+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Электрический ток, откуда он берется и как добирается до наших домов? ⋆ Geoenergetics.ru

Уважаемые читатели и просто посетители нашего журнала! Мы достаточно много и довольно подробно пишем о том, какими способами, при помощи каких именно энергетических ресурсов, производится электроэнергия на электростанциях. Атом, газ, вода – были нашими с вами «героями», разве что до альтернативных , «зеленых» вариантов еще не успели добраться. Но, если присмотреться внимательно, рассказы были далеко не полными. Еще ни разу мы не пробовали отследить детально путь электроэнергии от турбины до наших с вами розеток, с тропинками на освещение наших населенных пунктов и дорог, на обеспечение работы многочисленных насосов, обеспечивающих комфорт наших с вами жилищ.

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века. Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством. Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы. Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих. Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

 

Что такое электрический ток, откуда он берется и как добирается до наших домов?

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы.

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму.

А за городом на природе, освещаемой только светом звезд?

Ночное освещение улицы, Фото: pixabay.com

Удалять жару из офисов, куда с трудом добрался, без электричества тоже нечем. Можно, конечно, открыть окна и обвязать голову мокрым полотенцем, но надолго ли это поможет. Качающим воду насосам тоже нужно электричество, или придется регулярно ходить с ведром на ручную колонку.

Кофе в офисе? Забудьте! Только если всем сразу и не часто, чтобы дым от сгорающего угля не отравил рабочую атмосферу. Или за дополнительную денежку получать из соседнего трактира.

Отправить письмо в соседний офис? Надо взять бумагу, написать письмо от руки, затем ножками отнести его. На другой конец города? Вызываем курьера. В другую страну? А вы знаете, сколько это будет стоить? К тому же ответа не ждите ранее полугода из соседних стран и от года до пяти из-за океана.

Вернулись домой, надо зажечь свечи. Читать при них – мучение для глаз, поэтому придется заняться чем-то другим. А чем? ТВ нет, компьютеров нет, смартфонов – и тех нет, ибо нечем их запитать. Лежи на лавке и гляди в потолок! Хотя рождаемость точно повысится.

К этому следует добавить, что все пластмассы и удобрения сейчас получают из природного газа на заводах, где крутятся тысячи моторов, приводимых в движение всё тем же электричеством. Отсюда список доступных удобрений сильно укорачивается до тех, которые можно приготовить из природного сырья в чанах, размешивая в них ядовитую жижу лопатками с ручным, водяным или паровым приводом. Как результат, сильно сжимается объем производимых продуктов.

О пластмассах – забудьте! Эбонит – наше высшее счастье из длинного списка. А из металлов самым доступным становится чугун. Из медицины на сцену в качестве главного орудия снова выступают стетоскоп и быстро ржавеющий скальпель. Остальное канет в Лету.

Продолжать можно долго, но идея должна быть уже понятна. Нам нужно электричество. Мы можем выжить без него, но что это будет за жизнь! Так откуда же появилось это волшебное электричество?

Открытие электричества

Все мы знаем физическую истину, что ничто никуда бесследно не исчезает, а только переходит из одного состояния в другое. С этой истиной столкнулся греческий философ Фалес Милетский в VII веке до н. э. обнаружив электричество как вид энергии, натирая кусок янтаря шерстью. Часть механической энергии при этом перешла в электрическую и янтарь (на древнегреческом «электрон») электризовался, то есть приобрел свойства притягивать легкие предметы.

Этот вид электричества сейчас называют статическим, и он нашел себе широкое применение, в том числе в системах очистки газов на электростанциях. Но в Древней Греции ему не нашлось применения и, если бы Фалес Милетский не оставил после себя записей о своих экспериментах, мы бы никогда не узнали, кто был тот первый мыслитель, заостривший свое внимание на виде энергии, являющейся едва ли не самой чистой среди всех, с которыми мы знакомы по настоящий день. Ею также наиболее удобно управлять.

Сам термин «электричество» – то есть «янтарность» – ввел в употребление Уильям Гилберт в 1600 году. С этого времени с электричеством начинают широко экспериментировать, пытаясь разгадать его природу.

Как результат, с 1600 по 1747 годы последовала череда увлекательных открытий и появилась первая теория электричества, созданная американцем Бенджамином Франклином. Он ввел понятие положительного и отрицательного заряда, изобрел молниеотвод и с его помощью доказал электрическую природу молний.

Далее в 1785 происходит открытие закона Кулона, а в 1800 году итальянец Вольта изобретает гальванический элемент (первый источник постоянного тока, предшественник нынешних батарей и аккумуляторов), представлявший собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. С появлением этого, стабильного по тем временам, источника электричества новые и важнейшие открытия быстро следуют одно за другим.

Майкл Фарадей, читающий рождественскую лекцию в Королевском институте. Фрагмент литографии, Фото: republic.ru

В 1820 году датский физик Эрстед обнаружил электромагнитное взаимодействие: замыкая и размыкая цепь с постоянным током, он заметил цикличные колебания стрелки компаса, расположенной вблизи проводника. А в 1821 году французский физик Ампер открыл, что вокруг проводника с переменным электрическим током образуется переменное электромагнитное поле. Это позволило уже Майклу Фарадею в 1831 году открыть электромагнитную индукцию, описать уравнениями электрическое и магнитное поле и создать первый электрогенератор переменного тока. Фарадей вдвигал катушку с проводом в намагниченный сердечник и в результате в обмотке катушки появлялся электрический ток. Фарадей также придумал первый электродвигатель – проводник с электрическим током, вращающийся вокруг постоянного магнита.

Всех участников «гонки за электричеством» невозможно упомянуть в этой статье, но результатом их усилий явилась доказуемая экспериментом теория, детально описывающая электричество и магнетизм, в соответствии с которой мы производим сейчас всё, что требует электричества для своего функционирования.

Постоянный или переменный ток?

В конце 1880-х годов, еще до появления мировых стандартов на производство, распределение и потребление промышленной электроэнергии, разразилась битва между сторонниками использования постоянного и переменного тока.

Во главе противостоящих друг другу армий встали Тесла и Эдисон.

Оба были талантливыми изобретателями. Разве что Эдисон обладал куда более развитыми способностями к бизнесу и к моменту начала «войны» успел запатентовать множество технических решений, в которых использовался постоянный ток (в то время в США постоянный ток являлся стандартом по умолчанию; постоянным называется ток, направление которого не меняется по времени).

Но была одна проблема: в те времена постоянный ток было очень трудно трансформировать в более высокое или низкое напряжение. Ведь если сегодня мы получаем электроэнергию напряжением 240 вольт, а наш телефон требует 5 вольт, мы втыкаем в розетку универсальную коробочку, которая преобразует что угодно во что угодно в нужном нам диапазоне, используя современные транзисторы, управляемые крошечными логическими схемами с изощренным программным обеспечением. А что можно было сделать тогда, когда до изобретения самых примитивных транзисторов оставалось еще 70 лет? И если по условиям электрических потерь требовалось повысить напряжение до 100’000 вольт, чтобы доставить электроэнергию на расстояние 100 или 200 километров, любые столбы Вольта и примитивные генераторы постоянного тока оказывались бессильны.

Понимая это, Тесла выступал за переменный ток, трансформация которого в любые уровни напряжения не представляла труда и в те времена (переменным считается ток, величина и направление которого периодически меняются со временем даже при неизменном сопротивлении этому току; при частоте сети 50Гц это происходит 50 раз в секунду). Эдисон же, не желая терять патентные отчисления себе, развернул кампанию по дискредитации переменного тока. Он уверял, что этот вид тока особо опасен для всего живого, и в доказательство публично убивал бродячих кошек и собак, прикладывая к ним электроды, соединенные с источником переменного тока.

Эдисон проиграл битву, когда Тесла предложил за 399’000 долларов осветить весь город Буффало против предложения Эдисона сделать то же за 554’000 долларов. В день, когда город осветился электричеством, полученным от станции, расположенной у Ниагарского водопада и вырабатывающей именно переменный ток, компания General Electric выкинула постоянный ток из рассмотрения в своих будущих бизнес-проектах, полностью поддержав своим влиянием и деньгами переменный ток.

Томас Эдисон (США), Рис.: cdn.redshift.autodesk.com

Может показаться, что переменный ток навсегда завоевал мир. Однако у него имеются наследственные болячки, растущие из самого факта переменности. Прежде всего это электрические потери, связанные с потерями в индуктивной составляющей проводов ЛЭП, которые используются для передачи электроэнергии на большие расстояния. Эти потери в 10-20 раз превышают возможные потери в тех же самых ЛЭП в случае протекания по ним постоянного тока. Плюс сказывается повышенная сложность синхронизации узлов энергосистемы (для пущего понимания, скажем, отдельных городов), ведь для этого требуется не только выровнять напряжения узлов, но и их фазу, ибо переменный ток представляет собой волну синусоиды.

Отсюда видна и значительно большая приверженность к «качаниям» узлов по отношению к друг другу, когда напряжение-частота начинают меняться вверх-вниз, на что обычный потребитель обращает внимание, когда у него в квартире мигает свет. Обычно это предвестник конца совместной работы узлов: связи между ними рвутся и какие-то узлы оказываются с дефицитом энергии, что ведет к снижению в них частоты (т.е. к снижению скорости вращения тех же электродвигателей и вентиляторов), а какие-то с избытком энергии, приводящем к опасному повышению напряжения по всему узлу, включая наши розетки с подключенными к ним устройствам. А при достаточно большой длине ЛЭП, что, к примеру, критично для РФ, начинают проявляться и другие портящие настроение электрикам эффекты. Не вдаваясь в детали, можно указать, что передавать электроэнергию переменного тока по проводам на сверхдальние расстояния становится трудно, а иногда и невозможно. Для сведения, длина волны частотой 50 Гц составляет 6000 км, и при приближении к половине этой длины – 3000 км – начинают сказываться эффекты бегущих и стоячих волн плюс эффекты, связанные с резонансом.

Эти эффекты отсутствуют при использовании постоянного тока. А значит, повышается стабильность работы энергосистемы в целом. Принимая это во внимание, а также то, что компьютеры, светодиоды, солнечные панели, аккумуляторы и многое другое используют для своей работы именно постоянный ток, можно заключить: война с постоянным током еще не проиграна. Современным преобразователям постоянного тока на любые используемые сегодня мощности и напряжения осталось совсем немного, чтобы сравняться в цене с привычными человечеству трансформаторами переменного тока. После чего, видимо, начнется триумфальное шествие по планете уже постоянного тока.

