для увеличения показателя емкости устройства статорные и роторные пластины собираются в блоки, закрепленные на единой оси.
Конденсаторы с воздушным типом диэлектрика применяются в системах с постоянной регулировкой емкости (например, в узлах настройки радиоприемников). Такой тип устройства обладает более высоким уровнем стойкости, чем керамический.
Построечный вид
Самым распространенным видом являются построечные конденсаторы. Они относятся к переменному типу, но обладают меньшей износостойкостью, так как регулируются реже.
Типы конденсаторов этой категории в основе содержат металлизированную керамику. Металл функционирует в качестве электрода, а керамика выступает в роли изолятора.
mytooling.ru