Фото: itc.ua

Откуда берется электричество? | ТГК-1

Наверное, каждому пользователю в душе интересно, откуда берутся эти самые электроны в электрической лампочке. Все знают — вырабатываются на ГЭС, ТЭЦ, с атомных станций. Меньше людей слышали о солнечных, ветряных, геотермальных, приливных станциях, ещё меньше — о ГРЭС (государственные районные электрические станции), и ГАЭС. И уж совсем мало кто знает, как это оказывается сложно — управлять электричеством.

В чём сложность? И вот тут в двух словах не объяснить — приходится лезть в дебри энергетики. А знать стоит, потому что именно из этих знаний складывается самая волнующая нас интрига — цена за киловатт.

Первая хитрость — электричество нельзя запасти «на завтра», и приходится ориентироваться на текущую выработку, а потери при транспортировке высоки — поэтому энергетики вынуждены приспосабливаться буквально на каждом шагу: использовать низкий ток, менять сечения проводов, использовать повышающие и понижающие трансформаторы, дозировать электроэнергию дополнительными станциями.

Мало того, трудности возникают и в частном порядке — есть пики и провалы в энергопотреблении, а тяжесть проводов может не выдержать погодных условий — например, снегопада. Вот почему земля буквально опутана проводами разных сортов — электричество нужно всем и каждому, желательно — бесплатно, а подать его в нужной мощности и за деньги не легко.

Вот пример. Генератор может выдавать только столько мощности, сколько может потребить потребитель. Если даже генератор имеет установленную мощность на 100 МВт, то он не сможет ее набрать, если нет соотвестствующей нагрузки. Как частный случай – выдаст, но с отклонением от принятой частоты в 50Гц, что сделает невозможным использовать такую электроэнергию, а это — невосполнимые затраты.

Всё начинается именно с генератора — это чудесное устройство невообразимым, но легко объяснимым физикой способом вырабатывает с помощью силы воды поток электронов, которые начинают своё экстравагантное путешествие по проводам — к чайнику.

ГЭС преобразует механическую энергию воды в электрическую — в этом она, кстати, самая экологичная. Вода «давит» на лопасти рабочего колеса, которое на одном валу с генератором. Чем больше напор – тем больше давление. Генератор представляет из себя ротор и статор. Статор – неподвижная часть с обмоткой. Ротор вращается в электрическом поле статора, возникает Электродвижущая сила (ЭДС). С выводных устройств идет съем электроэнергии — это описание принципа работы любого генератора.

Но вот в чём чудо — в этом «пахтании океана» появляются электроны, и они не одиноки. Есть ещё электрически заряженные частицы, квази частицы. Электроны в проводах можно сравнить с рыбами в воде: проводники для них — среда обитания. В диэлектриках жизни нет)

Трансформаторами мощность и понижают, и повышают, и что там происходит с частицами — можно представить. И через поля проходят — правда, магнитные; притягиваются и отталкиваются, исчезают — и возникают! В путешествиях по подстанциям могут менять и вид энергии, и форму. Двигаются с небольшой скоростью, но по отношению с неподвижными собратьями находятся на границе, которая уже имеет скорость света… У электронов море приключений прежде, чем они постучатся в ваш дом.

Поздороваться с электронами нельзя, как и поговорить. По сути они — просто другая форма жизни, которую нам по счастливой случайности или глубокой закономерности удалось приручить — как оленей, кошек, окучить картошку. С этой точки зрения наше существование на планете явление столь же необычное и интересное, как и бег электронов.

Но вернёмся на Землю. Для нас важно – уровень напряжения, частота электрического тока в сети. Суточная неравномерность потребления регулируется автоматикой: у системного оператора стоит основной управляющий блок станциями, которые в этой системе состоят. Генераторы например работают в системе ГРАМ – «групповое регулирование активной мощности». Система распределяет нагрузку оптимально для каждого генератора. Естественно, стараются применять типовые генераторы. Тогда случае изменения нагрузки потребителем система ГРАМ загружает или разгружает генераторы за секунды.

Есть еще система АРЧМ – «автоматическое регулирование частоты и мощности». Это специальная программа, которая воздействует на управление регуляторами скоростей. Ее задача – держать заданные показатели в норме. Допустим, задано держать переток из Кольской энергосистемы в Карельскую мощность в 500 МВт. И вдруг «отваливается» какой-то крупный потребитель на 50 МВт. Значит, система АРЧМ должна воздействовать на некоторые управляющие элементы и где-то в энергосистеме снизить  их мощность.

Система действует в течении секунд. В пределах 10 секунд обычно устраняется возмущение. При очень крупных дисбалансах установка равновесия может занимать 1-2 минуты.

То есть ГРАМ управляет в масштабе одной станции, а АРЧМ управляет станциями. К сожалению, и это не всегда эффективно. Допустим, маленькая станция, 6 МВт. А потребитель в нашем примере «отвалился» на 50 МВт. Что там регулировать?

Потому АРЧМ стараются ставить на больших станциях, например, на Верхнетуломской ГЭС, на Серебрянских, на Териберке. На Княжегубской ГЭС. Каждая система управления это немалые расходы на монтаж и содержание, хоть процессы и автоматизированы. И всё это — только начальные дебри! 

5 минут об электричестве в человеке

Всем привет, я Маша Осетрова, и сегодня я немного расскажу вам про электричество в теле человека.

Сюжет о Викторе Франкенштейне, создавшем монстра из неживой материи, идейно восходит к проведенным в XVIII веке опытам Луиджи Гальвани, который заставил мышцы лягушки сокращаться под действием электрического тока. Его эксперименты вдохновили многих исследователей на изучение функций электричества в теле живых существ. На сегодняшний день ученые сильно продвинулись в этой области: придумали обезболивающие, выяснили, что заставляет наше сердце биться, что происходит в голове у влюбленных и многое другое.

Между электричеством нашего организм, и электричеством, которое обеспечивает наши дома, есть два фундаментальных различия. Электричество из розетки представляет собой поток электронов. В отличие от этого практически все токи в живых существах являются потоками ионов — атомов, имеющих электрический заряд. Токи в нашем организме связаны с пятью типами частиц: четырьмя положительными ионами — натрия, калия, кальция и водорода — и одним отрицательным хлорид-аниона.

Второе важное различие связано с направлением движения частиц. Ток в электрической цепи течет вдоль проводника, в то время как распространению электрического импульса по нейрону способствует движение ионов в перпендикулярном направлении.

В книге «Искра жизни» Фрэнсис Эшкрофт собрала воедино имеющиеся на сегодняшний день знания об электрических токах в организме человека и процессах на клеточном и молекулярном уровне, управляющих передачей электрических импульсов.

В состоянии покоя на мембране всех клеток существует разность потенциалов в 70 мВ, которую также называют потенциалом покоя. Изменение этого потенциала возможно при проходе заряженных частиц через мембрану внутрь и наружу клетки через специальные шлюзы — ионные каналы.

Для управления ионными каналами соседей нервные клетки выпускают в синаптическую щель — место контакта нейронов — специальные вещества, нейромедиаторы. Они специфично взаимодействуют с ионными каналами в мембране целевой клетки, подходя к определенному типу каналов как ключ к замку. В результате взаимодействия канал открывается, пропуская через себя ионы внутрь или наружу клетки. Направление движения частиц при этом зависит от концентрации ионов и распределения зарядов.

В состоянии покоя потенциал-зависимые натриевые и калиевые каналы клеток нервной и мышечной ткани находятся в закрытом состоянии под действием потенциала покоя. Они открываются только тогда, когда потенциал смещается в положительную сторону: когда это происходит, генерируется нервный импульс.

Хотя потенциально нервные волокна могут проводить импульсы в любую сторону, обычно они передают их только в одном направлении. Двигательные нервы передают сигнал от головного и спинного мозга к мышцам для управления их сокращением, а чувствительные нервы передают информацию в обратном направлении — от органов чувств к головному мозгу.

Поддержание клеток в поляризованном состоянии жизненно важно для организма и крайне энергозатратно. Один лишь мозг использует около 10% вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток.

Наибольшее значение для генерации нервного импульса имеют калиевые и натриевые каналы. Это подчеркивает тот факт, что яды пауков, моллюсков, актиний, лягушек, змей, скорпионов и множества других экзотических существ воздействуют именно на них и, таким образом, нарушают функционирование нервов и мышц. Многие токсины крайне специфичны и нацелены на какой-нибудь один вид ионных каналов.

Разные яды имеют разный механизм действия: некоторые из них закупоривают ионные поры, а некоторые выступают в роли «распора», фиксируя канал в открытом состоянии. Это приводит к тому, что результатом проникновения в организм одних токсинов является паралич, а других — чрезмерное возбуждение, вызывающее судороги.

К примеру, яд тетродотоксин, содержащийся во внутренностях иглобрюха, которого японцы называют «рыба фугу», обладает специфичностью к натриевым каналам. Прочно закупоривая ионные поры, он препятствует нормальной передаче нервных импульсов, вызывая паралич и зачастую приводя к летальному исходу. Тем не менее, гурманы со всего мира регулярно рискуют жизнью, чтобы отведать фугу: при правильном приготовлении она перестает быть ядовитой, и лишь слегка покалывает небо.

Еще один токсин, ради эффекта которого люди готовы рискнуть — ботокс, используемый в косметических целях для разглаживания морщин. Ботокс, он же ботулотоксин — яд бактерий вида Clostridium botulinum, — один из самых сильных известных природных ядов. Он препятствует сокращению мышц и постепенно приводит к смерти от удушья. В количестве, умещающемся на кончике иглы, он смертелен для взрослого человека, однако инъекции ботокса под кожу в ничтожных концентрациях способствуют избавлению от мимических морщин.

На этом все, читайте умные книги, не суйте пальцы в розетку и читайте портал «Чердак»! А в следующем выпуске я расскажу вам о том, как мы делаем ЭТО.

 Анастасия Тмур

Электрический генератор, как он работает

Электрический генератор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Ранее ЭлектроВести писали, что создан генератор энергии, работающий на смене пресной и морской воды.

По материалам: electrik.info.

Электричество внутри нас — Энергетика и промышленность России — № 13-14 (321-322) июль 2017 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 13-14 (321-322) июль 2017 года

Современные методики предлагают использовать электричество в борьбе со многими заболеваниями и даже восстанавливать двигательные функции, потерянные в результате утраты конечностей.

Электрический ток в качестве лекарства

Впервые наука обратила внимание на способность живых организмов вырабатывать электричество в XVIII веке. Тогда итальянский ученый Луиджи Гальвани выпустил книгу «Трактаты о силе электричества при мышечном движении», где впервые заявил – электричество есть в каждом из нас, а принцип работы нервной системы человека схож с электрическими проводами.

В XIX столетии стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. В конце XIX – начале XX веков были сделаны первые опыты в проведении электроэнцефалограммы головного мозга. Позже ученые доказали, что в нашем теле происходит много химических процессов, которые вырабатывают электричество. Появилась даже наука электрофизиология, которая изучает электричество в человеке.

Применять электричество для лечения организма ученые начали давно. Еще в Древнем Риме было известно лечение электрическими скатами. Клавдий Гален, личный врач императора Марка Антония, именно таким образом излечил больную спину самого императора, а также спасал от боли после ранений гладиаторов.

В начале XX века английский инженер Отто Овербек, который страдал хроническим заболеванием почек, попробовал лечиться, пропуская через свое тело ток небольшой силы. Вылечившись, он разработал прибор, который состоял из обычной батарейки и набора электродов. Их нужно было подносить к тем частям тела, которые требовали лечения. Изобретатель утверждал, что его прибор способен лечить любые заболевания, помогает в борьбе со старением, устраняет облысение и седину.

Стимулирующие импульсы

Электросудорожная терапия, ранее известная как электрошоковая, впервые появилась в 30‑х годах прошлого века и получила широкое распространение в 40‑е и 50‑е годы. При этой методике импульсные токи проходят через головной мозг пациента. На сегодняшний день этот метод используется для лечения психических и психопатологических расстройств, в том числе тяжелых депрессий и маниакального синдрома. Стоит отметить, что электросудорожная терапия может быть использована, только если другие методы лечения (лекарства и психотерапия) не дали результата.

Стимулировать токами можно многие органы, но наиболее широкое применение получила электростимуляция сердца. Электричество, содержащееся в нашем организме, отвечает за нормальную работу нашего сердца. Большое влияние на нормальное функционирование сердца оказывает ритмичность сокращений. Когда человек стареет, способность его системы проводить импульсы ухудшается. Нормализовать ритмы сердца поможет кардиостимулятор.

Под местной анестезией пациенту вводят электроды кардиостимулятора в различные участки сердечной мышцы под контролем рентгеновского излучения. После того, как электроды подключены к сердечной мышце, их свободные участки подключают к кардиостимулятору. Следующим этапом производится имплантация кардиостимулятора в область большой грудной мышцы. Контакт электрода с сердцем осуществляется через металлическую головку на конце провода. С помощью нее стимулятор следит за электрической активностью сердца и посылает электрические импульсы только тогда, когда они требуются.

Как любому электронному прибору, кардиостимулятору нужен источник питания, в роли которого выступает миниатюрная батарея. Замена кардиостимулятора на новый проводится в среднем через семь-девять лет, когда заряд батареи приближается к пороговому значению.

Электростимуляция проводится также тогда, когда необходимо устранить вялость мышц. Для этого был разработан миостимулятор – устройство для воздействия на мышцы тела с помощью электрических импульсов. К телу прикладываются клейкие гелевые электроды в непосредственной близости к стимулируемым мышцам. Посылаемые от устройства электрические импульсы похожи на импульсы нервной системы, которые заставляют мышцы сокращаться. Сокращения мышц при этом близки к произвольным двигательным сокращениям.

Такой аппарат способствует устранению последствий травм, ушибов, вывихов, переломов, снимает боли в спине, суставах, мышцах, борется с состояниями, связанными с малоподвижным образом жизни (ослабление и атрофия мышц). Миостимуляторы используются атлетами для восстановления мышц после тренировки. В косметологии этот прибор способствует коррекции фигуры и лечению целлюлита. Сжигание жиров происходит за счет того, что во время упражнений мышцам необходима энергия, которую они черпают из жировой прослойки.

Преобразовать сигнал в движение

Одна из последних разработок медицины – бионические протезы верхних и нижних конечностей. Если до недавнего времени протезы прикреплялись к человеческому телу механически и не имели никакой связи с нервной системой, то новейшие протезы считывают нервные сигналы и преобразуют их в движения.

Суть таких протезов состоит в том, что после ампутации культя сохраняет остатки имевшейся ранее мышечной ткани. Электроды считывают электрический ток, вырабатываемый мышцами культи в момент их сокращения, и эта информация передается на микропроцессор. Для электронной системы хватит даже незначительного сокращения мышечной ткани, чтобы привести протез в действие.

Бионические протезы верхних конечностей помогают восполнять важнейшие утраченные функции человеческой руки – осуществлять вращательные движения в кисти, захватывать и удерживать предметы. Последние модификации бионических протезов снабжены специальными сенсорными датчиками, контролирующими усилие захвата предмета, в результате чего появляется возможность брать такие хрупкие предметы, как стеклянный бокал или куриное яйцо, не боясь при этом их сломать или раздавить. Бионические протезы нижних конечностей позволяют добиться плавного движения без рывков. При такой конструкции ходьба становиться комфортной даже по пересеченной местности, можно подниматься и спускаться по лестнице без посторонней помощи.

Протезы работают на блоке автономного питания, который необходим для обеспечения энергией всех остальных частей и электроники протеза. Используются литий-полимерные аккумуляторы с большой емкостью, которые обеспечивают длительную работу протеза без подзарядки. Бионические протезы при активном использовании могут проработать в течение целого дня, вечером перед сном их нужно снимать и ставить батарею на зарядку.

Современные протезы имеют достаточный функционал для различных бытовых действий, но ученые продолжают над ними работать и хотят добиться чувствительности протезов. Такая технология позволяет человеку ощущать протез, как собственную конечность.

Ученые уже создали протез ноги, подошва которого оснащена шестью сенсорами. Они считывают информацию о поверхности почвы, передают ее нервным окончаниям, сохранившимся в ноге, и затем данные поступают в мозг. Разработан также протез руки, на кончиках пальцев которой находятся чувствительные сенсоры. Сигналы передаются по проводам прямо в соответствующие осязательные центры в мозге. Датчики реагируют на прикосновение, давление и изменение температуры окружающей среды. Человек может чувствовать прикосновения людей, а также отдернуть руку, если почувствует высокую температуру.

Электричество. Электрический ток. Электростанции

Использование электричества стало уже настолько обыденной вещью, что никто уже и не замечает. Еще каких-нибудь 100-120 лет назад человечество не использовало этот «дар природы». Не будем рассматривать сейчас истоки возникновения электричества. Это тема отдельной статьи. Человек использует его, не задумываясь о его природе. В самом деле, какое ему дело до общепринятых законов электрического тока? Оно есть — и все, чего еще? В основном электричество используют для освещения. Используют и различного рода электродвигатели для привода механизмов. Использование для отопления также широко развито. Существует великое множество электропечей. Электроэнергия используются при необходимости обеспечения связи.

Радиоприем и телевидение также невозможны без него. Если в качестве радиоприемника можно использовать так называемый «детекторный» — он не требует для своей работы каких-либо источников электропитания, то радиопередатчик обязательно будет для своей работы использовать электропитание! Электричество широко используется во всех сферах жизни человека. И это в настоящее время наиболее экологически чистый источник энергии.

Батарейки

Широко применяемый сейчас мобильный телефон, по сути своей является радиостанцией с небольшой выходной мощностью. Для его питания используются аккумуляторные батареи. Такая батарея способна накоплять определенную емкость заряда и затем отдавать его довольно длительное время. Если пользоваться мобильником не очень часто, то заряжать аккумулятор приходится раз в неделю. Если пользуются смартфоном, — это такой тип карманного миникомпьютера, то срок использования заряда батарей довольно значительно сокращается.

В различного рода фонариках могут использоваться так называемые «сухие» элементы. Такой источник электроэнергии является одноразовым — при использовании всех возможностей его просто выбрасывают. Этот факт дает возможность выпускать довольно дешевые элементы питания. Из минусов — это засорение окружающей среды уже использованными. Обычно для производства сухого элемента используют цинк и соли марганца. Попав в почву, эти компоненты со временем могут нанести ей значительный вред.

Аккумуляторные батареи также используют для своей работы различные химические элементы, но срок их службы значительно больше, чем у элементов. Немаловажна в данном случае и цена. Аккумулятор стараются использовать «на всю катушку». То есть, до тех пор, пока он еще может выполнять свои функции.

 Электростанции

В России наиболее распространены тепловые электростанции, или централи, сокращенно ТЭЦ. Эти электростанции используют для выработки электроэнергии энергию от сжигаемого углеводородного топлива. Несмотря на невысокий коэффициент полезного действия такие источники энергии широко распространены. В качестве топлива в них может применяться практически любой источник тепла. Это может быть торф, уголь, нефтепродукты, а также газ. Разогретая вода в виде пара под высоким давлением попадает на лопатки турбины и заставляет вращаться генератор, вырабатывающий электрический ток.

Самыми экологически чистыми считаются гидроэлектростанции. Такие станции используют для выработки электроэнергии струю воды, падающую с высоты. Вода попадает на лопатки турбины и заставляет ее раскручиваться. Вращение турбины передается на генератор, который и вырабатывает электричество. ГЭС имеют недостаток, который заключается в необходимости строительства плотины на реке для получения достаточного запаса воды. Такой запас обеспечивает бесперебойную работу ГЭС в течении всего времени.

В степных районах для производства электроэнергии можно использовать так называемые ветрогенераторы. Такие электростанции используют энергию ветра. Эта энергия тоже достается практически бесплатно. Воздушные потоки постоянно перемещаются в атмосфере, создавая благоприятные условия для работы генератора. К недостаткам следует отнести непостоянство скорости воздушного потока. В отдельные дни ветра может и не быть совсем, поэтому для обеспечения бесперебойной подачи электроэнергии используют аккумуляторные батареи. Аккумулятор заряжается во время работы «ветряка» и способен отдавать накопленную энергию довольно длительный срок.

В южных районах, а летом и в средней полосе, можно использовать солнечные батареи. Современные разработки позволяют изготавливать их с КПД, достигающим двадцати процентов. Это довольно неплохой показатель, если учитывать, что солнечная энергия достается уже и вовсе бесплатно! В некоторых южных странах солнечные батареи являются чуть ли не единственным источником энергии.

Недостатки – это довольно высокая цена солнечных элементов и их избирательная способность преобразования только солнечной энергии. Также из недостатков следует выделить и довольно непродолжительный срок жизни фотоэлементов. Поток фотонов, попадая на такую батарею, способны вызвать довольно быстрое (10 лет) старение полупроводника, из которого изготовлены солнечные элементы.

При отсутствии солнца и в ночное время пользуются энергией, накопленной в аккумуляторах. Либо включают альтернативные источники — типа дизель/бензиновых генераторов. Такие генераторы представляют собой двигатель внутреннего сгорания то ли дизельный, то ли бензиновый, объединенный с генератором. По сути своей – это также теплоэлектростанция, но в миниатюре. Использование в качестве топлива бензина, либо дизельного топлива значительно удорожает производство электроэнергии, поэтому такие источники используются в так называемом «буферном» режиме, для непродолжительной работы.

И, наконец, очень высокоэффективные источники тока — это атомные электростанции (АЭС). В качестве источника тепла в них используют энергию, полученную при делении атома тяжелого элемента. Чаще всего в качестве топлива используется изотоп урана. Но беда в том, что его залежей очень мало. По подсчетам экспертов этих запасов хватит лет на тридцать. Да и залежи сконцентрированы очень неравномерно.

Тепловая энергия, высвобождаемая при делении ядра урана, обладает огромной мощностью. Период полураспада урана — срок очень длительный, но под действием нейтронов реакция происходит стремительно. Поэтому приходится регулировать ее графитовыми стержнями. Как и любой ранее рассмотренный источник энергии, АЭС имеет свои недостатки. Основной недостаток заключается в очень высоком риске заражения окружающей среды радиоактивными отходами.

Небольшие атомные электростанции используют в подводных лодках и атомных ледоколах. В малых электростанциях легче обеспечить безопасный уровень радиации путем использования высокоэффективной защиты. Традиционно считается, что свинец способен ослаблять радиоактивный поток. Применение вместо свинца, например, вольфрама способно еще больше защитить обслуживающий персонал от риска заражения радиоактивным излучением.

В каждом конкретном случае при выборе источника электроэнергии приходится учитывать ряд факторов, применительно к местным условиям.

Однако есть и еще один не каждому известный тип получения электроэнергии при помощи изотопа урана. Там нет турбины, нет генератора. Там имеется термопара. Применяется в космосе, Изотоп нагревает один провод, а наружный провод охлаждается в холодном пространстве. В месте соединения возникает ток. Такой источник электроэнергии обеспечивает работу марсохода Кьюриосити.

При передаче электрического тока к потребителям следует учитывать падение напряжения на проводниках. Для уменьшения данного явления стараются использовать проводники большого сечения. Проводник имеет свое собственное удельное сопротивление, которое зависит от материала и толщины.

Более толстый проводник, например, из меди способен пропустить и больший ток, чем проводник аналогичного сечения из алюминия. Не на много, но больше. В то же время стоимость медного проводника значительно выше стоимости алюминиевого. Исходя из этих соображений, выбирают тип и толщину проводника в линиях электропередач. Для транспортировки на большие расстояния как нельзя лучше подходит алюминий. А вот для разводки по помещениям конечно медь. И дело не в удельном сопротивлении, а в том, что при разводке непременные разветвления. А это соединения проводов. И если медный провод десятками лет держит соединение, то алюминиевый периодически надо поджимать.

Для уменьшения падения тока на проводах линии при транспортировке его приходится повышать в … разы. Сколько этих раз — это зависит от цели транспортировки. Для этого используют повышающие и понижающие трансформаторы. Следует иметь в виду что трансформировать можно только переменный по направлению ток.

Постоянный ток перед трансформацией следует преобразовать в переменный. Объясняется это тем, что на вторичной обмотке трансформатора индуцировать ток может только переменное магнитное поле. Вот почему так привычно встречать надписи с указанием напряжения и обязательно частоты в 50 герц. Постоянный за направлением ток частоты не имеет, там заряды идут потоком, как вода по трубе.

На постсоветском пространстве существует стандарт 380/220 вольт 50 герц. В некоторых странах зарубежья используют частоту питающей сети 60 герц и другие напряжения 120 и даже 240 вольт. Сети с разными напряжениями и частотой уже нельзя объединить между собой без существенных потерь. Почему появились именно эти стандарты – сейчас трудно сказать. Честно говоря, скорее всего никто и не задумывался об этом всерьез.

Электричество

Ток — проще всего объяснить, что такое ток можно благодаря теории, которая гласит, что самой маленькой частичкой любого материала является атом. Атом состоит из ядра и электронов, которые крутятся вокруг. Частицы с положительным зарядом называются протоны, нейтроны электро-нейтральны, поскольку у них нет заряда. Электроны — это отрицательные частички. Сумма протонов равна сумме электронов. Из этого следует что атом электро-нейтральный.

Хотя если электрон отсоединяется или присоединяется еще один или несколько электронов — это будет уже не атом, а ион. Ионы по заряду бывают как положительные и отрицательные. Положительным он является, когда электрон отсоединяется, отрицательным является, когда электрон присоединяется.

Один из главных законов про электричество гласит, что разно заряженные частицы будут притягиваться, а частицы, имеющие одинаковый заряд отталкиваться. Область где заряды взаимодействуют друг с другом называется электрическим полем. Хотя на самом деле электрическое поле невозможно увидеть, обычно его обозначают линией. А эти линии носят название: силовые линии.

Похожие темы:

создан генератор, собирающий энергию капель дождя

Бессовестно дождливое лето капает не только на землю, но и на мозг. Изобретателям. Они решили, что пора бы каплям не стучать без толку по стеклам наших домов и автомобилей, а снабжать их тем самым энергией, и разработали устройство, собирающее энергию падающих капель дождя.

Новое устройство, преобразующее механическую энергию капель в электрическую энергию, было создано учёными из Нидерландов и Китая. Статья о разработке вышла в журнале Advanced Materials.

Поясним, что ранее учёными уже предпринимались попытки создать устройство, собирающее энергию падающей с небес воды. Потенциал этого источника энергии более чем очевиден. Но все прежние разработки либо недостаточно стабильно работали, либо требовали для своей работы слишком много энергии, и потому коэффициент их полезного действия оказывался слишком низким.

Принцип работы нового устройства базируется на явлении электросмачивания.

Напомним, что летящая в воздухе капля стремится принять округлую форму. Сделать это её заставляют силы поверхностного натяжения. Но, если капля упадёт на заряженную поверхность, то она буквально распластается в блин, так как молекулы воды будут стремиться смочить собой поверхность из-за воздействия на них электрического поля заряженной поверхности.

Таким образом капля дождя, попадая на новый генератор, удерживается на нем за счёт электросмачивания. В это же время внутри генератора происходит перераспределение зарядов.

Таким образом каждое падение маленькой капли приводит к тому, что в генераторе начинает протекать слабый ток, который можно «собрать». Объём собираемого таким образом тока определяется количеством свободных зарядов, которые присутствуют в материале генератора. Поэтому учёные тщательно продумали, какие материалы использовать для создания генератора.

Схема появления заряда внутри генератора под воздействием капель дождя и его снятия.

Конструкция в итоге получилась не просто надёжной, но ещё и чрезвычайно эффективной. Инженерам удалось собрать 11,8% энергии упавших капель.

Для сравнения: фотосинтезирующие растения аккумулируют только 2% энергии Солнца, а рекордсмены природы зелёные водоросли – 12%. Так что этот электрогенератор близок к природному рекорду.

Однако в отличие от «скоропортящихся» живых систем, требующих постоянной «починки», этот генератор может работать 100 дней без снижения эффективности (это показали тесты). При этом перед началом длительной работы ему требуется всего 15 минут подзарядки\подготовки.

Ток вырабатывается благодаря явлению электросмачивания. Рисунок d показывает зависимость плотности поверхностного заряда от подаваемого напряжения. Перевод Вести.Ru.

Результаты действительно впечатляющие. Однако соавтор исследования Нильс Мендель (Niels Mendel) считает, что нужно провести больше исследований, чтобы создать по-настоящему эффективный генератор энергии из капель дождя. Для этого нужно решить проблему работы подобных устройств при 100-процентной влажности. Во-вторых, необходимо решить проблему снижения эффективности подобных устройств в присутствии солей (всё-таки дождевая вода не является дистиллированной).

Конечно, всех потребностей человечества энергия дождя в любом случае не покроет. Но, судя по всему, будущее за различными источниками возобновляемой энергии, каждый из которых будет брать на себя часть работы по обеспечению человечества «зелёной» энергией.

Инженеры учатся приспосабливать под это самые разные системы. Так, они уже смогли заставить вырабатывать электричество бактерии, приручили энергию холода и даже превратили в электрогенераторы оконные стёкла.

Электрическое обучение | BrightRidge

Что такое электричество?
Электричество — это форма энергии, которая производит тепло и свет. Электричество также может называться «электрическая энергия».

Где начинается электричество?
Электричество начинается с атома. Атомы состоят из протонов, нейтронов и электронов. Электричество создается, когда внешняя сила заставляет электроны перемещаться от атома к атому. Поток электронов называется «электрическим током».”

Что заставляет электроны двигаться?
Напряжение — это «внешняя сила», которая заставляет электроны двигаться. Напряжение — это потенциальная энергия. Потенциальная энергия обладает способностью выполнять работу. Пример потенциальной энергии — топор, который держат над деревом. Если топор упадет на кусок дерева, оно расколется. Обратите внимание на слово «если». Потенциальная энергия работает ТОЛЬКО, если это разрешено.

Что такое напряжение?

Напряжение — это «внешняя сила», которая заставляет электроны двигаться.Напряжение — это потенциальная энергия. Некоторые характеристики напряжения:

  • Напряжение не видно и не слышно.
  • Напряжение — это толчок или сила.
  • Voltage само по себе ничего не делает.
  • Voltage может работать.
  • Напряжение появляется между двумя точками.
  • Напряжение всегда есть.

Какие бывают два вида электричества?

Статическое электричество возникает при дисбалансе положительно и отрицательно заряженных атомов.Затем электроны прыгают от атома к атому, высвобождая энергию. Два примера статического электричества: молния и трение ногами о ковер, а затем прикосновение к дверной ручке.

Текущее электричество — это постоянный поток электронов. Существует два вида текущего электричества: постоянный ток (DC) и переменный ток (AC). При постоянном токе электроны движутся в одном направлении. Батареи вырабатывают постоянный ток. В переменном токе электроны текут в обоих направлениях. Электростанции вырабатывают переменный ток.Переменный ток (AC) — это тип электроэнергии, которую BrightRidge передает вам для использования.

Что такое проводники и изоляторы?

Проводники — это все, через что легко проходит электричество. Примеры электрических проводников — медь, алюминий и вода.

Изоляторы — это материалы, которые не пропускают электричество. Некоторые примеры изоляторов — резина, стекло и пластик.

Как вырабатывается электроэнергия — Электростанции и выработка электроэнергии

Все гидроэлектростанции Дравске электрарне Марибор на реке Драва (за исключением гидроэлектростанций Златоличье и Формин) в основном построены таким образом, что русло реки перекрыто плотиной. железобетонным барьером.В шлагбауме установлены турбины и генераторы. Каждая турбина соединена с генератором вертикальным валом.

В барьерах также есть водосбросы со шлюзами, которые используются для выпуска излишков воды через барьер. За барьером образуется резервуар, и в то же время высота барьера определяет каплю воды, необходимую для питания турбины. Мощность турбины зависит от размера капли воды и количества воды, протекающей через турбину.Вода приводит в движение турбину, которая, в свою очередь, приводит в действие электрогенератор, вырабатывающий электричество по принципу электромагнитной индукции.

Производство электричества по принципу электромагнитной индукции

Электромагнитная индукция основана на том факте, что каждое вещество состоит из атомов, содержащих субатомные частицы с электрическим зарядом. У атома есть ядро ​​с протонами и нейтронами, а также электроны, которые связаны с ядром.Электроны заряжены отрицательно, а ядро ​​содержит такое же количество положительно заряженных протонов. Внешне атом электрически нейтрален. Субатомные частицы с одинаковым электрическим зарядом отскакивают друг от друга, а частицы с разным зарядом притягиваются друг к другу. Что отличает материалы, так это то, насколько прочно электроны связаны с ядрами в своих атомах. Вещества, в которых электроны прочно связаны с ядрами, являются электрическими изоляторами. У них нет свободных электронов и они не проводят электрический ток.

Однако электрические проводники — это вещества, в которых электроны движутся свободно (у них есть свободные электроны). Если такой проводник (обычно медный провод) помещается в магнитное поле и перемещается в сторону от направления поля, к электронам в проводнике прикладывается сила, толкая их к одному концу проводника (в зависимости от направление движения). Так образуется избыток электронов. Поскольку они имеют отрицательный электрический заряд, мы говорим об отрицательном электрическом потенциале.Такой же дефицит электронов создается на другом конце проводника, который имеет положительный потенциал. Разница между потенциалами равна напряжению и называется индуцированным напряжением . Он индуцирует электрический ток, если обе стороны проводника соединены токопроводящим проводом.

Следовательно, электрический ток — это направленное движение электронов по проводнику от точки избытка электронов к точке их дефицита. Сила электрического тока зависит от величины индуцированного напряжения и электрического сопротивления соединительного проводника.Чем длиннее проводник, тем выше наведенное напряжение, тем сильнее магнитное поле и тем больше скорость движения проводника. Неважно, движется ли проводник в магнитном поле или он статичен, а магнитное поле движется. Описанный принцип электромагнитной индукции используется в электрических генераторах для производства электроэнергии.

Электрогенераторы состоят из статора (неподвижная часть), ротора (вращающаяся часть) и электромагнитных полюсов, установленных на торце ротора.Статор сделан из железа. В статоре размещены электрические проводники, которые соединены друг с другом таким образом, что наведенные напряжения в отдельных проводниках складываются. Такая система соединенных проводов называется обмоткой статора. Магнитные полюса установлены на торце ротора. Чередуются северный и южный полюс. Магнитное поле создается между северным и южным полюсами через воздушный паз и статор, так что обмотка находится в магнитном поле. При вращении ротора устанавливается движение магнитного поля относительно проводников обмотки.В обмотке индуцируется электрическое напряжение , которое можно измерить между началом и концом обмотки. Начало и конец обмотки называются выводами генератора. К этим клеммам подключаются электрические проводники, и получаемое электричество передается пользователям.

Передача электроэнергии

В первые дни использования электроэнергии электростанции были небольшими по сравнению с сегодняшними, и электрогенераторы непосредственно обеспечивали электроэнергией находящихся поблизости потребителей.На них подавалось напряжение, которое не могло быть слишком высоким из-за опасности поражения людей электрическим током. Первые генераторы производили так называемый постоянный ток, в котором ток всегда течет в одном и том же направлении.

Использование электроэнергии из-за ряда преимуществ быстро росло, и стала очевидной потребность в более мощных станциях, которые можно было бы строить рядом с подходящими ресурсами (реки, угольные шахты). Однако проблема передачи электроэнергии удаленным пользователям осталась, поскольку потребовались бы чрезвычайно большие участки линий электропередачи, чтобы минимизировать уровень потерь энергии во время передачи.

С изобретением переменного тока, , в котором направление тока изменяется (это происходит 50 раз в секунду в нашей сети), и многополярных генераторов, которые также работают в соответствии с описанным принципом электромагнитной индукции, использование электроэнергии значительно расширилась. Переменный ток позволяет относительно легко изменять напряжение с помощью трансформатора . Чем выше напряжение, тем меньше энергии теряется при передаче.В настоящее время напряжение, создаваемое генератором, преобразуется в более высокое напряжение и передается по линиям передачи с напряжениями 110 кВ, 400 кВ и выше на большие расстояния. Чтобы обеспечить питание пользователей, напряжение затем преобразуется в более низкие значения, вплоть до напряжения, используемого в домашних условиях (220 В или 380 В для трехфазных подключений).

Медь и электричество — как производить электричество от движения

Что такое генератор?
Ветряная турбина включает генератор для выработки электроэнергии.Ветер заставляет его вращаться. В свою очередь, турбина вращает генератор; внутри генератора находится катушка с проволокой, которая вращается в магнитном поле. Если повернуть катушку, в катушке появится напряжение. Напряжение может управлять током по кабелям национальной сети, чтобы осветить наши дома.

(С любезного разрешения «Новости альтернативной энергетики».)

Компоненты ветряной турбины.

Генераторы на электростанции похожи, но намного больше. Они способны производить многие мегаватты энергии.

Генератор немного похож на двигатель заднего хода. Приводим в движение и вынимаем электрический ток.

Это пример электромагнитной индукции — в катушке возникает напряжение, когда она движется в магнитном поле.

Внутри генератора
Внутренняя часть простого генератора очень похожа на внутреннюю часть простого электродвигателя. Есть катушка, которая может свободно вращаться между двумя магнитами. Магниты связаны стальным каркасом, а катушка соединяется с проводами с помощью щеток.Однако вместо коммутатора в генераторе используются контактные кольца. Таким образом, контакты не меняются местами — каждая щетка поддерживает контакт с одним концом катушки на протяжении всего цикла.

Напряжение индуцируется, когда катушка вращается в магнитном поле. Смотрите видео ниже.

Простая анимация генерации постоянного тока. (Предоставлено Стивеном Карпентером.)

Уведомление:

  • положение катушки, когда наведенное напряжение достигает максимального значения.
  • изменение направления тока во время цикла.

Что заставляет генератор работать?
Генератор вырабатывает напряжение. Он подает ток, когда мы подключаем его к нагрузке (например, к лампочке). Ток загорается лампочкой. Однако это также затрудняет вращение генератора.

Мы должны усерднее работать, чтобы генератор продолжал вращаться после получения тока. Чем больше тока мы получаем от генератора, тем сложнее его повернуть.

В этом есть смысл: мы ничего не получаем даром. Как только мы заставим генератор работать за нас, мы должны вложить в него больше работы. И чем больше у нас работы, тем больше работы мы должны вложить. Если бы это было не так, мы бы получали что-то бесплатно. А это противоречило бы идеям сохранения энергии.

Есть веская физическая причина, по которой становится труднее повернуть генератор, когда он выдает ток: он начинает вести себя как двигатель.В катушках течет ток. Следовательно, на катушки действует сила — как если бы это был двигатель. И эта сила будет противодействовать движению генератора и затруднять его вращение. Это физическое происхождение закона Ленца. Сила наведенного тока противостоит силе, которую вы прикладываете, чтобы заставить ток течь.

Работа входит, электричество нет
Когда вы крутите педали на велосипеде, становится немного сложнее, когда динамо-машина работает для включения света. Дело не только в увеличении трения.Вы должны сделать работу, чтобы динамо-машина снабжала свет электричеством. И чем больше тока потребляет лампа, тем сложнее крутить педали.

Когда мы получаем ток от генератора или динамо-машины, должна присутствовать механическая движущая сила:

  • Велосипедист крутил педали, чтобы включить динамо-машину (используя химическую энергию из пищи).
  • Ветер вращает турбину; ветер стихает.
  • Движущийся пар на тепловой электростанции вращает турбины, которые вращают генераторы (мы должны сжигать больше топлива, чтобы произвести больше пара).

В каждом случае ничего не получаем даром. Чтобы подать электрический ток, нам нужно выполнять механическую работу.

Велосипедное динамо-машина генерирует напряжение для зажигания лампы. Чем больше ток, который он выдает, тем труднее крутить педали.

Что такое индукция?

Создание напряжения
Мы можем навести напряжение в проводе с помощью магнитного поля. Нам нужно заставить проволоку двигаться по полю.Мы называем напряжение наведенной ЭДС (электродвижущей силой). Чем быстрее проводник движется через поле, тем больше наведенная ЭДС. Это закон Фарадея.

Если мы переместим провод в другую сторону, то направление ЭДС изменится на противоположное.

ЭДС упадет до нуля, если на проводе:

  • останавливается или
  • находится вне магнитного поля.

Проволоку необходимо прорезать линии потока, чтобы вызвать ЭДС.

Создание напряжения в проводе, проходящем через магнитное поле.

Чем быстрее проводник движется через поле, тем больше наведенная ЭДС.

При перемещении провода в противоположном направлении направление ЭДС меняется на противоположное.

ЭДС падает до нуля, если провод перестает двигаться или выходит за пределы магнитного поля.

Мы получаем наибольшее индуцированное напряжение, когда эти три величины расположены под прямым углом друг к другу:

  • движение кондуктора.
  • магнитное поле Б.
  • провода (а значит, и наведенной ЭДС).

Почему у нас напряжение?
Представьте, что несколько свободных электронов (или пучок электронов) попадают в магнитное поле. На электроны будет действовать сила. Электроны имеют отрицательный заряд. Это означает, что, хотя электроны движутся слева направо, они подобны току, текущему справа налево.

Мы можем использовать правило мотора левой руки Флеминга, чтобы узнать направление силы.Это вниз. Таким образом, электроны выталкиваются вниз.

Кусок медной проволоки также содержит свободные электроны (A). Поэтому, когда проволока движется в поле, электроны выталкиваются вниз (B). Это оставляет чистый положительный заряд в верхней части провода. Следовательно, заряд разделяется в проводе, создавая напряжение (C). Верх стал более позитивным, а нижний — более негативным.

(А)

(В)

(К)

В каком направлении сила?
Эта ЭДС подобна ЭДС клетки.Он может управлять током по цепи. Если к проводу прикрепить нагрузку, то будет течь ток. Мы называем это индуцированным током. Однако, как только мы снимаем ток с провода, провод ощущает силу (провод, несущий ток в магнитном поле, ощущает силу).

Мы можем использовать правило моторики левой руки Флеминга, чтобы определить направление силы. В данном случае это вниз.

Другими словами, сила будет противодействовать движению проволоки.Проволока замедлится. Если мы хотим, чтобы он продолжал двигаться, нам нужно его подтолкнуть.

Если мы возьмем из провода больший ток, нам придется протолкнуть его сильнее. Чем больше ток, который мы получаем от наведенной ЭДС, тем больше работы мы должны приложить.

В этом есть смысл: мы ничего не получаем даром. Когда мы берем больший ток, мы заставляем наведенную ЭДС выполнять за нас больше работы с электричеством. Следовательно, мы должны приложить больше механических усилий. Это сохранение энергии.

Закон Ленца
Когда мы начинаем получать ток из индуцированного напряжения, на провод действует сила. Мы уже видели, что сила будет замедлять провод или затруднять его удержание. Это выражено в законе Ленца:

«Индуцированный ток течет таким образом, чтобы противодействовать движению, которое его вызвало».

Закон Ленца основан на идее сохранения энергии. Если бы индуцированный ток не протекал таким образом, то мы могли бы получить что-то бесплатно.

Индукция в катушках

Наведение тока
Представьте себе магнит рядом с катушкой из медной проволоки. Катушка подключена к чувствительному амперметру. Когда магнит неподвижен, в катушке нет тока. Однако, если мы подвинем магнит к катушке, амперметр сдвинется вправо. Теперь давайте вытащим магнит. Катушка щелкнет влево.

Это показывает, что мы индуцировали ток в катушке — но только во время движения магнита. Направление тока зависело от направления движения.

Чтобы получить длительный ток от катушки, мы должны постоянно вдавливать и вытаскивать магнит. Это заставит ток двигаться вперед и назад. Другими словами, мы создали переменный ток.

Но как определить, в каком направлении будет течь ток? Используя закон Ленца.

Закон Ленца и катушки
Когда мы индуцируем ток в катушке, она становится электромагнитом. Один конец катушки — это северный полюс, а другой конец — южный полюс.

Когда северный полюс нашего магнита движется к левому концу катушки, индуцированный ток течет против часовой стрелки (если смотреть на левый конец). Это превращает левый конец катушки в северный полюс. И этот северный полюс пытается отразить входящий северный полюс магнита.

Итак, индуцированный ток противодействует движению, которое его вызвало (из закона Ленца).

Когда мы вытаскиваем магнит, левый конец катушки становится южным полюсом (чтобы попытаться удержать магнит).Следовательно, индуцированный ток должен течь по часовой стрелке.

Поддержание тока
Мы можем установить магнит на коленчатый вал и повернуть ручку, чтобы сделать простой генератор.

Как всегда, мы должны продолжать вращать магнит, чтобы преодолеть противодействующую силу, создаваемую индуцированным током. Т.е. мы должны выполнять механическую работу, чтобы получить электроэнергию.

В некоторых генераторах используется магнит, перемещающийся рядом с катушкой. Другие используют движущуюся катушку в магнитном поле.Хотя движется катушка, это работает по тому же принципу — магнитное поле движется относительно катушки.

Еще раз о движущихся катушках
Теперь мы можем понять, почему мы получаем наведенное напряжение в движущейся катушке. Есть два взгляда на это.

  • Провода на стороне катушки прорезают линии магнитного потока.
  • : катушка продвигается к северному полюсу, затем к южному полюсу и так далее.

Флюс и плотность потока

Наведение тока
Мы видели, что мы можем индуцировать ЭДС, изменяя величину магнитного поля в цепи.Мы можем сделать это, пропуская провод через магнитное поле или перемещая магнит рядом с катушкой. Но что мы подразумеваем под величиной магнитного поля?

Магнитный поток
Представьте себе провод, движущийся в магнитном поле. Мы представляем магнитное поле с помощью силовых линий. По мере того, как провод движется по полю, он прорезает силовые линии. Количество силовых линий, перерезаемых проволокой, называется магнитным потоком. Это связано с площадью магнитного поля, через которое проходит провод, и силой магнитного поля (плотностью магнитного потока).

Мы можем увеличить поток, перемещая провод быстрее или увеличивая напряженность магнитного поля. Это похоже на приближение магнита к катушке в предыдущем примере.

Таким образом, поток в цепи изменяется независимо от того, мы ли:

  • переместите провод в устойчивом поле, или
  • изменить поле.

И в каждом случае получаем наведенную ЭДС.

Плотность магнитного потока
Вы можете представить поток как количество силовых линий.Иногда мы называем их линиями магнитного потока. Чем ближе друг к другу линии потока, тем сильнее поле. То есть напряженность поля представлена ​​плотностью линий магнитного потока. Иногда мы называем напряженность магнитного поля B плотностью магнитного потока. И мы используем эту идею для определения потока:

Напряженность магнитного поля = плотность магнитного потока = поток на единицу площади

B = Φ / A
Φ = B A

Закон Фарадея
Мы видели, что чем быстрее мы перемещаем провод, тем большую ЭДС мы индуцируем.Фактически, мы обнаруживаем, что ЭДС (ε) пропорциональна скорости изменения потока. Итак, в простой схеме:

ε ∝ dΦ / dt

Это означает, что если мы удвоим скорость проволоки, поток в цепи увеличится в два раза быстрее. Следовательно, ЭДС в два раза больше.

Мы можем увеличить общий поток, соединяющий цепь, используя катушку, а не отдельный кусок провода. В этом случае ЭДС ε будет увеличиваться пропорционально количеству катушек N.Итак, мы получаем выражение для закона Фарадея:

ε = — N (dΦ / dt)

Обратите внимание на знак минус в уравнении. Это указывает на то, что наведенная ЭДС противодействует изменению потока, который ее произвел.

Что такое электричество?

Вы могли задаться вопросом в тот или иной момент; что такое на самом деле электричество?

Трудно сбежать; смотрите ли вы на природу и наблюдаете, как надвигается гроза с ее красивыми, но мощными ударами молний.Или вы просто идете на кухню, включаете свет и открываете холодильник; электричество — это часть нашей повседневной жизни.

Но чтобы по-настоящему понять, что такое электричество, нам нужно взглянуть на науку, лежащую в основе его на атомном уровне.

Все начинается с атомов

Атомы — это маленькие частицы, попросту говоря, они являются основными строительными блоками всего, что нас окружает, будь то наши стулья, столы или даже наше собственное тело. Атомы состоят из еще более мелких элементов, называемых протонами, электронами и нейтронами.

Когда электрические и магнитные силы перемещают электроны от одного атома к другому, образуется электрический ток.

Посмотрите это видео, чтобы увидеть электроны в действии.

Как производится электричество?

Во-первых, для выработки электроэнергии вам понадобится источник топлива, например уголь, газ, гидроэнергия или ветер.

В Австралии большая часть нашей электроэнергии вырабатывается из традиционных видов топлива, таких как уголь и природный газ, при этом около 14 процентов приходится на возобновляемые источники энергии. 1

Независимо от выбранного топлива, большинство генераторов работают по одному и тому же проверенному принципу: поверните турбину так, чтобы она вращала магниты, окруженные медной проволокой, чтобы получить поток электронов через атомы, который, в свою очередь, вырабатывает электричество.

Уголь и газ работают аналогично; они оба сжигаются, чтобы нагреть воду, которая создает пар и вращает турбину.

Возобновляемые источники энергии, такие как гидроэнергетика и ветер, работают несколько иначе: вода или ветер используются для вращения турбины и выработки электроэнергии.

Солнечные фотоэлектрические панели используют другой подход: они вырабатывают электроэнергию, преобразуя солнечное излучение в электричество с помощью полупроводников.

Электростанции перерабатывают топливо в электричество

Уголь и газ сжигаются для нагрева воды и превращения ее в пар.

Затем пар под очень высоким давлением используется для вращения турбины.

Вращающаяся турбина заставляет большие магниты вращаться внутри катушек из медной проволоки — это называется генератором.

Движущиеся магниты заставляют электроны в проводах перемещаться из одного места в другое, создавая электрический ток и производя электричество.

Электроэнергия отключается

В Австралии мы получаем электроэнергию через сложную сетевую сеть.

Электричество оставляет генераторы и перемещается по проводам в сетевой сети к домам и предприятиям по всей стране. К тому времени, когда электричество дойдет до вас, оно, скорее всего, пройдет сотни километров по сети.

Национальный рынок электроэнергии Австралии или NEM является крупнейшей объединенной энергосистемой в мире.

Интересует, как вы используете энергию дома? Если у вас есть цифровой интеллектуальный счетчик, вы можете отслеживать его использование через Моя учетная запись или через приложение Origin.

Список литературы

Согласно анализу от Origin Energy, данные включают всю Австралию: национальный рынок электроэнергии (QLD, NSW, Vic, SA, TAS), а также Западную Австралию и Северную территорию, но не включают Mt Isa.Данные встроенной генерации получены из отчета о состоянии энергетического рынка за 2014 год, Австралийского регулятора энергетики, данных WA за 2012 год от Грега Рутвена, 2012 год, брифинга «Заявление о возможностях» перед запуском, Независимого оператора рынка за 2012 год и NT FY13; данные Ассоциации энергоснабжения Австралии 2012 г., Электричество Газ Австралия 2014 г.

видов электрического тока | Sciencing

Электрический ток бывает двух видов: переменного тока и постоянного тока, сокращенно AC и DC.Оба типа имеют свое собственное применение с точки зрения выработки и использования электроэнергии, хотя переменный ток является более распространенным типом электрического тока в доме. Разница в том, что постоянный ток течет только в одном направлении, а переменный ток быстро меняет направление.

Электричество — это поток электронов

Электричество — это результат движения электронов. Во всех веществах отрицательно заряженные электроны в атомах перемещаются беспорядочно. Когда электроны начинают течь в определенном направлении внутри вещества или от одного объекта к другому, в результате возникает электричество.Движение электронов можно использовать для получения энергии. Движение электронов происходит, когда два объекта трутся друг о друга и электроны переносятся друг на друга, что является статическим электричеством. Когда электроны протекают в токе, например, через проводник, такой как медный провод, электричество называется электрическим током.

Как на самом деле течет ток?

Электрический ток — это поток электронов, но электроны не прыгают непосредственно от точки происхождения тока к месту назначения.Вместо этого каждый электрон перемещается на небольшое расстояние к следующему атому, передавая свою энергию электрону в этом новом атоме, который перескакивает на другой атом, и т. Д. Отдельные электроны движутся не быстро, но сам ток движется со скоростью света. Ток нагревает проводник. Этот механик излучает свет в лампочках и тепло в электрических плитах.

Постоянный ток и переменный ток

Постоянный ток — это электрический ток, который течет только в одном направлении.Обычное место, где можно найти постоянный ток, — это батареи. Аккумулятор сначала заряжается постоянным током, который затем преобразуется в химическую энергию. Когда аккумулятор используется, он превращает химическую энергию обратно в электричество в форме постоянного тока. Аккумуляторы нуждаются в постоянном токе для зарядки, и они будут производить только постоянный ток.

Вам нужен индукционный генератор для выработки переменного тока. Английский физик Майкл Фарадей открыл электромагнитную индукцию, а Никола Тесла в сотрудничестве с Westinghouse Company разработал большие индукционные генераторы, которые питают сегодня цивилизацию.Поскольку индукционный генератор имеет вращающийся ротор, вырабатываемое им электричество меняет направление один раз и обратно с каждым циклом ротора. В Соединенных Штатах период этого цикла был стандартизирован и составлял 60 Гц.

Переменный ток побеждает

Когда электричество производится в больших масштабах, например, на электростанции, оно имеет опасно высокое напряжение, которое необходимо понизить на стороне пользователя. Это легче сделать с переменным током, чем с постоянным.Однако это не основная причина того, что переменный ток является предпочтительным для домашнего потребления. В конце 19 века борьба между промышленными производителями Westinghouse и General Electric, продвигавшими электроэнергию постоянного тока, закончилась в пользу Westinghouse, когда она успешно запитала Чикагскую всемирную ярмарку 1893 года с помощью переменного тока. С тех пор переменный ток питает дома и все остальное, что потребляет ток в линиях электропередач.

Генераторы и динамо


Развитие и история компонента, который первым сделал электричество коммерчески осуществимо

Динамо Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо — устройство, вырабатывающее постоянного тока электроэнергии с помощью электромагнетизма. Он также известен как генератор, однако термин «генератор» обычно относится к «генератору переменного тока», который вырабатывает мощность переменного тока.

Генератор — обычно этот термин используется для описания генератора , который создает мощность переменного тока, используя электромагнетизм.

Генераторы, Динамо и Батарейки — три инструмента, необходимые для создания / хранения значительное количество электроэнергии для использования людьми.Аккумуляторы возможно, был обнаружен еще в 248 году до нашей эры. Они просто используют химические реакция на производство и хранение электричества. Ученые экспериментировали с батарея, чтобы изобрести первые лампы накаливания, электродвигатели и поезда и научные испытания. Однако батареи не были надежными или рентабельно для любого обычного электрического использования, именно динамо-машина радикально изменил электричество из диковинного в выгодное, надежное технология.

1. Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как Это работает:

Базовый:

Сначала вам понадобится механический источник энергии, такой как турбина (приводимая в действие падающей водой), ветряная турбина, газовая турбина или паровая турбина. Вал от одного из этих устройств подключен к генератору для выработки энергии.

Динамо и генераторы работают используя дикие сложные явления электромагнетизма . Понимание поведение электромагнетизма, его полей и его эффектов очень велико. предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты первая батарея, чтобы заработала хорошая мощная динамо-машина. Мы будет проще, чтобы познакомить вас с интересным предметом выработки электроэнергии.

В самом общем смысле Генератор / динамо-машина — это один вращающийся магнит, находящийся внутри воздействия магнитного поля другого магнита. Вы не видите магнитное поле, но это часто иллюстрируется линиями потока. На иллюстрации над линиями магнитного потока будут следовать линии, созданные железом документы.

Генератор / динамо изготовлен сборка неподвижных магнитов (статора), создающих мощное магнитное поле, и вращающийся магнит (ротор), который искажает и разрезает магнитный магнитные линии статора.Когда ротор прорезает линии магнитного поток делает электричество.

Но почему?

Согласно закону индукции Фарадея если вы возьмете провод и будете двигать его вперед и назад в магнитном поле, поле давит на электроны в металле. Медь имеет 27 электронов, последние два на орбите легко переносятся на следующий атом. Это движение электронов — это электрический поток.

Посмотреть видео ниже показано, как ток индуцируется в проводе:

Если взять много провода например, в катушке и перемещая ее в поле, вы создаете более мощный «поток» электронов.Мощность вашего генератора зависит по телефону:

«л» -длина проводник в магнитном поле
«v» — скорость проводника (скорость ротора)
«B» — сила электромагнитного поля

Вы можете производить расчеты, используя эта формула: e = B x l x v

Посмотреть видео для демонстрации всего этого:

О магнитах:

Вверху: простой электромагнит. называется соленоидом.Термин «соленоид» на самом деле описывает трубчатая форма, созданная витой проволокой.

Магниты обычно не из природного магнетита или постоянного магнит (если это не маленький генератор), но они медные или алюминиевый провод, намотанный на железный сердечник. Каждая катушка должна быть под напряжением с некоторой силой, чтобы превратить его в магнит. Эта спираль вокруг железа называется соленоид. Соленоиды используются вместо природного магнетита, потому что соленоид НАМНОГО мощнее.Небольшой соленоид может создать очень сильное магнитное поле.

Выше: Катушки с проволокой в ​​генераторах должны быть изолированы. Отказ генератора вызвано слишком высоким повышением температуры, что приводит к поломке изоляции и короткое замыкание между параллельными проводами. Подробнее о проводах>

Термины :
Электромагнетизм — изучение сил, которые происходят между электрически заряженными частицами
Ротор — часть генератора динамо, которая вращается
Якорь — то же, что и ротор
Поток — силовые линии в магнитном поле, это измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе / динамо-машине, которые не двигаются, они устанавливают стационарное магнитное поле
Соленоид — магнит, созданный катушкой из проволоки вокруг утюга / ферриса сердечник (соленоид технически означает форму этого магнита, но инженеры называют соленоид и электромагнит как синонимы.
Коммутатор — Узнайте больше о них здесь
Крутящий момент — сила во вращательном движении

Динамо

Динамо — это старый термин, используемый для описания генератора, вырабатывающего постоянный ток мощность . Мощность постоянного тока отправляет электроны только в одном направлении. Проблема с простым генератором заключается в том, что когда ротор вращается, он в конечном итоге полностью поворачивается, меняя направление тока.Ранние изобретатели не знать, что делать с этим переменным током, переменный ток более сложные в управлении и проектировании двигателей и фонарей. Ранние изобретатели пришлось придумать способ улавливать только положительную энергию генератора, поэтому они изобрели коммутатор. Коммутатор — это переключатель, позволяющий ток течет только в одном направлении.

См. видео ниже, чтобы увидеть, как работает коммутатор:

Динамо состоит из 3 основных компонентов : статора, якоря и коммутатор.

Кисти являются частью коммутатора, щетки должны проводить электричество, поскольку контакт с вращающимся якорем. Первые кисти были актуальны проволочные «щетки» из мелкой проволоки. Они легко изнашивались и они разработали графические блоки для выполнения той же работы.

The Статор представляет собой фиксированную конструкцию, которая делает магнитные поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита.Для больших динамо требуется электромагнит.

Якорь изготовлен из спиральных медных обмоток, которые вращаются внутри магнитного поля, создаваемого статором. Когда обмотки движутся, они прорезают силовые линии магнитного поля. Этот создает импульсы электроэнергии.

Коммутатор необходим для выработки постоянного тока. В потоках мощности постоянного тока только в одном направлении через провод, проблема в том, что вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота, поэтому коммутатор — это поворотный переключатель, который отключает питание в течение обратной текущей части цикла.

Самовозбуждение:

Так как магниты в динамо-машине являются соленоидами, для работы они должны быть запитаны. Так что помимо кистей какая мощность крана выйти на главную цепь, есть другой набор щеток для получения энергии от якоря для питания статора магниты. Это нормально, если динамо-машина работает, но как начать динамо-машина, если у вас нет мощности для запуска?

Иногда арматура сохраняет некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает небольшая мощность, достаточная для возбуждения соленоидов статора.Затем напряжение начинает расти, пока динамо-машина не наберет полную мощность.

Если нет магнетизма осталось в железе якоря, чем часто используется батарея для возбуждения соленоиды в динамо-машине, чтобы начать. Это называется «поле» мигает ».

Ниже в обсуждении проводя динамо, вы заметите, как мощность проходит через соленоиды по-другому.

Есть два способа проводка динамо: серия рана и шунт ранить.См. Диаграммы, чтобы узнать разницу.

Ниже видео небольшого простая динамо-машина, похожая на схемы выше (построена в 1890-х годах):

Генератор

Генератор отличается от динамо-машина в том смысле, что она вырабатывает переменного тока . Электроны входят в в обоих направлениях в сети переменного тока. Только в 1890-х годах инженеры придумали, как проектировать мощные двигатели, трансформаторы и другие устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током мощность.

Пока генератор использует коммутаторах, генератор использует контактное кольцо со щетками для постукивания по выключение ротора. К контактному кольцу прикреплены графит или углерод. «щетки», которые подпружинены, чтобы протолкнуть щетку на звенеть. Это поддерживает постоянный поток энергии. Кисти изнашиваются время и нуждаются в замене.

Ниже видео контактных колец и щеток, много примеров от старого к новому:

Со времен Грамма в 1860-х годах было выяснено, что лучший способ построить динамо-генератор было расположить магнитные катушки по широкому кругу, с широким вращением арматура.Это выглядит иначе, чем простые маленькие примеры динамо-машин. вы видите, как они используются в обучении работе устройств.

На фото ниже вы будете хорошо видна одна катушка на якоре (остальные были сняты для обслуживания) и другие катушки, встроенные в статор.

С 1890-х до наших дней Трехфазное питание переменного тока было стандартной формой питания. Три фазы сделано за счет конструкции генератора.

Изготовить трехфазный генератор вы должны разместить определенное количество магнитов на статоре и якоре, все с правильным интервалом. Электромагнетизм так же сложен, как и волны и вода, поэтому вам нужно знать, как контролировать поле через ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита к железному сердечнику, неправильные расчеты искажения магнитного поле (чем быстрее вращается, тем сильнее искажается поле), ложный сопротивление в катушках якоря и множество других потенциальных проблем.

Почему 3 фазы? если ты хочешь Чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео с пионером трансмиссии Лайонелом Бартольдом.

2.) Краткая история динамо-машин и генераторов:

Генератор возникла из работ Майкла Фарадея и Джозефа Генрих в 1820-х годах. Как только эти два изобретателя обнаружили и задокументировали явления электромагнитной индукции, это приводит к экспериментам другими как в Европе, так и в Северной Америке.

1832 — Ипполит Пикси (Франция) построил первую динамо-машину с помощью коммутатора, его модель создавала электрические импульсы, разделенные отсутствием тока. Он также случайно создали первый генератор переменного тока. Он не знал, что чтобы сделать с изменяющимся током, он сосредоточился на попытке устранить переменный ток для получения постоянного тока, это привело его к созданию коммутатор.

1830s-1860s — Аккумулятор по-прежнему является самым мощным источником питания электричество для различных экспериментов, происходивших в этот период.Электричество по-прежнему было коммерчески невыгодным. Электроэнергия с батарейным питанием поезд из Вашингтона в Балтимор провалился, что привело к серьезному затруднению в новую область электричества. После миллионов долларов потраченного впустую пара по-прежнему оказался лучшим источником энергии. Электричество все еще необходимо для оказались надежными и коммерчески выгодными.

1860 — Антонио Пачинотти — Создал динамо-машину, обеспечивающую непрерывное Источник питания постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более мощная, более полезная динамо-машина, в которой использовался электромагнит с автономным питанием в статоре вместо слабого постоянного магнита.

1871 — Зеноб Грамм зажег коммерческая революция электроэнергии. Он заполнил магнитное поле железный сердечник, который лучше пропускал магнитный поток. Это увеличило мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих Приложения.

1870-е годы — Произошел взрыв новых конструкций динамо-машин, конструкций варьировал дикий ассортимент, лишь немногие выделялись как превосходящие эффективность.

1876 — Чарльз Ф. Браш (Огайо) разработал самую эффективную и надежную конструкцию динамо-машины из когда-либо существовавших к этому моменту. Его изобретения продавались через Telegraph Supply. Компания.

1877 — Франклин Институт (Филадельфия) проводит испытания динамо-машин со всего мира. Публичность этого события стимулирует развитие других людей, таких как Элиху. Томсон, лорд Кельвин и Томас Эдисон.

Выше: Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для его системы постоянного тока 1884

1878 — The Компания Ganz начинает использовать генераторы переменного тока в небольших коммерческих инсталляции в Будапеште.

1880 — Чарльз F. Brush использовало более 5000 дуговых ламп , что составляет 80 процентов всех ламп в мире. Экономическая сила электрического возраст начался.

1880–1886 — Системы переменного тока разрабатываются в Европе совместно с Siemens, Сабастиан Ферранти, Люсьен Голар и другие. Царство динамо-машин постоянного тока на прибыльном американском рынке многие скептически относятся к инвестировать в AC.Генераторы переменного тока были мощными, однако генератор само по себе не было самой большой проблемой. Системы контроля и распределения мощности переменного тока необходимо было улучшить, прежде чем она сможет конкурировать с DC на рынке.

1886 — дюйм изобретатели Североамериканского рынка, такие как William Стэнли , Джордж Вестингауз, Никола Тесла и Элиху Thomson разрабатывает собственный кондиционер системы и конструкции генераторов.Большинство из них использовали Siemens и генераторы Ферранти в качестве основы для изучения. Уильям Стэнли быстро смог изобрести генератор получше, будучи неудовлетворенным с генератором Сименса, который он использовал в своем первом эксперимент.

Выше: Генераторы переменного тока Siemens, используемые в Лондоне в 1885 году, в США Эдисон не хотел перейти в область питания переменного тока, в то время как в Европе технология развивалась быстро.


1886-1891 — Полифазный Генераторы переменного тока разработаны C.S. Bradly (США), August Haselwander. (Германия), Михаил Доливо-Добровский (Германия / Россия), Галилео Феррарис (Италия) и др. Системы переменного тока, которые включают улучшенный контроль и мощные электродвигатели позволяют AC конкурировать.


1891 — трехфазный Электропитание переменного тока оказалось лучшей системой для выработки электроэнергии и распространение на Международном Электротехническая выставка во Франкфурте.

Трехфазный генератор конструкции Михаила Доливо-Добровского, использованный на выставке видно слева.

1892 — Чарльз П. Стейнмец представляет свой доклад AIEE по гистерезису. Понимание Штейнмеца математики мощности переменного тока опубликована и помогает произвести революцию Проектирование систем питания переменного тока, включая большие генераторы переменного тока.

1890-е — Генератор дизайн быстро улучшается благодаря коммерческим продажам и имеющиеся деньги на исследования.Westinghouse, Siemens, Oerlikon, и General Electric разрабатывают самые мощные генераторы в мире. Некоторые генераторы все еще работают 115 лет спустя. (Механиквилл, Нью-Йорк)

Выше: 1894 Элиу Томсон разработал много Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse 2000 кВт, 270 В, после 1900

3.Видео

Mechanicville Генераторы с объяснением истории (1897), разработанные вдохновителем переменного тока Чарльз П. Стейнмец

Генератор Вестингауза сконструирован и испытан (1905 г.), спроектирован Оливером Шалленбергером, Tesla и другие в Westinghouse.

1895 Первые мощные генераторы используется в Фолсоме, Калифорния (разработан Элиу Томпсон, доктором.Луи Белл и другие в GE)

1891 Генератор производства Oerlikon для Международной электротехнической выставки (дизайн Добровольского в Германии)


Связанные темы:

Источники:
-The История General Electric — Зал истории , Скенектади, Нью-Йорк, 1989 Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — от General Electric
— История переменного тока — Технический центр Эдисона
— Руководство по электричеству Хокинса

Фото / Видео:
-Copyright 2011 Технический центр Эдисона.Снято в Немецком музее, Мюнхен,
— Некоторые генераторы сфотографированы в Техническом центре Эдисона, Скенектади, NY

Как производится электричество? | Как работает электричество?

Какие источники питания зеленые?

Энергия, вырабатываемая из возобновляемых источников, таких как гидро-, ветровая, солнечная и геотермальная, является зеленой. В отличие от ископаемого топлива эти источники энергии не истощают природные ресурсы. Они также являются более чистыми источниками энергии, которые не загрязняют окружающую среду выбросами углерода.

Хотя возобновляемые источники энергии лучше для здоровья нашей планеты, они обычно стоят больше, чем другие источники энергии, поэтому большая часть нашей электроэнергии не вырабатывается из зеленых источников.

Продукт JustGreen Power компании

Just Energy позволяет гарантировать, что до 100% потребляемой вами электроэнергии вырабатывается из возобновляемых источников.

Узнать больше
Ежегодное раскрытие экологической информации
Ежеквартальное раскрытие экологической информации

Хотя варианты зеленой энергии Just Energy доступны на большинстве рынков, которые мы обслуживаем, они пока недоступны на всех наших рынках.Посмотрите, на каких рынках мы в настоящее время предлагаем варианты зеленой энергии.

Хотите узнать больше об электричестве? Ознакомьтесь с нашей серией обучающих статей с часто задаваемыми вопросами об электричестве.

Раскрытие экологической информации

Заявление об охране окружающей среды штата Иллинойс
Заявление об охране окружающей среды штата Делавэр

Источники: «Электричество — вторичный источник энергии». Университет Лихай,

1. «Электроэнергия — вторичный источник энергии». Университет Лихай, http: // www.ei.lehigh.edu/learners/energy/readings/electricity.pdf

2. «Наука об электричестве». Факторы, влияющие на цены на бензин — объяснение энергии, ваше руководство по пониманию энергетики — Управление энергетической информации, www.eia.gov/energyexplained/electricity/the-science-of-electricity.php

3. «Уголь и электричество». Всемирная угольная ассоциация, 17 апреля 2018 г., www.worldcoal.org/coal/uses-coal/coal-electricity

4. «Как электроэнергия доставляется потребителям». Факторы, влияющие на цены на бензин — объяснение энергии, ваш путеводитель по энергетике — Управление энергетической информации, www.eia.gov/energyexplained/electricity/delivery-to-consumers.php

5. Перлман, Ховард и Геологическая служба США. «Гидроэнергетика: как это работает». Адгезионные и когезионные свойства воды, Школа водных наук Геологической службы США, water.usgs.gov/edu/hyhowworks.html.

6. «Электросчетчики». Министерство энергетики, www.energy.gov/energysaver/appliances-and-electronics/electric-meters.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *